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Abstract

We explore the relationship between evolved neural network
structure and function, by applying graph theoretical tools
to the analysis of the topology of artificial neural networks
known to exhibit evolutionary increases in dynamical neu-
ral complexity. Our results suggest a synergistic convergence
between network structures emerging due to physical con-
straints, such as wiring length and brain volume, and optimal
network topologies evolved purely for function in the absence
of physical constraints. We observe increases in clustering
coefficients in concert with decreases in path lengths that
together produce a driven evolutionary bias towards small-
world networks relative to comparable networks in a passive
null model. These small-world biases are exhibited during
the same periods that evolution actively selects for increasing
neural complexity (also during which the model’s agents are
behaviorally adapting to their environment), thus strengthen-
ing the association between small-world network structures
and complex neural dynamics. We also introduce a new mea-
sure of path length in graphs, “normalized path length”, that is
better behaved than existing metrics for networks comprised
of disjoint subgraphs and disconnected nodes, and a novel
method of quantifying the degree of evolutionary selection
for small world networks, “small-world bias”.

Introduction
Dynamical processes in networks are unavoidably influ-
enced by the networks’ underlying topologies. As the study
of networks has come to pervade all of science, a need has
arisen to understand this relationship between the anatomi-
cal structure of networks and the dynamical functions they
carry out (Strogatz, 2001).

Small-world properties have been shown (Watts and
Strogatz, 1998) to characterize many networks of interest,
including biological nervous systems. Small-world net-
works of Hodgkin-Huxley neurons have been shown (Lago-
Fernández et al., 2000) to provide the best features of both
random networks (fast system response) and regular net-
works (coherent oscillations). Small-world-ness has also
been shown (Sporns et al., 2000) to be highly correlated with
dynamical complexity in artificial neural networks evolved
specifically for complexity. In the biological realm, cortical
connection matrices for macaque visual cortex and rat cortex
have been shown (Sporns et al., 2000) to exhibit both small
world anatomical properties and high dynamical complexity.

It has been argued that physical constraints—evolutionary
pressures to reduce overall wiring length (Mitchison, 1991;
Cherniak, 1995) and to maximize connectivity while min-
imizing volume (Murre and Engelhardt, 1995)—might ex-
plain key aspects of biological brain connectivity. But it
is unlikely that evolutionary pressure on wiring alone is re-
sponsible for the detailed patterns of connectivity seen in
biological brains (Sporns et al., 2000). Thus one is led to
ask how natural selection would act upon the topological
characteristics of nervous systems in the absence of phys-
ical constraints, and whether such functional evolutionary
pressures are opposed to, independent of, or aligned with
physical evolutionary pressures.

In previous work using the Polyworld artificial life sys-
tem (Yaeger, 1994) we have shown that when agents whose
behaviors are controlled by a genetically prescribed artifi-
cial neural network are subject to natural selection, the net-
works’ dynamical neural complexity increases over evolu-
tionary time (Yaeger and Sporns, 2006), the networks’ com-
plexity will be actively selected for by evolution (Yaeger
et al., 2008), and periods of neural complexity growth cor-
respond to periods of behavioral adaptation of the agents to
their environment (Yaeger, 2009).

We now seek to understand the underlying network
topologies that give rise to this evolved functional complex-
ity. Preliminary results for several graph theoretical met-
rics from one simulation suggested (Lizier et al., 2009) that
evolutionary trends in Polyworld mirrored those in biolog-
ical neural networks (and successfully related anatomical
networks to inferred functional networks). We will more
fully characterize those evolutionary trends, determine their
robustness and statistical significance, quantify the small-
world-ness of those trends, and confirm the role of natural
selection (as opposed to random drift, in a “driven” vs. “pas-
sive” sense (McShea, 1996)) in the shaping of those trends.
This allows us to characterize the relationship between evo-
lutionary pressures on brain structure due to functional opti-
mization vs. physical constraints.



