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Evolution of Machine Intelligence
• Follow the path leading to natural intelligence
• Evolution of nervous systems in an ecology

• Evolution, because it is an incredibly powerful
innovator and problem solver

• Nervous systems—collections of neurons and their
internal, sensory, and motor connections—because
that’s how biological evolution has produced all
known examples of natural intelligence

• Ecology, because intelligence only makes sense in
context

• Allows us to evolve simple intelligences (adaptive
behaviors) first, along a spectrum of intelligences



Emergent Behaviors:
Foraging, Grazing, Swarming



Low Complexity High

Measuring Progress

Spectrum of Life and Intelligence



Spectrum of Intelligence
• Laboratory evidence exists for self-awareness in

humans, chimpanzees, and orangutans, based on the
classic red-dot and mirror test

• Koko the gorilla, Washoe the chimp, and Kanzi the
bonobo ape all demonstrate language skills
comprehensible to humans

• Dolphins demonstrate intelligent behavior and learning
in the field and in the “lab”

• Alex the parrot demonstrates language skills, and Betty
the crow demonstrates tool creation (as well as use)

• Honeybees (1M neurons) exhibit associative recall and
learn the abstract concepts same and different

• Fruit flies (250K neurons) learn by association and
exhibit a salience mechanism akin to human attention

• Aplysia (20K neurons) demonstrate sensitization,
habituation, classical, and operant conditioning



History of
Major
Evolutionary
Events from the
Fossil Record

Carroll (2001)



The Great Chain
 of Being

Didacus Valades,
Rhetorica Christiana

1579

• Concerns exist about
whether all such
explanations might
merely encode an
anthropocentric bias,
where “human-like” is
the real measure of
some loosely-defined
complexity



Evolutionary Trends in Complexity?
• In a 1994 Scientific American article, Steven J. Gould

famously argued against an evolutionary trend towards
increasing complexity

• However, he actually acknowledges the appearance of
greater complexity over evolutionary time scales
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Evolutionary Trends in Complexity?
• In a 1994 Scientific American article, Steven J. Gould

famously argued against an evolutionary trend towards
increasing complexity

• However, he actually acknowledges the appearance of
greater complexity over evolutionary time scales

• The focus and conclusion of his argument is that
evolution is better viewed as a branching tree or bush,
rather than a purely gradualist ladder, with punctualist
winnowing and accident being as important as growth in
the natural record



What Kind of Complexity?
• McShea (1996) observes that loose and shifting

definitions of complexity allow sloppy reasoning and
highly suspect conclusions about evolutionary trends

• Defines two (or three) distinctions that produce four
(or eight) types of complexity
• Hierarchical vs. non-hierarchical
• Morphological (objects) vs. developmental (processes)
• (Differentiation vs. Configuration)

• Distinguishes driven vs. passive trends, using changes in
minimum values and ancestor-descendent differences

• Suggests there may be upper limits to complexity
• Discusses (limited) evidence for increases in number of

cell types, arthropod limb types, and vertebrae sizes
• Acknowledges complexity of human brain, but otherwise

ignores nervous systems



Sources of Complexity Growth
• Rensch (1960a,b; Bonner 1988) argued that more parts

will allow a greater division of labor among parts
• Waddington (1969; Arthur 1994) suggested that due to

increasing diversity niches become more complex, and
are then filled with more complex organisms

• Saunders and Ho (1976; Katz 1987) claim component
additions are more likely than deletions, because
additions are less likely to disrupt normal function

• Kimura (1983; Huynen 1995; Newman and Englehardt
1998) demonstrated value of neutral mutations in
bridging gulfs in fitness landscape, through selection
for function in previously neutral changes



Convergent Diversification
• Multicellularity, subsequent specialization, and a

resulting body-plan radiation have evolved
independently in every domain of life

• Modularity and genetic regulatory evolution mirror
these phenomena at a higher level of organization

Carroll
(2001)



Evolutionary Trends in Complexity?
• Adami (2000, 2002) defines complexity as the

information that an organism’s genome encodes about
its environment and demonstrates that asexual agents
in a fixed, single niche always evolve towards greater
complexity

• Turney (1999) uses a simple evolutionary model to
suggest that evolvability is central to progress in
evolution, and predicts an accelerating increase in
biological systems

• Bedau (et al. 1997, Rechsteiner and Bedau 1999)
provides evidence of an increasing and accelerating
“evolutionary activity” in biological systems not yet
demonstrated in artificial life models



Information Is What Matters
• “Life is a pattern in spacetime, rather than a specific

material object.” - Farmer & Belin (ALife II, 1990)
• Schrödinger speaks of life being characterized by and

feeding on “negative entropy” (What Is Life?, 1944)
• Von Neumann describes brain activity in terms of

information flow (The Computer and the Brain, Silliman
Lectures, 1958)

• John Avery derives a formal relation between physical
entropy and Shannon entropy/information (Information
Theory and Evolution, 2003)

• Informational functionalism
• It’s the process, not the substrate
• What can information theory tell us about life and

complexity?



