
Fifth International Conference on Microelectronics for Neural Networks and Fuzzy Systems,
Lausanne, Switzerland, Feb. 12–14, 1996. IEEE Computer Society Press. — Reprint

On-Line Hand-Printing Recognition with Neural Networks

Richard F. Lyon and Larry S. Yaeger

Advanced Technology Group
Apple Computer, Inc.

One Infinite Loop
Cupertino, CA 95014 USA

E-mail: hwr@atg.apple.com

Abstract

The need for fast and accurate text entry on small
handheld computers has led to a resurgence of interest in
on-line word recognition using artificial neural networks.
Classical methods have been combined and improved to
produce robust recognition of hand-printed English text.
The central concept of a neural net as a character
classifier provides a good base for a recognition system;
long-standing issues relative to training, generalization,
segmentation, probabilistic formalisms, etc., need to
resolved, however, to get excellent performance. A
number of innovations in how to use a neural net as a
classifier in a word recognizer are presented: negative
training, stroke warping, balancing, normalized output
error, error emphasis, multiple representations,
quantized weights, and integrated word segmentation all
contribute to efficient and robust performance.

1: Introduction

While on-line handwriting recognition is a problem of
long-standing interest and activity, the recent
introduction of low-cost portable pen-based computers
(e.g., the “Personal Digital Assistant” or PDA category)
has focused urgent attention on practical improvements.
The classical approach of relying on strong language
models or dictionary constraints to limit the search
space and the ambiguity inherent in complex pattern
recognition problems has not proven to be an
acceptable solution in the PDA market. As an
alternative, we have been conducting research on more
powerful bottom-up classification techniques based on
trainable artificial neural networks (ANNs), in
combination with comprehensive but weakly-applied
language models. To focus our work on a subproblem
that is tractable enough to lead to usable products in a

reasonable time, we have decided to restrict the
domain to hand-printing, so that character-level
segmentation is always cued by a pen lift.

There is a rich background on the use of ANNs as
classifiers, and in recent years a fair amount of work on
the use of ANNs as low-level classifiers in higher-level
recognition systems—e.g., as phoneme classifiers in
speech recognition systems and as character classifiers
in handwriting recognition systems. The integrated
segmentation and recognition approach, as used in
HMM-based speech recognizers [1] and in “run-on
discrete” and cursive handwriting recognition systems
[2] provides a reasonable basis for incorporating a low-
level classifier as a source of “scores” to be combined
in a higher-level search process that seeks overall
optimum combinations. But these approaches leave a
large number of open-ended questions about how to
achieve excellent performance. In this paper, we
survey some of our experiences in exploring
refinements and improvements. While all the
techniques we describe are believed to provide
advantages within at least some part of the domain in
which we have tested them, we do not provide
quantitative results, nor do we comment on exactly
what combination of techniques may have been
incorporated into products.

The standard multi-layer perceptron (MLP) with
contrastive back-propagation training, 0/1 class output
targets, and logistic-function sigmoidal squashing
functions is the only class of ANN covered in this work,
but most of the ideas will be equally applicable in other
architectures, other domains, etc.

2: System Overview

It is conventional practice to map high-level
recognition problems into minimum-cost-path graph
search problems, by defining concatenative sub-units of

Fifth International Conference on Microelectronics for Neural Networks and Fuzzy Systems,
Lausanne, Switzerland, Feb. 12–14, 1996. IEEE Computer Society Press. — Reprint

2

the high-level units to be recognized. In our system,
words (and non-word strings of characters) are the high-
level entities, and characters are the sub-units. A graph
is constructed (implicitly) such that paths through the
graph correspond to sequences of characters, and
additive scores are accumulated along the paths to get
scores for words. A search algorithm finds the best path
or the several best paths.

2.1: Scores and Segments

Scores in our system are generally thought of as
negative log probabilities, or positive costs, so that the
minimization of a sum of cost terms is equivalent to
maximization of a product of probabilities. We make
the usual independence assumptions when we don’t
know any better, and we convert probability estimates
to costs via table lookups. We do not, however, restrict
ourselves to strict probabilistic formalisms, and we
allow liberal use of fudge factors in combining scores
from different modules—maybe someday we will train
all the fudge factors by back-propagation, too.

At the lowest level, the inputs are points from a pen
tablet; points are grouped into strokes between pen-
down and pen-up events. In a cursive or connected
recognition system, a segmentation process that maps
regions of the lowest-level input into hypothetical
character units would need to cut strokes into fragments
[2]. But in our printing system, we assume that each
stroke belongs to exactly one character. Therefore, we
can treat strokes as the bottom-level input, and the
segmentation process only needs to hypothesize
groupings of strokes into characters, avoiding the harder
problem of splitting strokes across multiple characters.

From the bottom up, our system consists of modules
for soft grouping or segmentation, soft character
classification using an ANN (referred to as “the net”),
and N-best graph search. In addition, as shown in
Figure 1, there are several modules “on the side” to
supply additional context-dependent scores to be added
to arcs in the graph during the search process,
representing a priori sequence probabilities and relative
size and position information between characters.

2.2: Searching and Pruning

The finite-state graph implied by the higher-level
language model is theoretically amenable to an optimal
dynamic programming (Viterbi) search, but the state
space is too large to make this approach attractive.
Instead, a beam search is used, with unlikely partial
paths being continuously pruned in accordance with a

beam size parameter (number of active hypotheses
ending with each input segment).

