
MinimaLT: Minimal-latency Networking Through Better
Security

W. Michael Petullo
United States Military Academy

West Point, New York USA
mike@flyn.org

Xu Zhang
University of Illinois at Chicago

Chicago, Illinois USA
xzhang@cs.uic.edu

Jon A. Solworth
University of Illinois at Chicago

Chicago, Illinois USA
solworth@ethos-os.org

Daniel J. Bernstein
University of Illinois at Chicago TU Eindhoven

Chicago, Illinois USA Eindhoven, Netherlands
djb@cr.yp.to

Tanja Lange
TU Eindhoven

Eindhoven, Netherlands
tanja@hyperelliptic.org

ABSTRACT
Minimal Latency Tunneling (MinimaLT) is a new net-
work protocol that provides ubiquitous encryption for max-
imal confidentiality, including protecting packet headers.
MinimaLT provides server and user authentication, exten-
sive Denial-of-Service protections, privacy-preserving IP mo-
bility, and fast key erasure. We describe the protocol,
demonstrate its performance relative to TLS and unen-
crypted TCP/IP, and analyze its protections, including its
resilience against DoS attacks. By exploiting the proper-
ties of its cryptographic protections, MinimaLT is able to
eliminate three-way handshakes and thus create connections
faster than unencrypted TCP/IP.

Categories and Subject Descriptors
C.2.2 [Network Protocols]: Protocol architecture

Keywords
Network security; protocol; encryption; authentication

1 Introduction
Our goal is to protect all networking against eavesdropping,
modification, and, to the extent possible, Denial of Ser-
vice (DoS). To achieve this goal, networking must protect
privacy, provide strong (i.e., cryptographic) authentication
of both servers and users, be easy to configure, and perform
well. These needs are not met by existing protocols.
Hardware and software improvements have eliminated his-

torical cryptographic performance bottlenecks. Now, strong
symmetric encryption can be performed on a single CPU
core at Gb/s rates [40], even on resource-constrained mobile
devices [8]. Public-key cryptography, once so agonizingly
slow that systems would try to simulate it with symmetric
key cryptography [36], is now performed at tens of thou-
sands of operations per second on commodity CPUs. Due
to these advances, along with the threats found on the In-
ternet, researchers are increasingly calling for the protection
of all network traffic [10, 51, 20, 13].
However, one performance metric is a fundamental

limitation—network latency [28]. Latency is critical for

Public domain. This work was supported by the US National Science Foundation
under grants CNS-0964575 and 1018836, the European Commission under Contract
ICT-2007-216676 ECRYPT II and INFSO-ICT-284833 PUFFIN, and by the Nether-
lands Organisation for Scientific Research (NWO) under grant 639.073.005. Perma-
nent ID of this document: 4613afc97aa0c7b8c45bc08f46c2e120. Date: October 31,
2013.
CCS’13, November 4–8, 2013, Berlin, Germany.
ACM 978-1-4503-2477-9/13/11. http://dx.doi.org/10.1145/2508859.2516737.

users [55]. For example, Google found that a latency in-
crease of 500ms resulted in a 25% dropoff in page searches,
and studies have shown that user experience degrades at la-
tencies as low as 100ms [12]. In response, there have been
several efforts to reduce latency for both TCP and encrypted
networking [14, 41, 37, 10, 48, 56].
We describe here MinimaLT, a secure network protocol

which delivers protected data on the first packet of a typical
client-server connection. MinimaLT provides cryptographic
authentication of servers and users; encryption of communi-
cation; simplicity of protocol, implementation, and configu-
ration; clean IP-address mobility; and DoS protections.

MinimaLT’s design intentionally crosses network layers
for two reasons. First, security problems often occur in the
seams between layers. For example, Transport Layer Secu-
rity (TLS) is vulnerable to attacks on TCP/IP headers due
to its layering; connection-reset (RST) and sequence-number
attacks interrupt TLS connections in a way that is difficult
to correct or even detect [18, 3, 59]. Second, multi-layer
design enables MinimaLT to improve performance.
Particularly challenging has been to provide key erasure

(“forward secrecy”) at low latency. Key erasure means
that even an attacker who captures network traffic and later
obtains all long-term private keys cannot decrypt past pack-
ets or identify the parties involved in communication. Tra-
ditionally, key erasure is implemented with Diffie-Hellman
key exchange (DH) in a way that imposes a round trip be-
fore sending any sensitive data. MinimaLT eliminates this
round trip, instead obtaining the server’s ephemeral key dur-
ing a directory service lookup (§3.4 and §5.2). Further-
more, MinimaLT inverts the normal mandatory start-of-
connection handshake, instead ensuring connection liveness
using a server-initiated handshake only when a host’s re-
sources become low (§5.7). Eliminating these round trips
makes MinimaLT faster than unencrypted TCP/IP at es-
tablishing connections.
A second challenge is to make connections portable

across IP addresses to better support mobile computing.
MinimaLT allows the user to start a connection from home,
travel to work, and continue to use that connection. This
avoids application recovery overhead and lost work for op-
erations which would otherwise be interrupted by a move.
MinimaLT IP mobility does not require intermediary hosts
or redirects, enabling it to integrate cleanly into protocol
processing (§5.6). To provide better privacy, MinimaLT
blinds third parties to IP-address portability, preventing
them from linking a connection across different IP addresses.



A third challenge is DoS prevention. A single host cannot
thwart an attacker with overwhelming resources [30], but
MinimaLT protects against attackers with fewer resources.
In particular, MinimaLT dynamically increases the ratio of
client (i.e., attacker) to server resources needed for a suc-
cessful attack. MinimaLT employs a variety of defenses to
protect against DoS attacks (§7.6).
A fourth challenge is authentication and authorization.

Experience indicates that network-based password authen-
tication is fraught with security problems [29, 54, 42, 11],
and thus cryptographic authentication is needed. Our
authentication framework supports both identified and
non-identified (pseudonym) users (§3.1). We designed
MinimaLT to integrate into systems with strong authoriza-
tion controls.
To meet these challenges, we have produced a clean-slate

design, starting from User Datagram Protocol (UDP), by
concurrently considering multiple network layers. We found
an unexpected synergy between speed and security. The rea-
son that the Internet uses higher-latency protocols is that,
historically, low-latency protocols such as T/TCP have al-
lowed such severe attacks [14] as to make them undeployable.
It turns out that providing strong authentication elsewhere
in the protocol stops all such attacks without adding latency.

MinimaLT was designed for, and implemented in, Ethos,
an experimental Operating System (OS) [52]. Ethos’s pri-
mary goal is to make it easier to write robust applications,
i.e., applications able to withstand attacks. MinimaLT
serves as Ethos’ native network protocol; it is part of Ethos’
authentication suite which includes a Public Key Infrastruc-
ture (PKI) named sayI [53] and a networking API [47, 46].
We have also ported MinimaLT to Linux.

MinimaLT provides the features of TCP/IP (reliability,
flow control, and congestion control), and adds encryption,
authentication, clean IP mobility, and DoS protections, all
while providing key erasure and reducing latency.
§2 summarizes the threats for which MinimaLT pro-

vides countermeasures. The next four sections explain how
MinimaLT works and how fast it is: §3 describes the central
objects, §4 describes the message format, §5 describes the
protocol dynamics, and §6 provides a performance evalua-
tion. §7 explains why MinimaLT was designed the way it
was, and §8 compares MinimaLT to related work.

2 Threat model
We are concerned with an attacker that will attempt to vio-
late the confidentiality and integrity of network traffic. Our
attacker can observe and modify arbitrary packets, might be
a Man-in-the-Middle (MitM), might provide fraudulent ser-
vices which attempt to masquerade as legitimate services, or
might attempt to fraudulently assume the identity of a le-
gitimate user. An attacker who gains complete control over
clients and servers, through physical access or otherwise,
might be able to decrypt or identify the parties communi-
cating with very recent and future packets. However, he
should be unable to do so with older packets.
In addition, we want to weaken attacks on availabil-

ity. DoS attacks from known users are expected to be
addressed through de-authorizing abusive users or non-
technical means. An anonymous attacker might try to af-
fect availability, through transmission-, computation-, and
memory-based DoS. An attacker with enough resources (or
control over the network) can always affect availability, so

tunnel C → SClient host C

Q1

Q2

Q3

Server host S

P1

P2

P3

connection0 (control)

connection1

connection2

connection3

Qn / Pn : Client/server program n; : MinimaLT system software

Figure 1: A tunnel encapsulates all of the connections be-
tween a given pair of hosts; connections are user-process-to-
service and the server cryptographically authenticates each
client user (the control connection does not involve applica-
tion programs)

we attempt to drive up his costs by making his attack at
least as expensive as the cost to defend against it. Here
the ability to spoof the source IP address of a packet and
capture a reply should not allow much easier attacks.
We are also want to make it difficult for an attacker to

link a user’s connection across different IP addresses. For
example, if a user suspends his laptop at home and wakes
it up at a wireless café, a network eavesdropper should not
be able to infer from the protocol that these belong to the
same user. We do not address the linking of flows associated
with the same IP address, as this type of protection is better
afforded by techniques such as onion routing [16].

