
MinimaLT: Minimal-latency Networking Through Better Security

W. Michael Petullo Xu Zhang Jon A. Solworth Daniel J. Bernstein Tanja Lange
mike@flyn.org xzhang54@uic.edu solworth@rites.uic.edu djb@cr.yp.to tanja@hyperelliptic.org

University of Illinois at Chicago TU Eindhoven
USA Netherlands

ABSTRACT

Minimal Latency Tunneling (MinimaLT) is a new net-
work protocol that provides ubiquitous encryption for max-
imal confidentiality, including protecting packet headers.
MinimaLT provides server and user authentication, exten-
sive Denial-of-Service protections, and IP mobility while ap-
proaching perfect forward secrecy. We describe the proto-
col, demonstrate its performance relative to TLS and unen-
crypted TCP/IP, and analyze its protections, including its
resilience against DoS attacks [56]. By exploiting the prop-
erties of its cryptographic protections, MinimaLT is able to
eliminate three-way handshakes and thus create connections
faster than unencrypted TCP/IP.

1 Introduction
Our goal is to protect all networking against eavesdropping,
modification, and, to the extent possible, Denial of Ser-
vice (DoS). To achieve this goal, networking must protect
privacy, perform well, provide strong (i.e., cryptographic)
authentication, and be easy to configure. These needs are
not met by existing protocols.

Hardware and software improvements have eliminated his-
torical cryptographic performance bottlenecks. Now, strong
symmetric encryption can be performed on a single CPU
core at Gb/s rates [45], even on resource-constrained mobile
devices [13]. Public-key cryptography, once so agonizingly
slow that systems would try to simulate it with symmetric
key cryptography [43], is now performed at tens of thousands
of operations per second on commodity CPUs. But one per-
formance parameter is a fundamental limitation—network
latency [33]. Latency is critical for users [58]. For example,
Google found that a 500ms latency increase resulted in a
25% dropoff in page searches, and studies have shown that
user experience degrades when interfaces incur latencies as
small as 100ms [17]. This has prompted several efforts to
reduce TCP and TLS latency [18, 46, 44, 53, 59].

We describe here MinimaLT, a secure network protocol
which delivers protected data on the first packet of a typ-
ical client-server connection. MinimaLT provides substan-
tial protections and is extraordinarily simple to configure
and use. In particular, it provides cryptographic authenti-
cation of servers and users; encryption of communication;
simplicity of protocol, implementation, and configuration;
clean IP-address mobility; and DoS protections.

MinimaLT’s design intentionally crosses network layers.
It does so for two reasons: First, security problems often
occur in the seams between layers. For example, Transport
Layer Security (TLS) is unable to protect against attacks on
TCP/IP headers due to its layering; RST and sequence num-
ber attacks interrupt TLS connections in such a way that is
difficult to correct or even detect [23, 4, 62]. Second, multi-
layer design enables MinimaLT to improve performance.

Particularly challenging has been to provide Perfect For-
ward Secrecy (PFS) at low latency. PFS means that even
an attacker who captures network traffic and later obtains

all long-term private keys cannot decrypt past packets or
identify the parties involved in communication. Tradition-
ally, using Diffie-Hellman key exchange (DH) to achieve
PFS requires a round trip before sending any sensitive
data. MinimaLT eliminates this roundtrip, instead re-
ceiving the server’s ephemeral key during a directory ser-
vice lookup (§4.3.1). To establish connection liveness—
necessary only if the connection is inactive and the server
is running out of memory—we invert the normal mandatory
start-of-connection handshake and replace it with an only-
when-needed server-originated handshake (§4.3.4). Elimi-
nating roundtrips makes MinimaLT faster than unencrypted
TCP/IP at establishing connections.

A second challenge is to make connections portable
across IP addresses to better support mobile computing.
MinimaLT allows you to start a connection from home,
travel to work, and continue to use that connection. This
avoids application recovery overhead and lost work for op-
erations which would otherwise be interrupted by a move.
MinimaLT IP mobility does not require intermediary hosts
or redirects, allowing it to integrate cleanly into protocol
processing (§4.3.3). To provide better privacy, MinimaLT
blinds third parties to IP-address portability to prevent link-
ing a connection across different IP addresses.

A third challenge is DoS. A single host cannot thwart an
attacker with overwhelming resources [36], but MinimaLT
protects against attackers with fewer resources. In particu-
lar, MinimaLT dynamically increases the ratio of client (i.e.,
attacker) to server resources needed for a successful attack.
MinimaLT deploys a variety of defenses to maintain propor-
tional resource usage between a client and server (§5.3).

A fourth challenge is authentication and authorization.
Experience indicates that network-based password authen-
tication is fraught with security problems [34, 57, 47, 16],
and that cryptographic authentication is needed. Our
authentication framework supports both identified and
non-identified (pseudonym) users (§4.1.1). We designed
MinimaLT to integrate into systems with strong authoriza-
tion controls.

To meet these challenges, we have done a clean-slate de-
sign, starting from User Datagram Protocol (UDP), and
concurrently considering multiple network layers. We found
an unexpected synergy between speed and security. The rea-
son that the Internet uses higher-latency protocols is that,
historically, low-latency protocols such as T/TCP have al-
lowed such severe attacks [18] as to make them undeployable.
It turns out that providing strong authentication elsewhere
in the protocol stops all such attacks without adding latency.

In short, MinimaLT provides the features of TCP/IP (re-
liability, flow control, and congestion control), and adds
in encryption, authentication, clean IP mobility, and DoS
protections, all while preserving PFS and reducing latency
costs. We describe MinimaLT and its implementation here.
In §2 we describe related work, §3 describes our threat
model, §4 describes the design, and §5 provides an evalu-



ation of the security and performance of MinimaLT.

2 Related work

TLS provides cryptographic network protections above the
transport layer and is normally implemented as a user-space
library [19]. TLS is widely deployed as the primary network
security layer in web browsers, yet many Internet applica-
tions avoid the use of TLS or use weak TLS options [61].
Even well-meaning developers routinely misuse complex
TLS Application Programming Interfaces (APIs), resulting
in security holes [31, 26]. Optionally, TLS can provide user-
level authentication using client-side certificates but autho-
rization is left to application logic. ForceHTTPS [38] and
HTTPS Everywhere [25] attempt to make TLS/HTTP more
robust; MinimaLT forgoes backwards compatibility to pro-
vide a simpler, less mistake-prone platform.

There have been many attempts to reduce the latency in-
curred by TLS and TCP. Recently, False Start (no longer
used), Snap Start, and certificate pre-fetching have accel-
erated establishing a TLS session [46, 44, 59]. TCP Fast
Open (TFO) [53] clients may request a TFO cookie that al-
lows them to forgo the three-way handshake on future con-
nections. Since any client may request a TFO cookie, a
client may spoof its sending Internet Protocol (IP) address
to mount a DoS attack against a server; under this condi-
tion, the server must again require a three-way handshake.
To benefit from TFO, a server application must be idempo-
tent, a requirement that MinimaLT does not impose. Data-
gram Transport Layer Security (DTLS) [54] provides TLS
protections on top of UDP, which is useful when reliability is
not needed. However, DTLS shares TLS’ initial handshake
latency.

Like MinimaLT, tcpcrypt [15] investigated ubiquitous en-
cryption, but it maintains backwards compatibility with
TCP/IP. Tcpcrypt provides hooks that applications may use
to provide authentication services and determine whether a
channel is encrypted. MinimaLT’s approach is different; it
is clean-slate and eases host assurance by moving authenti-
cation and encryption services to the system layer.

Internet Protocol Security (IPsec) provides very broad
confidentiality and integrity protections because it is gener-
ally implemented in the Operating System (OS) kernel. For
example, IPsec can be configured such that all communica-
tion between node A and node B is protected. This univer-
sality simplifies assurance. Many key management protocols
have been proposed for IPsec; we were particularly inspired
by Just Fast Keying due to its simplicity, focus on PFS, and
DoS resilience [1]. IPsec’s major shortcoming is that its pro-
tections stop at the host; it focuses on network isolation and
host authentication/authorization. For example, IPsec does
not authenticate or restrict users across the network.

Labeled IPsec [39] combines IPsec and Security-Enhanced
Linux (SELinux) [49] to provide more comprehensive net-
work protections. Using a domain-wide authorization policy,
the system (1) associates SELinux labels with IPsec security
associations, (2) limits a process’ security associations (con-
nections) using a kernel authorization policy, and (3) em-
ploys a modified inetd that executes worker processes in a
security domain corresponding to the label associated with
an incoming request. In this manner, labeled IPsec can solve
many of the authentication deficiencies in plain IPsec. How-
ever, labeled IPsec depends on a verified Trusted Comput-
ing Base (TCB) and enforcement policy; it builds upon the

Linux kernel, SELinux, and IPsec, each of which are very
complex. Furthermore, IPsec security association granular-
ity limits the granularity of controls in labeled IPsec. In
contrast, MinimaLT is designed from scratch, significantly
simplifying policy specification, implementation, and use.

Stream Control Transport Protocol (SCTP) is a
transport-layer protocol that provides reliable delivery and
congestion control [60]. SCTP differs from TCP in that
it can bundle messages from multiple applications (i.e.,
chunks) into a single packet. MinimaLT borrows this tech-
nique. Structured Stream Transport (SST) [29] allows ap-
plications to associate lightweight network streams with an
existing stream, reducing the number of three-way hand-
shakes incurred by applications and providing semantics use-
ful for applications that use both data and control connec-
tions. MinimaLT eliminates the handshake on even the first
connection, and MinimaLT’s tunnels do not require a pro-
grammer’s explicit use of a lightweight stream API.