Tools and Techniques

Polyworld

Polyworld is an ecosystem model in which the agents are
controlled by artificial neural networks using a firing rate
neuron model performing Hebbian learning at the synapses.
The wiring diagrams of these networks are the primary sub-
ject of evolution in the system, through a genetic encoding
of a generative model of network architectures. This ge-
netic encoding describes the network topology in terms of a
number of neural groups, containing a number of excitatory
and inhibitory neurons, wired together with genetically de-
termined connection densities, ordered-ness of connections,
and learning rates. By eschewing any particular model of
ontogenetic development, Polyworld avoids the biases in-
herent in such a model choice. Further, instead of evolving
specific network topologies, Polyworld forces evolution to
select for useful statistics of neural connectivity.

Vision, current energy level, and a randomly firing neuron
are the inputs to the network. A suite of primitive behaviors
(move, turn, eat, mate, attack, light, focus) are the outputs.
All agent actions consume energy, which must be replen-
ished by consuming food from the environment, or by killing
and eating other agents. Normally there are per-neuron and
per-synapse energy costs, but these have been eliminated
for this study so as not to impose any pseudo-physical con-
straints on network topology. Survival and reproduction,
variation and selection, are the only driving forces, so Poly-
world acts as a model of natural selection, with no fitness
function, rather than in the manner of a genetic algorithm
(though that is possible, if desired).

In these experiments Polyworld is used to produce paired
runs in which an initial, normal “driven” run is followed by
a “passive”, null-model run. (The terms driven and passive
are used in the sense proposed by McShea (1996).) In the
passive run, agents cannot reproduce or die on their own;
rather, pairs are chosen for reproduction at random and in-
dividuals are killed at random to match the birth and death
events of the original driven run, thus removing the effects
of selection, while retaining population statistics and levels
of genetic variation that are equivalent to those in the driven
run. This allows the direct comparison of driven vs. passive,
natural-selection vs. random-walk evolutionary trajectories.
See (Yaeger et al., 2008; Yaeger, 2009) for more details.

The activation of every neuron at every time step for every
agent is recorded to disk as simulations progress, as is the
neural architecture of every agent. Thus we are able to study
both the structure and the function of the evolved neural net-
works, under conditions in which either natural selection or
increasing variance due to a random walk are holding sway.

The Polyworld source code and data analysis tools are
available at http://sourceforge.net/projects/polyworld/ and
instructions for installing and building Polyworld are at
http://beanblossom.in.us/larryy/BuildingPolyworld.html.

Complexity
Our primary tool for analyzing neural dynamics is an infor-
mation theoretic measure of neural complexity proposed by
Tononi et al. (1994) and introduced in a simplified and more
computationally tractable form in (Tononi et al., 1998). Re-
ferred to throughout as “complexity” (aka “TSE complex-
ity”, for the initials of its inventors), the measure captures a
trade-off between integration (cooperation) and segregation
(specialization) in any system of random variables, such as
the temporal traces of our agents’ neural activations. Max-
imally complex networks exhibit a high degree of both in-
tegration and segregation at multiple scales. Though not
presented here, we have previously demonstrated (Yaeger,
2009) that complexity is actively selected for, in a driven,
biased fashion, during periods of behavioral adaptation of
the agents to their environment, which corresponds to ap-
proximately the first 7,000 time steps in these experiments.
During this period complexity increases much more rapidly
in the driven runs than in the passive runs, but once a “good
enough” solution emerges and begins to propogate through-
out the population, driven complexity plateaus, while pas-
sive complexity continues its random walk to higher values.

Graph Theoretical Metrics
For current purposes we are interested primarily in three
graph theoretical metrics. Two of them—clustering coef-
ficient and characteristic path length—were used by Watts
and Strogatz (1998) to define and characterize small-world
networks. The third is a quantitative means of characterizing
the degree of small-world-ness exhibited by a network intro-
duced by Humphries et al. (2006). Throughout we will talk
about our neural networks as graphs, which can be described
by the number of nodes (aka vertices or neurons) and the
number of edges (aka links or synapses) that connect them.

Clustering coefficient (CC) is a local measure of cliquish-
ness in a graph, and characterizes the degree to which a
node’s neighbors are likely to be neighbors of each other
(where “neighbor” means a link exists between the nodes).
In social networks this would be the degree to which friends
of a common friend are likely to be friends of each other. It
is defined at each node as the fraction of possible links be-
tween neighbors that are actually present in the graph, and
defined for the entire network as the average of this fraction
over all nodes in the graph.