Additional mechanisms of pruning prevent the system
from exploring very unlikely paths. In particular, the
net “proposes” possible characters from its bottom-up
information, pruning away character-level hypotheses
with essentially zero probability—for many incorrect
segments, no character is proposed, saving lots of work
that might otherwise be associated with the large
number of incorrect segmentation hypotheses generated.

Paths that converge onto a state are not combined as
in a Viterbi search, so obtaining the several best word
results at the end of the search process is easy.

Soft
Character
Classifier

Search
with

ContextLexical
Context

Geometric
Context

Words

(x, y) Points

Soft
Stroke

Segmenter

Figure 1. A simplified block diagram of the
major components of a system for
recognizing hand-printed words.

3: Posterior Probabilities

The core of a bottom-up high-level recognition
system is a low-level classifier that provides
probabilistic scores, rather than decisions, about the
classification of low-level segments. A number of
authors [3, 4, 5, 6, 7, 8] have shown that contrastive
training of MLPs causes them to provide good
estimates, in a mean squared error sense, of the a
posteriori probabilities of each class given the input.
Therefore, it makes sense to try to incorporate MLP
output scores as probabilities in a probabilistic
recognition formalism. Lippmann [3] provides a
particularly compelling case for why ANNs used this
way should be expected to do a better job than other

Fifth International Conference on Microelectronics for Neural Networks and Fuzzy Systems,
Lausanne, Switzerland, Feb. 12–14, 1996. IEEE Computer Society Press. — Reprint

3

recognition approaches. Morgan and Bourlard [4]
provide an in-depth look at application of ANNs to
speech recognition.

3.1: Frequency Balancing

Both Lippmann [3] and Morgan [4] talk about the
problem of converting a net’s output, an estimate of
posterior probability P(class| input) , into the number
needed in an HMM or Viterbi search, P(input|class) ,
using Bayes’ rule. They both recommend dividing the
net output by the prior probability of the class; Morgan:
“That is, we divide the posterior estimates from the
ANN outputs by estimates of class priors, namely the
relative frequencies of each class...”

Using this approach, classes with low frequency in
the training set end up with much noisier estimates of
P(input|class) , due to the division by the low
frequency, so the resulting estimates are not really
optimized in a mean-squared-error sense as the net
outputs were. In addition, output activations that are
naturally bounded between 0 and 1, due to the sigmoid,
convert to potentially very large probability estimates,
requiring a re-normalization step.

Our proposed alternative is to balance the frequencies
of the classes in training. We never actually tried the
division approach, so we can’t say our alternative is
necessarily better for word-level recognition—but at
least we can say it works a lot better than doing no
correction at all.

Since throwing out training samples is a counter-
productive way to achieve balance, samples from
infrequent classes might be replicated instead. Doing
so statically would require handling a greatly expanded
set of training patterns, though if replication were done
via pointers, this might not be a problem.
Alternatively, replication can be done dynamically,
integrated into the process of choosing training samples
in a random sequence.

In our training process, each epoch consists of a pass
over all the training samples, in random sequence. We
have included balancing by allowing each randomly-
chosen pattern to be presented a variable number of
times, where the number is computed probabilistically,
and may be zero, one, or more. Many samples from
frequent classes are skipped on each epoch, but are
used in other epochs. No data gets discarded, and there
is no static expansion of the training set.

Based on the number of samples of each class
available in the training set, we precompute a
replication-factor for each class, which is treated as a
real-valued average number of presentations for each
sample selected from that class.

A rep-factor less than 1 means there’s a probability of
skipping the pattern (not training on it, even though it
was chosen at random to be the next training pattern); a
rep-factor greater than 1 means there will be a chance
of repeating the pattern immediately before choosing a
next pattern at random.

We compute the rep-factors using a partial-
normalization approach. First, for each class i we
compute the frequency of that class (number of
samples), normalized relative to the average frequency
(total number of samples over total number of classes
that have any samples):

Fi = ni

ntotal N

Then we compute a rep-factor for each class as

Ri = a Fi()b

with scale factor a in the vicinity of .2 to .8, and
exponent b typically 0.5 to 0.9 (b = 0 would do
nothing, giving Ri = 1 for all classes).

The factor a < 1 lets us do more skipping than
repeating; e.g. for a = 0.5 , classes with relative
frequency equal to half the average will neither skip nor
repeat; more frequent classes will skip, and less
frequent classes will repeat.

The exponent b lets us compromise with how much
normalization of prior probabilities we do. Using b < 1
lets the net keep some bias in favor of classes with
higher prior probabilities. This bias might help in some
cases, depending on the form of the higher-level models
used in word recognition. It seems to help to keep b
somewhat below 1.

3.2: Normalized Output Error

It occurred to us that having a net trained with a
single target of 1 for the correct class and N − 1 targets
of 0 for all the other classes was pushing the outputs too
hard toward 0, making it difficult to get meaningful
representations of the small probabilities associated
with second- and third-choice classes. We found many
word errors in which the correct answer had one
character which, although apparently “readable,”
showed essentially zero probability, due to being a poor
alternative choice. By normalizing the forces pushing
outputs toward 0 targets, relative to the force on one
output toward the 1 target, we reasoned that low-
probability alternatives would survive with useful
posterior probability estimates.

We call this approach “NormOutErr” for Normalized
Output Error. In short, we reduce the back-propagated
error for classifier outputs corresponding to the many
“incorrect” classes, relative to the “correct” class, by

Fifth International Conference on Microelectronics for Neural Networks and Fuzzy Systems,
Lausanne, Switzerland, Feb. 12–14, 1996. IEEE Computer Society Press. — Reprint

4

“normalizing” those errors relative to the number of
incorrect classes.