Table 1 compares several network protocols with
MinimaLT. MinimaLT is unique in that it provides encryp-
tion and authentication with PFS while allowing a client to
include data in the first packet sent to a server (often for-
going pre-transmission round trips entirely). MinimaLT is
also notable in that it includes robust DoS protections di-
rectly in the protocol.

3 Threat model

We are concerned with the confidentiality and integrity
of network traffic in the presence of an attacker that can
observe or modify arbitrary packets—including a Man-in-
the-Middle (MitM). Confidentiality and integrity attacks,
mounted by both known and anonymous users should be
thwarted. An attacker who gains complete control over
clients and servers, through physical access or otherwise,
can decrypt very recent and future packets but should still
be unable to decrypt older packets.

DoS attacks from known users are expected to be
addressed through de-authorizing abusive users or non-
technical means. An anonymous attacker might try to af-
fect availability, through transmission-, computation-, and
memory-based DoS. An attacker with enough resources (or
control over the network) can always affect availability, so we
attempt to drive up his costs by making his attack at least
as expensive as the cost to defend against it. Here we want
to address equally non-MitM and MitM attackers. That is,
the ability to spoof the source IP address of a packet and
capture a reply should not allow much easier attacks.

4 Design

4.1 Overview

We begin with a high-level introduction of the MinimaLT
protocol design. MinimaLT identifies hosts using public-
key cryptography; multiplexes multiple authenticated user-
to-service connections within a single encrypted host-to-host
tunnel; lowers latency by replacing setup handshakes with
the publication of ephemeral keys in a directory service; and
builds on carefully designed cryptographic abstractions.

4.1.1 Public key MinimaLT is decidedly public-key-
based. Both servers and users are identified by their public
keys; such keys serve as a Universally Unique ID (UUID)
[64, 55, 42]. Principals prove their identity by providing
ciphertext which depends on both their and the server’s



TC
P/

IP

TC
P

Fa
st

Ope
n

SS
T

IP
se
c
La

be
led

IP
se
c

TL
S

Fa
lse

St
ar
t

Sn
ap

St
ar
t

Tc
pc

ry
pt

M
in
im

aL
T

Encrypt X X X X X X X X
PFS X X X X X X X
User authentication X X X X X X
Robust DoS protections X
Round trips before client sends data∗ 2 2 2 ≥4 ≥4 4 3 2 3 1

. . . if server is already known† 1 1 1 ≥3 ≥3 3 2 1 2 0

. . . in abbreviated case† 1 0 0 1 1 2 2 1 1 0
∗Includes one round trip for DNS/directory service lookup of unknown server

†Assumes protocol-specific information cached from previous connection to same server

Table 1: Comparison of MinimaLT with other network protocols

keys. A principal may be known—i.e., the underlying OS is
aware of a real-world identity associated with the principal’s
public key—or he may be a stranger—a user whose real
world identity is unknown. We consider a stranger who pro-
duces a new identity for each request anonymous. Whether
strangers or anonymous users are allowed is left to the un-
derlying system’s authorization policy.

4.1.2 Network tunnel A MinimaLT tunnel is a point-
to-point entity that encapsulates the set of connections be-
tween two hosts. MinimaLT creates a tunnel on demand in
response to the first packet received from a host or a local
application’s outgoing connection request. Tunnels provide
server authentication, encryption, congestion control, and
reliability; unlike with TLS/TCP, these services are not re-
peated for each individual connection.

Tunnels make it more difficult for an attacker to use traffic
analysis to infer information about communicating parties.
Of course, traffic analysis countermeasures have limits [48];
for obvious cost reasons we did not include extreme protec-
tions against traffic analysis, such as using white noise to
maintain a constant transmission rate.

As with IPsec, a MinimaLT tunnel provides crypto-
graphic properties that ensure confidentiality and integrity.
However, MinimaLT has been designed to provide tighter
guarantees than IPsec, which (as generally used in practice)
provides host-based protections only. In MinimaLT, con-
nections provide user authentication as described below.

4.1.3 Connections A MinimaLT tunnel contains a set
of connections, that is, a single tunnel between two hosts
encapsulates an arbitrary number of connections. Each con-
nection is user-authenticated and provides two-way commu-
nication between a client application and service. In addi-
tion to multiplexing any number of standard application-
to-service connections, each MinimaLT tunnel has a single
control connection, along which administrative requests
flow (§4.2.3).

4.1.4 Directory service Central to our protocol is the
MinimaLT directory service. The directory service re-
solves queries for (server) hostname information. It pro-
vides the server’s directory certificate, signed by the server’s
long-term key. This returned certificate contains the server’s
IP address, UDP port, long-term key, zero padding (the
minimum payload size of the initial packet), and a server
ephemeral key.

An additional certificate vouches for the server’s long-term
public key and ties it with the server’s hostname. Servers
register with a MinimaLT directory service to provide this
information, and they update their ephemeral key at a rate
depending on their security requirements. In §4.4 we de-

scribe how directory services integrate with DNS to span
the Internet.

4.1.5 Cryptographic abstractions TLS builds on sep-
arate cryptographic primitives for public-key cryptography,
secret-key encryption, etc. Unfortunately, composing these
low-level primitives turns out to be complicated and error-
prone. For example, the BEAST attack [22] and the very
recent Lucky 13 attack [2] recovered TLS-encrypted cookies
by exploiting the fragility of the “authenticate-pad-encrypt”
mechanism used by TLS to combine secret-key encryption
with secret-key authentication. TLS implementations have
worked around these particular attacks by (1) sending extra
packets to hide the “IV” used by BEAST and (2) modifying
implementations to hide the timing leaks used by Lucky 13;
however, further attacks would be unsurprising.

The modern trend is for cryptographers to take responsi-
bility for providing secure higher-level primitives. For exam-
ple, cryptographers have defined robust high-performance
“AEAD” primitives that handle authentication and encryp-
tion all at once using a shared secret key [50], taking care of
many important details such as padding and key derivation.
This simplifies protocol design, eliminating the error-prone
step of having each protocol combine separate mechanisms
for authentication and encryption. TLS 1.2 (not yet widely
deployed) supports AEAD primitives.

MinimaLT is built on top of an even higher-level primi-
tive, public-key authenticated encryption (see, e.g., [11, 12,
40, 30]), protecting both confidentiality and integrity of mes-
sages sent from one public key to another. Our implementa-
tion of MinimaLT uses the high-performance high-security
NaCl library [12], because it provides exactly this primi-
tive. NaCl’s box encrypts and authenticates a plaintext us-
ing the sender’s private key, the receiver’s public key, and a
number-used-once (nonce); box_open verifies and decrypts
the ciphertext using the sender’s public key, the receiver’s
private key, and the same nonce. See Section 5.4 for under-
lying cryptographic details.

4.2 Packet format

The MinimaLT packet format can be broken into three con-
ceptual layers: (1) delivery, routing and other information
necessary to deliver a packet to its destination host; (2) tun-
nel, server authentication, reliability, and encryption; and
(3) connection, user authentication and application-to-
service multiplexing.

The packet format is simple and is given in Figure 1 and
Table 2. The cleartext portion of the packet contains the
Ethernet, IP1, and UDP headers; the Tunnel ID (TID), a

1The MinimaLT protocol details are orthogonal to the



︸ ︷︷ ︸
Delivery

Ethernet IP UDP ︸ ︷︷ ︸
Tunnel (cleartext)

TID Nonce Opt. ephemeral pub. key Opt. puzzle/solution

︸ ︷︷ ︸
Tunnel (cryptographically protected portion)

Checksum Seq Ack RPC0 RPC1 · · · RPCm

Figure 1: Packet format with cleartext in white and cryptographically protected portion in gray

Size (bytes)
Field First Successive

D
el

iv
. Ethernet Header 14 14

IP 20 20
UDP 8 8

C
ry

p
to

. Tunnel ID 8 8
Nonce 8 8
Ephemeral public key 32 n/a
Puzzle/solution 148 n/a
Checksum 16 16

R
el

. Sequence Num. 4 4
Acknowledgment 4 4

C
o
n

. Connection ID 4 4
RPC variable
Total (except RPC) 282 86

Table 2: Tunnel’s first/successive packets

nonce; and two optional fields used at tunnel initiation—an
ephemeral public key and a puzzle. A client provides the
public key only on the first packet for a tunnel, and a server
requires puzzles opportunistically to prevent memory and
computation attacks.

The packet’s cryptographically protected portion con-
tains ciphertext and the ciphertext’s cryptographic check-
sum. The ciphertext contains a sequence number, acknowl-
edgment number, and a series of Remote Procedure Calls
(RPCs). In contrast to byte-oriented protocols, we use
RPCs at this layer because they result in a clean design and
implementation; they are also general and fast (§5). RPCs
have a long history dating to the mid-1970s [63, 14].

4.2.1 Delivery layer The usual Ethernet, IP, and UDP
headers allow the delivery of packets across existing net-
work infrastructure; they play no role in any packet pro-
cessing within MinimaLT. The UDP header allows packets
to traverse NATed networks [24], and it enables user-space
implementations of MinimaLT. Aside from the length field,
the UDP fields are otherwise uninteresting for MinimaLT.

4.2.2 Tunnel layer (cryptography and reliability)
The tunnel establishment packet (the first packet sent be-
tween two hosts) contains a TID, a nonce, and the send-
ing host’s (ephemeral) public DH key. The TID is pseudo-
randomly generated by the initiator. The public key is
ephemeral to avoid identifying the client host to a third
party2.

The recipient cryptographically combines the client’s
ephemeral public key with its own ephemeral private key
to generate the symmetric key (§4.3). The recipient then
uses this symmetric key and the nonce to verify and decrypt
the encrypted portion of the packet.