3 MinimaLT objects
This section introduces the central objects that interact in
the MinimaLT architecture. MinimaLT uses public keys
to identify servers and users; creates encrypted tunnels be-
tween hosts, through which authenticated user-to-service
connections are multiplexed; and publishes ephemeral server
keys in a directory service to reduce latency by eliminat-
ing setup handshakes. To provide a complete picture for a
MinimaLT deployment, this section concludes by describing
how to integrate MinimaLT’s directory service with DNS
and the X.509 PKI (used by web browsers). This is not part
of the protocol; it is merely one possible way to combine a
directory service with the existing Internet infrastructure.
3.1 Public keys
MinimaLT is decidedly public-key-based. Both servers and
users are identified by their public keys; such keys serve as
a Universally Unique ID (UUID) [61, 50, 35]. Users prove
their identity to servers by providing ciphertext which de-
pends on both their and the server’s keys (§5.8). A user
may be known—i.e., the underlying system is aware of a
real-world identity associated with the user’s public key—
or he may be a stranger—a user whose real world identity
is unknown. We consider a stranger who produces a new
identity for each request anonymous. Whether strangers
or anonymous users are allowed is left to the underlying sys-
tem’s authorization policy.
3.2 Tunnels
A MinimaLT tunnel is a point-to-point entity that encap-
sulates the set of connections between a client and an au-
thenticated server, as we depict in Figure 1. MinimaLT
creates a tunnel on demand to service a local application’s
outgoing connection request or in response to the first packet
received from a host (both are subject to the underlying sys-
tem’s authorization controls). In Figure 1, let Q1 be the first
program on client C to request a connection to server S. C
first establishes a tunnel endpoint, and then sends a mes-



Local domain

D

C

example.com

N

S

DNS

certS ,certS′

12
3

4
5

MinimaLT UDP

Figure 2: An external directory service query

sage to S; S receives this message and then completes the
tunnel. (We describe this more completely in §5.) Tunnels
provide server authentication, encryption, congestion con-
trol, and reliability; unlike with TLS/TCP, these services
do not repeat for each individual connection.
3.3 Connections
A MinimaLT tunnel contains a set of connections, that
is, a single tunnel between two hosts encapsulates an ar-
bitrary number of connections. Each connection is user-
authenticated and provides two-way communication be-
tween a client application and a service. In addition to mul-
tiplexing any number of standard application-to-service con-
nections, each MinimaLT tunnel has a single control con-
nection, along which administrative requests flow (§4.1).
3.4 Directory and Name service
Central to MinimaLT are its directory and name services.
These services provide certificates called service records,
which contain the information that a client needs to authen-
ticate and communicate with a server. A directory service
receives client queries containing a server hostname, and re-
sponds with the server’s service record. Servers register their
own service record using a name service. Thus the hosts
involved in the authentication of a server are the client C,
server S, directory service D, and name service N .

Contents of a service record A service record is made
up of two certificates: a long-term certificate certS and
an ephemeral certificate ecertS . The long-term certificate
binds S’s long-term public key with S’s hostname. The
ephemeral certificate is signed by S’s long-term key and
contains S’s IP address, UDP port, protocol version num-
ber (now 0), minimum first packet size (padding), long-term
key, ephemeral key, and the ephemeral key’s lifetime. Thus
this certificate includes the information which is tradition-
ally returned by DNS, plus cryptographic parameters which
in other protocols are negotiated during a handshake. The
protocol version number allows algorithm upgrades; proto-
col changes always involve changing the version number.

Hosts Within an organization, an administrator maintains
clients and servers, as well as one directory and one name
service. Each server S periodically uploads S’s service
record to its local N . Before communicating with S, the
client C requests S’s service record from its local D. Once
a client has S’s service record, it can form a tunnel to S.
We note that only the interactions C–S, C–D, and S–N

are part of MinimaLT. The communication D–N is not part
of the MinimaLT protocol. We describe, for completeness,
an implementation that uses DNS. The implementation is
very simple: D does a DNS lookup on the hostname which
returns S’s service record. No changes are needed to DNS
software: MinimaLT only adds service records as DNS TXT
records.

Establishing a connection We depict an external lookup
in Figure 2. The full sequence is as follows:

(1) S sends its service record to its local N ;
(2) C requests S’s service record from its local D (if D has

cached S’s service record, then skip to step 5);
(3) D makes a DNS query for S to N ;
(4) N replies to D with S’s service record; and
(5) D replies to C with S’s service record.
Finally, after verifying the signatures on S’s service record,
C establishes a tunnel with S.
In successive sections, we will ignore steps (3) and (4)

which are not part of the MinimaLT protocol. Further in-
formation on communication between C and D is given in
§5.2 and between S and N is given in §5.4.

Discussion The directory service is designed for easy de-
ployability on the Internet today while guaranteeing at least
as much security as is currently obtained from the X.509 PKI
used in TLS. In particular, a client C checks an X.509 cer-
tificate chain leading to the long-term public key for server
S, in the same way that web browsers today check such
chains. This chain is transmitted over DNS, obtaining three
benefits compared to transmitting the chain later in the pro-
tocol: (1) The chain automatically takes advantage of DNS
caching. (2) Even when not cached, the latency of transmit-
ting the chain is usually overlapped with existing latency for
DNS queries. (3) Any security added to DNS automatically
creates an extra obstacle for the attacker, forcing the at-
tacker to break both DNS security and X.509 security.
For comparison, if a client obtains merely an IP address

from DNS and then requests an X.509 certificate chain from
that IP address (the normal use of TLS today), then the
attacker wins by breaking X.509 security alone. If a client
instead obtains the S public key from DNS as a replace-
ment for X.509 certificate chains then the attacker wins by
breaking DNS security alone.
The integration of MinimaLT’s directory services with

DNS affects DNS configurations in two ways. First, the
DNS record’s time to live must be set to less than or equal to
the key-erasure interval of the host it describes. We expect
this to have a small impact, because most Internet traffic is
to organizations that already use short times to live (e.g.,
300 seconds for www.yahoo.com and www.google.com, and
60 seconds for www.amazon.com). Second, DNS replies will
grow due to the presence of additional fields. The largest im-
pact is the long-term certificate, which as mentioned above
is encoded today as an X.509 certificate.
We do not claim that DNS and X.509 are satisfactory

from a performance perspective or from a security perspec-
tive, but improved systems and replacement systems will
integrate trivially with MinimaLT. We are planning a sayI
implementation [53] which will have a stronger trust model
and better performance.

4 MinimaLT packet format
Here we describe the MinimaLT packet format which we
will build on in §5 to describe MinimaLT’s packet flow.
MinimaLT’s simple packet format spans three protocol lay-
ers: the connection, tunnel, and delivery layers. We depict
this format in Figure 3 and Table 1.
The plaintext portion of the packet contains the Ethernet,

IP, and UDP headers; the Tunnel ID (TID); a number-used-
once (nonce); and two optional fields that can be used during
tunnel initiation—an ephemeral public key and a puzzle. A
client provides the public key only on the first packet for



︸ ︷︷ ︸
Delivery

Ethernet IP UDP ︸ ︷︷ ︸
T unnel (plaintext)

TID Nonce Opt. ephemeral pub. key Opt. puzzle/solution ︸ ︷︷ ︸
T unnel (cryptographically protected)

Checksum Seq Ack RPC0 · · · RPCm

Figure 3: Packet format with plaintext in white and cryptographically protected portion in gray

Size (bytes)
Field First Successive

D
el
iv
. Ethernet Header 14 14

IP 20 20
UDP 8 8

&
C
ry
pt
o. Tunnel ID 8 8

Nonce 8 8
Ephemeral public key 32 n/a
Puzzle/solution 148 n/a
Checksum 16 16

R
el
. Sequence Num. 4 4

Acknowledgment 4 4

C
on

. Connection ID 4 4
RPC variable
Total (except RPC) 282 86

Table 1: Tunnel’s first/successive packets

a tunnel, and a server requires puzzles opportunistically to
prevent memory and computation attacks.
The packet’s cryptographically protected portion contains

ciphertext and the ciphertext’s cryptographic checksum.
The ciphertext contains a sequence number, acknowledg-
ment number, and series of Remote Procedure Calls (RPCs).
4.1 RPCs
Each MinimaLT connection communicates a series of RPCs.
An RPC is of the form fc(a0, a1, . . .), where f is the name of
the remote function, c is the connection on which the RPC
is sent, and a0, a1, . . . are its arguments. On the wire this is
encoded as c, f, a0, a1, . . . A single packet can contain multi-
ple RPCs from one connection or from multiple connections
within the same tunnel.
One connection is distinguished: connection 0 is the con-

trol connection, which hosts all management operations.
These include creating, closing, accepting, and refusing con-
nections; providing service records (§5.4); rekeying (§5.5)
and IP address changes (§5.6); puzzles (§5.7); and flow con-
trol (§5.9). We reference the following RPCs:

RPC Description
create0(c, y) create anonymous connection c of

type y
createAuth0(c, y, U , x) create an authenticated connection

for the user with long-term public key
U , who generates authenticator x

close0(c) close connection c
ack0(c) creation of c successful
refuse0(c) connection c refused
requestCert0(S) get host S’s service record
giveCert0(certS ,ecertS) provide the service record for server

S (contents described in §3.4)
ok0() last request was OK
nextTid0(t, C′) advertise future TID to prepare for a

rekey or IP address change (§5.5)
rekeyNow0() server request for rekey
puzz0(q, H(r), w, n′) pose a puzzle (§5.7)
puzzSoln0(r, n′) provide a puzzle solution r
windowSize0(c, n) adjust conn. receive window (§5.9)

All data on connections other than the control connection
are sent unchanged to their corresponding applications.
In general, each service provided by a host supports

a set of service-specific RPCs on standard connec-
tions. Our illustrations use the following sample RPC:

serviceRequestc(. . . ) a request for some type of service on
connection c

4.2 Authenticated encryption
MinimaLT is built on top of a high-level cryptographic ab-
straction, public-key authenticated encryption, to protect
both confidentiality and integrity of messages sent from one
public key to another. It is well known (see, e.g., [6, 7,
32, 25]) how to build public-key authenticated encryption
on top of lower-level primitives: use static DH to assign a
shared secret to the two public keys; use keys derived from
the shared secret to encrypt each message and to authen-
ticate each ciphertext. Note that low-level cryptographic
message authentication should not be confused with user
authentication and host authentication.
The input to public-key authenticated encryption is a

plaintext to encrypt, the sender’s secret key, the receiver’s
public key, and a nonce (a message number used only once
for this pair of keys). The output is an authenticated cipher-
text which is longer than the plaintext because it includes
an authenticator (a cryptographic checksum). The inverse
operation produces the original plaintext given an authenti-
cated ciphertext, the same nonce, the receiver’s secret key,
and the sender’s public key.
Each MinimaLT packet contains one authenticated ci-

phertext, together with the nonce used to create the cipher-
text. The corresponding plaintext consists of reliability in-
formation (a sequence number and an acknowledgment num-
ber) and the concatenation of the RPCs sent in this packet.

