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Overview

• Why, What, and How
• Segmentation
• Neural Network Issues
• Search with Context
• Future Directions
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 Why Handwriting Recognition?

• Vertical Markets
• Insurance
• Hospitals
• Shipping
• Copy-Editinq

 
• Horizontal Markets

• Non-Typists & Computerphobes
• “If it doesn't have a keyboard,                

it's not a computer”
• PDA's & True Notebook Computers

 
• Foreign Markets

• Ideographic languages
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ANHR's Pipeline Architecture

Segmentation

(x,y) points & pen-lifts

character hypotheses

Neural Network
Classifier

character probabilities

Beam Search
With Context

word probabilities
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Integrated Segmentation and 
Recognition

• Which Strokes Comprise Which 
Characters?
 

• Constraints
• All Strokes Must Be Used
• No Strokes May Be Used Twice

 
• Efficient Presegmentation

• Avoid Trying All Possible Permutations
• Based on Overlap, Crossings, Aspect Ratio, 

etc. 
 

• Full Printable ASCII Presents Some 
Challenges
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Neural Network Classifier

• Inherently Data-Driven
 

• Learn from Examples
 

• Non-Linear Decision Boundaries
 

• Effective Generalization
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Context Is Essential

• Humans Achieve 90% Accuracy on 
Characters in Isolation (for Our 
Database)

• Word Accuracy Would Then Be ~ 60%          
or Less (.9^5)
 

• Variety of Context Models Are Possible
• N-Grams
• Word Lists
• Regular Expression Graphs

 
• "Out of Context" Models Also 

Necessary
• "xyzzy", Unix Pathnames, Technical/Medical 

Terms, etc.
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ANHR's Pipeline Architecture

Segmentation

Neural Network
Classifier

Beam Search
With Context
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Segmentation
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Segmentation

Segment
Number Segment

1
2
3
4
5
6
7

Ink Stroke 
Count

1
2
3
1
2
1
1

Forward 
Delay

3
4
4
2
2
1
0

Reverse 
Delay

1
2
3
1
2
1
1
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Neural Network 
Classifier
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Network Design

• Variety of Architectures Tried
• Single Hidden Layer, Fully-Connected
• Multi-Hidden Layer, Receptive Fields
• Parallel Classifiers Combined at Output Layer

 
• Representation as Important as 

Architecture
• Anti-Aliased Images
• Baseline-Driven with Ascenders and 

Descenders
• Stroke-Features
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Network Architectures

a … z A … Z 0 … 9 ! … ~

a … z A … Z 0 … 9 ! … ~

a … z A … Z 0 … 9 ! … ~
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Network Architecture

a … z A … Z 0 … 9 ! … ~£

Stroke
Count

Aspect
Ratio ImageStroke Feature

14 x 141 x 15 x 1
20 x 9

72 x 1

104 x 1

95 x 1

112 x 1

2 x 7
7 x 2

7 x 7

(8x8)
(8x7;1,7) (7x8;7,1)
(8x6;1,8) (6x8;8,1)

5 x 5

1 x 9
9 x 1

(10x10)

(6x14)
(14x6)
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Normalized Output Error

• Based on Recognition of Fact that Most 
Training Signals are Zero

• Training Vector for Letter "x"
 
 
 
 

• Forces Net to Attempt to Make 
Unambiguous Classifications
 

• Difficult to Obtain Meaningful 2nd and 
3rd Choice Probabilities

a … w x y z A … Z 0 … 9 ! … ~
0 … 0 1 0 0 0 … 0 0 … 0 0 … 0
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Normalized Output Error

• We Reduce the BP Error for Non-Target 
Classes Relative to the Target Class

• By a Factor that "Normalizes" the Non-Target 
Error Relative to the Target Error, Based 
on the Number of Non-Target vs. Target 
Classes
 

• For Non-Target Output Nodes
 e' = e  1 / d (Noutputs- 1)

 

• Allocates Network Resources to Model 
Low-Probability Regime
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Normalized Output Error

• Converges to MMSE Estimate of
 f(P(class|input),A)
 

• We Derived that Function:
 <ê2> = p (1-y)2 + A (1-p) y2        

where
 p = P(class|input),
 A = 1 / d (Noutputs - 1)
 

• Output y for Particular Class is Then:
 y = p / (A - A p + p)
 

• Inverting for p:
 p = y A / (y A - y + 1)
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Normalized Output Error

Empirical p vs. y histogram for a net trained with 
A=0.11 (d=0.1), with corresponding theoretical curve
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1

net output y

p = 
P(correct)
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Normalized Output Error
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Negative Training

• Inherent Ambiguities Force 
Segmentation Code to Generate False 
Segmentations
 

• Ink Can Be Interpreted in Various 
Ways...
  