After tunnel establishment, the tunnel is identified by its
TID. Successive packets embed the TID, which the recipient
uses to look up the symmetric key and decrypt the payload.
Thus MinimaLT reduces packet overhead by using TIDs
rather than resending the public key. The TID is 64 bits—1/4

structure of IPv4/v6 addresses.
2Of course, a client can sometimes be identified by IP; here
onion routing can help [20].

the size of a public key—with one bit indicating the presence
of a public key in the packet, one bit indicating the presence
of a puzzle/solution, and 62 bits identifying a tunnel.

The nonce ensures that each payload transmitted between
two hosts is uniquely encrypted. The nonce is a monotoni-
cally increasing value; once used, it is never repeated for that
(unordered) pair of keys. The nonce is odd in one direction
(from the side with the smaller key) and even in the other
direction, so there is no risk of the two sides generating the
same nonce. Clients enforce key uniqueness by randomly
generating a new ephemeral public key for each new tunnel;
this is a low-cost operation. For a host which operates as
both client and server, its client ephemeral key is in addition
to (and different from) its server ephemeral key.

The tunnel layer also contains an optional field that might
contain a puzzle request or solution (§4.3.1). The purpose of
the puzzle here is to protect against spoofed tunnel requests.
Such an attack might cause a server to perform relatively
expensive DH computations. A puzzle both demonstrates
connectivity and expends initiator resources, and thus lim-
its attack rates. (In addition to the puzzle header fields,
MinimaLT provides puzzle RPCs to defend against Sybil
attacks [21, 41] after a tunnel has been established. We
describe the details of both in §4.3.4 and evaluate them in
§5.3.)

Beyond the cleartext fields mentioned so far, the tunnel
layer contains a strong 128-bit cryptographic checksum (a
keyed message-authentication code) of the ciphertext. An
attacker does not have the shared symmetric key, so any
attempt to fabricate ciphertext will be detected.

The final component of the tunnel header consists of relia-
bility information in the form of sequence and acknowledge
fields. MinimaLT’s reliability and connection headers are
part of the ciphertext, so they are protected against tam-
pering and eavesdropping. The total size of the delivery,
reliability, and connection headers is equal to that of the
headers in TCP/IP. We discuss packet overhead further in
§5.1.

4.2.3 Connection layer The connection layer supports
an arbitrary number of connections, where each connection
hosts a series of RPCs. An RPC is of the form fc(a0, a1, . . .),
where f is the name of the remote function, c is the con-
nection that the RPC is sent to, and a0, a1, . . . are its argu-
ments. On the wire this is encoded as c, f, a0, a1, . . . A single
packet can contain multiple RPCs; this amortizes the over-
head due to MinimaLT’s delivery and tunnel fields across
multiple connections.

One connection is distinguished: connection 0 is the con-
trol connection, which hosts all management operations.
These include authenticating users (§4.3.6); creating, clos-
ing, accepting, and refusing connections; providing certifi-
cates (§4.3.1); rekeying (§4.3.2); IP address changes (§4.3.3);
and puzzles (§4.3.4). Here we reference:

RPC Description

create0(c, s) create an anonymous connection c of
type s



C D
Conn., req. ephemeral key

Ephemeral key T1

(a) Obtaining D’s ephemeral key: performed at boot time

C D
Conn., req. server information

IP address, UDP port, key,

ephemeral key of S
T2

(b) Prelude to connection establishment: performed if the tun-
nel does not yet exist

C S
Connect,

application-to-service RPC T3

(c) Connection establishment

Figure 2: MinimaLT protocol trace

createAuth0(c, s, U , x) create an authenticated connection for
the user with long-term public key U ,
who generates authenticator x

close0(c) close connection c
ack0(c) creation of c successful
refuse0(c) connection c refused
requestCert0(H) get host H’s certificate
provideCert0(X) provide the certificate X
ok0() last request was OK
nextTid0(t, C′) advertise future TID to prepare for a

rekey or IP address change
puzzle0(p, h, w) pose a puzzle
puzzleSoln0(p, h, w) provide a puzzle solution
windowSize0(c, n) adjust connection receive window

The control connection RPCs maintain the tunnel and its
other connections. All data on connections other than the
control connection are sent unchanged to their correspond-
ing applications.

In general, each service provided by a host supports
a set of service-specific RPCs on standard connec-
tions. Our illustrations use the following sample RPC:

serviceRequestc(...) a request for some type of service on
connection c

The tunnel, and the RPCs within it, are totally sequenced.
Thus RPCs are executed in order (as opposed to separately
implemented connections—as in TLS—where ordering be-
tween connections is not fixed). This enables a clean sep-
aration of the control connection from other connections.
We have found that this simplifies both the protocol and its
implementation.

4.3 Protocol

The purpose of the protocol is to allow protected communi-
cation between a client and server. We discuss here symmet-
ric key establishment, rekeying, IP-address mobility, puz-
zles, the absence of a three-way handshake, user authentica-
tors, and congestion control.

4.3.1 Establishing the symmetric key MinimaLT
approaches PFS, encrypting sensitive data using only
ephemeral keys; it protects both client-side data and iden-
tity. In this section, we will show the negotiation of keys and
the transmission of RPCs in the absence of puzzles. This is
the normal case, when servers are not under heavy load.

At least four entities cooperate to establish a symmetric
key: a client C which wants to communicate with server S,
a directory service D with which C communicates, and an
ephemeral key upload service E with which S communicates.

Here we discuss the intra-organizational case, where a single
organization maintains C, D, S, and E; for such a deploy-
ment D and E can be the same server. In §4.4 we show how
MinimaLT scales to the Internet using DNS, while provid-
ing security at least as strong as DNSSEC with no additional
latency. Eventually, a pure MinimaLT solution could span
the entire Internet.

The client can compute the shared secret after a maximum
of two round trips, and can include application data in the
first packet sent to the server. (The common case is that
the client can immediately compute the shared secret with
zero round trips.) Each trip uses a different tunnel:

T1 C establishes a tunnel, anonymously, to D in order to
obtain D’s ephemeral public key;

T2 C establishes a tunnel to D using ephemeral keys to
lookup S’s contact information; and

T3 C establishes a tunnel to S using ephemeral keys.

Figure 2 depicts this process. C establishes tunnel T1 once,
at boot time. This is the only tunnel that does not use a
server ephemeral key, so C does not yet provide D with a
user authenticator. Next, C establishes tunnel T2 to collect
the information necessary for the first connection between
C and S. It uses this information to establish tunnel T3.
The tunnel establishment packet for tunnel T3 may include
application-to-service RPCs. Successive connections to S
skip T1 and T2, and tunnel T2 remains open to look up
other servers. We use the following to describe the details:

t A tunnel ID (described in §4.2)
n A nonce (described in §4.2)
s A sequence number
a An acknowledgment number

0 or c The connection ID
z A puzzle
z′ A puzzle solution

C,D,E, S The client, directory, upload, and server long-
term public/private key

C′, D′, E′, S′ An ephemeral client, directory, upload, and
server public/private key

C → S A message from the client to the server, using
keys C and S

H(m) The cryptographic hash of message m
m k

n Encrypt and authenticate message m using
symmetric key k and nonce n

m S→P
n Encrypt and authenticate message m using a

symmetric key derived from private key S and
public key P ; n is a nonce

We show each packet on a single line such as

t, n, C′, s, a, . . . C′→S′
n

which indicates a tunnel establishment packet (due to the
presence of the unencrypted C′, as described in §4.2.2) from
C to S using keys C′ and S′ to box (encrypt and authen-
ticate) the message ‘s, a, . . .’. Each packet has a new nonce
but for conciseness we simply write n rather than n1, n2,
etc. The same comment applies for sequence numbers (s)
and acknowledgements (a).

Communication of C with D At boot time, C establishes
a tunnel with D (Figure 2a, tunnel T1); C’s configuration
contains D’s IP address, UDP port, and long-term public
key D. First, C generates a single-use public key C′ and uses



it to create a bootstrap tunnel with the directory service.

t, n, C′, s, a, requestCert0(D) C′→D
n

t, n, s, a, provideCert0(Dcert) D→C′
n

D responds with a certificate containing its own ephemeral
key, D′, signed by D. C uses this to establish a PFS tunnel
to request S’s directory certificate. Tunnel T2 uses a fresh
C′ and is established by:

t, n, C′, s, a, requestCert0(S) C′→D′
n

t, n, s, a, provideCert0(Scert) D′→C′
n

Communication of C with S After receiving S’s Scert,
C is ready to negotiate tunnel T3. C encrypts packets to
the server using S′ (from Scert) and a fresh C′. Because
C places its ephemeral public key in the first packet, both
C and S can immediately generate a shared symmetric key
using DH without compromising PFS. Thus C can include
application-to-service data in the first packet. That is,

t, n, C′,
s, a, nextTid0(t, C′),
createAuth0(1, serviceName, U , x),
serviceRequest1(. . . )

C′→S′
n

We describe the purpose of nextTid0 in §4.3.2. Upon receiv-
ing createAuth0, S verifies the authenticator x (§4.3.6) and
decides if the client user U is authorized to connect. If so, S
creates the new connection (with ID 1). The server ensures
no two tunnels share the same C′. The service-specific ser-
viceRequest1 can then be processed immediately on the new
connection.

Tunnels are independent of the IP address of C; this
means that C can resume a tunnel after moving to a new
location (typically prompting the use of the next ephemeral
key as described below), avoiding tunnel-establishment la-
tency and application-level recovery due to a failed connec-
tion. This reduced latency is useful for mobile applications,
in which IP-address assignments may be short-lived, and
thus overhead may prevent any useful work from being done
before an address is lost.