MinimaLT chooses monotonically increasing nonces
within each tunnel; our implementation uses time-based
nonces. Once used, a nonce is never repeated for the same
tunnel. The client uses odd nonces, and the server uses even
nonces, so there is no risk of the two sides generating the
same nonce. Clients enforce key uniqueness by randomly
generating a new ephemeral public key for each new tunnel;
this is a low-cost operation. For a host which operates as
both client and server, its client ephemeral key is in addition
to (and different from) its server ephemeral key.

MinimaLT uses the public-key authenticated encryption
mechanism from NaCl [6], with 32-byte public keys, 16-
byte authenticators, and 8-byte nonces. Except for these
sizes and the performance reported in §6 our description of
MinimaLT is orthogonal to this choice of encryption mech-
anism.
4.3 Tunnel IDs and ephemeral public keys
The tunnel establishment packet (the first packet sent be-
tween two hosts) contains a TID and the sending host’s
ephemeral public DH key. The TID is pseudo-randomly
generated by the initiator. The public key is ephemeral to
avoid identifying the client host to a third party.
Subsequent packets use the TID to identify the tunnel

and thus do not repeat the DH key. The recipient uses the
TID to look up the tunnel’s shared secret used to verify and
decrypt the authenticated ciphertext inside the packet. The
TID is 64 bits—1/4 the size of a public key—with one bit
indicating the presence of a public key in the packet, one bit
indicating the presence of a puzzle/solution (see §5.7), and
62 bits identifying a tunnel.



C′ DConn., req. ephemeral key
Ephemeral key T1

(a) Obtaining D’s ephemeral key (only at boot time)

C′ D′Conn., req. server information

ephemeral key of S
IP address, UDP port, key, T2

(b) Prelude to connection (only if tunnel does not yet exist)
C′ S′

application-to-service RPC
Connect,

T3

(c) Connection establishment

Figure 4: MinimaLT protocol trace

4.4 Delivery
MinimaLT concatenates tunnel information with the au-
thenticated ciphertext and places the result into a UDP
packet for delivery across existing network infrastructure. A
MinimaLT packet on the wire thus contains standard Ether-
net, IP, and UDP headers. The UDP header allows packets
to traverse NATed networks [19] and enables user-space im-
plementations of MinimaLT. Aside from the UDP length
field, the delivery fields (including UDP port numbers) are
ignored by MinimaLT. The MinimaLT protocol details are
orthogonal to the structure of IPv4/v6 addresses.

5 MinimaLT packet flow
This section explains how a MinimaLT client C forms a
tunnel and connects to a server S. All application data, as
well as client and user identity, is encrypted under ephemeral
keys that will soon be discarded. (IP addresses by necessity
are visible.) Once a tunnel is formed, successive connections
are created using RPCs within the existing tunnel.
We show a complete three-step connection in Figure 4:

T1 facilitates the request by C for D’s ephemeral key (only
required if this is C’s first lookup since booting); T2 pro-
tects the connection between C′ and D′ (used to request S’s
ephemeral key, the analogue of a DNS lookup); and T3 pro-
tects communication between C′ and S′. This section also
covers more advanced issues such as rekeying and IP-address
mobility; DoS protections; user authenticators; and conges-
tion control.
We do not usually distinguish between a host (or user),

their long-term public key, and their long-term private key,
instead relying on context to disambiguate them. Figure 5
describes the notation we will use during the course of our
description.
We show packets on a single line such as

t, n, C′, s, a, . . . C′→S′
n

which indicates a tunnel establishment packet (visible by the
presence of the plaintext C′, as described in §4.3) from C to
S using keys C′ and S′ to box (encrypt and authenticate)
the message ‘s, a, . . .’ under nonce n. Each packet has a new
nonce but for conciseness we simply write n rather than n1,
n2, etc. The same comment applies for sequence numbers
(s) and acknowledgments (a).
5.1 Initial communication of C with D (T1)
After booting, C establishes a tunnel with D (Figure 4a,
tunnel T1). (C’s static configuration contains its directory
service’s IP address, UDP port, and long-term public key
D.) C generates a single-use public key C′ and uses it to

t A tunnel ID (described in §4)
n A nonce (described in §4)
s A sequence number
a An acknowledgment number

0 or c A connection ID (0 for the control connection)
p A puzzle
r A puzzle solution (i.e., response)

C, D, N, S The client, directory, name, and server long-
term public/private key

C′, D′, N ′, S′ An ephemeral client, directory, name, and
server public/private key

U A user’s public/private key
x A user authenticator (described in §5.8)

C → S A message from the client to the server, using
keys C and S

H(m) The cryptographic hash of message m
m k

n Encrypt and authenticate message m using
symmetric key k and nonce n

m S→P
n Encrypt and authenticate message m using a

symmetric key derived from private key S and
public key P ; n is a nonce

Figure 5: Notation

create a bootstrap tunnel with the directory service.
t, n, C′, s, a, requestCert0(D) C′→D

n

t, n, s, a, giveCert0(certD, ecertD) D→C′
n

D responds with a service record (certD,ecertD) contain-
ing its own ephemeral key, D′. C does not make further use
of tunnel T1.
5.2 Subsequent communication of C with D (T2)
C uses D′ to establish another tunnel with D (Figure 4b,
tunnel T2) to request S’s service record. This tunnel uses a
fresh C′, is key-erasure-protected, and is established by:

t, n, C′, s, a, requestCert0(S) C′→D′
n

t, n, s, a, giveCert0(certS , ecertS) D′→C′
n

Successive connections to the same server S skip both T1
and T2. T2 remains open for C to look up other servers.
5.3 Communication of C with S (T3)
After receiving certS and ecertS , C is ready to negotiate a
tunnel with the end server (Figure 4, tunnel T3). C encrypts
packets to the server using S′ (from ecertS) and a fresh C′.
Because C places its ephemeral public key in the first packet,
both C and S can immediately generate a shared symmetric
key using DH without compromising key erasure. Thus C
can include application-to-service data in the first packet to
S. That is,

t, n, C′,
s, a, nextTid0(t, C′),
createAuth0(1, serviceName, U , x),
serviceRequest1(. . . )

C′→S′
n

Upon receiving createAuth0, S verifies the authenticator x
(§5.8) and decides if the client user U is authorized to con-
nect. If so, S creates the new connection, here with ID 1.
The server ensures no two tunnels share the same C′. Once
this tunnel is established, C erases the secret key belong-
ing to C′; the tunnel continues to use the shared secret of
C′ and S′. (We describe the purpose of nextTid0 in §5.5.)
The server can then immediately process the service-specific
serviceRequest1 on this new connection.
5.4 Communication of S with N

Before a client may connect, S must register its own IP ad-
dress, UDP port, public key S, certificate on S, and current
ephemeral public key S′ with an ephemeral-key name service



N . This is done using the giveCert0 RPC:
t, n, s, a, giveCert0(certS , ecertS) S′→N′

n

t, n, s, a, ok0() N′→S′
n

(Here we assume S already has a tunnel to N .) In the local
case N may be the same as D, but in general information
must be pushed or pulled from N to D (§3.4).
5.5 Rekeying and key erasure
MinimaLT implements a property called fast key erasure
which means that key erasure can take place at any time,
without interrupting existing connections. A client uses a
nextTid0 RPC to indicate the new TID t that will prompt a
rekey; this RPC also includes a C′ for reasons we describe
in §7.4. Servers invoke rekeyNow0 when their key-erasure
interval expires. In any case, each host erases the previous
key after beginning to use the next. Clients invoke nextTid0
within each tunnel initiation packet (§5.3).
A client causes a rekey when its key-erasure interval ex-

pires or when it receives a rekeyNow0 RPC from the server.
To cause such a rekey, the client (1) computes a new sym-
metric key by cryptographically hashing the tunnel’s exist-
ing symmetric key; (2) computes a new C′ indistinguishable
from a legitimate public key; and (3) issues a tunnel ini-
tiation packet using t and C′ which is encrypted with the
new symmetric key and contains a successive nextTid0 RPC.
The server (1) notices that the tunnel initiation packet con-
tains the t from the previous nextTid0; (2) computes the new
symmetric key and unboxes the packet; and (3) verifies that
the current nextTid0’s C′ parameter matches the plaintext
public key on the tunnel initiation packet. If each verifica-
tion succeeds, then the server transitions to the new tunnel
parameters; otherwise it behaves as with a failed tunnel ini-
tialization.
5.6 IP-address mobility
Because MinimaLT identifies tunnels by their TID, a tun-
nel’s IP and UDP port can change without affecting com-
munication. After changing its IP address or UDP port, a
client simply does a rekey.
5.7 Puzzles
A MinimaLT server under load that receives a tunnel es-
tablishment packet from a stranger client for an authorized
service does not immediately create the tunnel. Instead, it
produces a puzzle that must be solved by the client before
the server will proceed. First, the server computes the solu-
tion (i.e., response) to a puzzle:

