MULTIDIGIT MULTIPLICATION FOR MATHEMATICIANS

DANIEL J. BERNSTEIN

ABSTRACT. This paper surveys techniques for multiplying elements of various
commutative rings. It covers Karatsuba multiplication, dual Karatsuba multi-
plication, Toom multiplication, dual Toom multiplication, the FFT trick, the
twisted FFT trick, the split-radix FFT trick, Good’s trick, the Schénhage-
Strassen trick, Schonhage’s trick, Nussbaumer’s trick, the cyclic Schonhage-
Strassen trick, and the Cantor-Kaltofen theorem. It emphasizes the underlying
ring homomorphisms.

1. INTRODUCTION

The purpose of this paper is twofold: first, to present every known technique
for computing the product of two large integers; second, to present every known
technique for computing the product of two polynomials over a commutative ring.

My main expository device is very simple: I display certain ring homomorphisms.
Each homomorphism f suggests two multiplication methods. “Mapping” means
computing rs with the help of f(r)f(s); “lifting” means computing f(r)f(s) with
the help of rs. Almost every multiplication technique in the literature—Karatsuba’s
method, Toom’s method, the FFT, the Schonhage-Strassen method, and so on—is
some combination of mapping and lifting between a few varieties of rings.

Terminology. All rings are commutative and contain 1. An element r of a ring is
cancellable if multiplication by r is injective.

Notes. There are several textbooks and survey articles covering portions of the
material presented here: [3, chapter 7], [13], [16, chapter 4], [17, section 6.2], [18,
section 4.7 and chapter 9], [20, chapter 8|, [21, chapter 2], [34], [41, chapter 4],
[46], [57, section 4.3], [59], [64], [71], [73, section 7.3], [91, chapters 36 and 41], [95,
sections 2.14 and 4.17], [99], [108, section 2.5], and [109].

For lower bounds on arithmetic time in restricted models of computation, see,
e.g., [16], [21], [39], [49], [110], [112], and [113].

I have gone to a great deal of effort to locate original sources and to assign credit
properly. Please let me know if anything appears to be misattributed. I would also
appreciate being informed of any new work in this area.

Acknowledgments. Thanks to Peter Akemann, Joe Buhler, Hendrik W. Lenstra,
Jr., Peter Montgomery, Corey Powell, and Arnold Schonhage for their comments
on various versions of this paper.

Date: 20010811.

2020 Mathematics Subject Classification. Primary 68Q40; Secondary 11Y16, 12Y05, 13P05,
65T20.

The author was supported by the National Science Foundation under grant DMS—9600083.

1

2 DANIEL J. BERNSTEIN

2. MAPPING

Let f: R — A be a ring homomorphism. One can attempt to multiply in R by
multiplying in A. Given r,s € R, first map r and s to A, i.e., compute a = f(r)
and b = f(s); then compute ab; finally determine rs somehow from r, s, and the
equation f(rs) = ab. This technique is called mapping R to A.

In particular, if f is one-to-one, then rs = f~1(f(r)f(s)). Thus one can multiply
in R by (1) evaluating f twice, (2) multiplying in A, and (3) evaluating f~! once.

When f is not one-to-one, f(r)f(s) does not determine rs, but a small amount
of additional information about r and s often suffices to pin down rs.

Similar comments apply to any sequence of ring operations. For example, one
can attempt to determine r + s3t from f(r) + f(s)2f(t).

Example: modular arithmetic for integers. Define m = 224 — 1, and consider
the map “mod m” from Z to Z/m. If r and s are nonnegative integers smaller than
2'2 then rs is smaller than m, so rs is determined by 7s mod m. One can thus
compute rs by (1) computing » mod m and s mod m; (2) multiplying in Z/m; and
(3) recovering rs from rs mod m. Steps 1 and 3 are “no-ops” if Z/m is represented
as {0,1,...,m — 1}; see section 4 for further discussion of step 2.

Example: modular arithmetic for polynomials. Fix a ring R and a monic
polynomial m € R[x]. If r and s are polynomials of degree at most n, then degrs <
2n, so rs is determined by rs mod m if degm > 2n. There are many techniques for
multiplying quickly modulo particular polynomials m; see, for example, sections 5
and 7.

If degm = 2n, one can use rs mod m together with the nth coefficients of r and
s to reconstruct rs. Specifically, say r, and s,, are the coefficients of ™ in r and s
respectively, and say rs mod m =, 5, pixt; then rs = rys,m + Y o<i<on pixt.
This technique is called evaluation at oo.