  

• "dog", "clog", "cbg", "%g"
 

• Train Network to Compute Low 
Probabilities for False Segmentations
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Negative Training

• Modulate Negative Training by                   
• Negative Error Factor (0.2 to 0.5)

• Like A in Normalized Output Error
• Negative Training Probability (0.05 to 0.3)

• Also Speeds Training
 

• Too Much Negative Training
• Suppresses Net Outputs for Characters that 

Look Like Elements of Multi-Stroke 
Characters
 (I, 1, l, o, O, 0)
 

• Slight Reduction in Character Accuracy, 
Large Gain in Word Accuracy
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Stroke Warping

• Produce Random Variations in Stroke 
Data During Training
 

• Small Changes in Skew, Rotation,              
X and Y Linear and Quadratic 
Scaling
 

• Consistent with Stylistic Variations
 

• Improves Generalization by Effectively 
Adding Extra Data Samples
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Stroke Warping

Original

X Quadratic X Skew Y Linear

Rotation X Linear
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Frequency Balancing

• Skip and Repeat Patterns to Balance 
Class Frequencies
 

• Instead of Dividing by the Class Priors
• Produces Noisy Estimate of Low Freq. Classes
• Requires Renormalization

 
• Compute Normalized Frequency, 

Relative to Average Frequency
                               C                  

F
i
 = S

i
 / ( 1/C  ∑ S

j
 )

                              j=1
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Frequency Balancing

• Compute Repetition Factor          
  R

i
 = ( a / F

i
 )b

 

• Where  a  (0.2 to 0.8) Controls Amount of 
Skipping vs. Repeating
 

• And  b  (0.5 to 0.9) Controls Amount of 
Balancing
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Error Emphasis

• Probabilistically Skip Training for 
Correctly Classified Patterns
 

• Never Skip Incorrectly Classified 
Patterns
 

• Just One Form of Error Emphasis
• Can Reduce Learning Rate/Error for Correctly 

Classified Patterns
• And Increase Learning Rate/Error for 

Incorrectly Classified Patterns
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Training Probabilities and           
Error Factors

1.0

Segment Type Prob. of Usage

0.5

0.18

Error Factor

1.0

0.3

0.1
POS

NEG

Correct Incorrect Target
Class

Other
Classes

NA



Handwriting Recognition
ATG

®

Annealing

• Start with Large Learning Rate, then 
Decay

• When Training Set's Total Squared Error 
Increases
   

• Start with High Error Emphasis and 
Frequency Balancing, then Decay
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Training Schedule

Phase
Learning

Rate

Correct
Train
Prob

Negative
Train
ProbEpochs

1

2

3

4

25

25

50

30

1.0 - 0.5

0.5 - 0.1

0.1 - 0.01

0.01 - 0.001

0.1

0.25

0.5

1.0

0.05

0.1

0.18

0.3
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Quantized Weights

• Forward/Classification Pass Requires 
Less Precision Than 
Backward/Learning Pass
 

• Use One-Byte Weights for 
Classification

• Saves Both Space and Time
• ±3.4   (-8 to +8 with 1/16 Steps)

 
• Use Three-Byte Weights for Learning

• ±3.20 
 

• Newton Version Currently
• ~200KB ROM   (~85KB for weights)
• ~5KB-100KB RAM
• ~3.8 Char/Second
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Quantized Weights

weight value w

count per bin 
of width 1/16

11000

1100

110

11
-8 -6 -4 -2 0 8642
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Search with Context



Handwriting Recognition
ATG

®

Viterbi Beam Search

• Viterbi:  Only One Path Per Node is 
Required for Global Optimum
 

• Beam:  Low Probability Paths are 
Unlikely to Overtake Most Likely 
Paths
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Integration with Character 
Segmentation