Registering an ephemeral key Before a client may con-
nect, S must register its own IP address, UDP port, public
key, and current ephemeral public key with an upload service
E. (E is the same as D in the local case, and we describe
how E supports Internet-spanning lookups in §4.4.) This is
done using the provideCert0 RPC:

t, n, s, a, provideCert0(Scert) S′→E′
n

t, n, s, a, ok0() E′→S′
n

4.3.2 Rekey PFS requires periodic rekeying, so that old
encryption keys can be forgotten and are thus denied to an
attacker who later compromises clients and servers. Prior
to a rekey, a host creates the next TID t and sends it to
the opposite host using nextTid0. (We describe the C′ argu-
ment to nextTid0 below.) Although either side may invoke
nextTid0, rekeying is initiated only by the client.

We reduce the rekeying workload for the client and server
as follows. To rekey, the client sends a tunnel initiation
packet using the next TID. The client generates a one-time
valid key pair used for this initiation and places the public
part of this key pair in this packet so that it is indistinguish-
able from a true tunnel initiation packet. However, instead
of computing a new shared secret using DH, the client sim-
ply uses the hash of the previous symmetric key. (In fact,
the client makes no use of the private part of the key pair,

so rather than generating a valid key pair it can perform
a cheaper operation to generate a random public key as a
random point on the elliptic curve used in NaCl, without
ever knowing the corresponding private key.) The client re-
peats this one-time public key inside the boxed part of the
message (i.e., as the C′ argument to another nextTid0).

When the server receives a packet whose TID matches a
known next TID, the server hashes the existing key for that
tunnel to produce the new key, and then verifies and de-
crypts the packet. The server also verifies that the public
key sent in clear matches the public key inside the boxed
part of the message. (Without this verification, an active
attacker could modify the public key sent in the clear, ob-
serve that the server still accepts this packet, and confidently
conclude that this is a rekey rather than a new tunnel.) If
both verifications succeed then the server updates the tun-
nel’s TID and handles the packet; otherwise it behaves as
for failed tunnel initialization. Thus the rekey process in-
flicts neither superfluous round trips nor server public-key
operations.

Typically, clients invoke nextTid0 immediately after cre-
ating a new tunnel, and after assuming a new TID/key.
Servers invoke nextTid0 if their PFS interval expires. Clients
then assume a new TID/key when their rekey interval ex-
pires or immediately after receiving a nextTid0 from the
server (the latter implies that the server’s key has expired).

A client-side administrator sets his host’s rekey interval
as a matter of policy. The server’s policy is slightly more
sensitive, because the server must maintain its ephemeral
key pairs as long as they are advertised through the direc-
tory service. An attacker who seizes a server could combine
the ephemeral keys with captured packets to regenerate any
symmetric key within the ephemeral key window. Thus even
if the client causes a rekey, the server’s ephemeral key win-
dow dominates on the server side. This asymmetry reflects
reality, because each side is responsible for their own physi-
cal security. The client knows server policies and can restrict
communication to acceptable servers.

4.3.3 IP-address mobility Because MinimaLT identi-
fies tunnels by their TID, a tunnel’s IP and UDP port can
change without affecting communication; indeed, one pur-
pose of nextTid0 is to support IP-address mobility. After
changing its IP address or UDP port, a host simply assumes
the next TID as with a rekey. The other host will recog-
nize the new TID and will transition the tunnel to the new
key, IP address, and UDP port. Thus a computer can be
suspended at home and then brought up at work; an appli-
cation which was in the middle of something could continue
without any recovery actions.

MinimaLT reduces an attacker’s ability to link tunnels
across IP address changes because its TID changes when
its IP address changes. What remains is temporal analysis,
where an attacker notices that communication on one IP ad-
dress stops at the same time that communication on another
starts. However, the attacker cannot differentiate for sure
between IP mobility and an unrelated tunnel establishment.
Blinding information below the network layer—for example,
the Ethernet MAC—is left to other techniques.

4.3.4 Puzzles MinimaLT uses puzzles selectively, so their
costs are only incurred when the server is under load. There
are two ways MinimaLT can pose puzzles: as a part of the
tunnel header (to avoid abusive DH computations) or by
using the puzzle RPCs after establishing a tunnel. In the



former case, a MinimaLT server under load that receives a
tunnel establishment packet from a stranger for an autho-
rized service does not create a tunnel. Instead, it responds
with a puzzle:

z′ = C′, S′ k
n′

where k is a secret known only to the server. It then cal-
culates z′′ by zeroing z′’s rightmost w bits (i.e., the client
will take O(2w−1) operations to solve the puzzle), where the
server dynamically selects w based on its policy. The server
sends the puzzle z = [z′′, H(z′), w, n′] to the client:

t, n, z

The server forgets about the client’s request. The client
must solve the puzzle z and provide the solution z′ along
with n′ in a new tunnel establishment packet using the same
C′ and S′. The client brute forces the rightmost w bits of z′′

to find z′ with a matching hash and responds to the server
with:

t, n, [z′, n′], s, a, . . . C′→S′
n

To confirm a solution, the server decrypts z′ using k and
n′, confirms C′ and S′ and ensures that n′ is within an
acceptable window. Although the server has forgotten z′

these protections ensure that the puzzle cannot be reused
for other tunnel establishment attempts.

Once a tunnel is established, hosts can use the puzzle
RPCs to perform small-w proof-of-life/liveness challenges on
idle tunnels that might be suitable for garbage collection.
Stranger-authorized servers can also use the puzzle RPCs
to slow Sybil attacks, whereby an attacker tries to generate
many identities to cause public-key authenticator validations
on the server. We evaluate MinimaLT’s puzzles in §5.3.

4.3.5 No transport-layer three-way handshake As
described above, MinimaLT establishes an ephemeral
symmetric key with a minimal number of round trips;
MinimaLT also subsumes the need for a transport-layer
three-way handshake when establishing each application-to-
service connection. TCP’s three-way handshake establishes
a random Initial Sequence Number (ISN). This is necessary
for two reasons: (1) the ISN serves as a weak authentica-
tor (and liveness check) because a non-MitM attacker must
predict it to produce counterfeit packets, and (2) the ISN
reduces the likelihood that a late packet will be delivered to
the wrong application.

MinimaLT encrypts the sequence number, provides cryp-
tographic authentication, and checks liveness using puz-
zles, addressing (1). MinimaLT uses TIDs, connection IDs,
and nonces to detect late packets, addressing (2). Thus
MinimaLT can include application data in a connection’s
first packet, as discussed above. Extra round trips are nec-
essary only if the tunnel does not exist; and then only when
the client does not have S’s directory certificate or is pre-
sented with a puzzle. If the server provides a puzzle, it
means that the server is under heavy load so that additional
latency is unavoidable.

4.3.6 User authenticators Every user serviced by
MinimaLT is identified by his public key. The createAuth0
authenticator is the server’s long-term public key encrypted
and authenticated using the server’s long-term public key,
the user’s long-term private key U , and a fresh nonce n:

x = S U→S
n

Because authenticators are transmitted inside boxes (as
ciphertext), they are protected from eavesdropping, and be-

Local domain

D

C

example.com

E

S

DNS

host, port, S, S′, cert.
12

3

4
5

MinimaLT
UDP

Figure 3: An external directory service query

cause the authenticator is tied to the server’s public key, the
server cannot use it to masquerade as the user to a third-
party MinimaLT host. Of course, any server could choose
to ignore the authenticator or perform operations the client
did not request, but that is unavoidable. If third-party au-
ditability is desired then users can choose to interact only
with servers that take requests in the form of certificates.

4.3.7 Congestion/Flow control MinimaLT’s tunnel
headers contain the fields necessary to implement conges-
tion control, namely sequence number and acknowledgment
fields. We presently use a variation of TCP’s standard algo-
rithms [27]. As with TCP [32], efficient congestion control
is an area of open research [28], and we could substitute an
emerging algorithm with better performance. MinimaLT
does have one considerable effect on congestion control: con-
trols are aggregated for all connections in a tunnel, rather
than on individual connections. Since a single packet can
contain data for several connections, the server no longer
needs to allocate separate storage for tracking the reliability
of each connection. This also means that MinimaLT need
not repeat the discovery of the appropriate transmission rate
for each new connection, and a host has more information
(i.e., multiple connections) from which to derive an appro-
priate rate. The disadvantage is that a lost packet can affect
all connections in aggregate.

MinimaLT hosts adjust per-connection flow control us-
ing the windowSize0 RPC. MinimaLT subjects individual
connections to flow control, so windowSize0 takes as param-
eters both a connection ID and size. MinimaLT currently
implements TCP-style flow control.

4.4 A directory service that spans the Internet

Within an organization, an administrator maintains clients,
servers, and a directory service. However, clients will often
want to connect to services outside of their organization,
so it becomes necessary to obtain external servers’ direc-
tory service records. MinimaLT integrates disparate direc-
tory services using DNS in a way that does not add latency
to the current requirement of performing a DNS lookup.
MinimaLT directory services support their organization as
described above, but also can make DNS queries about ex-
ternal hosts and can service DNS queries about local hosts.

The following specific mechanism is designed for easy de-
ployability on the Internet today while guaranteeing at least
as much security as is currently obtained from the X.509
PKI used in TLS. In particular, C checks an X.509 certifi-
cate chain leading to the long-term public key for S, the
same way that web browsers today check such chains. We
transmit this chain through DNS, obtaining three benefits
compared to transmitting the chain later in the protocol:

• The chain automatically takes advantage of DNS
caching.

• Even in non-cached cases the latency of transmitting
the chain is usually overlapped with existing latency



for DNS queries.