Example: segmentation for integers. Consider two polynomials a,b € Z[z].
Map Z[z] to Z by — M. One can recover ab from its image in Z if M is sufficiently
large compared to the degrees and coefficients of a and b. The map x — M is easy
to evaluate when M is a power of 2, if Z is represented in the usual way; see section
3.

Notes. Mapping has several names in the literature. Lipson in [63] refers to map-
ping as “computation by homomorphic images.”

See section 6 for historical notes on evaluation at oo.

Segmentation was published by Fischer and Paterson in [40, page 122]. (The
same idea was announced by Schénhage in [88, section 2] several years later.)

The modulus in modular arithmetic can be dynamically selected depending on
the inputs. For example, consider mapping Z[z] to (Z/m)[z] to multiply a = 3 a;z°
and b = > b;z*; how large must m be? Every coefficient of ab is bounded in absolute

value by /(> a?)(> b?) by Cauchy’s inequality, so m can be chosen accordingly.
I learned this idea from Atkin.

3. LIFTING

Let R be a ring, I an ideal of R. One can represent elements of R/I by elements
of R: specifically, r represents r mod 1.

MULTIDIGIT MULTIPLICATION FOR MATHEMATICIANS 3

If a =rmod I and b = s mod I then ab = rs mod I. Thus one can multiply in
R/I by multiplying in R. This technique is called lifting R/I to R.

Selecting a representative r € R for a given element a € R/I is called lifting a
from R/I to R. One can replace r by r — ¢ for any t € I; this is called reducing
modulo [.

Sensible reduction can make a huge difference in the speed of operations in R.
Every ideal considered in this paper is principal; when I write the generator in the
form x — y, I mean to suggest that all x’s should, if possible, be replaced with y
during lifting.

Example: clumping for integers. Fix a positive integer B. Base-B clumping
means first mapping Z to the isomorphic ring Z[y|/(B—y), then lifting Z[y] /(B — y)
to Z[y].

The notation “B — y” suggests that every B be replaced with y. For example, if
B = 10, then 314 should be replaced with 31y + 4, which should in turn be replaced
with 3y? + y + 4. Replacing B with y is called carrying.

A nonnegative integer smaller than B™ is thus represented by a polynomial of
degree smaller than n, with each coefficient nonnegative and smaller than B.

To multiply two elements of Z[y]/(B — y), multiply their representatives. For
example, the square of 3y% +y + 4 is 9y* + 6y> + 25y + 8y + 16, which for B = 10
becomes 9y* + 8y + 5y? 4+ 9y + 6 after two carries; i.e., 3142 = 98596.

Example: clumping for polynomials. Let R be a ring. Let n be a positive
integer. Degree-n clumping means first mapping R[z] to the isomorphic ring
Rlz][y]/(z™ — y), then lifting R[x][y]/(z™ — y) to R[x][y]. Polynomials in R[z] of
degree under kn are thus represented by polynomials in R[x][y] of z-degree under
n and y-degree under k.

Example: striding. The transpose of degree-n clumping is degree-n striding:
first mapping R[z| to the isomorphic ring R[y|[x]/(z™ — y), then lifting to R[y|[x].

Let f be a monic polynomial over R. Degree-n striding modulo f means first
mapping R[z]/f(z™) to the isomorphic ring (R[y]/f(y))[z]/(z™ —y), then lifting to
(R[y]/f(y))[x]. Elements of R[x]/f(z™) are thus represented by polynomials over
R[y]/f(y) of degree under n.

Notes. Reduction is often used to save space, but its most important effect is to
save time in subsequent operations in R. The time spent on reduction should be
balanced against the time saved. An example where “full” reduction is unwise is
arithmetic in Z/m for m = (232 — 1)/3: given r € Z, a computer can rapidly find
a nonnegative integer s < 232 with r mod m = s mod m, but needs substantially
more time to guarantee s < m.

Common base choices for integer clumping include
10?; these reflect the capabilities of current computer hardware.

The output of base-B clumping is often called the “base-B representation” of the
input. For example, 3y%+y+4 is the base-10 representation of 314. The coefficients
in a base-10 representation are “digits”; the coefficients in a base-2 representation
are “bits.” There is no standard name for the coefficients in a base-B representation
for large B.

See [57, section 4.1] for further discussion of integer representations.

2329230 926 and occasionally

4 DANIEL J. BERNSTEIN

320 + 12t + 42?4+ 123 + 52t +92° € R[z] — Rlx][y]/(2? —y)
(320 + 121)y0 + (42° + 1)yt + (520 + 921)y? € R[z][y]

FiGURE 1. Degree-2 clumping.