Characteristic path length (CPL), also called average
shortest path length, is a global measure of the average sep-
aration between all node pairs in a graph—an estimate of
how far it is from any one node to another. The average dis-
tance to all other nodes is calculated for each node, and then
averaged over all nodes.

Watts and Strogatz (1998) identified small-world net-
works by their combination of high clustering and low path
length. By contrast, though regular lattice networks also ex-
hibit high clustering, they typically have high path lengths,



since moving from one node to another requires the traversal
of all intervening nodes and links. And while random graphs
tend to have low path lengths, since any given node is only a
few random hops away, they usually exhibit low clustering.

Small-world index (SWI) is a quantitative measure of
small-world-ness introduced by Humphries et al. (2006). To
calculate SWI one computes CC and CPL for the actual
graph, CC and CPL for a corresponding random graph (or
ensemble of random graphs as done here), and compares the
ratios of actual to random measurements as follows:

γ = CC/ 〈CCr〉 (1)

λ = CPL/ 〈CPLr〉 (2)

s = γ/λ (3)

where〈CCr〉 and〈CPLr〉 are the ensemble averages ofCC
andCPL over some number of random graphs having the
same number of nodes and edges as the original graph, ands
is the desired SWI.1 SWI captures the degree to which clus-
tering and path length in the actual, original graph vary, in
the appropriate directions, from the values seen in compara-
ble random graphs. The more small-world a network is, the
greater its SWI will be above 1.0.

These metrics are most frequently applied to undirected
graphs (a given edge connects in both directions), often with
binary edges (either present or not). However, neural net-
works importantly have both weighted and directed edges.
Fortunately these metrics extend straightforwardly to sup-
port the analysis of weighted, directed (WD) graphs, but
their application to such networks has been less well char-
acterized than for binary, undirected (BU) graphs and, in-
deed, there turn out to be some issues applying them to WD
graphs. (Such as a greater prevalence of disconnected nodes
in WD graphs.) Accordingly, we analyzed our networks
treating them both as BU and WD graphs.

Neural network edge weights are also signed—positive
for excitatory connections, negative for inhibitory connec-
tions. Unfortunately, few graph theoretical metrics extend
well to signed graphs. So for these analyses we have made
the less than desirable, but simple and common, approxima-
tion of using the absolute values of the network weights on
the graph edges.

The fact that one of our key metrics, path length, is based
on distances between nodes, yet our neural networks have
weights, not distances, associated with their connections,
presents another small conundrum. We again take the sim-
plest, most common approach, and invert the weights to
provide a distance measure. Thus a strong weight, which
produces a strong influence, after inversion corresponds toa
short distance. So nodes that strongly influence each other

1Humphries used a single random graph corresponding to each
original graph, but there is sufficient variance in CC and CPL
amongst graphs with the same numbers of nodes and links that we
have chosen to use ensemble averages instead.

are seen as close neighbors, while nodes that only weakly in-
fluence each other are seen as distant neighbors, and nodes
that do not directly affect each other at all (have zero weight)
are infinitely far apart (though they may be reachable indi-
rectly, through other nodes and links). For our other fun-
damental metric, clustering coefficient, we use the original
neural network weights on the edges.

A question also arises as to which neural network nodes
to include in the graph being analyzed. One obvious answer
is all of them. However, the sensory nodes have an unusual
constraint—zero in-degree (no incoming connections)—and
their activations are purely determined by what the agent
senses in its environment rather than what happens within
the neural network. Another answer, then, is the non-
sensory neurons; i.e., all internal and output/behavioralneu-
rons. In our complexity work we have referred to this set
of non-sensory neurons as the “processing” neurons. Ac-
cordingly, we have carried out our graph theoretical analy-
ses looking at both cases: all (A) neurons and processing (P)
neurons.