The effect is to generally raise the neural net outputs,
since the modified training pushes much less hard
toward zero than standard back-prop does. The outputs
are raised such that they no longer converge to an
MMSE estimate of P(class| input) . Rather, they
converge to an MMSE estimate of a nonlinear function
f (P(class| input), A) depending on the factor A by

which we reduced the error pressure toward zero. This
causes the net to do a better job of estimating the
probability when it is low, rather than just doing a good
job for probabilities near 0.5 (the steepest part of the
sigmoid curve) as in the standard approach.

We worked out, using a simple version of the
technique of Bourlard and Wellekens [5], what the
resulting nonlinear function is. The net will attempt to
converge to minimize the modified quadratic error
function

Ê2 = p ⋅ (1 − y)2 + A ⋅ (1 − p) ⋅ y2

by setting its output y for a particular class to
y = p A − A ⋅ p + p()

for p = P(class| input), and modification factor A. For
small values of p , the activation y is increased by a
factor of nearly 1/A relative to the conventional case of
y = p , and for high values of p the activation is closer
to 1 by nearly a factor of A.

The inverse function, useful for converting back to a
probability, is

p = y ⋅ A y ⋅ A + 1 − y()
We verified the fit of this function by looking at
histograms of character-level empirical percentage-
correct versus y, as in Figure 2.

The factor A is set according to a partial-
normalization formula as

A = 1 d ⋅ (N − 1)()
where d = 1 yields “complete normalization” for N
classes, and d = 1 (N − 1) reverts to the standard case.
In our printable-ASCII-character-set recognizer, N is 94,
so d = 1 yields A = 0.011, while a more moderate
setting of d = 0.1 yields A = 0.11—still a significant
factor change from the conventional case of A = 1 .

Using the d = 0.1, A = 0.11 example, the steepest
part of the sigmoid where y = 0.5 corresponds to
p = 0.10 . Therefore, the net spends its resources

disproportionately trying to minimize the error in
estimating p values near 0.10.

Since log probabilities are used in the search, a
possible strategy would be to try to use the net to
estimate log probability directly. One might try to
minimize mean squared error of the log probability, or
calculate error relative to the probability estimate. It’s

not clear exactly how to do either of these, but it is
clear that it might cause a problem in pushing the net
to use its resources very disproportionately near p = 0 ,
where the relative error is necessarily large. The
NormOutErr technique can be viewed as a stable
intermediate technique that does not have the
singularity near p = 0 , but allows the emphasis to be
moved by a controlled amount toward the low-
probability region.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

p=P(correct)

net output y

Figure 2. Empirical p vs. y histogram for a
net trained with A =0.11, with the
corresponding theoretical curve.

Reducing the back-propagated error by a factor of A
on all but one of the net outputs would seem to
decrease the effective learning rate by almost a factor
of A . But the outputs near zero tend to be almost a
factor of A larger, largely compensating for this effect.
Of course, there is still some reduction in learning rate,
especially for the correct class output in easy cases,
which become much closer to the target of 1.

In our tests, the NormOutErr modification always
negatively impacted the net’s first-choice character-
level accuracy, so it would not be a generally useful
technique in simple classifiers. However, the
improvement in word-level accuracy was impressive,
due to the improvement in probability estimates for
those low-probability character hypotheses that were
important in word-error and near-miss cases.

4: Negative Training

Figure 3 shows an example of a hand-printed word
“dog” or “clog.” Depending on how it is labeled, the
segment consisting of the first stroke might be either a
positive example of “c” or a mis-segmentation. There

Fifth International Conference on Microelectronics for Neural Networks and Fuzzy Systems,
Lausanne, Switzerland, Feb. 12–14, 1996. IEEE Computer Society Press. — Reprint

5

is no way for a bottom-up segmenter to know which
segments are correct, so many wrong segments must be
considered at the higher levels.

Therefore, in the normal course of recognition, many
segments considered by the net do not correspond to
any actual character. The usual practice of training a
low-level classifier only on examples of actual
characters leaves its response unconstrained for novel
patterns that correspond to fragments or combinations of
characters. Ideally, we would want the classifier to
indicate “none of the above” when it sees an
inappropriate segmentation, so that the result of the
high-level search process would not likely select a
random labeling of a sequence of inappropriate
segments.

Figure 3. The “dog/clog/cbg” ambiguous
word, exemplifying the segmentation
problem in hand-print recognition. Without
negative training, it might even be
recognized as “%g”.

4.1: Negative Patterns

To accomplish this goal, we need to let the net train
on examples of the kinds of mis-segmented patterns
that it will encounter during recognition. Therefore, the
training process needs to be driven from word-level or
sentence-level data, and needs to include the
segmentation process. Training on a batch of labeled
characters is not enough.

We could define an additional class for these
“negative patterns,” corresponding to “not a character,”
and treat mis-segmented training samples just like
regular character training samples, with a target value
of 1 for this new class and 0 for all the others. Training
the net would still cause it to provide estimates of
P(class| input) , but the unwanted impl ic i t
conditionalization on correct segmentation would go
away. Instead, we treat mis-segmented patterns
specially, for two reasons: (1) the “not a character”
class output probability is not actually useful to us, so
we omit it and use all 0 targets; (2) we maintain
independent control of “training factor” and “training
probability” of negative patterns in order to trade off the

amounts of positive and negative training influence,
and their use of training time.