Mutual Information

Information and Complexity
• Chris Langton’s “lambda” parameter (ALife II)

• Complexity = length of transients
• λ = # rules leading to nonquiescent state / # rules

I

II

IV

III

Wolfram's CA classes:

  I = Fixed
 II = Periodic
III = Chaotic
 IV = Complex

0.0 1.0
Low

High

Complexity

λc
Lambda

Normalized Entropy

•  Crutchfield:  Similar results measuring complexity of
finite state machines needed to recognize binary strings
•  Olaf Sporns:  Similar results measuring complexity of
dynamics in artificial neural networks



Complex Brain Networks

Interregional connectivity of macaque visual cortex
(Felleman and Van Essen, 1991)

Nonlinear multidimensional scaling of
macaque cortex (Young, 1993)



Segregation and Integration

There are (at least) two complementary principles of brain
structure and brain dynamics:

functional segregation and functional integration

Segregation and integration have information-theoretical
connotations and characteristic dynamic signatures.

We need segregation and integration for effective
perceptual and cognitive function.

Complexity emerges from their co-existence, generating a
mixture of randomness and regularity…



Complexity

non-repeating structure
at multiple levels 

identical structure 
at all levels

“What clashes here of wills gen wonts,
oystrygods gaggin fishygods! Brékkek Kékkek
Kékkek Kékkek! Kóax Kóax Kóax! Ualu
Ualu Ualu! Quáouauh!”

randomness,
no structure at any level

“Happy families are all alike; every unhappy
family is unhappy in its own way.”

“All work and no play makes Jack a dull boy.
All work and no play makes Jack a dull boy.
All work and no play makes Jack a dull boy.”



Information and Complexity

H{xi} is the entropy of the ith individual element xi.
H(X) is the joint entropy of the entire system X.

Note, I(X) ≥ 0.
Note, I(X) = 0 if all elements are statistically independent

Integration measures the statistical dependence among all elements
{xi} of a system X.

i=1

n
I(X) = ΣH{xi} − H(X)

Any amount of structure (i.e. connections) within the system will
reduce the joint entropy H(X) and thus yield positive integration.

MI(x1,x2) = H(x1) + H(x2) – H(x1x2)

Tononi, Sporns, Edelman, PNAS (1994)



Information and Complexity

Mutual information (A) and multi-information (integration, B)

Sporns and Tononi (2006)



Information and Complexity
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Integration

CN(X) = ∑ [(k/n) I(X) – <I(Xk)>]
k=1

n

Complexity, as expressed in terms of the ensemble average of
integration (structure) at all levels:

I(Xn) – total integration

Tononi, Sporns, Edelman, PNAS (1994)



Equivalent mathematical expressions and relationship of complexity to
mutual information (MI) (i.e. information transmission).

CN(X) = Σ [(k/n) I(X) − <I(Xk)>]
k=1

n

CN(X) = Σ <MI(Xk; X−Xk)>k=1

n/2

CN(X) = Σ [<H(Xk)> − (k/n) H(X)]
k=1

n

Information and Complexity

The complexity of X is the sum of the mutual information across all
bipartitions within X (total information transmission or integration of
information within the system).

Tononi, Sporns, Edelman, PNAS (1994)
Sporns, Tononi, Edelman, Cerebr Cortex (2000)



Information and Complexity

CN(X) = Σ [(k/n) I(X) − <I(Xk)>]
k=1

n

C(X) = H(X) – ΣiH(xiX–xi)
        = ΣiMI(xi,X–xi) – I(X)
        = (n–1)I(X) – n<I(X–xi)>

Sporns and Tononi (2006)



Complexity and Connectivity

Multiple approaches:
1) Optimization of networks using informational cost functions

2) Learning and rewiring rules
3) Examination of neural connectivity data sets

4) Evolution in a computational ecology (main topic of this talk)

Complexity captures the interplay between segregation and
integration within a network, expressed in a pattern of mutual
information or entropy.