Finally, especially early on in our simulations, some of
the graphs are quite small and consist of multiple compo-
nents (disconnected sub-graphs) and even contain discon-
nected neurons. It turns out that CPL behaves poorly and er-
ratically in this situation. This is due to its treatment of inter-
node distances between disconnected nodes as infinite. Thus
path lengths are computed only within each disconnected
subgraph and the metric can exhibit sudden large changes as
subgraphs become connected or disconnected and shortest
paths span much larger or smaller subsets of nodes.

A length metric proposed by Marchiori and Latora (2000),
connectivity length (CL), uses inverted lengths to calculate
the harmonic (rather than arithmetic) mean of average short-
est path length, and better handles multiple components and
disconnected nodes. However, by effectively including all
those infinities (as zeroes), it can compress the distinctions
between sparsely connected and disconnected graphs.

We therefore devised, and introduce here, a new length
metric, normalized path length (NPL), that appears to be bet-
ter behaved than either CPL or CL for the class of graphs we
are analyzing, though it too has some quirks (a sensitivity to
edge weights that makes it somewhat noisy in its WD form).

To calculate NPL, node pairs that have no path between
them are assigned a maximum path lengthlmax defined
as N/wmax, rather than infinity, whereN is the number
of nodes in the graph andwmax is the maximum possible
synaptic weight in our neural networks. (For binary net-
works the greatest possible path length isN − 1, hence this
value of N is one that cannot occur by any means other
than disconnection.) Inverting to convert weight to distance,
we also define a minimum path lengthlmin, which is just
1/wmax. We then proceed to compute CPL normally, limit-
ing path length to the defined maximum, and normalize first
by subtracting the minimum path length and then dividing



by the difference between the maximimum and minimum
path lengths. Thus, in terms of CPL, NPL may be written as
follows:

NPL = (CPL∗ − lmin)/(lmax − lmin) (4)

whereCPL∗ is a normally calculated CPL usinglmax as the
maximum possible distance between nodes. Or expressed in
terms of path lengths:

NPL =

N∑

i, j = 1
j 6= i

min(lij , lmax)

N(N−1) − lmin

lmax − lmin

(5)

wherelij is the shortest path from nodej to nodei. NPL is
guaranteed to lie between 0.0, for a fully connected graph,
and 1.0, for a fully disconnected graph (a collection of nodes
with no links between them), and has proven to be well
behaved for graphs with multiple components and discon-
nected nodes (as well as for the more commonly analyzed
strongly connected graphs).

Since none of our three length metrics is “perfect” and
NPL is entirely new, wherever a length metric is calcu-
lated or used, we examine all three, and refer in general
to simply path length. Thus for each metric we treat the
graph as consisting of either the A neurons or the P neu-
rons and we treat the graph edges as being either BU or
WD, and for length metrics we look at each of CPL, CL,
and NPL. Different neuron sets, graph types, and length
metrics usually agree on common trends, but do sometimes
provide different insights into the algorithms and architec-
tures. Unfortunately, due to space constraints we cannot
show all variations of all metrics. A complete set of plots
of these metrics may be obtained as supplementary material
here: http://informatics.indiana.edu/larryy/alife12sup.zip.
The abbreviations defined here (CC, CPL, CL, NPL, SWI,
A, P, BU, WD) and another new metric (SWB) defined later
are consistently applied in these plots as well as this paper.

All graph theoretical metrics were calculated using our
new C++ implementation (bct-cpp) of the Brain Connectiv-
ity Toolbox (BCT) MATLAB module (Rubinov and Sporns,
2010). The original BCT may be found at http://www.brain-
connectivity-toolbox.net/ and bct-cpp may be found at
http://code.google.com/p/bct-cpp/.

Simulations and Data Acquisition
A set of 10 paired simulations, differing only in initial ran-
dom number seeds, were run in driven and passive modes;
i.e., 20 simulations in all. Each simulation ran for 30,000
time steps (approximately 400 generations) with a popu-
lation varying from 90 to 300 agents. Temporal traces
of neural activations and structural descriptions of neural

anatomies were recorded for all agents. Agents were as-
signed to temporal bins corresponding to 1,000 time steps,
according to the time of their death.