As with NormOutErr, this modification hurts the
character-level accuracy of the net as a classifier of
correctly segmented characters (by a little bit), but
helps overall word recognition (by a lot).

4.2: Strength of Negative Training

For the negative patterns, the back-propagation
training force toward 0 targets is not reduced by
NormOutErr’s factor A, but rather by an independent
parameter called the “negative training factor,” which
is typically between 0.2 and 0.5. In addition, since
negative training patterns are quite numerous, we skip
most of them on any particular epoch. Rather than use
the rep-factor from balancing, as on positive patterns,
we use an independent “negative training probability,”
which is typically between 0.05 and 0.3. The product of
these factors yields an effective reduction in the
influence of negative patterns.

Training at “full strength” on negative patterns would
cause too much suppression of the net outputs for
certain characters like I, 1, l, o, O and 0, that tend to
look the same as fragments of other characters. By
varying the training factor and probability, we mitigate
this effect while saving lots of training time. It is not
clear yet what formal probability model could account
for these tradeoffs.

5: Robust Backprop Training

The classical method of stochastic error back-
propagation has some classical difficulties that need to
be mitigated: (1) making sure the net can learn all the
important variations in the training data, as when a
class has several very different clusters of examples,
including some clusters with very few examples; (2)
making sure the net does not learn just minute
peculiarities and over-fit to the training data, but rather
will generalize to novel testing data. These difficulties
are typically seen as being opposed to each other.
Techniques such as cross validation stopping and
structural risk minimization typically optimize
generalization at the expense of thorough learning.

Our approach in this research has been to make sure
we can train long and hard, with a sufficiently powerful
net architecture, to optimize learning, and train to
complete convergence, while avoiding overfitting by
using artificial random variations of the training
patterns.

Fifth International Conference on Microelectronics for Neural Networks and Fuzzy Systems,
Lausanne, Switzerland, Feb. 12–14, 1996. IEEE Computer Society Press. — Reprint

6

5.1: Stroke Warping

To avoid overfitting, we never present the same
pattern to the net more than once—in spite of what we
said above about repeating patterns, multiple epochs,
etc. Instead, we train on patterns that are derived from
the training samples, “warped” through a new random
transformation on each presentation.

Recall that segments to be classified consist of sets
of strokes, and that strokes are sequences of (x, y)
coordinates. Sample segments in the training set are
similarly stored. The pattern input to the net, however,
is a derived representation of the segment; in our
system, an object-oriented “patternizer” takes care of
constructing various kinds of net inputs from segments.
In the training process, but not in the recognition
process, we interpose an additional “stroke warping”
step in front of the patternizer, to generate random but
plausible variations of the sample segment.

Stroke warping is accomplished as (mostly affine)
transformations on the (x, y) coordinates of the strokes
in a segment, with random transformation parameters;
all the points in all the strokes in a segment undergo
the same transformation: (x' , y') = M ⋅ (x, y) , where M
is a matrix not too far from an identity. Patternizers
that derive features such as height, width, local
direction, curvature, or image do so from the
transformed coordinates.

The “matrix not too far from an identity” concept is a
post hoc rationalization of what we really do, which is
to apply random amounts of rotation, skew, x-size, and
y-size factors, plus x and y quadratic nonlinear
distortions, within ranges controlled by a set of
independent training parameters. These distortions are
chosen to represent plausible variations in writing style.
The amounts of each distortion to apply are chosen,
through cross-validation experiments, as just the
amount needed to yield optimum generalization, in
combination with our “thorough” training process.
Pages of distorted examples are reviewed by eye to
verify that they appear to represent a natural range of
variation; a brief example is shown in Figure 4.

Figure 4. A few random stroke warpings of
the same original “m” data.

Our stroke warping scheme is somewhat related to
the ideas of Tangent Prop [9] and Tangent Dist [10], in
terms of the use of predetermined families of
transformations, but we believe it is much easier to
implement. It is also somewhat distinct in applying
transformations on the original coordinate data, as
opposed to using distortions of images. The voice
transformation scheme of Chang and Lippmann [11] is
also related, but they use a static replication of the
training set through a small number of transformations,
rather than dynamic random transformations of an
infinite variety.

5.2: Probabilistic Pattern Skipping

We have already mentioned probabilistic skipping of
patterns in relation to balancing and negative training
probability. In addition, we use a “correct train
probability” parameter to sometimes skip training on
patterns that are already correctly classified. When
correct train probability is very low, like 0.1, most of
the training time and the net’s learning capability is
being directed toward patterns that are more difficult to
correctly classify. This is the only way we were able to
get the net to learn to correctly classify unusual
character variants, such as a 3-stroke “5” as written by
only one training writer. This technique is one of
several forms of “error emphasis.” A related technique
is the use of a training subset in which easily-classified
patterns are continually replaced by randomly selected
patterns from the full set [12].

When using this parameter, which only applies to
positive patterns, a pattern selected for training is
patternized and presented to the net, and the forward
pass is evaluated. If the highest output activation is the
one corresponding to the correct class, then a biased
coin is flipped to decide whether to skip the back-
propagation part of the process.

Patterns that are incorrectly classified are never
skipped, but in variants of this scheme they might be
repeated an extra time or back-propagated with double
the usual learning rate.

Figure 5 illustrates some possible probabilistic
skipping parameters and error training factors, in
relation to segments from the word shown in Figure 3.
Note that the concept of correct as used by correct train
probability, and the concept of the correct or “label”
class as used by NormOutErr are independent.