Patterns of mutual information in networks depend on structural
connections.

Which patterns of structural connections give rise to high (low)
complexity?



Complexity and Connectivity

C(X)
γG

λG

Emergence of small-world attributes and high complexity in a
nonlinear neural network, using a synchrony-based rewiring rule
(Breakspear, Sporns et al., Network 2006)

Optimization of information-theoretical measures
(Sporns and Tononi, Complexity 2002)

Large-scale connection matrices of the mammalian cerebral
cortex generate dynamics with high complexity.
(Sporns et al., Cerebral Cortex 2000)
They also incoporate “small-world” attributes.
(Sporns and Zwi, Neuroinformatics 2004)



Complexity and Connectivity

Sporns and Rubinstein (2006)



Complexity and Connectivity



Polyworld Overview
• Computational ecology
• Agents have genetic structure and evolve over time
• Agents have simulated physiologies and metabolisms
• Agents have neural network “brains”

• Arbitrary, evolved neural architectures
• Hebbian learning at synapses

• Agents perceive their environment through vision
• Agents’ primitive behaviors are neurally controlled
• Fitness is determined by Natural Selection alone

• Bootstrap “online GA” if required



Genetics:  Neurophysiology Genes
• # of neurons for red component of vision
• # of neurons for green component of vision
• # of neurons for blue component of vision

• # of internal neuronal groups

• # of excitatory neurons per group
• # of inhibitory neurons per group
• Initial bias of neurons per group
• Bias learning rate per group

• Connection density per pair of groups & types
• Topological distortion per pair of groups & types
• Learning rate per pair of groups & types



Neural Architectures for
Controlling Behavior using Vision

Move

Turn

Eat

Mate

Fight

etc.



Perception:  Neural System Inputs
• Vision
• Internal energy store
• Random noise



Behavior:  Neural System Outputs
• Primitive behaviors controlled by single neuron

• “Volition” is level of activation of relevant neuron

• Move
• Turn
• Eat
• Mate   (mapped to body’s blue color component)
• Fight   (mapped to body’s red color component)
• Light
• Focus



Neural System:  Internal Units
• No prescribed function

• Neurons
• Synaptic connections



Evolving Neural Architectures





Simulation Metrics:
Population & Smite Count



Simulation Metrics:
Learning Rate & Fitness



Network Metrics:
Neuron Counts



Network Metrics:
Connection Densities



Network Metrics:
Connection Strengths



Network Metrics:
Neural Activations



Network Metrics:
Synaptic Efficacy Change



Information Metrics:
Entropy



Information Metrics:
Mutual Information



Information Metrics:
Integration & Complexity



Conclusions & Discussion
• Demonstrated an evolved, statistically significant

increase in structural elaboration and neural complexity
• Based on increases in connection density, connection

strength, and a balance of excitatory and inhibitory
connections

• Consistent with observed trends in Mutual
Information and global Integration

• We speculate that this represents an active trend
towards greater complexity within a single niche, and
that a greater diversity of niches may lead to
additional increases in global complexity

• Additional “complications” of the simulation
environment should produce increases in Complexity

• Demonstrated strong trend for increased learning



Future Directions
• Move the measurement of Complexity into Polyworld

• Measure it routinely
• Quantitatively assess changes to the system

• Use Complexity as a fitness function
• Study the course of evolution in a computational

ecology specifically designed to optimize for neural
complexity

• Sporns and Lungarella (2006) have demonstrated
Complexity can work as effectively as a fitness
function tailored to a behavioral task in a simulated
robotic environment



Evolving (for) Complexity

Can we use complexity as a fitness (cost) function directly?  If we evolve simple
agents to maximize complexity, what sort of behavior will emerge?

neural signals are
sampled here –
then we evolve and
select for complexity
and other cost
functions

Sporns, Lungarella, ALifeX (2006)



Evolving (for) Complexity

“random” behavior behavior after evolving for high complexity

Maximizing information structure is highly effective in producing coordinated
behavior in a simple sensorimotor creature, similar to that obtained with behavioral
cost functions that directly evaluate behavioral success or error.

Different information measures produce subtle differences in behavior.
Sporns, Lungarella, ALifeX (2006)



Evolution of Neural Complexity

Polyworld source code for Mac/Windows/Linux (on Qt):
http://sourceforge.net/projects/polyworld/

Polyworld technical papers:
http://www.beanblossom.in.us/larryy/Polyworld.html

Complexity paper and MATLAB toolbox:
http://www.indiana.edu/~cortex/intinf_toolbox.html
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