• Any security added to DNS automatically creates an
extra obstacle for the attacker, forcing the attacker to
break both DNS security and X.509 security.

For comparison, if a client obtains merely an IP address from
DNS and then requests an X.509 certificate chain from that
IP address (the normal use of TLS today), then the attacker
wins by breaking only X.509 security. If a client instead
obtains the S public key from DNS as a replacement for
X.509 certificate chains then the attacker wins by breaking
only DNS security.

We depict an external lookup in Figure 3. As described
in §4.3.1, servers such as S publish their ephemeral keys
to their local upload service E (1). To connect to an ex-
ternal server, e.g., example.com’s S, the client C requests
S’s information from C’s directory service D (2), and, if
cached, D immediately replies. Otherwise, D makes a
DNS request for example.com’s S (3). The DNS reply from
example.com’s DNS/upload service E is extended to contain
a full MinimaLT server record, split into one long-term DNS
record containing S’s long-term key and a chain certifying
the identity of this key, and one shorter-term DNS record
containing an IP address, a UDP port, and an ephemeral
server key, all signed by S. Once D receives this DNS reply
(4), it can respond to C’s request as earlier described (5).

The integration of MinimaLT’s directory services with
DNS affects DNS configurations in two ways. First, the
shorter-term DNS record’s time to live must be set to less
than or equal to the rekey interval of the host it describes.
We expect this to have a light impact, because most Internet
traffic is to organizations that already select short times to
live (e.g., 300 seconds for www.yahoo.com, 300 seconds for
www.google.com, and 60 seconds for www.amazon.com). Sec-
ond, DNS replies will grow due to the presence of additional
fields. The largest impact is the identity certificate, which
as mentioned above is encoded today as an X.509 certificate.

We have carefully separated the MinimaLT protocol per
se, which describes how C–S, C–D, and S–E interact, from
the use of DNS for the D–E interaction, and the use of
X.509 for the certificate on S. We do not claim that DNS
and X.509 are satisfactory from a performance perspective
or from a security perspective, but improved systems and
replacement systems will integrate trivially with MinimaLT.

5 Evaluation

Here we evaluate MinimaLT’s packet overhead (§5.1); the
performance of creating new tunnels, creating connections
on existing tunnels, and transmitting data (§5.2); DoS de-
fenses (§5.3); cryptography (§5.4); key isolation (§5.5); and
prospects for further performance improvements (§5.6).

5.1 Packet header overhead

MinimaLT’s network bandwidth overhead is modest. The
overhead is due to the cryptography, and includes the nonce,
TID and Checksum (the public key/puzzle fields are rarely
present and are thus insignificant overall). MinimaLT re-
quires 32 bytes more for its headers than TCP/IP; this rep-
resents 6% of the minimum Internet MTU of 576 bytes, and
2% of 1518-byte Ethernet packets.

5.2 Performance evaluation

We experimentally evaluate MinimaLT’s performance in
three areas: (1) the serial rate at which MinimaLT estab-

lishes tunnels/connections, primarily to study the effect of
latency on the protocol; (2) the rate at which MinimaLT
establishes tunnels/connections when servicing many clients
in parallel; and (3) the throughput achieved by MinimaLT.
All of our performance tests were run on two identical com-
puters with a 4.3 GHz AMD FX-4170 quad-core processor,
16GB of memory, and a Gb/s Ethernet adapter. We bench-
marked in 64-bit mode and on only one core to simplify
cross-platform comparisons.

Serial tunnel/connection establishment latency In
each of our serial connection benchmarks, a client sequen-
tially connects to a server, sends a 28-byte application-layer
request, and receives a 58-byte response. We measure the
number of such operations completed in 30 seconds, where
each measurement avoids a DNS/directory service lookup.
We performed this experiment under a variety of network
latencies using Linux’s netem interface.

We compare against OpenSSL 1.0.0j using its s server and
s time utilities, running on version 3.3.4 of the Linux kernel.
We first configured OpenSSL to use 2,048-bit RSA as rec-
ommended by NIST [6] (although 2,048-bit RSA provides
112-bit security, less than that of MinimaLT, which pro-
vides 128-bit security), along with 128-bit AES, ephemeral
DH, and client-side certificates. In order to ensure disk per-
formance did not skew our results, we modified s server to
provide responses from memory instead of from the filesys-
tem. We also wrote an unencrypted benchmark which be-
haves similarly, but makes direct use of the POSIX socket
API, avoiding the use of cryptography.

We benchmarked MinimaLT on Ethos, an experimental
OS we have written to investigate robust security interfaces,
because MinimaLT serves as Ethos’ native network proto-
col (we have also ported MinimaLT to Linux). To produce
results analogous to OpenSSL, simulating both (1) many ab-
breviated connection requests to one server and (2) many full
connection requests to many servers, we tested both (1) the
vanilla MinimaLT stack and (2) a MinimaLT stack we mod-
ified to artificially avoid tunnel reuse.

Figure 4a displays, in log scale, the rate of MinimaLT
and OpenSSL when creating full, client-user-authenticated
connections. For each connection, MinimaLT creates a
new tunnel and authenticates the client user, and OpenSSL
performs a full handshake; each requires public-key opera-
tions. At native LAN latencies plus 1/16 ms (LAN+1/16 ms),
MinimaLT took 1.32ms to complete a full connection, re-
quest, and response, and OpenSSL took 7.63ms. MinimaLT
continued to outperform OpenSSL as network latency in-
creased. At LAN+256ms, MinimaLT took 526.31ms, while
OpenSSL took 2.13s.

Figure 4b displays abbreviated connection speed. In this
case, MinimaLT reuses an already established tunnel and
OpenSSL takes advantage of its session ID to execute an
abbreviated connection. Here both systems avoid comput-
ing a shared secret using DH, except in the case of the first
connection. At LAN+1/16 ms, MinimaLT took 1.03ms to
complete a connection, request, and response over an ex-
isting tunnel. Under the same conditions, OpenSSL took
1.67ms to complete an abbreviated connection, request, and
response. At LAN+256ms, MinimaLT took 517.24ms, while
OpenSSL took 1.60s.

In all measurements, MinimaLT connections incur less
latency than OpenSSL. More surprisingly, MinimaLT cre-
ates connections faster than raw TCP/IP, beginning before



10−4

10−3

10−2

10−1

100

101

1/16 1/8 1/4 1/2 1 2 4 8 16 32 64 128 256

C
o
n

n
ec

t
ti

m
e

(s
ec

.)

One-way additional simulated latency applied to network (ms); this is in addition to our native LAN latency of 1/13 ms

OpenSSL

Unencrypted

MinimaLT

(a) Time spent creating a connection; full connections

10−4

10−3

10−2

10−1

100

101

1/16 1/8 1/4 1/2 1 2 4 8 16 32 64 128 256

OpenSSL

Unencrypted

MinimaLT

(b) Time spent creating a connection; abbr. connections

0.4×
0.6×
0.8×
1.0×
1.2×
1.4×
1.6×
1.8×
2.0×

1/16 1/8 1/4 1/2 1 2 4 8 16 32 64 128 256

One-way additional simulated latency applied to network (ms); this is in addition to our native LAN latency of 1/13 ms

MinimaLT/ Unencrypted

(c) MinimaLT improvement over TCP/IP; full connections

0.6×
0.8×
1.0×
1.2×
1.4×
1.6×
1.8×
2.0×

1/16 1/8 1/4 1/2 1 2 4 8 16 32 64 128 256

MinimaLT/ Unencrypted

(d) MinimaLT improvement over TCP/IP; abbr. connections

Figure 4: Serial tunnel/connection establishment latency

Tunnels User Connections DH per
per run Auth. per second conn.

One 18,453 0
One X 8,576 1
Many 7,827 1
Many X 4,967 2

Table 3: Connection establishment with many clients

LAN+1/4 ms latency in the case of abbreviated connections
and beginning before LAN+1/2 ms latency otherwise. We
experience latencies of at least this magnitude on any pack-
ets which leave our laboratory room (i.e., are processed by
our router). Figures 4c and 4d show the ratio between
MinimaLT and raw TCP/IP performance. We attribute
our results to MinimaLT’s efficient tunnel/connection es-
tablishment (especially at high latencies) and to the speed
of the NaCl library (especially at low latencies).

Tunnel establishment throughput with many clients
We created a second connection benchmark to estimate the
CPU load on a MinimaLT server servicing many clients. To
do this, we ran two client OS instances, each forking several
processes that connected to the server repeatedly as new
clients; here each virtual machine instance was running on a
single computer. Because this experiment concerns CPU use
and not latency, these clients do not write any application-
layer data, they only connect. Using xenoprof and xentop, we
determined that the server was crypto-bound (i.e., 63% of
CPU use was in cryptography-related functions—primarily
public key—and the server CPU load was nearly 100%).
We measured the number of full connections per second
achieved under this load, and varied our configuration from
accepting fully-anonymous users (no authenticators), to ver-
ifying a new user authenticator for each connection request.
MinimaLT established 4,967–7,827 tunnels per second, as
shown in Table 3 (rows 3–4).

Given the minimal tunnel request size of 1,024 bytes, our
hosts can (on a single core) service 61.15Mb/s of tunnel re-
quests from anonymous users and at least 38.80Mb/s of tun-
nel requests from authenticated users. We note that this is

System Bytes per second

Line speed 125,000,000
Unencrypted 117,817,528
MinimaLT 113,945,258
OpenSSL 111,448,656

Table 4: Data throughput (ignoring protocol overhead)

the worst case for authenticated users. In general, we would
cache the result of the DH computations necessary to val-
idate user authenticators, as authenticators use long-term
keys. Thus in practice we expect the authenticated user
case to approach that of anonymous users.