This type of binning was necessary for our complexity
studies, since an agent’s neural complexity can only be ac-
curately computed after the completion of its neural activa-
tion time series—its death. We have retained this binning
in our graph theoretical analysis so we can directly compare
structural and functional results.

Complexity and graph theoretical metrics were calcu-
lated for each agent and averaged to produce a population
mean (and standard deviation) in each temporal bin, for each
driven and passive run. In addition, for each agent’s actual
neural network, 10 graphs with an identical node count, edge
count, and distribution of weights were generated randomly,
and the means of the graph theoretical measures for these
networks were used to characterize the structure of a ran-
dom graph corresponding to each actual graph.

As configured for these runs, a maximum of 217 neurons
and 45,584 edges were possible. Evolved neuron counts
ranged from 12 to 187, with a mean of 56. Evolved edge
counts ranged from 33 to 13,081, with a mean of 1,077. In
all, over half a million evolved graphs were analyzed using
42 different metrics (counting metrics for different neuron
sets and graph types as distinct), and in excess of five mil-
lion random graphs were analyzed using 24 of those metrics.

Results and Discussion
Given that we know complexity increases over evolution-
ary time in Polyworld and is, in fact, actively selected for
by evolution under certain conditions, our intention is to de-
velop a better understanding of the structural characteristics
that give rise to these complex network dynamics. To this
end we start by examining clustering coefficient.

The various neuron sets and graph types tell much the
same story for clustering coefficient, as represented by the
P,WD results in Figure 1. Initially CC is actively selected
for by evolution, as evidenced by the more rapid rate of in-
crease in the driven runs than in the passive runs. But once a
“good enough” solution emerges and spreads throughout the
population, CC in the passive populations surpasses that in
the driven populations. The period during which there exists
a statistically significant bias for high CC in the driven runs
is from about t=1000 to t=11000. This mimics but extends
the trend previously observed in neural complexity (Yaeger
et al., 2008), as complexity’s period of statistically signif-
icant differences lasted only from about t=1000 to t=4000,
and passive complexity caught up to driven complexity by
about t=7000. The period of behavioral adaptation is ap-
proximately t=1000 to t=7000 (Yaeger, 2009).

A traditional means of looking for meaningful graph
structure is to compare suitable graph theoretical metrics
computed for one’s actual graphs to the same metrics calcu-
lated for comparable random graphs. We examined driven
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Figure 1: Drivenvs. passive clustering coefficient as a function of time. Light solid lines show mean population CC for each
driven run. Light dashed lines show mean population CC for each passive run. Heavy lines show meta-means of all ten runs
for the corresponding line style. Light dotted line at bottom shows dependent 1−p-value for a Student’s T-test with typical
p > 0.05 statistical significance indicated by the horizontal line at p= 0.95.

vs. random and passive vs. random CC, but do not include
the results here due to space considerations. CC was sub-
stantially and statistically significantly greater in the actual
evolved graphs than in the corresponding random graphs.
Curiously, this difference was observed in passive vs. ran-
dom as well as driven vs. random graphs, which we take
as a warning that there is a bias present in our genetic en-
coding mechanism towards at least some degree of clus-
tering. Given that the encoding expresses connectivity be-
tween groups of neurons, this seems reasonable. This re-
sult suggests that the differences we observe between driven
and passive results may be lower than one might find with
a completely unbiased encoding scheme. It also means we
are probably better off focusing on driven vs. passive results
than driven vs. random results, since the passive runs repre-
sent a more appropriate and tightly constrained null model
than do the random graphs.

Turning to path length, the stories told by NPL and CL
are very similar to each other and to that told by CC and
complexity. CPL is less consistent, due to its previously
discussed shortcomings, showing generally the same trends,
but without much statistical significance in both WD analy-
ses, large and greatly extended statistical significance inthe
P,BU analysis, and a result much like the other length met-
rics in the A,BU analysis. Figure 2, though somewhat noisy,
shows the typical trends in path length, using NPL. Path
length initially drops much more rapidly in the driven runs

than it does in the passive runs, but as that “good enough”
solution becomes weakly stabilized in the driven runs, path
length in the passive runs drops below that in the driven runs.
In fact, path length in the passive runs drops nearly to the
level seen in random graphs (not shown). The initial period
of driven vs. passive statistical significance is from about
t=1000 to t=7000, again corresponding well to the period of
complexity growth and behavioral adaptation.