Fifth International Conference on Microelectronics for Neural Networks and Fuzzy Systems,
Lausanne, Switzerland, Feb. 12–14, 1996. IEEE Computer Society Press. — Reprint

7

1.0

Segment Type Prob. of Usage

0.5

0.18

Error Factor

1.0

0.3

0.1
POS

NEG

Correct Incorrect Label
Class

Other
Classes

NA

Figure 5. Positive and Negative segments
from the example word “dog,” with typical
corresponding training probabilities and
error factors.

5.3: Annealing

Many discussions of back-propagation seem to
assume the use of a single fixed learning rate. We
view the stochastic back-propagation process as more
of a simulated annealing, with a learning rate starting
very high and decreasing only slowly to a very low
value. We typically start with a rate of 1.0, and reduce
the rate by a “decay factor” of 0.9 until it gets down to
about 0.001 (we define learning rate as the change in a
weight value relative to −E ⋅ ∂E ∂w in a system where
the maximum absolute value of the error E is 1 and the
maximum squashing function slope is 1/4). The rate
decay factor is applied after any epoch on which the
total squared error increased on the training set.

We typically run a few hundred thousand positive
training patterns, and epochs take about an hour on a
high-end IBM RS6000/Power2 machine. For smaller
training sets, rate decay factors somewhat closer to 1
are sometimes used. As a result, the net spends a long
time, like a few days or a few trillion instruction
cycles, training at rates that are very high compared to
the usual practice, and about a week annealing to a
fully-trained state. Epochs beyond the first one only cut
the character-level classification error rate by about a
factor of two, but those diminishing returns are still well
worth the price.

5.4: Training Schedule

For best overall results, we find it necessary to let
some of our many training parameters change during
the course of a training run. In particular, the correct

train probability needs to start out very low to give the
net a chance to learn unusual character styles, but it
should finish up at 1.0 in order to not introduce a
general posterior probability bias in favor of classes
with lots of ambiguous examples.

Since we have a batch-file-oriented training program,
we run with fixed parameters for a while, then stop the
job, edit the parameters, and start over training from
where the net left off. We typically train a net in four
“phases” according to parameters such as in Figure 6.

Phase
Learning

Rate

Correct
Train
Prob

Negative
Train
ProbEpochs

1

2

3

4

25

25

50

30

1.0 - 0.5

0.5 - 0.1

0.1 - 0.01

0.01 - 0.001

0.1

0.25

0.5

1.0

0.05

0.1

0.18

0.3

Figure 6. A typical multi-phase schedule of
learning rates and other parameters for
training a character-classifier net. Phase 3
parameters correspond to the numbers in
Figure 5.

6: Representation Issues

Probably the single most important success factor in
applications of ANNs is the choice of a good
representation for input information that the net will
operate on. Redundant, distributed, fully decoded kinds
of representations generally are more effective than
concise, encoded, or implicit representations. For
example, an image of a character works better than a
set of coordinate values, a dipstick code works better
than a set of binary-number bit inputs, etc.

Our research system architecture allows dynamic
determination of representations by calling out the
names and sizes of patternizers in a net architecture
specification file. For example, we might specify a net
with 12-by-12 image-splat, a 5-unit aspect ratio
dipstick, and a 1-unit height value.

6.1: Image vs. Stroke Representations

We have experimented with a variety of image
representations of characters, using anti-aliased gray-
scale rendering of strokes into small pixel maps, and
with a variety of local stroke features, such as local
direction sampled at a fixed number of equal-arc-length
intervals circularly encoded as gray scale bumps.

Fifth International Conference on Microelectronics for Neural Networks and Fuzzy Systems,
Lausanne, Switzerland, Feb. 12–14, 1996. IEEE Computer Society Press. — Reprint

8

There is not space here to even survey the variety of
representations we have experimented with, but suffice
it to say that minor variations matter, and not always in
the direction that one might expect. As a general
result, however, images seem to work best, and 12-by-
12 is about the right size if the training set is large
enough.

6.2: Multiple representations

The different types of representations mentioned
above provide somewhat complementary types of
information. One shows what a character looks like,
and the other shows how it was written; i.e., stroke order
and direction don’t matter in an image, but do matter in
terms of feature sequences.

Using both input representations together should be
expected to provide significant help to the net in
distinguishing classes—assuming there is enough data
that the extra information does not just lead to worse
over-fitting. We find that the effect is indeed quite
beneficial.

Exactly what architecture of hidden layers, etc., to
use in combining these representations is a significant
issue in itself. We favor an architecture in which each
of the two major representations has its own first and
second hidden layers, which come together only at the
output layer. This approach somewhat resembles and is
motivated by a “mixture-of-experts” [13] approach or a
combination of several rather different types of
classifiers, though the layers below the output layer are
not really classifiers and are not trained independently.

We experimented with merging the two sides of the
net one step lower; i.e., have separate first hidden
layers converge onto a common second hidden layer (of
about the same size as each of the separate hidden
layers in the other approach). Starting from a very
large net that we suspected of being too powerful
(somewhat over-fitted), we expected that this change,
which dropped the net from about 60,000 to about
50,000 weights, would let the net learn important high-
order combination features and yet generalize better.
This was pure wishful thinking. The net indeed learned
combination features and did significantly better on the
training set, but did slightly worse on the cross-
validation test set.