• Search Takes Place Over Segmentation 
Hypotheses (as Well as Character 
Hypotheses)
 

• Stroke Recombinations are Presented 
in Regular, Predictable Order
 

• Forward and Reverse "Delay" 
Parameters Suffice to Indicate Legal 
Time-Step Transitions
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Integration with Word 
Segmentation

• Search Also Takes Place Over Word 
Segmentation Hypotheses
 

• Word-Space Becomes an Optional 
Segment/Character

• Weighted by Probability ("SpaceProb") 
Derived from Statistical Model of Gap 
Sizes and Stroke Centroid Spacing
 

• Non-Space Hypothesis is Weighted by 
1-SpaceProb
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Word Segmentation Statistical 
Model

PWord = ΓWord / (ΓStroke + ΓWord)

Samples

Gap Size

Word Break
Stroke

(No Word)
Break

ΓStroke

ΓWord
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Integration with Context

• Lexical Context Graphs Guide Search
 

• Each Graph May or May Not Have 
Letter Transition Probabilities

• "Langs" Do
• "Dicts" Do Not

 
• Langs and Dicts Are Created from

• Word Lists
• Regular Expression Grammar

 
• Multiple Langs and Dicts Are Searched 

Simultaneously
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Lexical Trees
(The Wrong Way)

• Words Stored Separately

Apples

A

p p l e

A p p l e s

A

p e a l Appeal

Apple

p

BOW
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Lexical Trees
(The Right Way)

• Word Starts Merged Together

p

A

p

l e

e

e
a

l

s

BOW

EOW
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The Problem with Trees

• Trees Are Compact at the Base...
• ... but Have Many Leaves
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• Word Endings Also Merged Together
 (e.g., team, teach, peach, impeach)

Lexical Graphs
(Another Way)

ap e EOWhcBOW

t

i

m

p
…

…

…

…

…

…

…

…

m



Handwriting Recognition
ATG

®

Consequences of Graph 
Convergence

• Probabilities Merged (or Discarded)
• Currently Averaged if Retained
• Threshold for Merging
• Dicts Don't Care

 
• Exit Viterbi or N-Best

• "met", "net", or "wet" May Be Three Top 
Choices

• All But One Eliminated by Convergence to 
"...et"

• Carry N Best Paths, Regardless of 
Node-Sharing

• Beam Still Works
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Creating Lexical Graphs

• Word Lists
• With or Without Word-Frequencies
• Newton Uses Dicts Exclusively                         

(No Transition Probabilities)
• Three-Tiered Word Classification

• ~1000 Most Frequent Words
• Few Thousand Moderately Frequent 

Words
• Equivalent to ~100,000 Word Dictionary

• Combined with Prefix & Suffix Dictionaries (For 
Alternate, Inflectional Forms)

• Full Word- & Letter-Frequency Information 
Can Be Retained if Desired (But Are Not 
for Newton)
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Creating Lexical Graphs

• Regular Expressions
• Telephone Numbers Example:

dig    = [0123456789]
digm01 =   [23456789]

acodenums = (digm01 [01] dig)

acode  = { ("1-"?    acodenums "-"):40 ,
           ("1"? "(" acodenums ")"):60 }

phone = (acode? digm01 dig dig "-" dig dig dig dig)
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Combining Lexical Graphs:  
"BiGrammars"

• Define Contexts as Probabilistic 
Combinations of Lexical Graphs
 

• Simple Telephone Context Example:

BiGrammar2 Phone

[phone.lang 1. 1. 1.]
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More Complex BiGrammar

BiGrammar2 FairlyGeneral
(.8
   (.6
      [WordList.dict .5  .8  1. EndPunct.lang .2]
      [User.dict     .5  .8  1. EndPunct.lang .2]
   )
   (.4
      [Phone.lang    .5  .8  1. EndPunct.lang .2]
      [Date.lang     .5  .8  1. EndPunct.lang .2]
   )
)

(.2
   [OpenPunct.lang  1.  0.  .5
      (.6
         WordList.dict .5
         User.dict     .5
      )
      (.4
         Phone.lang    .5
         Date.lang     .5
      )
   ]
)

[EndPunct.lang  0.  .9  .5  EndPunct.lang .1]
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Geometric Context

• Estimates of Baseline, Topline, etc. 
Have Too Many Pathological Failure 
Modes