Connection establishment throughput with many
clients We repeated the previous experiment, but this time
repeatedly used a single tunnel between each client and the
server. Table 3 (rows 1–2) shows that our rates ranged from
8,576–18,453 per second, depending on the presence of user
authenticators. The connection rate over a single tunnel is
important for applications which require many connections
and when using many applications to communicate with the
same server. Our comments about cached DH results in the
preceding experiment applies here as well; we would expect
in practice the rate of the authenticated case will approach
the anonymous case.

A theoretical throughput limit We used SUPERCOP
[10] to measure the time it takes our hardware to compute
a shared secret using DH, approximately 293,000 cycles or
14,000 operations per second. MinimaLT’s tunnel estab-
lishment rate approaches 56% of this upper bound, with
the remaining time including symmetric key cryptography,
scheduling, and the network stack.

Single-connection data throughput Table 4 describes
our throughput results, observed when running programs
that continuously transmitted data on a single connection
for thirty seconds. MinimaLT approaches the throughput
achieved by unencrypted networking and runs at 91% of
line speed (Gb/s). Indeed, MinimaLT’s cryptography runs
at line speed; header size differences are the primary reason



the unencrypted benchmark outperforms MinimaLT.

5.3 Denial of service

DoS protections in MinimaLT are intended to maintain
availability against much more severe attacks than are han-
dled by current Internet protocols. Of course, an extremely
powerful attacker will be able to overwhelm a MinimaLT
server, but DoS protections are useful even in such extreme
situations as a way to consume the attacker’s resources and
limit the number of DoS victims. Of particular concern are
DoS attacks which consume memory or computational re-
sources; the protocol cannot directly defend against network
exhaustion attacks, although it can avoid contributing to
such attacks by preventing amplification.

We introduced anonymous and stranger-authorized ser-
vices in §4.1.1. Anonymous services (i.e., permit create0)
must perform a DH computation to compute a shared secret
and maintain tunnel data structures that consume just un-
der 5KB each (this is configurable, most memory use is due
to incoming and outgoing packet buffers). Stranger-enabled
services (i.e, require createAuth0, but permit strangers) must
additionally perform a public-key decryption to validate
each new user authenticator encountered.

5.3.1 Before establishing a tunnel In the case of
anonymous services, a single attacker could employ a large
number of ephemeral public keys to create many tunnels,
with each tunnel requiring a DH computation and consum-
ing memory on the server. Furthermore, the attacker’s host
might avoid creating a tunnel data structure or performing
any cryptographic operations, thus making the attack affect
the server disproportionately.

As discussed in §4.3.1, MinimaLT addresses these attacks
using puzzles present in its tunnel headers. Servicing tunnel
requests in excess of the limits discussed in §5.2 would cause
a server to require puzzles. Our server can generate and ver-
ify 386,935 puzzles per second on our test hardware. Since
a puzzle interrogation and padded solution packet are 206
and 1,024 bytes, respectively, a single CPU core can handle
puzzles at 394% of Gb/s line speed.

Amplification attacks against third parties At tun-
nel establishment, MinimaLT may respond to packets from
clients which spoof another host’s IP address. This is always
the case with the directory service, which initially must re-
act to a request from an unknown party before transitioning
to PFS-safe authorization. A MitM could spoof the source
of packets, even while completing a puzzle interrogation. A
weaker attacker could elicit a response to the first packet
sent to a server. Given this, MinimaLT is designed to min-
imize amplification attacks, in which a request is smaller
than its reply (to a spoofed source address). A connection
request causes a connection acknowledgment or puzzle in-
terrogation; both responses are smaller than the request.

5.3.2 After establishing a tunnel Given a tunnel, an
attacker can easily forge a packet with garbage in place of
ciphertext and send it to a service. This forces MinimaLT to
decrypt the packet and verify its checksum, wasting proces-
sor time. However, MinimaLT’s symmetric cryptography
on established tunnels operates at line speed on commodity
hardware (§5.2), so DoS would be equivalent to the attacker
saturating a Gb/s link.

Low cost (small w) puzzles can be used to check that a
client is still reachable. Puzzles can occur at other than con-
nection establishment time, so they can require that a client

perform work to keep a connection alive. We use control
connection RPCs to pose and solve these puzzles to prevent
an attacker from attempting RST-style mischief [23].

Creation of fictitious strangers Stranger services are
vulnerable to further CPU attacks—attackers could gener-
ate false user identities that would fail authentication, but
only after the server performed a public-key decryption. A
server will apply the puzzle RPCs when connection rates
exceed the limits discussed in §5.2.

An attacker could also generate verifiable authenticators
and connect to a stranger-authorized service many times as
different stranger users. This would cause a system to gen-
erate accounts for each stranger identity. However, this is
no different from any other creation of pseudo-anonymous
accounts; it is up to the system to decide how to allocate
account resources to strangers. Perhaps the rate is faster
because of the lack of a Captcha, but unlike many con-
temporary pseudo-anonymous services, a MinimaLT sys-
tem can prune stranger accounts as necessary; the stranger’s
long-term resources (e.g., files on disk) will remain isolated
and become available if the account is later regenerated be-
cause public keys remain temporally unique [55]. Of course,
applications could impose additional requirements (e.g., a
Captcha) before allowing a stranger to consume persistent
resources like disk space.

5.4 Cryptographic security

Tunnel IDs and nonces are visible on the network, and fol-
low a clear pattern for each client-server pair. Essentially
the same information is available through a simple log of
IP addresses of packets sent. Mobile clients automatically
switch to new tunnel IDs when they change IP addresses, as
discussed in §4.3.3. Ephemeral client public keys are visible
when each tunnel is established, but are not reused and are
not connected to any other client information.

Other information is boxed (encrypted and authenticated)
between public keys at the ends of the tunnel. These boxes
can be created and understood using either of the two corre-
sponding private keys, but such keys are maintained locally
inside MinimaLT hosts. The attacker can try to violate con-
fidentiality by breaking the encryption, or violate integrity
by breaking the authentication, but the cryptography makes
these attacks very difficult; see below. The attacker can also
try to substitute his public key for a legitimate public key,
fooling the client or server into encrypting data to the at-
tacker or accepting data actually from the attacker, but this
requires violating integrity of previous packets: for example,
before the client encrypts data to D′, the client obtains D′

from a boxed packet between D and C′.

This type of temporal data-flow analysis is conceptually
straightforward. One might think that existing protocol-
analysis tools are already powerful enough to formally verify
the confidentiality and integrity properties of high-level pro-
tocols such as MinimaLT, assuming that the box mechanism
is secure. However, the security properties of authenticated
encryption using non-interactive DH were only very recently
formalized (see [30]), and more work is required to develop
a higher-level security calculus on top of these properties;
note that replacing boxes with unauthenticated encryption
would eliminate the security of typical box-based protocols.

For comparison, attempts to verify the security of TLS
(such as [40]) have so far covered only limited portions of
TLS. The unverified portions of TLS are more complex than



the entire MinimaLT protocol. We also comment that there
is an apparently neverending string of announcements of
TLS security failures, evidently in the unverified portions of
TLS; [12] traces these failures to various aspects of the cryp-
tographic choices in TLS that are systematically avoided by
NaCl, the cryptographic library used in MinimaLT.

The cryptographic details of NaCl are as follows. Encryp-
tion and authentication use the elliptic curve Curve25519
[8] to generate a 256-bit shared secret, the stream cipher
Salsa20 [9] to expand the shared secret into a long pad
used to encrypt data, and the message-authentication code
Poly1305 [7] to produce a 128-bit authenticator of the ci-
phertext. Elliptic-curve cryptography has been extensively
studied since 1985, and since 2005 has been the only public-
key cryptography recommended by NSA for the protection
of US government Secret information. Curve25519, which
is also used in Apple’s iOS operating system [3], meets the
IEEE P1363 standard criteria [35] for elliptic-curve security,
along with additional security criteria such as twist security;
see [8]. Poly1305 is information-theoretically secure, with a
forgery probability below 2−106 per byte; see [7]. Salsa20
has been analyzed in papers by 23 cryptanalysts, culminat-
ing in an attack on just 8 out of the full 20 rounds; Salsa20
is one of only four software ciphers recommended by the
ECRYPT Stream Cipher Project [5]. The fastest attacks
known against any of these cryptographic primitives use ap-
proximately 2128 operations. This means they are stronger
than the RSA-2048 option chosen in OpenSSL for experi-
ments. All of the implementations in NaCl are fully pro-
tected against cache-timing attacks, branch-prediction at-
tacks, etc.; see [12].

5.5 Key isolation

We designed MinimaLT to facilitate strong key isolation.
Since the semantics of MinimaLT include encryption and
server/user authentication, it is natural to keep private keys
under the control of MinimaLT, never releasing them to ap-
plications. We have done this in Ethos. (Ethos also provides
a sign system call for this reason [51].)

5.6 Ongoing performance tuning

Using a single CPU core, MinimaLT transmits encrypted
data at nearly one Gb/s and performs thousands of authen-
tications per second. Future work will focus on increasing
tunnel establishment rates by offloading public key opera-
tions to other CPU cores. We expect a roughly N -fold im-
provement in cryptography from using N cores, and thus ex-
pect Gb/s-speed tunnel establishment with 16 cores. When
not under attack, MinimaLT would use far fewer cores.