320 + 1ot + 422 + 123 + 52t + 92° € R[z] — Rly][z]/(2? — v)
(3y° +4y" +5y)2° + (1y° + 1y + 9y*)z" € R[y][x]

FI1GURE 2. Degree-2 striding.

My “clumping” and “striding” terminology is not standard. (However, “stride” is
a standard term for the distance between consecutive memory locations accessed by
a computer program.) The names refer to how polynomial coefficients are arranged
in R[z]ly] and R[y|[x] respectively. Compare Figure 1 and Figure 2.

4. REMAINDER ARITHMETIC

Let I and J be ideals of a ring R. Remainder arithmetic modulo / and
J means mapping R/IJ to (R/I) x (R/J) by z — (zmod I,z mod J). More
generally, remainder arithmetic modulo I3, I, ..., I; means mapping R/[] I,
to [[(R/1).

The Chinese remainder theorem states that R/I.J is isomorphic to (R/I)x (R/J)
if I and J are coprime, i.e., if there exist v € I and v € J with u + v = 1. The
inverse map is (z,y) — vzx + uy.

In particular, let f,g,a,b be elements of R with af + bg = 1. Then R/fg is
isomorphic to (R/f) x (R/g); the inverse map is (t,u) — bgt + afu. Normally f
and g are selected so that (1) it is easy to lift from R/f and R/g to R, i.e., to
reduce modulo f and g; (2) it is easy to multiply by af and bg.

Example: remainder arithmetic for integers. Consider the problem of mul-
tiplying in Z/(224 — 1). Map Z/(2%* — 1) to (Z/(2'2 — 1)) x (Z/(2'2 + 1)). The
inverse map is (x,y) — 2'1(2'2 + 1)x + 211 (22 — 1)y by the Chinese remainder
theorem. If integers are represented in base 2, then multiplication by a power of 2
is easy, and reduction modulo 2'2 41 is easy, so operations in Z/(2%% — 1) amount
to operations in (Z /(22 — 1)) x (Z/(2'2 +1)).

Specific example: To multiply 3141592 by 2718281 modulo 224 — 1, map 3141592
to (727,3290) and 2718281 to (3296,1970). Then multiply in (Z/(2'2 — 1)) x
(Z/(2'2 + 1)), obtaining (617,3943). Compute 2'(2!2 4+ 1)617 + 211(212 — 1)3943,
and reduce modulo 224 — 1, obtaining 9967847.

One can go much further, since 224 — 1 has many prime divisors. Remainder
arithmetic modulo 5, 7, 9, 13, 17, and 241 means mapping Z/(22* — 1) to (Z/5) x
(Z]7) x (Z/9) x (Z/13) x (Z/17) x (Z/241).

Example: remainder arithmetic for polynomials. Fix a ring A. Consider
the problem of squaring a + bx modulo 22 — z in A[z]. The obvious approach is to
reduce a? 4 2abz 4 b?>x? modulo x2 — x; this takes two squarings, a multiplication,
a doubling, and an addition in A. A better approach is remainder arithmetic

MULTIDIGIT MULTIPLICATION FOR MATHEMATICIANS 5

modulo z and z — 1. Map Alz]/(z? — z) to (A[z]/z) x (A[z]/(x — 1)): a + bz
maps to (a,a + b). Operate in (A[x]/x) x (A[z]/(z — 1)): the square of (a,a + b)
is (a?, (a + b)?). Recover the answer in A[z]/(z?> — z) by the Chinese remainder
theorem: it is a®+ ((a+b)? — a?)x. This takes just two squarings, an addition, and
a subtraction. See section 5 for an application.

Remainder arithmetic is sometimes used with ideals that are not coprime. Take
any polynomials a,b, f,g € Alz] with af + bg € A, and consider the function
(Alx]/f) x (A[z]/g) — Alx]/fg mapping (t,u) to bgt + afu. Then the composition
Alz]/fg — (Alz]/f) x (A[x]/g) — Alx]/fg is simply multiplication by af + bg. See
section 7 for an application.

Notes. According to [57, page 276], the use of remainder arithmetic in computers
was first suggested by Svoboda and Valach, and then independently by Garner.

Remainder arithmetic modulo monic linear polynomials is called evaluation
and interpolation. The point is that evaluating a polynomial at ¢ is the same as
reducing it modulo = — c.