r = C′, S′ k
n′

where k is a secret used only for puzzles. It then selects
a value w that determines the difficulty of the puzzle, and
calculates q by zeroing r’s rightmost w bits. The server
sends the puzzle of the form [q, H(r), w, n′] to the client in
the following packet:

t, n, [q, H(r), w, n′]
(Note that the square brackets do not affect the packet; they
merely make our notation more readable.) The server next
forgets about the client’s request.
The client must solve the puzzle, i.e., reconstruct r from

q and H(r), and provide its solution r along with n′ in a
new tunnel establishment packet boxed using the same C′

and S′. To find this solution, the client brute forces the
rightmost w bits of q, checking each resulting candidate d
to see if H(d) = H(r). If this equivalence holds, the client

has found d = r. (This brute force work imposes a high load
on C without affecting S.) The client then responds to the
server with:

t, n, C′, [r, n′], s, a, . . . C′→S′
n

To confirm a solution, the server decrypts r using k and n′,
confirms that the plaintext contains C′ and S′, and ensures
that n′ is within an acceptable window. Although the server
had forgotten r, these protections ensure that r cannot be
reused for other tunnel establishment attempts.

MinimaLT also provides a puzzle RPC that can be used
inside a tunnel for liveness testing. The puzzle format used
by this RPC is the same as that which is used in the tunnel
header.
5.8 User authenticators
Every user serviced by MinimaLT is identified by his public
key. The createAuth0 authenticator is the server’s long-term
public key encrypted and authenticated using the server’s
long-term public key, the user’s long-term private key U ,
and a fresh nonce n never reused for U :

n, S U→S
n

The effect of user authenticators is determined by the
server’s local authorization policy.
5.9 Congestion and flow control
MinimaLT’s tunnel headers contain the fields necessary to
implement congestion control, namely sequence number and
acknowledgment fields. We presently use a variation of
TCP’s standard algorithms [22].

MinimaLT hosts adjust per-connection flow control us-
ing the windowSize0 RPC. MinimaLT subjects individual
connections to flow control, so windowSize0 takes as param-
eters both a connection ID and size. MinimaLT currently
implements TCP-style flow control.
As with TCP [27], efficient congestion control is an area

of open research [23], and we could substitute an emerging
algorithm with better performance. MinimaLT does have
one considerable effect on congestion control: controls are
aggregated for all connections in a tunnel, rather than on
individual connections. Since a single packet can contain
data for several connections, the server no longer needs to
allocate separate storage for tracking the reliability of each
connection. This also means that MinimaLT need not re-
peat the discovery of the appropriate transmission rate for
each new connection, and a host has more information (i.e.,
multiple connections) from which to derive an appropriate
rate. The disadvantage is that a lost packet can affect all
connections in aggregate.

6 Performance evaluation
In this section we evaluate MinimaLT’s performance, specif-
ically packet overhead, latency and throughput. For per-
formance under DoS, see §7.6. We focus on server perfor-
mance, because even resource-constrained smartphones can
adequately handle their own load. While servers have faster
CPUs, they are relatively slow compared to their network
capacity and the number of clients they serve. Furthermore,
a server DoS is much more damaging than a client DoS.
6.1 Packet header overhead
MinimaLT’s network bandwidth overhead is modest. The
overhead is due to the cryptography, and includes the nonce,
TID, and checksum (the public key/puzzle fields are rarely



present and are thus insignificant overall). MinimaLT re-
quires 32 bytes more for its headers than TCP/IP; this rep-
resents 6% of the minimum Internet MTU of 576 bytes, and
2% of 1518-byte Ethernet packets.
6.2 Latency and throughput
We experimentally evaluate MinimaLT’s performance in
three areas: (1) the serial rate at which MinimaLT estab-
lishes tunnels/connections, primarily to study the effect of
latency on the protocol; (2) the rate at which MinimaLT
establishes tunnels/connections when servicing many clients
in parallel; and (3) the throughput achieved by MinimaLT.
We benchmarked MinimaLT on Ethos. All of our perfor-

mance tests were run on two identical computers with a 4.3
GHz AMD FX-4170 quad-core processor, 16GB of memory,
and a Gb/s Ethernet adapter. We benchmarked in 64-bit
mode and on only one core to simplify cross-platform com-
parisons.

Serial tunnel/connection establishment latency In
each of our serial connection benchmarks, a client sequen-
tially connects to a server, sends a 28-byte application-layer
request, and receives a 58-byte response. We measure the
number of such operations completed in 30 seconds; the con-
nections do not perform a DNS/directory service lookup.
We performed this experiment under a variety of network
latencies using Linux’s netem interface.
We compare against OpenSSL 1.0.0j using its s_server and

s_time utilities, running on version 3.3.4 of the Linux ker-
nel. We configured OpenSSL to use 2,048-bit RSA as rec-
ommended by NIST [4] (although 2,048-bit RSA provides
112-bit security, less than that of MinimaLT’s 128-bit secu-
rity), along with 128-bit AES, ephemeral DH, and client-side
certificates (i.e., cipher suite DHE-RSA-AES128-SHA). In or-
der to ensure disk performance did not skew our results, we
modified s_server to provide responses from memory instead
of from the filesystem. We also wrote a plaintext benchmark
which behaves similarly, but makes direct use of the POSIX
socket API without cryptographic protections.
To produce results analogous to OpenSSL, we simulated

both (1) many abbreviated connection requests for high
reuse by clients and (2) many full connection requests for no
reuse by clients, we tested both (1) the vanilla MinimaLT
stack and (2) a MinimaLT stack we modified to artificially
avoid tunnel reuse.
Figure 6a shows full connection performance ratios be-

tween MinimaLT vs. TCP and MinimaLT vs. OpenSSL.
For each connection, MinimaLT creates a new tunnel and
authenticates the client user; TCP performs a three-way
handshake; and OpenSSL performs full TCP and TLS hand-
shakes. After this initial setup, our benchmark completes an
application-data round trip. Most surprisingly, MinimaLT
creates connections faster than unencrypted TCP, begin-
ning before native LAN latencies+1/2 ms (LAN+1/2 ms).
MinimaLT is about twice as fast as unencrypted TCP at
latencies above LAN+4 ms, and MinimaLT is four to six
times faster than OpenSSL.
Figure 6b shows abbreviated connections. Here

MinimaLT reuses an existing tunnel and OpenSSL takes
advantage of its session ID to execute an abbreviated con-
nection. Both protocols avoid computing a shared secret
using DH, except in the case of the first connection. Ab-
breviated MinimaLT connections surpass the performance
of unencrypted TCP at LAN+1/4 ms latencies. At higher

latencies, MinimaLT is two times the performance of TCP
and three times the performance of OpenSSL.
At high latencies, the protocol performance ratios ap-

proach the numbers predicted by counting the round trips
inherent in each protocol. We attribute our results to
MinimaLT’s efficient tunnel/connection establishment (es-
pecially at high latencies) and to the speed of the NaCl
library (especially at low latencies).
Figure 6c revisits the measurements described for Figure

6a, this time plotting the actual time each connection took
in log scale. At LAN+1/16 ms, a MinimaLT, TCP, and
OpenSSL connection took 1.32ms, 0.68ms, and 7.63ms, re-
spectively. At LAN+256ms, the times were 0.53s, 1s, and
2.13s, respectively.
Figure 6d displays abbreviated connection time. At

LAN+1/16 ms, a MinimaLT and OpenSSL connection took
1.03ms and 1.67ms, respectively. At LAN+256ms, the times
were 0.52s and 1.60s, respectively. (TCP times are the same
as in Figure 6c.)

Tunnels User Connections DH per
per run Auth. per second conn.
One 18,453 0
One X 8,576 1
Many 7,827 1
Many X 4,967 2

Table 2: Connection establishment with many clients
Tunnel establishment throughput with many clients
We created a second connection benchmark to estimate the
CPU load on a MinimaLT server servicing many clients.
To do this, we ran two client OS instances, each forking
several processes that connected to the server repeatedly as
new clients; here each virtual machine instance was running
on a distinct processor core within a single computer. Be-
cause this experiment concerns CPU use and not latency,
these clients do not write any application-layer data, they
only connect. Using xenoprof and xentop, we determined
that the server was crypto-bound (i.e., 63% of CPU use was
in cryptography-related functions—primarily public key—
and the server CPU load was nearly 100%). We measured
the number of full connections per second achieved under
this load, and varied our configuration from accepting fully-
anonymous users (no authenticators), to verifying a new user
authenticator for each connection request. Our MinimaLT
server established 4,967–7,827 tunnels per second, as shown
in Table 2 (rows 3–4).
Given the minimal tunnel request size of 1,024 bytes, our

hosts can (on a single core) service 61.15Mb/s of tunnel
requests from anonymous users and at least 38.80Mb/s of
tunnel requests from authenticated users. We note that the
latter is the worst case for authenticated users; in general,
we would cache the result of the DH computations necessary
to validate user authenticators, as authenticators use long-
term keys. Thus in practice we expect the authenticated
user case to approach that of anonymous users.
Connection establishment throughput with many
clients We repeated the previous experiment, but this time
avoided DH computations by repeatedly creating connec-
tions using a single tunnel between each client and the
server. Table 2 (rows 1–2) shows that our rates ranged from
8,576–18,453 per second, depending on the presence of user
authenticators. The connection rate over a single tunnel is
important for applications which require many connections