6 Conclusions and future work

MinimaLT provides network confidentiality, integrity, pri-
vacy, server authentication, user authentication, and DoS
protections with a simple protocol and implementation.
A particular concern for protected networking is latency,
as research has shown users are very sensitive to delay.
MinimaLT combines directory services and tunnel estab-
lishment in a new way to minimize latency—even outper-
forming unencrypted TCP/IP. MinimaLT’s first round trip
is performed only once, at system boot time. The second is
a protected analogue of a DNS lookup and is required under
the same circumstances as DNS. Thus in the typical case,
MinimaLT clients transmit encrypted data to an end server
in the first packet sent.

MinimaLT establishes a tunnel which can be long-lived.
Of course, the tunnel can be terminated at any time, but ab-
sent resource constraints MinimaLT is intended to maintain
tunnels even across system suspends and network migration.
This makes for a more reliable system as recovery code needs
to be run less often.

Future work includes the aforementioned performance
tuning, remote client software attestation, and building
proxies which will enable MinimaLT to talk to legacy ap-
plications. We plan to soon release Ethos and our Linux
MinimaLT implementation as open source software.

7 References

[1] Aiello, W., Bellovin, S. M., Blaze, M., Canetti, R., Ioannidis,
J., Keromytis, A. D., and Reingold, O. Just Fast Keying: Key
agreement in a hostile Internet. ACM Trans. Inf. Syst. Secur.
7, 2 (May 2004), 242–273.

[2] AlFardan, N., and Paterson, K. Lucky thirteen: Breaking the
TLS and DTLS record protocols.
http://www.isg.rhul.ac.uk/tls/, February 2013.

[3] Apple. iOS security, 2012. /home/djb/download/images.apple.
com/iphone/business/docs/iOS_Security_Oct12.pdf.

[4] Argyraki, K. J., Maniatis, P., Irzak, O., Ashish, S., and
Shenker, S. Loss and delay accountability for the internet. In
ICNP (2007), pp. 194–205.

[5] Babbage, S., Cannière, C. D., Canteaut, A., Cid, C., Gilbert,
H., Johansson, T., Parker, M., Preneel, B., Rijmen, V., and
Robshaw, M. The eSTREAM portfolio, 2008.
http://www.ecrypt.eu.org/stream/portfolio.pdf.

[6] Barker, E., Barker, W., Burr, W., Polk, W., and Smid, M.
Recommendation for key management—part 1: General
(revised), Mar. 2007.

[7] Bernstein, D. J. The Poly1305-AES message-authentication
code. In Fast Software Encryption (2005), H. Gilbert and
H. Handschuh, Eds., vol. 3557, Springer, pp. 32–49.

[8] Bernstein, D. J. Curve25519: New Diffie-Hellman speed
records. In Public Key Cryptography (2006), pp. 207–228.

[9] Bernstein, D. J. The Salsa20 family of stream ciphers,
vol. 4986 of Lecture Notes in Computer Science. Springer,
2008, pp. 84–97.

[10] Bernstein, D. J., and Lange, T. eBACS: ECRYPT
Benchmarking of Cryptographic Systems.
http://bench.cr.yp.to/.

[11] Bernstein, D. J., Lange, T., and Schwabe, P. NaCl:
Networking and cryptography library. http://nacl.cr.yp.to/.

[12] Bernstein, D. J., Lange, T., and Schwabe, P. The security
impact of a new cryptographic library. In International
Conference on Cryptology and Information Security in Latin
America (2012), vol. 7533 of Lecture Notes in Computer
Science, Springer, pp. 159–176.

[13] Bernstein, D. J., and Schwabe, P. NEON crypto. In Workshop
on Cryptographic Hardware and Embedded Systems (2012),
vol. 7428 of Lecture Notes in Computer Science, Springer,
pp. 320–339.

[14] Birrell, A., and Nelson, B. J. Implementing remote procedure
calls. ACM Trans. Comput. Syst. 2, 1 (1984), 39–59.

[15] Bittau, A., Hamburg, M., Handley, M., Mazières, D., and
Boneh, D. The case for ubiquitous transport-level encryption.
In Proc. of the USENIX Security Symposium (Berkeley, CA,
USA, 2010), USENIX Security’10, USENIX Association,
pp. 26–26.

[16] Bonneau, J., Herley, C., van Oorschot, P. C., and Stajano, F.
The quest to replace passwords: A framework for comparative
evaluation of web authentication schemes. In Proc. IEEE
Symp. Security and Privacy (2012), pp. 553–567.

[17] Card, S. K., Robertson, G. G., and Mackinlay, J. D. The
information visualizer, an information workspace. In Proc.
ACM Conf. Human Factors in Computing Systems (Apr.
1991), ACM, pp. 181–188.

[18] de Vivo, M., de Vivo, G. O., Koeneke, R., and Isern, G.
Internet vulnerabilities related to TCP/IP and T/TCP.
SIGCOMM Comput. Commun. Rev. 29, 1 (Jan. 1999), 81–85.

[19] Dierks, T., and Allen, C. RFC 2246: The TLS protocol version
1, Jan. 1999. Status: PROPOSED STANDARD.

[20] Dingledine, R., Mathewson, N., and Syverson, P. F. Tor: The



second-generation onion router. In Proc. of the USENIX
Security Symposium (2004), pp. 303–320.

[21] Douceur, J. The Sybil Attack. In Proceedings of the 1st
International Peer To Peer Systems Workshop (March 2002).

[22] Duong, T., and Rizzo, J. Here come the ⊕ ninjas. In Ekoparty
Security Conference (2011).

[23] Eckersley, P., von Lohmann, F., and Schoen, S. Packet forgery
by ISPs: A report on the Comcast affair.
https://www.eff.org/files/eff_comcast_report.pdf.

[24] Egevang, K., and Francis, P. RFC 1631: The IP network
address translator (NAT), May 1994. Status:
INFORMATIONAL.

[25] Electronic Frontier Foundation. HTTPS everywhere.
https://www.eff.org/https-everywhere.

[26] Fahl, S., Harbach, M., Muders, T., Smith, M., Baumgärtner,
L., and Freisleben, B. Why Eve and Mallory love Android: an
analysis of Android SSL (in)security. In Proc. ACM
Conference on Computer and Communications Security
(CCS) (New York, NY, USA, 2012), CCS ’12, ACM, pp. 50–61.

[27] Floyd, S. Congestion control principles; RFC 2914, Sept. 2000.

[28] Ford, B. Directions in Internet transport evolution. IETF
Journal 3, 3 (2007), 29–32.

[29] Ford, B. Structured streams: a new transport abstraction. In
Proceedings of the 2007 conference on Applications,
technologies, architectures, and protocols for computer
communications (New York, NY, USA, 2007), SIGCOMM ’07,
ACM, pp. 361–372.

[30] Freire, E. S., Hofheinz, D., Kiltz, E., and Paterson, K. G.
Non-interactive key exchange. In PKC 2013 (2013), Lecture
Notes in Computer Science, Springer.
http://eprint.iacr.org/2012/732.

[31] Georgiev, M., Iyengar, S., Jana, S., Anubhai, R., Boneh, D.,
and Shmatikov, V. The most dangerous code in the world:
validating SSL certificates in non-browser software. In Proc.
ACM Conference on Computer and Communications Security
(CCS) (New York, NY, USA, 2012), CCS ’12, ACM, pp. 38–49.

[32] Gettys, J., and Nichols, K. Bufferbloat: dark buffers in the
internet. Commun. ACM 55, 1 (Jan. 2012), 57–65.

[33] Gummadi, P. K., Saroiu, S., and Gribble, S. D. King:
estimating latency between arbitrary internet end hosts. In
Internet Measurement Workshop (2002), pp. 5–18.

[34] Hiltgen, A., Kramp, T., and Weigold, T. Secure Internet
banking authentication. Security Privacy, IEEE 4, 2
(March-April 2006), 21 –29.

[35] IEEE. Standard specifications for public key cryptography.
IEEE, 2000. IEEE 1363-2000.

[36] Ioannidis, J., and Bellovin, S. M. Implementing pushback:
Router-based defense against DDoS attacks. In Proc. of the
Symp. on Network and Distributed Systems Security (NDSS)
(San Diego, California, 2002), The Internet Society.

[37] Ioannidis, S., Keromytis, A. D., Bellovin, S. M., and Smith,
J. M. Implementing a distributed firewall. In Proc. ACM
Conference on Computer and Communications Security
(CCS) (2000), ACM Press, pp. 190–199.

[38] Jackson, C., and Barth, A. ForceHTTPS: protecting
high-security web sites from network attacks. In International
Conference on the World Wide Web (New York, NY, USA,
2008), WWW ’08, ACM, pp. 525–534.

[39] Jaeger, T., Butler, K., King, D. H., Hallyn, S., Latten, J.,
and Zhang, X. Leveraging IPsec for mandatory access control
across systems. In Proc. of the Second International
Conference on Security and Privacy in Communication
Networks (Aug. 2006).

[40] Jager, T., Kohlar, F., Schäge, S., and Schwenk, J. On the
security of TLS-DHE in the standard model. In Crypto 2012
(2012), vol. 7417 of Lecture Notes in Computer Science,
Springer, pp. 273–293.

[41] Juels, A., and Brainard, J. G. Client puzzles: A cryptographic
countermeasure against connection depletion attacks. In NDSS
(1999).

[42] Keromytis, A. D., Ioannidis, S., Greenwald, M. B., and Smith,
J. M. The STRONGMAN architecture. In DARPA
Information Survivability Conference and Exposition
(DISCEX) (2003), vol. 1, pp. 178–188.

[43] Lampson, B., Abadi, M., Burrows, M., and Wobber, E.
Authentication in distributed systems: Theory and practice.
ACM Transactions on Computing Systems (TOCS) 10, 4
(1992), 265–310.

[44] Langley, A. Transport Layer Security (TLS) Snap Start, June
2010.