5. KARATSUBA’S TRICK

Let R be a ring. Consider the problem of multiplying the polynomials ag + a1x
and by + bz in R[z]. Karatsuba’s trick means mapping R[x] to R[z]/(z? — z),
followed by remainder arithmetic modulo x and x — 1, with evaluation at oo to
recover the product in R[z]. In other words, the product of ag + a1z and by + b1z
is t + ((ag + ay)(bg + by) — t — u)x + ux? where t = agby and u = a1 b;.

Karatsuba’s trick produces the product of two linear polynomials over R with
three multiplications in R, plus a few additions and subtractions.

Karatsuba multiplication for integers means multiplying nonnegative inte-
gers smaller than 22" by the following procedure. First do base-2" clumping: map
Z to the isomorphic ring Z[y] /(2" — y), and lift to Z[y|, producing linear polynomi-
als with coefficients smaller than 2”. Then multiply with Karatsuba’s trick. This
takes three multiplications of integers smaller than 2" +1.

Karatsuba multiplication for polynomials means the analogous procedure
for multiplying polynomials of degree under 2n. First do degree-n clumping, pro-
ducing polynomials in R[z][y] of xz-degree under n and y-degree under 2. Then
multiply with Karatsuba’s trick.

For example, the product of 1 + 4z + 22 + 323 and 8 + x + 72?2 + 223 is the same
as the product of (1 +4x) + (1 + 3z)y and (8 + x) + (7 + 2z)y with y = 22. To
do the latter product with Karatsuba’s trick, multiply 1 + 4x by 8 + z; 1 + 3z by
7T4+2x;and 1+4x+ 1432 =247 by 84+ 2+ 7+ 2¢ = 15 + 3z. The result is
(8 + 33z + 4x?) + (15 + 55z + 1122)y + (7 + 23z + 622)y?. Then substitute y = x>
to obtain 8 + 33z 4 1922 + 552 4 18z* + 232° 4 62°.

Dual Karatsuba multiplication means degree-2 striding, producing polyno-
mials in R[y][z] of y-degree under 2, with Karatsuba’s trick for multiplications in
R[y].

For example, the product of 1 + 4z + 22 + 323 and 8 + x + 72?2 + 223 is the same
as the product of (1 +y) + (4 + 3y)z and (8 + 7y) + (1 + 2y)z with y = 22

Notes. Karatsuba multiplication for integers was first presented by Karatsuba and
Ofman in [54], where it was credited to Karatsuba alone. Karatsuba observed that
his method, applied recursively, takes time O(b'°823) to multiply b-bit numbers.

6 DANIEL J. BERNSTEIN

This was the first subquadratic-time multiplication method. Karatsuba was unable
to generalize his trick; apparently he did not realize that it amounted to evaluation
and interpolation.

Knuth presented a variant of Karatsuba’s trick in [57, page 278], using z + 1 in
place of z — 1; i.e., (ag + a1x)(bg + biz) =t + (t +u — (ag — a1)(by — b1))x + uz?,
with ¢t = agbg and u = a1b;. This may be more or less convenient than the original
method, depending on the type and range of inputs.

6. TOOM’S TRICK

Fix k > 2, and let R be a ring in which 2,3,...,2(k—1) are cancellable. Toom’s
trick means mapping R[z]| to R[z]/(z —k+1)(x —k+2)--- (z + k — 1), followed
by remainder arithmetic modulo x —k+ 1,2 —k+2,...,2+ k — 1.

Given two polynomials in R[z]| of degree under k, Toom’s trick produces their
product with 2k — 1 multiplications in R, plus some additions, subtractions, and
divisions by 2,3,...,2(k — 1).

Toom multiplication for integers means multiplication of nonnegative inte-
gers smaller than 2" by base-2" clumping and Toom’s trick.

Toom multiplication for polynomials means multiplication of polynomials
of degree under kn by degree-n clumping and Toom’s trick.

Dual Toom multiplication means degree-k striding, producing polynomials
in R[y][x] of y-degree under k, with Toom’s trick for multiplications in R]y].

Notes. Toom multiplication for integers was first presented by Toom in [100].
Toom observed that his method takes time bexp(O(1/logb)) to multiply b-bit num-
bers, if k is selected as a sensible function of b. This was the first essentially-linear-
time multiplication method.

Toom’s trick requires evaluating the inputs at the points {—k +1,...,k — 1} and
interpolating the output from its values at those points. There are several plausible
ways to do this. Cook suggested using Horner’s rule for evaluation, and Newton’s
formula for interpolation, according to [57, section 4.3.3]. Baker suggested starting
with degree-2 striding, according to [57, exercise 4.3.3-4].

Winograd improved Toom’s trick by discarding —k + 1 in favor of evaluation at
00. See, e.g., [113, page 31]. This improved version includes Karatsuba’s trick as a
special case.