Thus we have seen that during the period of growth in the
complexity of the agents’ neural dynamics there is a corre-
sponding, statistically significant growth in clustering coef-
ficient and reduction in path length. High clustering coeffi-
cient and low path length are the defining characteristics of
a small-world network. So our results are suggestive of a se-
lective pressure towards small-world networks, and provide
support for a correlation between small-world structure and
complex function.

To investigate this trend towards small-world-ness, we
turned to the small world index proposed by Humphries
et al. (2006). As it was originally formulated, SWI is based
on comparing CC and CPL in actual graphs vs. random
graphs. However, given the problems previously discussed
in applying CPL to our small, sparse, multi-component
graphs with disconnected nodes, the standard version of
SWI proved to be uninformative, displaying little consis-
tency amongst the different neuron sets and graph types we
analyzed and with sufficient noise to render some results un-
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Figure 2: Drivenvs. passive normalized path length as a function of time. Light solid lines show mean population NPL for
each driven run. Light dashed lines show mean population NPLfor each passive run. Heavy lines show meta-means of all ten
runs for the corresponding line style. Light dotted line at bottom shows dependent 1−p-value for a Student’s T-test with typical
p > 0.05 statistical significance indicated by the horizontal line at p= 0.95.

interpretable. So we developed alternative formulations of
SWI, using our better behaved length metrics, CL and NPL.
Curiously, some of the inconsistencies were present in these
formulations as well.

We could have cherry-picked an SWI result based on NPL
for the A neuron set and BU graph type that looks very much
like we expected, with a statistically significantly higher
growth rate in SWI for the driven runs compared to the pas-
sive runs. However, the P,WD version of this metric, even
using NPL, actually reverses the roles of driven and passive
(in a clear, although not significant fashion). We believe that
the small and weakly connected character of our early nets
are contributing to these difficulties, which explains why the
problems are most exacerbated in the nets with the most lim-
ited set of connections (P,WD), but are not entirely satisfied
with any of the explanations we have devised so far and feel
this needs further investigation, which is why none of these
results are included here (though they are all present in the
supplemental materials).

The actual numerical values of all these different versions
of SWI are greater than 1.0 for the driven runs, ranging
from 1.5 to as much as 32.0, depending on the specific data
and specific form of the metric, and the values are generally
(though not always) greater for the driven runs than they are
for the passive runs. So all we can really take away from the
SWI analysis is that the evolved nets are small-world nets.

Given the difficulties and inconsistencies with SWI, we

sought to define a metric that would more directly cap-
ture and quantify the apparent bias towards high clustering
and short path lengths evidenced in all of the raw cluster-
ing and path length data. To this end we have defined a
new “small-world bias” (SWB) metric that takes its form
from Humphries et al’s SWI, but directly compares driven to
passive—instead of actual to random—clustering and length
metrics:

γ = 〈CCdriven〉 / 〈CCpassive〉 (6)

λ = 〈Ldriven〉 / 〈Lpassive〉 (7)

SWB = γ/λ (8)

whereL can be any suitable length metric (such as CPL, CL,
or NPL). The ensemble averages are taken over the usual
population of agents expiring during a given temporal epoch.
The numerator captures the degree to which a driven run fa-
vors high clustering relative to a passive run. The denomina-
tor captures the degree to which a driven run favors low path
length relative to a passive run. Accordingly, when SWB
exceeds 1.0, the driven run is at least slightly biased towards
small world network characteristics relative to a passive run.
It is not actually possible (because driven and passive graph
sizes are different), but if one could calculate Humphries
et al. (2006)’s SWI using the same random-graph basis for
corresponding terms inSWIdriven andSWIpassive, then
take their ratio, all the random-graph terms would cancel
out and what one would be left with is SWB.
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Precise numerical values and periods of bias vary, but the
resultant trends in SWB are remarkably consistent for both
sets of neurons (A and P), both graph types (BU and WD),
and all length metrics (CPL, CL, and NPL). Figure 3 shows
SWB based on connectivity length for the processing neu-
rons treated as weighted, directed graphs. There is a strong
(> 1.5) bias towards small-world-ness from about t=2000
to t=7000, corresponding to the previously observed period
of growth in neural complexity and behavioral adaptation to
the environment. Once the agents have adapted to their en-
vironment evolutionary pressure on complexity diminishes,
leading to the reduction in SWB at later times.