[45] Langley, A., Modadugu, N., and Chang, W.-T. Overclocking
SSL. In Velocity: Web Performance and Operations
Conference (Santa Clara, CA, Jun 2010). http:
//www.imperialviolet.org/2010/06/25/overclocking-ssl.html.

[46] Langley, A., Modadugu, N., and Moeller, B. Transport Layer
Security (TLS) False Start, June 2010.

[47] Le Malécot, E., Hori, Y., and Sakurai, K. Preliminary insight
into distributed SSH brute force attacks. Proceedings of the
IEICE General Conference (2008).

[48] Liberatore, M., and Levine, B. N. Inferring the source of
encrypted HTTP connections. In Proc. ACM Conference on
Computer and Communications Security (CCS) (New York,
NY, USA, 2006), CCS ’06, ACM, pp. 255–263.

[49] Loscocco, P., and Smalley, S. Integrating flexible support for
security policies into the Linux operating system. In Proc. of
the FREENIX Track (Berkeley, CA, 2001), The USENIX
Association, pp. 29–42.

[50] McGrew, D. RFC 5116: An interface and algorithms for
authenticated encryption, 2008. Status: PROPOSED
STANDARD.

[51] Petullo, W. M., and Solworth, J. A. Digital identity security
architecture in Ethos. In Proceedings of the 7th ACM
workshop on Digital identity management (New York, NY,
USA, 2011), ACM, pp. 23–30.

[52] Petullo, W. M., and Solworth, J. A. Simple-to-use,
secure-by-design networking in Ethos. In Proceedings of the
Sixth European Workshop on System Security (New York,
NY, USA, 2013), EUROSEC ’13, ACM.

[53] Radhakrishnan, S., Cheng, Y., Chu, J., Jain, A., and
Raghavan, B. TCP fast open. In Conference on Emerging
Networking Experiments and Technologies (New York, NY,
USA, 2011), CoNEXT ’11, ACM, pp. 21:1–21:12.

[54] Rescorla, E., and Modadugu, N. RFC 6347: Datagram
transport layer security version 1.2, 2012. Status: PROPOSED
STANDARD.

[55] Rivest, R. L., and Lampson, B. SDSI — a simple distributed
security infrastucture. Tech. rep., MIT, Apr. 1996.

[56] Shields, C. What do we mean by network denial of service? In
IEEE Workshop on Information Assurance and Security
(West Point, NY) (June 2002).

[57] Song, D. X., Wagner, D., and Tian, X. Timing analysis of
keystrokes and timing attacks on SSH. In Proc. of the
USENIX Security Symposium (Berkeley, CA, USA, 2001),
USENIX Association, pp. 25–25.

[58] Souders, S. Velocity and the bottom line. http://programming.
oreilly.com/2009/07/velocity-making-your-site-fast.html,
July 2009.

[59] Stark, E., Huang, L.-S., Israni, D., Jackson, C., and Boneh, D.
The case for prefetching and prevalidating TLS server
certificates. In Proc. of the Symp. on Network and Distributed
Systems Security (NDSS) (San Diego, CA, 2012), Internet
Society.

[60] Stewart, R. Stream Control Transmission Protocol, Sept. 2007.

[61] Vratonjic, N., Freudiger, J., Bindschaedler, V., and Hubaux,
J.-P. The inconvenient truth about web certificates. In The
Workshop on Economics of Information Security (WEIS)
(2011).

[62] Weaver, N., Sommer, R., and Paxson, V. Detecting forged TCP
reset packets. In NDSS (2009).

[63] White, J. E. A high-level framework for network-based resource
sharing. In National Computer Conference (1976).

[64] Wobber, E., Abadi, M., Burrows, M., and Lampson, B.
Authentication in the Taos operating system. In Symposium on
Operating System Principles (SOSP) (1993), pp. 256–269.

APPENDIX

A Authentication/authorization hooks

We designed MinimaLT to provide a native network pro-
tocol with strong security properties. The interface to the
MinimaLT protocol stack consists of two parts: (1) the net-
working API described in Appendix B and (2) authentica-
tion and authorization hooks used to provide system services
to MinimaLT. We describe the latter part here.

MinimaLT requires two hooks into the host OS so that
MinimaLT can perform protocol processing. These hooks
are called on new connection requests. They restrict the in-



coming or outgoing connection, providing a bridge between
MinimaLT and the OS’ authorization monitor.

Service names MinimaLT follows the Unix sockets con-
vention and identifies services with a string instead of a
port number; both the create0 and createAuth0 RPCs take
as an argument such a service name. This allows for an
inexhaustible range of mnemonic names for services. As a
result, MinimaLT does not need to reuse ports (i.e., port
80 is often used for a wide range of web-based services);
a service name remains bound to the service it describes.
The cost is a slight increase in the amount of information
needed to identify the service on the first packet (i.e., the
connection type parameter to create0 or createAuth0).

Server-side authorization When the MinimaLT imple-
mentation receives a create0 or createAuth0 (with a valid
authenticator), it invokes a hook into the host OS named
mltIsIncomingAuthorized:

mltIsIncomingAuthorized(publicKey, serviceName)

which takes as parameters publicKey, the public key from
createAuth0 (or nil in the case of create0); and service, the
service name. To service mltIsIncomingAuthorized, the OS
consults a user database (either local or distributed) to as-
certain the real-world identity of the user associated with
publicKey (if not nil), decides whether to authorize access
to the service serviceName, and returns true or false to
MinimaLT.

If mltIsIncomingAuthorized returns false, then our
MinimaLT implementation provides no response (at any
network layer) to a request. With TCP/IP, this is pos-
sible only using weak, IP-address-based authentication; as
we have shown, MinimaLT authentication is much stronger.
Thus MinimaLT makes network mapping much more diffi-
cult. Since most hosts do not offer Internet-wide services,
they present a minimal signature to attackers—on Ethos,
even the equivalent to ping will respond only to authorized
users.

Client-side authorization MinimaLT also authorizes
outgoing connections. This can be used to restrict which
services on which hosts a user/program pair may connect
to. For example, an organization may wish to restrict mail
clients so that they may connect only to a trusted service
provider. The client-side authentication hook is:

mltIsOutgoingAuthorized(publicKey, serviceName)

Here publicKey is the receiving server’s long-term public key,
but otherwise an OS will implement this procedure in a
manner similar to mltIsIncomingAuthorized.

B Ethos integration

One difficulty with network protocols is they often integrate
poorly with related protections, resulting in overly com-
plex APIs. Here we discuss the integration of MinimaLT
with Ethos. Like distributed firewalls [37], which overload
POSIX networking APIs (connect and accept), Ethos makes
protections inescapable by adding transparent encryption
and authentication to its networking system call seman-
tics [52].

B.1 Anatomy of an ipc
Client applications invoke the ipc system call to initiate a
network connection.

netFd = ipc(serviceName, host)

To service an ipc, Ethos first checks if the calling program
and user are authorized to connect to the requested ser-

vice/host pair. If authorized, Ethos next checks to see if a
tunnel to the server host already exists. If not, then Ethos
looks up the host’s directory certificate and establishes the
tunnel. Recall that Ethos has already created a tunnel to
the directory service upon booting.

Ethos next looks up the user’s key configuration. If the
user selected a public key U for this service, then Ethos
loads it and generates the authenticator x. Then Ethos cre-
ates a connection by invoking createAuth0(c, s, U , x) where
s is the service name and c is a new connection number
within the tunnel to the server. Otherwise, Ethos invokes
create0(c, s) to attempt to create an anonymous connection.
Once Ethos receives an ack0 from the server, ipc returns a
network file descriptor to the application. A variant of ipc,
ipcWrite, allows as an additional parameter an application
serviceRequestc that is sent along with the first packet to the
server.

Thus Ethos presents a very simple API to application de-
velopers, leaving less room for error than alternatives such
as POSIX. The semantics of the ipc system call include en-
cryption, server authentication, a user authenticator, and
IP mobility. All of this is transparent to the application.

B.2 Anatomy of an import
Receiving a network connection on Ethos requires two sys-
tem calls: advertise and import. advertise makes a service
available to the network and returns a listening file descrip-
tor. import takes a service file descriptor and returns a net-
work file descriptor and remote user after receiving a net-
work connection request from some client.

serviceFd = advertise(serviceName)
netFd, user = import(serviceFd)

Calling import waits to receive a createAuth0 or
create0 from some client. The following discussion ignores
puzzles for simplicity. Ethos creates a tunnel upon receiving
a tunnel establishment packet, if the encrypted packet de-
crypts properly (passing verification) and the TID is unique.
Otherwise it finds a tunnel whose current TID (or next TID,
set by nextTid0) matches the packet’s TID, and checks that
the packet decrypts properly under the current tunnel key
(or the next tunnel key).

If Ethos receives a createAuth0, it validates the included
authenticator. After doing so, it checks to see if the as-
sociated user is authorized to connect to the service. Al-
ternatively, if Ethos receives a create0, it checks to see if
users may connect to the service anonymously. Ethos re-
jects and logs unauthorized connections within the kernel,
so such users never interact with an application. Only if
the user is authorized does Ethos reply with an ack0 and
return a network file descriptor and client user name to the
application.

A client user might not have a local account on the Ethos
server—this is always the case for strangers, as they are not
known a priori. If a local account does not exist, then Ethos
references its distributed user database. If the user account
is not found there, then Ethos generates one, naming it af-
ter the client user’s public key (such accounts are sparse in
that they do not include identifying information other than
their public key). Anonymous connections (create0) are even
more specialized because they do not provide a public key.
Ethos generates a random name for these users; this identi-
fier is not known to the client, so anonymous clients cannot
create a second connection under the same identity.