There are several other proposals to change the points ¢ used in Toom’s trick,
to reduce the overhead for evaluation and interpolation. Cook suggested using
{0,1,2,...,2k — 2}, according to [57]. Winograd pointed out that the ¢’s can be
fractions; see, e.g., [113, page 32]. (The same idea was announced by Zuras in [118]
many years later.) Knuth suggested using powers of 2 and their negatives; see [57,
page 588].

Winograd also proposed remainder arithmetic modulo arbitrary polynomials,
not necessarily linear, to balance multiplication costs against overhead. The prob-
lem is finding good polynomials. In [113, section IVc], Winograd suggested the
polynomials z,z — 1,z + 1,22 + 1 for k = 3.

Winograd’s approach can be used for large k over a small finite field. In [61],
Lempel, Seroussi, and Winograd suggested using all available low-degree irreducible
polynomials. In [53], Kaminski suggested using powers of cyclotomic polynomials;
this works over any ring. (Distinct cyclotomic polynomials are usually coprime
in Z[z], and therefore in R[z] for any ring R.) When these methods are applied

MULTIDIGIT MULTIPLICATION FOR MATHEMATICIANS 7

recursively to multiply polynomials of degree under k, the number of multiplications
in the base ring is essentially linear in k. Unfortunately the number of additions is
prohibitive for large k. See sections 7, 9, and 11 for better methods. See also [24]
for an alternative method over finite fields, theoretically slightly slower but perhaps
practical, proposed by Cantor.

One can simplify Toom multiplication by eliminating y. Consider, for example,
degree-3 Toom multiplication for integers up to 23": map Z to Z[y]/(2" — y), lift
to Z[y] to obtain polynomials of degree under 3, map to Z[y]/(y®> — 5y> + 4y),
and use remainder arithmetic modulo y — ¢ for ¢ € {—-2,-1,0,1,2}. The sim-
plification is to work modulo y — 2" throughout the computation: map Z to
Z/(2°" —5 .23 +4.2") and use remainder arithmetic modulo 2" — ¢ for ¢ €
{-2,-1,0,1,2}. This can handle products up to only about 2°", so it is worse
than Toom multiplication unless arithmetic modulo 2" — ¢ is very fast. (See sec-
tion 9.) A few years after Toom, in [86], Schénhage independently proposed this
alternate method, with c selected as particular powers of 2. The relation between
Toom’s method and Schonhage’s method appears to be almost entirely unknown;
for example, Schonhage and Strassen stated in [90] that the methods are “wesentlich
verschieden,” Knuth stated in [57, page 288] that they are “completely different,”
and Lipson stated in [63] that they are “ostensibly quite different.”

7. THE FFT TRICK

Let R be aring, b an element of R. The FFT trick means remainder arithmetic
modulo 2™ — b and 2™ + b in R[z], i.e., mapping

Rlz]/(z*" = b*) — (R[2]/(z" = b)) x (R[z]/(z" + b)).

This is invertible by the Chinese remainder theorem if 2b is invertible.

The FFT trick can often be applied repeatedly. For example, say i> = —1 for
some i € R. First map R[z]/(x" —b?) to (R[z]/(x*" —b?)) x (R[x]/(2*" +b%)); then
map R[x]/(x®" —b?) to (R[z]/(z™ — b)) x (R[z]/(z™ + b)), and map R[z]/(z*" + b?)
to (R[z]/(x™ —ib)) x (R[z]/(z™ + ib)).

The FFT means the FFT trick applied recursively from 22" — 1 all the way
down to linear polynomials. This requires an element (€ R with CQk_l = —1.
Evaluating the entire FFT map takes 2!k additions, 2¥~ 'k subtractions, and
2k=1k multiplications by various powers of (.

FFT variants. Fix (€ R satisfying (" = —1. The twisted FFT trick means
mapping R[z]/(x*" — 1) to (R[z]/(z"™ — 1)) x (R[x]/(2™ + 1)), followed by mapping
R[z]/(z™ + 1) to R[y]/(y™ — 1) with x — (y. This is slightly easier to implement
than the FFT trick.

Fix i, with 2 = —1 and (" = 4. The split-radix FFT trick means the
following procedure. Map R[z]/(z?™ — 1) to (R[z]/(2*™ — 1)) x (R[z]/(2®™ + 1));
map Rlz]/(a*" + 1) to (R[z]/(2" —i)) x (R[z]/(z" + i)); map R[z]/(z" — i) to
R[y]/(y™—1) with z — Cy; finally map R[z]/(z" +1i) to R[z]/(z" —1) with z — (32.