We rationalize this result into a general lesson about
handwriting recognition: if characters can be written in
several different ways (stroke orders and directions),
and can have a variety of appearances, don’t match on
the cross-product of those spaces. E.g., don’t let the
classifier learn that an “S” written from bottom to top
always slants a little to the right, just because you had

a writer in the training set with that particular
combination.

repr. 1 repr. 2 repr. 1 repr. 2

hidden hidden

hidden hidden

hidden hidden

hidden

outputoutput

Figure 7. Two architectures for combining
different input representations in a classifier
net. Each box represents about 100 neuron
units, and each heavy arrow corresponds to
about 10,000 weights. The more separated
architecture (left) seems to work better; the
alternative that combines information at a
hidden layer (right) is smaller but “too
powerful.”

7: Geometric Context

It is not possible to reliably estimate a baseline or
topline independent of classifying the characters in a
word. Our system approach factors the problem by
letting the net classify representations that are
independent of baseline and size, and then using a
separate module to score the relative size and position
of adjacent characters, depending on their classification
hypotheses. We call this module geometric context or
“GeoContext.”

GeoContext has proven quite useful for removing
case ambiguity and other shape ambiguities, especially
for punctuation.

7.1: Relative Size and Placement

It is easy to measure such things as the top and
bottom co-ordinates of hypothesized segments,
differences between adjacent segments, widths, spaces,
etc. For any hypothesized pair of characters, the
corresponding expected measurements are constructed,
to within an unknown scale factor and offset, from a
table of character tops, bottoms, widths, etc., in a
standardized space (e.g. in the space defined by
baseline=0, topline=1). After scaling and aligning the
measurements to the table values, an error vector is

Fifth International Conference on Microelectronics for Neural Networks and Fuzzy Systems,
Lausanne, Switzerland, Feb. 12–14, 1996. IEEE Computer Society Press. — Reprint

9

computed to indicate how far the observed relative size
and placement are from nominal.

The error vector is modeled by a full multi-variate
Gaussian distribution for all characters, so a quadratic
error term involving the inverse grand covariance
matrix is used directly as a score.

7.2: Pairwise Scores

 Notice that the score depends on the pair of
character hypotheses for the two segments being
considered, since the nominal size and position
information for each segment depends on that
segment’s class. Thus, for example, if a first segment
has bottom-up proposed hypotheses of “9”, “g”, comma
and apostrophe while the second could be “O”, “o”,
“0”, and period , then 16 different scores will be
generated for the possible pairs, to be added to
corresponding transitions in the graph search. It is easy
to see how pairs like “go”, “90”, “’.”, etc. would give
rise to distinguishing sets of scores using this
mechanism.

A related technique of evaluating “Adjacency
Constraints” that depend on pairwise classification
hypotheses has been presented by Parizeau and
Plamondon [14]. Their technique requires that
ascenders and descenders be identified before the
constraints are computed, as the constraints are
computed on the “main body” of a character: “...as long
as the segmentation/recognition method can isolate the
bounding box around the main body of the different
hypotheses...” We applaud their insight that the method
is “attractive for bypassing the conventional ill-posed
problem of zone estimation ... there is no global solution
... combinations of different hypotheses can be accepted
or rejected with a local criterion.”

7.3: Training GeoContext

In experimenting with relative size and placement
measures, it quickly became apparent that our
preconceptions about how people would write were not
very correct, so we decided to use a data-driven process
to set the parameters used in the calculation of
GeoContext scores. The trick was to find a good way to
train per-character parameters of top, bottom, width,
space, etc., in a standardize space, from data without
labeled baselines, etc. Since we had a technique for
generating an error vector from the table of parameters,
we decided to use a back-propagation variant to train
the table of parameters to minimize the squared error
terms in the error vectors, given all the pairs of
adjacent characters and correct class labels from the

training set. This approach is not discriminative, but
seemed adequate—enough so that we decided to leave
the ASCII characters underscore and vertical-bar in the
recognition character set.

8: Word Segmentation

In most of our experimentation, we assume that words
are correctly segmented out of the stream of input
strokes, e.g. by looking for big gaps, time-outs, etc. For
real on-line tests, however, or for processing sentence
files not segmented to the word level, word
segmentation is an important and difficult additional
task. A gap size threshold works to first order, but the
number of incorrect word segmentations (splits and
joins) can be reduced significantly with more complex
strategies.

8.1: Running Averages and Gap Sizes

One simple improvement on a fixed gap threshold is
a variable gap threshold that is adjusted to track the
size of the writing. After each word is recognized, the
resulting character classifications and corresponding
segmentations can be used to update a running average
estimate of the height of a capital letter, for example,
and a proportional gap threshold can be computed. The
gap size might also be adjusted according to a running
average of the inter-character gaps within words. But
no matter how it is adjusted, a threshold is always a
threshold, and will result in a discretely errorful
behavior when the written gap size crosses to the wrong
side of the threshold—a tiny change in writing, across
an invisible boundary, can cause an annoying split or
join.

8.2: Word-Space as a Character

To have a chance of “optimal” word segmentation,
the search process needs to treat the hypothesis of a
word break, or space, in much the same way it treats
other competing character and string hypotheses. To do
so is not necessarily easy, however, if the rest of the
system is primarily oriented toward classifying groups
of strokes and transitions between them, since the
space has no strokes, no bounding box, etc.