0.00×
1.00×
2.00×
3.00×
4.00×
5.00×
6.00×
7.00×

1/16 1/8 1/4 1/2 1 2 4 8 16 32 64 128 256
One-way additional simulated latency applied to network (ms); this is in addition to our native LAN latency of 1/13 ms

MinimaLT/TLS
MinimaLT/TCP

(a) MinimaLT gain over TCP/IP and TLS; full connections

0.00×
1.00×
2.00×
3.00×
4.00×
5.00×
6.00×
7.00×

1/16 1/8 1/4 1/2 1 2 4 8 16 32 64 128 256

MinimaLT/TLS
MinimaLT/TCP

(b) MinimaLT gain over TCP/IP and TLS; abbr. connections

10−4

10−3

10−2

10−1

100

101

1/16 1/8 1/4 1/2 1 2 4 8 16 32 64 128 256

C
on

ne
ct

ti
m
e
(s
)

One-way additional simulated latency applied to network (ms); this is in addition to our native LAN latency of 1/13 ms

OpenSSL
Unencrypted

MinimaLT

(c) Time spent creating a connection; full connections

10−4

10−3

10−2

10−1

100

101

1/16 1/8 1/4 1/2 1 2 4 8 16 32 64 128 256

OpenSSL
Unencrypted

MinimaLT

(d) Time spent creating a connection; abbr. connections
Figure 6: Serial tunnel/connection establishment latency

and when using many applications to communicate with the
same server. Our comments about cached DH results in the
preceding experiment apply here as well; we would expect
in practice the rate of the authenticated case will approach
the anonymous case.
A theoretical throughput limit We used SUPER-
COP [5] to measure the time it takes our hardware to
compute a shared secret using DH, approximately 293,000
cycles or 14,000 shared-secret computations per second.
MinimaLT’s tunnel establishment rate approaches 56% of
this limit, with the remaining time including symmetric key
cryptography, scheduling, and network stack processing.

System Bytes per second
Line speed 125,000,000
Unencrypted 117,817,528
MinimaLT 113,945,258
OpenSSL 111,448,656

Table 3: Data throughput (ignoring protocol overhead)
Single-connection data throughput Table 3 describes
our throughput results, observed when running programs
that continuously transmitted data on a single connection
for thirty seconds. MinimaLT approaches the throughput
achieved by unencrypted networking and runs at 91% of
line speed (Gb/s). Indeed, MinimaLT’s cryptography runs
at line speed; header size differences are the primary reason
the unencrypted benchmark outperforms MinimaLT.

7 Design rationale
7.1 Cryptographic security
Tunnel IDs and nonces are visible on the network, and fol-
low a clear pattern for each client-server pair. Essentially
the same information is available through a simple log of
IP addresses of packets sent. Mobile clients automatically
switch to new tunnel IDs when they change IP addresses,
as we described in §5.6. Ephemeral client public keys are
visible when each tunnel is established, but are not reused
and are not connected to any other client information.

Other information is boxed (encrypted and authenticated)
between public keys at the ends of the tunnel. These boxes
can be created and understood using either of the two corre-
sponding private keys, but such keys are maintained locally
inside MinimaLT hosts. The attacker can try to violate con-
fidentiality by breaking the encryption, or violate integrity
by breaking the authentication, but MinimaLT uses modern
cryptographic primitives that are designed to make these at-
tacks very difficult. The attacker can also try to substitute
his public key for a legitimate public key, fooling the client
or server into encrypting data to the attacker or accepting
data actually from the attacker, but this requires violating
integrity of previous packets: for example, before the client
encrypts data to D′, the client obtains D′ from a boxed
packet between D and C′. MinimaLT’s reliability and con-
nection headers are part of the ciphertext, so they are also
protected against tampering and eavesdropping.
7.2 The benefits of RPCs
In contrast to byte-oriented protocols, we use RPCs within
MinimaLT’s connection layer as they result in a clean design
and implementation; they are also general and fast (§6).
RPCs have a long history dating to the mid-1970s [60, 9].
The tunnel, and the RPCs within it, are totally sequenced;

thus RPCs are executed in order (as opposed to separately
implemented connections—as in TLS—where ordering be-
tween connections is not fixed). This enables a clean sepa-
ration of the control connection from other connections, and
we have found that this simplifies both the protocol and its
implementation. Furthermore, placing multiple RPCs in one
packet amortizes the overhead due to MinimaLT’s delivery
and tunnel fields across multiple connections.
7.3 The benefits of tunnels
Tunnels make it more difficult for an attacker to use traffic
analysis to infer information about communicating parties.
Of course, traffic analysis countermeasures have limits [43];
for obvious cost reasons we did not include extreme protec-
tions against traffic analysis, such as using white noise to
maintain a constant transmission rate. MinimaLT also re-



duces packet overhead by using TIDs rather than repeating
the public key in every packet.
Tunnels are independent of the IP address of C; this

means that C can resume a tunnel after moving to a new
location (typically prompting the use of the next ephemeral
key as described below), avoiding tunnel-establishment la-
tency and application-level recovery due to a failed connec-
tion. This reduced latency is useful for mobile applications,
in which IP-address assignments may be short-lived, and
thus overhead may prevent any useful work from being done
before an address is lost.

MinimaLT reduces an attacker’s ability to link tunnels
across IP address changes because its TID changes when
its IP address changes. What remains is temporal analysis,
where an attacker notices that communication on one IP ad-
dress stops at the same time that communication on another
starts. However, the attacker cannot differentiate for sure
between IP mobility and an unrelated tunnel establishment.
Blinding information below the network layer—for example,
the Ethernet MAC—is left to other techniques.
7.4 Rekeying
Rekeying is critical for allowing key erasure during a long
connection: it allows clients and servers to periodically for-
get old encryption keys, protecting those keys against an at-
tacker who later compromises clients and servers. Rekeying
also supports IP-address mobility without explicitly linking
the old address to the new address.
Creating the new key by hashing is more efficient than

creating it by a new DH, avoiding both public-key operations
and superfluous round trips.
The client creates a new public key, so that there is

no packet-format distinction between a rekeying tunnel-
initiation packet and a completely new tunnel-initiation
packet. Rather than generating a key pair and using only
the public key, a public key can directly and more efficiently
be generated as a random point on an elliptic curve.
There are two copies of C′ in a rekeying packet, one in the

clear and one inside the boxed part, verified by the server
to be identical. Without this verification, an active attacker
could modify the public key sent in the clear, observe that
the server still accepts this packet, and confidently conclude
that this is a rekey rather than a completely new tunnel.
A client-side administrator sets his host’s key-erasure

interval as a matter of policy. The server’s policy is
slightly more sensitive, because the server must maintain its
ephemeral key pairs as long as they are advertised through
the directory service. An attacker who seizes a server could
combine the ephemeral keys with captured packets to regen-
erate any symmetric key within the ephemeral key window.
Thus even if the client causes a rekey, the server’s ephemeral
key window dominates on the server side.
If a user believes a server’s ephemeral key lifetime is long

enough to put his communications at risk, then he could
choose not to communicate with the server. Except for
the case of a malicious server which does not destroy ex-
pired ephemeral keys (and ought not to be trusted in the
first place), MinimaLT’s directory service provides the life-
time information needed to make these decisions, whether
directly by a human or by automated tools.
7.5 User authenticators
Because authenticators are transmitted inside boxes (as ci-
phertext), they are protected from eavesdropping, and be-

cause the authenticator is tied to the server’s (certified) pub-
lic key, the server cannot use it to masquerade as the user to
a third-party MinimaLT host. Of course, any server could
choose to ignore the authenticator or perform operations the
client did not request, but that is unavoidable. If third-party
auditability is desired then users can choose to interact only
with servers that take requests in the form of certificates.
7.6 Denial of service
DoS protections in MinimaLT are intended to maintain
availability against much more severe attacks than are han-
dled by current Internet protocols. Of course, an ex-
ceptionally powerful attacker will be able to overwhelm a
MinimaLT server, but DoS protections are useful even in
such extreme situations as a way to consume the attacker’s
resources and limit the number of DoS victims. Of par-
ticular concern are DoS attacks which consume memory or
computational resources; the protocol cannot directly de-
fend against network exhaustion attacks, although it avoids
contributing to such attacks by preventing amplification.
We introduced anonymous and stranger-authorized ser-

vices in §3.1. Anonymous services (i.e., permit create0) per-
form a DH computation to compute a shared secret and
maintain tunnel data structures that consume just under
5KB each (this is configurable; most memory use is due to
incoming and outgoing packet buffers). Stranger-authorized
services (i.e, require createAuth0, but permit strangers) ad-
ditionally perform a public-key decryption to validate each
new user authenticator encountered. MinimaLT puzzles
serve as a countermeasure to DoS attacks on these services
[33], and we now describe how they are applied at key points
of the MinimaLT protocol. (Recall that administrators can
additionally address DoS attacks from known users through
de-authorization or non-technical means.)
Before establishing a tunnel In the case of anonymous
services, a single attacker could generate a large number of
ephemeral public keys to create many tunnels, with each
tunnel consuming the resources described above. Further-
more, the attacker’s host might avoid creating a tunnel data
structure or performing any cryptographic operations, thus
making the attack affect the server disproportionately.