What to do when 2 is not invertible. Consider the function (R[z]/(z™ —b)) X
(R[x]/(z™ +b)) — R[z]/(x*" —b?) given by (t,u) — (2™ +b)t — (™ — b)u. Then the
composition R[]/ (" —b2) — (R[z]/(z" —b)) x (R[z] /(z"+b)) — Rlz]/(z*"—b?) is
multiplication by 2b. Thus the FF'T trick provides some information about products
in Rlz]/(x*" — b?), unless 2b = 0.

8 DANIEL J. BERNSTEIN

The radix-3 FFT trick means remainder arithmetic modulo z™ — b, "™ — wb,
and =" — w?b, where 1 + w + w? = 0. This is invertible if 3b? is invertible.

Notes. The FFT trick is due to Gauss. It was popularized by Cooley and Tukey,
for the case R = C, in [29]. The twisted FFT trick was published by Gentleman
and Sande in [42]. See [28] and [48] for further historical discussion. Fiduccia in [38]
presented the FFT trick essentially as above, making clear the algebraic structure
of the FFT.

The FFT trick, and thus the FFT, can conveniently be applied “in place”:
R[z]/(xz™—b) can be stored in the same memory locations as the bottom coefficients
of R[z]/(x*" — b?), while R[x]/(z™ + b) is stored in the same memory locations as
the top coefficients. Similar comments apply to the twisted FFT.

One way to invert the FF'T map is to invert the FFT trick. The divisions by 2
can be eliminated in favor of a final division by 2*. Implementing the inverse FFT
map as a forward FFT map—see, e.g., [3, page 253], [13, page 12], [16, page 85],
[17, page 205], [18, section 9.3], [21, page 9], [41, section 4.6], [63], [91, chapter 41],
or [95, section 4.17]—is generally a bad idea, since it requires extra data movement.

The FFT is usually presented as an iterative algorithm: chop the initial ring
into two pieces, chop the two pieces into four, chop the four pieces into eight, etc.
Gentleman and Sande in [42] were the first to present a recursive FFT. See [65] for
a clear exposition. The recursive FF'T accesses data in a very different order from
the iterative FFT; it is suitable for virtual memory, as pointed out by Singleton in
[92], and on modern computers it rapidly breaks the computation into chunks that
fit into cache. It is thus generally faster than the iterative FFT. See [42, page 569],
[92], [19], and [7] for further discussion of memory access.

Handling ™ —b and " +b separately is known as “decimation in frequency.” An
alternative is “decimation in time.” Start with degree-2 striding modulo y"™ —1; i.e.,
R[z]/(x*" — 1) = (R[yl/(y" — 1))[2]/(2® — y). Map R[y]/(y" — 1) recursively to a
product of rings of the form R[y]/(y—b?); then map each (R[y]/(y — b*))[x]/(z? — y)
to (R[x]/(x — b)) x (R[x]/(x +)). I advise against using decimation in time: when
it is applied recursively and in place, it is exceedingly unfriendly to the cache.

Radix-3 and higher-radix versions of the FF'T have generally been developed in
tandem with the radix-2 versions. Bergland in [11] suggested using the radix-8 FFT
trick over C. Schénhage in [87] suggested using the radix-3 FFT trick to handle
rings of characteristic 2; see section 9 for further discussion.

The split-radix FFT trick is useful over C, where multiplication by 7 is faster
than multiplication by arbitrary powers of (. See [33], [69], [96], [97], and [104]. One
can use = — (~'z instead of z — (3z; this variant is usually easier to implement.

Notes on Fourier analysis. FFT stands for “Fast Fourier Transform.” For an

explanation of the relation between the FFT and Fourier analysis, see, e.g., [42],
[20], or [82].

In most Fourier analysis problems, one needs to map

Rlz]/(z" = 1) = (R[z]/(x — 1)) x (Rz]/(x — ¢)) x -~ x (R[] /(z — ")),
with the powers of (appearing in order. The FFT produces the powers in a
jumbled order. Solution 1: The necessary permutation has order 2, so it can
easily be performed in place at the beginning or end of the computation. See,

e.g., [35], [36], [83], [84], [105], and [115]. Solution 2: The results end up in order
if R[z]/(x™ — 1) and R[z]/(z™ + 1) are interleaved in the FF'T trick; however, this

MULTIDIGIT MULTIPLICATION FOR MATHEMATICIANS 9

interleaving cannot easily be performed in place. This method is often attributed
to Singleton, Stockham, Glassman, or Pease. See, e.g., [93], [27, figure 12], [103],
[76], [43], and [37]. There is a similar method that can be performed in place; see,
e.g., [9], [51], [98], and [47].