We have developed a scheme that starts with two
gap thresholds: if a gap is less than a small threshold,
then no space is considered; if it exceeds a large
threshold, then the word is hard-segmented; between
these limits, a space hypothesis will be considered,
with a cost term based on a parametric statistical
model of gap sizes. Everywhere that a space needs to

Fifth International Conference on Microelectronics for Neural Networks and Fuzzy Systems,
Lausanne, Switzerland, Feb. 12–14, 1996. IEEE Computer Society Press. — Reprint

10

be considered, the search process will generate pairs of
hypotheses in transitioning from one segment to the
next—a hypothesis of no space, continuing a word, and
a hypothesis of a word end followed by a space and the
beginning of a new word.

Since the high-level language model provides cost
terms that reflect the likelihood of a word end for any
given string of characters, the bottom-up costs from the
gap measurement will trade off against the top-down
costs from the language model in arriving at a best
overall interpretation that includes possible word
breaks. It is thus possible to write whole sentences in
which character gaps and word gaps are all about the
same, and still get the correct words recognized, in
some cases.

Looking for word breaks based on moving in the
vertical direction is another whole topic. It is not
unusual for lines of writing to have overlapping vertical
coordinates, and sometimes even tangled strokes. Even
distinguishing return strokes (like i-dot) from new lines
of writing can be a challenge, if writing can proceed
upward to start a new line.

Integrating all the possibilities of word segmentation
and return strokes into the search is still a formidable
issue.

9: Hardware Considerations

Running complex word recognition systems of the
sort discussed here on low-cost battery-powered
hardware is a key problem and opportunity. With
sufficient effort, it is possible to squeeze and optimize
until a low-power RISC processor can barely keep up
with fast printing. With further work, faster processors,
specialized hardware support, or other breakthroughs, it
should soon be possible to add active adaptation to the
user, via continual backprop training.

Some important hardware and performance
considerations are discussed in this section.

9.1: Quantized Weights

The work of Asanovic´ and Morgan [15] shows that
two-byte (16-bit) weights are about the smallest that
can be tolerated in training large ANNs via back-
propagation. But memory is expensive in small
devices, and RISC processors such as the ARM-610 are
much more efficient doing one-byte loads and
multiplies than two-byte loads and multiplies, so we
were motivated to make one-byte weights work.

Running the net for recognition is a significantly less
demanding problem, in terms of precision, than training
the net. It turns out that one-byte precision is plenty, if

the weights are trained appropriately. In particular, a
dynamic range should be fixed, and weights limited to
the legal range during training, and then rounded to the
requisite precision. For example, we find that a range
of values from (almost) –8 to +8 in steps of 1/16 does a
good job. Figure 8 shows a typical corresponding
distribution of weight values. If the weight limit is
enforced during high-precision training, the resources of
the net will be adapted to make up for the limit. Since
bias weights are few in number, however, and very
important, we allow them to use two bytes with
essentially unlimited range. We find no noticeable
degradation relative to floating-point, four-byte, or two-
byte weights using this scheme.

–8 –6 –4 –2 0 2 4 6 8

1

10

100

1000

weight value w

count per bin

of width 1/16

Figure 8. Distribution of weight values in a
net with one-byte weights, on a log count
scale. Weights with magnitudes greater
than 4 are sparse, but important.

We have also developed a scheme for training with
one-byte weights, which works as well as, or in some
cases a little better than, floating-point training. It uses
a temporary augmentation of the weight values with
two additional low-order bytes to achieve precision in
training, but runs the forward pass of the net using only
the one-byte high-order part. Thus any cumulative
effect of the one-byte rounded weights in the forward
pass can be compensated in the further training. Small
weight changes accumulate in the low-order bytes, and
only occasionally carry into a change in the one-byte
weights used by the net. In a personal product, this
scheme could be used for batched adaptation to the
user, after which the low-order residuals could be
discarded and the temporary memory reclaimed.
Perhaps only weights that actually changed from the
ROM values would need to be patched in RAM.

Fifth International Conference on Microelectronics for Neural Networks and Fuzzy Systems,
Lausanne, Switzerland, Feb. 12–14, 1996. IEEE Computer Society Press. — Reprint

11

Figure 9. Some of the kinds of windows available in our research recognizer. The net output
window is wrapped to fit all 94 printable-ASCII characters in the figure. In the example shown, an
intended hyphen has been mis-classified as underscore.

9.2: Speed, Caching, and Power Efficiency

As long as the processor can keep up with fast
writing, why try to speed up the process more? There
are several good reasons. Battery-operated devices
typically slow down or stop the processor clock when
compute cycles are not needed, so using fewer cycles
translates directly to using less energy from the limited
supply in the battery. In addition, the apparent speed
might change substantially, as there tends to be a
significant latency between a stroke time-out or line-
break and the time that an answer is returned and
displayed—the system may keep up fine on multiple-
line writing, but feel slow for a single line.

A major consumer of time and energy in running an
ANN on a RISC processor is the transfer of weights
from main memory, through the cache (if any), to the
datapath. The ANN weight set, even for one-byte

weights, will not fit in the cache of a small device, so
every segment evaluated will stream the whole set of
weights through again, possibly flushing everything else
out of the cache in the process. Typical co-processor
strategies, connecting directly into the processor
datapath, would not relieve this problem unless
sufficient storage was provided in the co-processor to
hold the weights. An alternative strategy would be to
attach a very simple co-processor, such as a vector dot-
product unit (multiplier-accumulator) directly to the
main memory, to avoid pumping the weights through
the cache and the processor, and saving cycles and
energy. Keeping the net out of the main processor
might further improve the caching behavior of the rest
of the system, saving more energy. The resulting
energy savings could translate directly to longer battery
life or lower battery weight, or could be traded for more
comprehensive search processes.