MinimaLT addresses these attacks using puzzles present
in its tunnel headers. Servicing tunnel requests in excess of
the limits discussed in §6.2 would cause a server to require
these puzzles, and because they take O(2w−1) operations for
a client to solve, the server can require clients to pay a wide
range of computational costs to connect, here w is a 32-
bit value. On the other hand, puzzles are of little burden on
the server; our test hardware can generate and verify 386,935
puzzles per second. Since a puzzle interrogation and padded
solution packet are 206 and 1,024 bytes, respectively, a single
CPU core can verify puzzles at 394% of Gb/s line speed.
Clients overloaded by puzzles (possibly forged by a MitM

attacker) can choose how to allocate CPU time, for example
prioritizing connections that succeed without puzzles.
Amplification attacks against third parties At tun-
nel establishment, an anonymous or stranger-authorized
MinimaLT service might respond to packets from clients
which spoof another host’s IP address. This is always pos-
sible with the directory service, which initially must react
to a request from an unknown party before transitioning to
key-erasure-protected authentication. A MitM could spoof
the source of packets and even complete a successive puzzle



interrogation. A weaker attacker could elicit a response to
the first packet sent to a server. Given this, MinimaLT is
designed to minimize amplification attacks, in which a re-
quest is smaller than its reply (to a spoofed source address).
A connection request causes a connection acknowledgment
or puzzle interrogation; both responses are smaller than the
request. Flow-control acknowledgments are randomized so
that blind clients cannot request further packets.

After establishing a tunnel Given a tunnel, an attacker
can easily forge a packet with garbage in place of cipher-
text and send it to a service. This forces MinimaLT to
decrypt the packet and verify its checksum, wasting proces-
sor time. However, MinimaLT’s symmetric cryptography
on established tunnels operates at line speed on commodity
hardware (§6.2), so DoS would be equivalent to the attacker
exhausting the network.

MinimaLT can send puzzle RPCs arbitrarily, so a server
can use low cost (i.e., small w) puzzles to check whether
clients remain available, and then garbage collect idle con-
nections. Additionally, a server can increase the value of
w to make clients pay a computational cost to keep a con-
nection alive. We use cryptographically protected RPCs to
pose and solve these puzzles to prevent an attacker from
attempting RST-style mischief [18].

Creation of fictitious strangers Stranger services are
vulnerable to further CPU attacks—attackers could gener-
ate false user identities that would fail authentication, but
only after the server performed a public-key decryption. A
server will apply the puzzle RPCs when connection rates
exceed the limits discussed in §6.2.
An attacker could also generate verifiable authenticators

and connect to a stranger-authorized service many times as
different stranger users. This would cause a system to gen-
erate accounts for each stranger identity. However, this is
no different from any other creation of pseudo-anonymous
accounts; it is up to the system to decide how to allocate
account resources to strangers. Perhaps the rate is faster,
but unlike many contemporary pseudo-anonymous services,
a MinimaLT system can prune stranger accounts as neces-
sary; the stranger’s long-term resources (e.g., files on disk)
will remain isolated and become available if the account
is later regenerated because public keys remain temporally
unique [50]. Of course, applications could impose additional
requirements (e.g., a Captcha) before allowing a stranger
to consume persistent resources like disk space.

8 Comparison to previous work
Table 4 compares MinimaLT to several earlier Internet pro-
tocols. MinimaLT is unique in that it provides encryp-
tion and authentication with fast key erasure while allow-
ing a client to include data in the first packet sent to a
server (often forgoing pre-transmission round trips entirely).
MinimaLT also contains robust DoS protections.
We have omitted one very recent protocol from Table 4:

Google’s QUIC, which was developed independently of and
concurrently with MinimaLT. Our preliminary assessment
of the QUIC protocol documentation (released in late June
2013) is that QUIC uses some of the same latency-reducing
techniques as MinimaLT, but does not overlap DNS/direc-
tory service lookups with tunnel establishment. QUIC also
appears to have lower security goals than MinimaLT: for

example, allowing earlier data in long-term connections to
be retroactively decrypted.
8.1 Security advantages over TLS
TLS [15] is widely deployed as the primary mechanism for
securing Internet communication across administrative do-
mains, and in particular as the primary network security
layer in web browsers. The importance of TLS warrants a
multifaceted comparison of TLS with MinimaLT. We al-
ready showed in §6 that MinimaLT is more efficient than
TLS, but we also claim that MinimaLT has several impor-
tant security advantages over TLS, as discussed below.
8.1.1 Cryptographic abstractions TLS builds on sep-
arate cryptographic primitives for public-key cryptography,
secret-key encryption, etc. Unfortunately, composing these
low-level primitives turns out to be complicated and error-
prone. For example, the BEAST attack [17] and the very
recent Lucky 13 attack [2] recovered TLS-encrypted cookies
by exploiting the fragility of the “authenticate-pad-encrypt”
mechanism used by TLS to combine secret-key encryption
with secret-key authentication. TLS implementations have
worked around these particular attacks by (1) sending extra
packets to hide the “IV” used by BEAST and (2) modifying
implementations to hide the timing leaks used by Lucky 13;
however, further attacks would be unsurprising.
The modern trend is for cryptographers to take responsi-

bility for providing secure higher-level primitives. For exam-
ple, cryptographers have defined robust high-performance
“AEAD” primitives that handle authentication and encryp-
tion all at once using a shared secret key [45], taking care of
many important details such as padding and key derivation.
This simplifies protocol design, eliminating the error-prone
step of having each protocol combine separate mechanisms
for authentication and encryption. TLS 1.2 (not yet widely
deployed) supports AEAD primitives.

MinimaLT is built on top of an even higher-level prim-
itive, public-key authenticated encryption, as mentioned in
§4.2. This further simplifies protocol design.
8.1.2 Verifiability One might think that existing
protocol-analysis tools are already powerful enough to
formally verify the confidentiality and integrity properties
of a clean high-level protocol such as MinimaLT, assuming
that the underlying cryptographic primitives are secure.
However, the security properties of authenticated encryp-
tion using non-interactive DH were only very recently
formalized (see [25]), and more work is required to develop
a higher-level security calculus on top of these proper-
ties; note that replacing authenticated encryption with
unauthenticated encryption would eliminate the security of
typical protocols that use authenticated encryption. Thus,
we do not claim that MinimaLT is formally verified.
However, we do claim that MinimaLT will be far easier to

verify than TLS, and that there are far fewer opportunities
for mistakes in MinimaLT than in TLS. Attempts to verify
the security of TLS (such as [32]) have so far covered only
limited portions of TLS, and have not prevented a seemingly
never-ending string of announcements of TLS security fail-
ures, such as the BEAST and Lucky 13 attacks cited above.
The unverified portions of TLS are more complex than the
entire MinimaLT protocol.
8.1.3 Security goals TLS is normally implemented as a
user-space library that adds cryptographic network protec-
tions to an insecure transport layer, TCP. This structure



prevents TLS from providing strong protection against DoS:
packets that deny service at the TCP layer are not even seen
by TLS.
TLS can provide some key erasure through the use of

ephemeral DH. Here the server generates a new DH key pair
for each TLS session, and it uses this key pair to negotiate
the session key with the client [38]. This means that past
session keys remain secret even if a server’s long-term key is
compromised. On the other hand, a TLS session itself might
remain in use for a long time, and session keys are obviously
vulnerable to physical compromise as long as they are in use.
This effect is compounded when servers support abbreviated
connections [39]. In contrast, MinimaLT implements its key
erasure using periodic rekeys, as we described in §5.5. Plac-
ing a time limit on keys simplifies security analysis because
it removes the effect of variable session lifetimes.
8.1.4 Robustness Many Internet applications avoid the
use of TLS or use weak TLS options [58]. Even well-meaning
developers routinely misuse complex TLS APIs, resulting in
security holes [26, 21]. Optionally, TLS can provide user-
level authentication using client-side certificates, but autho-
rization is left to application logic. MinimaLT forgoes back-
wards compatibility to provide a simpler, less mistake-prone
platform, and it subsumes much of the work traditionally
left to application programmers.
Another benefit of MinimaLT’s clean-slate design is a

simpler code base. OpenSSL contains 252,000 C Lines of
Code (LoC). Much of this code might not be used, de-
pending on how a service is configured or because it also
implements utilities and benchmarks, but our study found
74,000 LoC associated with the DHE-RSA-AES128-SHA ci-
pher suite. Additionally, there is code in the OS to support
TCP/IP. In contrast, MinimaLT’s design results in a pro-
tocol code base of 12,000 LoC along with NaCl, where our
choice of ciphers uses another 6,920 LoC.

8.2 Advantages over other protocols
TCP’s three-way handshake establishes a random Initial Se-
quence Number (ISN). This is necessary for two reasons:
(1) the ISN serves as a weak authenticator (and liveness
check) because a non-MitM attacker must predict it to pro-
duce counterfeit packets, and (2) the ISN reduces the like-
lihood that a late packet will be delivered to the wrong ap-
plication.