There are several fast methods to map R[z|/(z™ — 1), for arbitrary values of n,
to (R[z]/(x — 1)) x -+ x (R[z]/(z — ¢"~1)). The simplest is Bluestein’s trick,
published in [14] and [15]. Say a = > 4., ajz? € R[z]. To obtain the values
a(1),a(c?),...,a(c?=2), for any ¢ € R*, multiply > ajcfyj by the Laurent series
Y n<k<n ¢ % y*; the coefficient of y* in the product is ¢ * a(c?*) for 0 < k <
n. Note that Bluestein’s trick can be applied even if ¢ is not a root of 1; this
generalization was introduced by Rabiner, Schafer, and Rader in [80] as the chirp
z transform. (The “fractional Fourier transform,” announced many years later in
[8], is the same as the chirp z transform.)

An alternative to Bluestein’s trick is Winograd’s method in [111]. Special cases
of Winograd’s method were published earlier by Rader in [81] and by Singleton in
[94]. See also [4], [22], [50], [52], [58], and [117].

For results on the problem of decomposing non-commutative group rings, see,
e.g., [26].

8. GOOD’S TRICK

Let R be a ring. Let m,n be coprime positive integers. Good’s trick means
mapping R[z]/(x™" — 1) to the isomorphic ring (R[y|/(y™ — 1))[z]/(z" — 1) by
T yz.

Notes. Good stated his trick in [44, page 758], and pointed out its use for com-
puting Fourier transforms in [45, section 12]. Agarwal and Cooley in [2] pointed
out the use of Good’s trick for multiplication.

One way to multiply polynomials of degree 40000 over R, when R has appropriate
roots of 1, is to perform a degree-131072 FF'T, padding the polynomials with Os.
A different approach, requiring less padding, is to use Good’s trick: map R[x] to
R[z]/(28192° —1) and then to (R[y]/(y° —1))[z]/ (216384 —1). T learned this technique
from Atkin. Another way to save padding, suggested by Crandall and Fagin in [31],
is remainder arithmetic modulo #6%%36 4 1 and £!63%% + 1.

9. MANUFACTURING ROOTS OF 1

Let m,n, k be positive integers. The Schonhage-Strassen trick means map-
ping Z/(2™" + 1) to (Z[y]/(y™ +1))/(2™ — y), lifting to Z[y]/(y™ + 1), and finally
mapping to (Z/(2"¥ 4+ 1))[y]/(y"™ +1). The product in Z[y]/(y™ + 1) is determined
by its image modulo 2™ + 1 if 2"% > 22™p_ (In practice it is convenient to handle
—1 € Z/(2™" +1) specially.) One can now apply the FFT if n is a power of 2, since
2% is an nth root of —1 in Z/(2"* + 1).

Let R be a ring. Schonhage’s trick means mapping

Rlz]/(2™" + 1) = (Rlz][y]/(y" + 1))/ (=™ = y),

lifting to R[x][y]/(y™ + 1), and mapping to (R[z]/(z™* + 1))[y]/(y™ + 1). The
polynomials in R[x][y]/(y™+1) have z-degree at most m— 1, so their product can be
recovered from its image modulo z™* 41 if nk > 2m —2. In particular, a product in
R[z]/(z2™ + 1) can be converted into a product in (R[z]/(z2™ + 1))[y]/(y*™ + 1).

10 DANIEL J. BERNSTEIN

320 + 1ot + 422 + 123 + 52t + 925 + 22° + 627 € R[z]/(2® + 1)
— (Rlz][yl/(y* + 1))/ (2* —y)
(320 + 12t + 022 + 023)y°
+ (42° + 12! 4 022 + 02®)y?
+ (52° + 92! 4 022 + 023)
+ ’)

2
220 + 6z + 022 + 023)y> € (R[z]/(z* + 1)) [y]/(y* + 1)

FiGURE 3. Schonhage’s trick.

Nussbaumer’s trick means mapping

R[z]/(z™"* +1) — (R[y)/(y"* +1)[z]/ (™ — y),

lifting to (R[y]/(y™* + 1))[x], and mapping to (R[y]/(y™* + 1))[z]/(x*" — 1). Here
the product can be recovered if n > m, or if n > m — 1 with evaluation at oco.