Fifth International Conference on Microelectronics for Neural Networks and Fuzzy Systems,
Lausanne, Switzerland, Feb. 12–14, 1996. IEEE Computer Society Press. — Reprint

12

An interesting final note on performance tradeoffs
comes from an experiment we did with a reduced-size
net. We reasoned that a smaller net would use fewer
memory and compute cycles, and so speed up the
recognition system. What actually happened was that
the net was not quite as certain in rejecting lots of
incorrect character hypotheses, and thereby made lots
of extra work for the search process—the system slowed
down overall. So we don’t skimp on the net.

10: Conclusions

We believe that we have made a pretty good start at,
or have at least scratched the surface of, the wide range
of open-ended possibilities for perfecting a system for
recognizing on-line hand-printing. We have been
extremely encouraged by the success of the ANN
approach to classification, but emphasize that the
details of the rest of the system will often matter more
than the particular low-level classifier used—the ANN
is a tool, not a solution.

The innovations we have described are expected to
lead to a new level of acceptance of pen-input
technology in the PDA market. We are actively
pursuing extensions of these techniques to larger
alphabets and other writing styles, including cursive.

Acknowledgments: We thank Bill Stafford,
Brandyn Webb, Les Vogel, and Michael Kaplan for
their many substantial contributions to the experiments
and ideas described. We also thank our many
colleagues in the neural-net community for their
advice, help, and encouragement over the years, and
our many colleagues at Apple who have pitched in to
help throughout the life of this project.

Some of the techniques described in this paper are
the subject of pending US and foreign patent
applications.

References

[1] S. Renals and N. Morgan, M. Cohen, and H. Franco
“Connectionist Probability Estimation in the Decipher
Speech Recognition System,” Proc. IEEE Intl. Conf. on
Acoustics, Speech, and Signal Processing (San
Francisco), pp. I-601–I-604, 1992.

[2] C. C. Tappert, C. Y. Suen, and T. Wakahara, “The State
of the Art in On-Line Handwriting Recognition,” IEEE
Trans. PAMI, Vol. 12, pp. 787– 808, 1990.

[3] R. P. Lippmann, “Neural Networks, Bayesian a
posteriori Probabilities, and Pattern Classification,” pp.
83–104 in: From Statistics to Neural Networks—Theory
and Pattern Recognition Applications, V. Cherkassky, J.

H. Friedman, and H. Wechsler (eds.), Springer-Verlag,
Berlin, 1994.

[4] N. Morgan and H. Bourlard, “Continuous Speech
Recognition—An introduction to the hybrid
HMM/connectionist approach,” IEEE Signal Processing
Mag., Vol. 13, no. 3, pp. 24–42, May 1995.

[5] H. Bourlard and C. J. Wellekens, “Links between
Markov Models and Multilayer Perceptrons,” IEEE
Trans. PAMI , Vol. 12, pp. 1167–1178, 1990.

[6] H. Gish, “A Probabilistic Approach to Understanding and
Training of Neural Network Classifiers,” Proc. IEEE Intl.
Conf. on Acoustics, Speech, and Signal Processing
(Albuquerque, NM), pp. 1361–1364, 1990.

[7] S. Renals and N. Morgan, “Connectionist Probability
Estimation in HMM Speech Recognition,” TR-92-081,
International Computer Science Institute, 1992.

[8] M. D. Richard and R. P. Lippmann, “Neural Network
Classifiers Estimate Bayesian a Posteriori
Probabilities,” Neural Computation, Vol. 3, pp. 461–483,
1991.

[9] P. Simard, B. Victorri, Y. Le Cun and J. Denker,
“Tangent Prop — A Formalism for Specifying Selected
Invariances in an Adaptive Network,” in Advances in
Neural Information Processing Systems 4 , Moody et al.
(eds.), pp. 895–903, Morgan Kaufmann, 1992.

[10] P. Simard, Y. Le Cun and J. Denker, “Efficient Pattern
Recognition Using a New Transformation Distance,” in
Advances in Neural Information Processing Systems 5 ,
Hanson et al. (eds.), pp. 50–58, Morgan Kaufmann, 1993.

[11] E. I. Chang and R. P. Lippmann, “Using Voice
Transformations to Create Additional Training Talkers
for Word Spotting,” in Advances in Neural Information
Processing Systems 7, Tesauro et al. (eds), pp. 875–882,
MIT Press, 1995.

[12] I. Guyon, D. Henderson, P. Albrecht, Y. Le Cun, and P.
Denker, “Writer independent and writer adaptive neural
network for on-line character recognition,” in From
pixels to features III , S. Impedovo (ed.), pp. 493–506,
Elsevier, Amsterdam, 1992.

[13] R. A. Jacobs, M. I. Jordan, S. J. Nowlan, and G. E.
Hinton, “Adaptive Mixtures of Local Experts,” Neural
Computation , Vol. 3, pp. 79–87, 1991.

[14] M. Parizeau and R. Plamondon, “Allograph Adjacency
Constraints for Cursive Script Recognition,” Third
International Workshop on Frontiers in Handwriting
Recognition (Pre-Proceedings) , pp. 252–261, 1993.

[15] K. Asanovic´ and N. Morgan, “Experimental
Determination of Precision Requirements for Back-
Propagation Training of Artificial Neural Networks,” TR-
91-036, International Computer Science Institute,
Berkeley, 1991.