MinimaLT encrypts the sequence number, provides cryp-
tographic authentication, and checks liveness using puz-
zles, addressing (1). MinimaLT uses TIDs, connection IDs,
and nonces to detect late packets, addressing (2). Thus
MinimaLT can include application data in a connection’s
first packet, as discussed above, eliminating the need for
a transport-layer three-way handshake. Extra round trips
are necessary only if the tunnel does not exist; and then
only when the client does not have S’s service record or is
presented with a puzzle. If the server provides a puzzle, it
means that the server is under heavy load so that additional
latency is unavoidable.
TCP Fast Open (TFO) [48] clients can request a TFO

cookie that allows them to forgo TCP’s three-way hand-
shake on future connections. However, since any client may
request a TFO cookie, a client may spoof its sending IP ad-
dress to mount a DoS attack against a server; under this
condition, the server must again require a three-way hand-

shake. To benefit from TFO, a server application must be
idempotent, a requirement that MinimaLT avoids.
Structured Stream Transport (SST) [24] allows applica-

tions to associate lightweight network streams with an ex-
isting stream, reducing the number of three-way handshakes
incurred by applications and providing semantics useful for
applications that use both data and control connections.
MinimaLT eliminates the handshake on even the first con-
nection, and MinimaLT’s tunnels do not require a program-
mer’s explicit use of a lightweight stream API.
Internet Protocol Security (IPsec) provides very broad

confidentiality and integrity protections because it is gener-
ally implemented in the OS kernel. For example, IPsec can
be configured such that all communication between node A
and node B is protected. This universality simplifies assur-
ance. IPsec also provides fast key erasure at the expense of
a DH computation [34]. Many key management protocols
have been proposed for IPsec; we were particularly inspired
by Just Fast Keying due to its simplicity, focus on forward
secrecy, and DoS resilience [1]. IPsec’s major shortcoming
is that its protections stop at the host; it focuses on net-
work isolation and host authentication/authorization. For
example, IPsec does not authenticate or authorize users.
Labeled IPsec [31] combines IPsec and Security-Enhanced

Linux (SELinux) [44] to provide more comprehensive net-
work protections. Using a domain-wide authorization pol-
icy, the system (1) associates SELinux labels with IPsec se-
curity associations, (2) limits a process’s security associa-
tions (connections) using a kernel authorization policy, and
(3) employs a modified inetd that executes worker processes
in a security domain corresponding to the label associated
with an incoming request. In this manner, labeled IPsec
can solve many of the authentication deficiencies in plain
IPsec. However, labeled IPsec builds upon the Linux ker-
nel, SELinux, and IPsec, each of which are very complex.
Furthermore, IPsec security association granularity limits
the granularity of controls in labeled IPsec. In contrast,
MinimaLT is designed from scratch, significantly simplify-
ing policy specification, implementation, and use.
Many researchers have attempted to reduce the latency in-

herent in TLS and TCP. False Start (no longer used), Snap
Start, and certificate pre-fetching have accelerated establish-
ing a TLS session [41, 37, 56]. Datagram Transport Layer
Security (DTLS) [49] provides TLS protections on top of
UDP, which is useful when reliability is unnecessary. How-
ever, DTLS shares TLS’ initial handshake latency.
Like MinimaLT, tcpcrypt [10] investigated ubiquitous en-

cryption, but it maintains backwards compatibility with
TCP. Tcpcrypt provides hooks that applications may use
to provide authentication services and determine whether a
channel is encrypted. MinimaLT’s approach is different; it
is clean-slate and eases host assurance by moving authenti-
cation and encryption services to the system layer.
Stream Control Transmission Protocol (SCTP) provides

reliable delivery and congestion control [57], but it differs
from TCP in that it can bundle messages from multiple
applications (i.e., chunks) into a single packet. MinimaLT
borrows this technique.

9 Conclusion
MinimaLT provides network confidentiality, integrity, pri-
vacy, server authentication, user authentication, and DoS
protections with a simple protocol and implementation.



TCP
TCP Fast Open

SST
IPsec

Labeled IPsec

TLS
False Start

Snap Start

Tcpcrypt

Minim
aLT

Encrypt X X X X X X X X
Key erasure after session X X X X X X X
User authentication X X X X X X
Fast (time-based) key erasure X X X
Robust DoS protections X
Round trips before client sends data∗ 2 2 2 ≥4 ≥4 4 3 2 3 1

. . . if server is already known† 1 1 1 ≥3 ≥3 3 2 1 2 0
. . . in abbreviated case† 1 0 0 1 1 2 2 1 1 0

∗Includes one round trip for DNS/directory service lookup of unknown server
†Assumes protocol-specific information cached from previous connection to same server

Table 4: Comparison of MinimaLT with other network protocols

A particular concern for protected networking is latency,
as research has shown users are very sensitive to delay.
MinimaLT combines directory services and tunnel estab-
lishment in a new way to minimize latency—even outper-
forming unencrypted TCP. MinimaLT’s first round trip is
performed only once, at system boot time. The second is a
protected analogue of a DNS lookup and is required under
the same circumstances as DNS. Thus in the typical case,
MinimaLT clients transmit encrypted data to an end server
in the first packet sent.

MinimaLT establishes a tunnel which can be long-lived.
Of course, the tunnel can be terminated at any time, but ab-
sent resource constraints MinimaLT is intended to maintain
tunnels even across system suspends and network migration.
This makes for a more reliable system as recovery code needs
to be run less often.
Future work will focus on increasing tunnel establish-

ment rates by offloading public key operations to other CPU
cores. We expect a roughly N -fold improvement in cryptog-
raphy from using N cores, and thus expect Gb/s-speed tun-
nel establishment with 16 cores. (When not under attack,
MinimaLT would use far fewer cores.) We also plan to build
proxies which will enable MinimaLT to talk to legacy ap-
plications. We expect to soon release Ethos and our Linux
MinimaLT implementation as open source software. See
http://www.ethos-os.org/software.html.

10 Acknowledgments
This material is based upon work supported by the US Na-
tional Science Foundation under grants CNS-0964575 and
1018836, the European Commission under Contract ICT-
2007-216676 ECRYPT II and INFSO-ICT-284833 PUFFIN,
and by the Netherlands Organisation for Scientific Research
(NWO) under grant 639.073.005. Volker Roth, our shep-
herd, provided extensive feedback, especially to improve the
paper’s organization. We also thank Wenyuan Fei, Yaohua
Li, and Siming Chen for their reviews of initial drafts, our
anonymous referees for comments on subsequent drafts, and
the United States Military Academy and Army Cyber Cen-
ter for their support.

11 References

[1] W. Aiello, S. M. Bellovin, M. Blaze, R. Canetti, J. Ioannidis,
A. D. Keromytis, and O. Reingold. Just Fast Keying: Key
agreement in a hostile Internet. ACM Trans. Inf. Syst. Secur.,
7(2):242–273, May 2004.

[2] N. AlFardan and K. Paterson. Lucky thirteen: Breaking the
TLS and DTLS record protocols. In Proceedings of the 2013
IEEE Symposium on Security and Privacy, pages 526–540,

Washington, DC, USA, May 2013. IEEE Computer Society
Press.

[3] K. J. Argyraki, P. Maniatis, O. Irzak, S. Ashish, and
S. Shenker. Loss and delay accountability for the internet. In
Proceedings of the 2007 International Conference on Network
Protocols, pages 194–205, Washington, DC, USA, 2007. IEEE
Computer Society Press.

[4] E. Barker, W. Barker, W. Burr, W. Polk, and M. Smid.
Recommendation for key management—Part 1: General
(revised). US National Institute of Standards and Technology,
Mar. 2007. http://csrc.nist.gov/publications/nistpubs/
800-57/sp800-57-Part1-revised2_Mar08-2007.pdf (accessed Aug
26, 2013).

[5] D. J. Bernstein and T. Lange. eBACS: ECRYPT Benchmarking
of Cryptographic Systems. http://bench.cr.yp.to/ (accessed
Aug 26, 2013).

[6] D. J. Bernstein, T. Lange, and P. Schwabe. NaCl: Networking
and cryptography library. http://nacl.cr.yp.to/ (accessed Aug
26, 2013).

[7] D. J. Bernstein, T. Lange, and P. Schwabe. The security
impact of a new cryptographic library. In International
Conference on Cryptology and Information Security in Latin
America, volume 7533, pages 159–176. Springer, 2012.

[8] D. J. Bernstein and P. Schwabe. NEON crypto. In Workshop
on Cryptographic Hardware and Embedded Systems, volume
7428, pages 320–339. Springer, 2012.

[9] A. Birrell and B. J. Nelson. Implementing remote procedure
calls. ACM Transactions on Computer Systems, 2(1):39–59,
Feb. 1984.

[10] A. Bittau, M. Hamburg, M. Handley, D. Mazières, and
D. Boneh. The case for ubiquitous transport-level encryption.
In Proceedings of the the 19th USENIX Security Symposium,
Berkeley, CA, USA, Aug. 2010. USENIX Association.

[11] J. Bonneau, C. Herley, P. C. van Oorschot, and F. Stajano. The
quest to replace passwords: A framework for comparative
evaluation of web authentication schemes. In Proceedings of
the 2012 IEEE Symposium on Security and Privacy, pages
553–567, Washington, DC, USA, May 2012. IEEE Computer
Society Press.

[12] S. K. Card, G. G. Robertson, and J. D. Mackinlay. The
information visualizer, an information workspace. In
Proceedings of the 1991 Conference on Human Factors in
Computing Systems, pages 181–188, New York, NY, USA, Apr.
1991. ACM.

[13] L. Constantin. Facebook to roll out HTTPS by default to all
users, Nov. 2012. http://www.computerworld.com/s/article/
9233897/Facebook_to_roll_out_HTTPS_by_default_to_all_users
(accessed Aug 26, 2013).

[14] M. de Vivo, G. O. de Vivo, R. Koeneke, and G. Isern. Internet
vulnerabilities related to TCP/IP and T/TCP. SIGCOMM
Comput. Commun. Rev., 29(1):81–85, Jan. 1999.

[15] T. Dierks and C. Allen. RFC 2246: The TLS protocol version
1, Jan. 1999. Status: PROPOSED STANDARD.