• Produces Erratic Recognition Failures
 

• Use Relative Geometric Positions and 
Scaling Between Character Pairs 
("GeoContext")
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Recognition Ambiguity
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GeoContext Example

“if” from User vs Table

(User Data Scaled to 
Minimize Error Magnitude)

Error Vector of
Eight Differences
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GeoContext Scoring

• Character Hypotheses Yield Expected 
Positions from Table

• To Within a Scale Factor and Offset
• User Data Scaled to Minimize Computed 

Error
• Table is Learned in Data-Driven Process

 
• Error Vector is Computed

• Modeled by Full Multi-Variate Gaussian 
Distribution for All Characters
 

• Quadratic Error Term Used as Score
• Based on Inverse Grand Covariance Matrix
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 when Year-old Arabian retire tipped off the Christmas wrap
No square with delights  Santa brought the Attacking hit too dat
would  Problem was, Joe talked Bobbie.  His doll stones at the r
in its army Antiques I machine gun and hand decades At its side
it says things like 3 "Want togo shopping"  The Pro has claimed
responsibility  that's Bobbie Liberation Organization.  Make up 
more than 50 Concerned parents 3 Machinist 5 and oth er activi
the Pro claims to hsve crop if Housed switched the voice boxes 
300 hit, Joe and Bobbie foils across the United States this holida
Season  we have operations All over the country" said one pro 
member 5 who wished to remain autonomous.  "Our goal is to c
and correct Thu problem of exposed stereo in editorials toys."

Old Newton Writing Example
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When 7-year-old Zachariah Zelin ripped off the Christmas wrapp
he squealed with delight.  Santa brought the talking G.I.Joe doll h
wanted.  Problem was, Joe talked like Barbie.  His doll stands at 
ready in i ts Army fatigues, machine gun and hand grenades at i t
But it says things like, ll Want to go shopping?"  The BLO has cl
responsibility.  That's Parbie Liberation Organization.  Made up o
more than 50 concerned parents, feminists and other activists, the
claims to have surreptitiously switched the voice boxes on 3oo G
and Barbie dolls across the United States this holiday season.  "W
have operatives all over the country," said one BLO member, wh
wished to remain anonymous.  "Our goal is to reveal and correct
problem of gender-based stereotyping in children's toys!'

ANHR Writing Example
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ANHR Extensions
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Cursive Handwriting

• Use Integrated Segmentation and 
Recognition with Stroke Fragments
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Chinese/Japanese/Korean

• Decompose Ideographic Characters 
("Words") Into Radicals 
("Characters") and Strokes, with 
Order and Placement Statistics
 

• Net Classifies “Alphabet” of About 300 
Radicals
 

• Structure Lexicon in Terms of Legal 
Radical Sequences
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User Independence vs. 
Adaptation

• Walk-Up Performance Drives In-Store 
Perception
  
  
  
  

• Individual Accuracy Drives Personal 
Use and Word of Mouth

q = /^ e2

?
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User Adaptation

• Neural Net Classifer Based On an 
Inherently Learning Technology
 

• Learning Not Used in Current Product   
Due to Memory Constraints
 

• User Independent “Walkup” 
Performance is Maintained!
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User Adaptation

• User Training Scenario
• 15-20 min. of Data Entry

• Less for Problem Characters Alone
• As Little as 10-15 minutes Network Learning

• One-Shot Learning May Suffice
• May Learn During Data Entry
• Maximum of 2.5 hours                          

(~12 Epochs)
 

• Learn on the Fly
• Need System Hooks
• Can Continuously Adapt!
• Choosing What to Train On is Key System 

Issue
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The Significance of Adaptation

Character                                                   Alphanumeric
Error Rate                                                       Test Set,
      (%)                                                (Not in Any Training Set)

Character                                                   Alphanumeric
Error Rate                                                       Test Set,
      (%)                                                (Not in Any Training Set)

13.913.9

24.824.8

5.15.1 4.74.7

17.817.8

6.16.1 6.36.3

21.321.3

1111 10.710.7

(45)(45) 11 22 33
00

55

1010

1515

2020

2525

User-IndependentUser-Independent

User-SpecificUser-Specific

User-AdaptedUser-Adapted

WriterWriter
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