Conclusions
We have shown strong, reproducible evolutionary biases to-
wards high clustering coefficients, short path lengths, and
small-world-ness in driven runs subject to natural selection
relative to passive runs in which natural selection is dis-
abled. These structural, graph theoretical trends correspond
to previously observed evolutionary trends in the dynamical
complexity of neural function and behavioral adaptation of
agents to their environment, thus strengthening the associa-
tion between small-world-ness and complexity.

Short path lengths contribute to increased “integration”
of neural function throughout the brain. Clustering can con-
tribute to and is often evidence of increased “segregation”
of specialized neural functions in the brain. It is this com-
bination of increasing integration and segregation that pro-
duces the measured increases in dynamical neural complex-

ity (Tononi et al., 1994).
Our work demonstrates that even in the absence of physi-

cal constraints on wiring length and brain volume, evolution
selects for small-world networks in order to enhance brain
function. The resulting networks thus combine the predom-
inantly local connectivity imposed by physical volume con-
straints (Murre and Engelhardt, 1995) with the short path
lengths necessary to satisfy fast response time requirements
(Lago-Fernández et al., 2000), despite a lack of physical
constraints in their evolution. We suggest that humans (and
all biological organisms with even modestly complex ner-
vous systems) are the fortunate beneficiaries of these con-
vergent and synergistic physical and functional constraints.
Rather than physical constraints acting to limit brain func-
tion, our evidence suggests that physical constraints workin
concert with evolutionary pressures to select neural topolo-
gies that foster more complex, adaptive behaviors.

Future Directions
There is one instance in which increases in clustering coef-
ficient are not correlated with increasing neural segregation
and complexity, which is progression towards a single large
cluster. Since we do see correlated increases in neural com-
plexity our clustering increases cannot be the result of net-
work topologies approaching a single large cluster, however
in the future we intend to look into modularity metrics that
more directly address community structure. Our expecta-
tions are that structural modularity and functional complex-
ity will be positively correlated. However, preliminary in-



consistent and contradictory results have led to the realiza-
tion that standard measures of modularity, such as those due
to Newman (2006) and Blondel et al. (2008), are not well
suited to the types of networks generated early in our simu-
lations and we believe values of these metrics are artificially
elevated for such graphs. Further research is required to ei-
ther develop better ways to characterize community struc-
ture in these networks or determine suitable subsets of these
graphs to which the standard modularity metrics may rea-
sonably be applied, perhaps only after having evolved be-
yond certain minimum size and connectivity constraints.

We further hope to identify more discriminating struc-
tural metrics, that will be reliably predictive of functional
complexity. We also seek to improve upon our current tech-
nique of ignoring (by taking absolute values) what is likely
to be a crucial distinction between the positive and nega-
tive weights associated with excitatory and inhibitory con-
nections. One particular direction we intend to explore may
address both aims at once, which is distributions of signed
motifs. Network motifs, such as those advanced by Milo
et al. (2004) and related to small-world properties and com-
plexity by Sporns and Kötter (2004), are typically treatedas
unsigned, though there has been some discussion of small
subsets of signed motifs in genetic transcription and otherbi-
ological networks (Alon, 2007). Work by Kashtan and Alon
(2005) demonstrates that modularity and motif distributions
are sometimes correlated, but not uniquely so. We speculate
that motif distributions may be more discriminating and pre-
dictive of functional complexity than modularity or the other
metrics we have examined to date. We also expect that ex-
tending the standard 13 unsigned motifs to a corresponding
204 signed motifs will provide much greater discrimination,
as well as greater relevance to neural networks.
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