[16] R. Dingledine, N. Mathewson, and P. F. Syverson. Tor: The
second-generation onion router. In Proceedings of the 13th
USENIX Security Symposium, pages 303–320, Berkeley, CA,
USA, Aug. 2004. USENIX Association.

[17] T. Duong and J. Rizzo. Here come the ⊕ ninjas. In Ekoparty
Security Conference, 2011.

[18] P. Eckersley, F. von Lohmann, and S. Schoen. Packet forgery
by ISPs: A report on the Comcast affair. Electronic Frontier



Foundation, Nov. 2007.
https://www.eff.org/files/eff_comcast_report.pdf (accessed
Aug 26, 2013).

[19] K. Egevang and P. Francis. RFC 1631: The IP network address
translator (NAT), May 1994. Status: INFORMATIONAL.

[20] Electronic Frontier Foundation. HTTPS everywhere.
https://www.eff.org/https-everywhere (accessed Aug 26, 2013).

[21] S. Fahl, M. Harbach, T. Muders, M. Smith, L. Baumgärtner,
and B. Freisleben. Why Eve and Mallory love Android: an
analysis of Android SSL (in)security. In Proceedings of the
19th ACM Conference on Computer and Communications
Security, pages 50–61, New York, NY, USA, 2012. ACM.

[22] S. Floyd. RFC 2914: Congestion control principles, Sept. 2000.
Status: INFORMATIONAL.

[23] B. Ford. Directions in Internet transport evolution. IETF
Journal, 3(3):29–32, Dec. 2007.

[24] B. Ford. Structured streams: a new transport abstraction. In
Proceedings of the 2007 conference on Applications,
technologies, architectures, and protocols for computer
communications, pages 361–372, New York, NY, USA, 2007.
ACM.

[25] E. S. Freire, D. Hofheinz, E. Kiltz, and K. G. Paterson.
Non-interactive key exchange. In PKC 2013, volume 7778,
pages 254–271. Springer, 2013.

[26] M. Georgiev, S. Iyengar, S. Jana, R. Anubhai, D. Boneh, and
V. Shmatikov. The most dangerous code in the world:
validating SSL certificates in non-browser software. In
Proceedings of the 19th ACM Conference on Computer and
Communications Security, pages 38–49, New York, NY, USA,
2012. ACM.

[27] J. Gettys and K. Nichols. Bufferbloat: dark buffers in the
internet. Commun. ACM, 55(1):57–65, Jan. 2012.

[28] P. K. Gummadi, S. Saroiu, and S. D. Gribble. King: estimating
latency between arbitrary Internet end hosts. In Proceedings of
the 2nd Workshop on Internet Measurement, pages 5–18, New
York, NY, USA, 2002. ACM.

[29] A. Hiltgen, T. Kramp, and T. Weigold. Secure Internet banking
authentication. IEEE Security Privacy, 4(2):21–29,
March–April 2006.

[30] J. Ioannidis and S. M. Bellovin. Implementing pushback:
Router-based defense against DDoS attacks. In Proceedings of
the 9th Network and Distributed System Security Symposium,
Reston, VA, USA, Feb. 2002. The Internet Society.

[31] T. Jaeger, K. Butler, D. H. King, S. Hallyn, J. Latten, and
X. Zhang. Leveraging IPsec for mandatory access control across
systems. In Proceedings of the 2nd ACM conference on
Computer and Communications Security, New York, NY,
USA, Aug. 2006. ACM.

[32] T. Jager, F. Kohlar, S. Schäge, and J. Schwenk. On the security
of TLS-DHE in the standard model. In Crypto 2012, volume
7417, pages 273–293. Springer, 2012.

[33] A. Juels and J. G. Brainard. Client puzzles: A cryptographic
countermeasure against connection depletion attacks. In
Proceedings of the 6th Network and Distributed System
Security Symposium, Reston, VA, USA, Feb. 1999. The
Internet Society.

[34] C. Kaufman. RFC 4306: Internet key exchange (IKEv2)
protocol, Dec. 2005. Status: PROPOSED STANDARD.

[35] A. D. Keromytis, S. Ioannidis, M. B. Greenwald, and J. M.
Smith. The STRONGMAN architecture. In Proceedings of the
3rd DARPA Information Survivability Conference and
Exposition, volume 1, pages 178–188, 2003.

[36] B. Lampson, M. Abadi, M. Burrows, and E. Wobber.
Authentication in distributed systems: Theory and practice.
ACM Transactions on Computing Systems, 10(4):265–310,
Nov. 1992.

[37] A. Langley. Transport Layer Security (TLS) Snap Start.
Internet Engineering Task Force, June 2010.
http://tools.ietf.org/html/draft-agl-tls-snapstart-00
(accessed Aug 26, 2013).

[38] A. Langley. Forward secrecy for Google HTTPS, Nov. 2011.
https:
//www.imperialviolet.org/2011/11/22/forwardsecret.html
(accessed Aug 26, 2013).

[39] A. Langley. How to botch TLS forward secrecy, June 2013.
https://www.imperialviolet.org/2013/06/27/botchingpfs.html
(accessed Aug 26, 2013).

[40] A. Langley, N. Modadugu, and W.-T. Chang. Overclocking
SSL. In Velocity: Web Performance and Operations
Conference, Santa Clara, CA, June 2010. http:

//www.imperialviolet.org/2010/06/25/overclocking-ssl.html
(accessed Aug 26, 2013).

[41] A. Langley, N. Modadugu, and B. Moeller. Transport Layer
Security (TLS) False Start. Internet Engineering Task Force,
June 2010.
http://tools.ietf.org/html/draft-bmoeller-tls-falsestart-00
(accessed Aug 26, 2013).

[42] E. Le Malécot, Y. Hori, and K. Sakurai. Preliminary insight
into distributed SSH brute force attacks. Proceedings of the
IEICE General Conference, page 2, Mar. 2008.

[43] M. Liberatore and B. N. Levine. Inferring the source of
encrypted HTTP connections. In Proceedings of the 13th ACM
Conference on Computer and Communications Security,
pages 255–263, New York, NY, USA, Oct. 2006. ACM.

[44] P. Loscocco and S. Smalley. Integrating flexible support for
security policies into the Linux operating system. In
Proceedings of the FREENIX Track: 2001 USENIX Annual
Technical Conference, pages 29–42, Berkeley, CA, June 2001.
The USENIX Association.

[45] D. McGrew. RFC 5116: An interface and algorithms for
authenticated encryption, 2008. Status: PROPOSED
STANDARD.

[46] W. M. Petullo and J. A. Solworth. Authentication in Ethos.
https://www.ethos-os.org/papers/, June 2013.

[47] W. M. Petullo and J. A. Solworth. Simple-to-use,
secure-by-design networking in Ethos. In Proceedings of the
Sixth European Workshop on System Security, New York, NY,
USA, Apr. 2013. ACM. https://www.ethos-os.org/papers/.

[48] S. Radhakrishnan, Y. Cheng, J. Chu, A. Jain, and
B. Raghavan. TCP fast open. In Proceedings of the 7th
International Conference on Emerging Networking
Experiments and Technologies, New York, NY, USA, 2011.
ACM.

[49] E. Rescorla and N. Modadugu. RFC 6347: Datagram transport
layer security version 1.2, 2012. Status: PROPOSED
STANDARD.

[50] R. L. Rivest and B. Lampson. SDSI — a simple distributed
security infrastucture. Technical report, MIT, Apr. 1996.

[51] S. Schillace. Default HTTPS access for Gmail, Jan. 2010.
http://gmailblog.blogspot.com/2010/01/
default-https-access-for-gmail.html (accessed Aug 26, 2013).

[52] J. A. Solworth. The Ethos operating system.
http://www.ethos-os.org.

[53] J. A. Solworth and W. Fei. sayI: Trusted user authentication at
Internet scale. https://www.ethos-os.org/papers/, Aug. 2013.

[54] D. X. Song, D. Wagner, and X. Tian. Timing analysis of
keystrokes and timing attacks on SSH. In Proceedings of the
10th USENIX Security Symposium, Berkeley, CA, USA, Aug.
2001. USENIX Association.

[55] S. Souders. Velocity and the bottom line. O’Reilly Media, July
2009. http://programming.oreilly.com/2009/07/
velocity-making-your-site-fast.html (accessed Aug 26, 2013).

[56] E. Stark, L.-S. Huang, D. Israni, C. Jackson, and D. Boneh.
The case for prefetching and prevalidating TLS server
certificates. In Proceedings of the 19th Network and
Distributed System Security Symposium, Reston, VA, USA,
2012. The Internet Society.

[57] R. Stewart. RFC 4960: Stream Control Transmission Protocol,
Sept. 2007. Status: PROPOSED STANDARD.

[58] N. Vratonjic, J. Freudiger, V. Bindschaedler, and J.-P. Hubaux.
The inconvenient truth about web certificates. In Proceedings
of the 10th Workshop on the Economics of Information
Security, June 2011.

[59] N. Weaver, R. Sommer, and V. Paxson. Detecting forged TCP
reset packets. In Proceedings of the 16th Network and
Distributed Systems Security Symposium, Reston, VA, USA,
Feb. 2009. The Internet Society.

[60] J. E. White. A high-level framework for network-based resource
sharing. In Proceedings of the 1976 National Computer
Conference and Exposition, pages 561–570, New York, NY,
USA, 1976. ACM.

[61] E. Wobber, M. Abadi, M. Burrows, and B. Lampson.
Authentication in the Taos operating system. In Proceedings of
the 14th Symposium on Operating System Principles, pages
256–269, New York, NY, USA, 1993. ACM.