Higher-radix variants. Here is the radix-3 Schonhage trick: map

Rlz]/(a*™" + 2™ + 1) — (R[z][y]/(y*" +y" + 1))/ (=™ — y);
lift to R[z]ly]/(y*" +y" + 1); map to (R[z]/(z*"* + 2" + 1)[y]/(y*" + y" + 1).
Notice that #™* is a 3rd root of 1 in R[z]/(z*"* + 2™ 4+ 1). Also notice that
y2n + yn +1= (yn - xnk)(yn . xZnIc).

The radix-3 Nussbaumer trick: map
Rlz]/ (2™ 4 2™ 1+ 1) = (Rly]/(y*"* +y"™* +1)[a]/(a™ — y);
lift to (R[y]/(y*"™* +y"™* + 1))[a]; map to (R[y]/(y*"* +y™* +1))[z]/(z*" — 1).
Cyclic variants. The cyclic Schonhage-Strassen trick: map
Z/(2*™" —1) = (Zly]/(y*" = 1))/(2™ — y);

lift to Z[y]/(y*" —1); map to (Z/(2"* +1))[y]/(y*" — 1).
The cyclic Schonhage trick: map

R[z)/ (@™ — 1) = (Rla)lg)/ (52" — 1)/ (2™ —)
lft to Rfz][y)/ (4" — 1); map to (Rle)/ (=" + 1))[y]/(s*" — 1)

Notes. The idea of mapping Z[x] to (Z/t)[x], with ¢ selected so that Z/t would
have appropriate roots of 1 for the FFT, was independently published by Pollard
in [77], by Nicholson in [74, page 532], and by Schénhage and Strassen in [90].

Pollard and Nicholson considered “small” ¢, preferably small enough to fit into
a few machine words. (Apparently Strassen discovered the same idea in 1968 but
did not publish it.) Pollard suggested taking t = pipaps, with pi, po, p3 distinct
prime numbers congruent to 1 modulo 27, and then using remainder arithmetic
modulo py, pe, and p3. There is a 277 !st root of —1 in Z/t. (GRH implies that
the smallest prime congruent to 1 modulo 27 is at most 2(27 log27)2. See [5]. This
bound is pessimistic.) In [78], Pollard suggested using primes of the form 2¢ —27 +1
to simplify divisions. Pollard also suggested using a ring of the form Z/p?, with
elements written in base p. ,

Schonhage and Strassen in [90, section 4] suggested taking t = 2%’ +1; 2 is a
27th root of —1 in Z/t. Schénhage later observed that 23¢ — 2¢ is a 2771st root of
—1, with ¢ = 2772,

MULTIDIGIT MULTIPLICATION FOR MATHEMATICIANS 11

320 + 1ot + 422 + 123 + 52t + 925 + 22° + 627 € R[z]/(2® + 1)
— (Rlyl/(y* +1))[2]/(2* —)
(éy() +4y1 + 5y2 —|—2y3)a:0
+(Ly° + 1y' + 9y + 6y°)a!
+(0y° + 0y + 0y + 0y*)a?
+(0y° +0y* +0y* + 0y*)2? € (R[y]/(y* +1))[z]/(a* — 1)

FIGURE 4. Nussbaumer’s trick.

Schonhage’s trick was published by Schénhage in [87] and a few years later by
Turk in [102, section 2|. Nussbaumer’s trick was published by Nussbaumer in
[75]. Schonhage’s trick has the advantage of being cache-friendly; compare Figure
3 and Figure 4. Nussbaumer’s trick has the advantage of using slightly smaller
ring extensions. For example, Nussbaumer’s trick can convert R[z]/(x%536 + 1)
to (Rly]/(y?°® + 1))[x]/(x%1? — 1), while Schénhage’s trick cannot do better than
(Rle)/ (%2 +1))[y] /(4™ + 1).

The radix-3 Schonhage trick was pointed out in [87]. The radix-3 Nussbaumer
trick was pointed out by Cantor and Kaltofen in [25]. Beware that the details in
[87] and [25] are unnecessarily inefficient: [87] applies the radix-3 FFT to y3" — 1
rather than 3?" 4+ y™ + 1, and [25] does most arithmetic modulo y3"¥ — 1 rather
than y2"* + y™* 4+ 1.

In [90] the parameters m, n, k were severely restricted. A more flexible form of the
Schonhage-Strassen trick was pointed out by Schonhage in [88, section 1]. Further
generalizations do not seem to have been explored in the literature. In particular,
the cyclic variants of the Schonhage-Strassen and Schonhage tricks seem to be new.

According to [16, pages 91-94], Karp proposed the following variant of the
Schénhage-Strassen trick. Start with m?-bit numbers; map Z to Z[y]/(2™ — y)
and lift to Z[y]; map to (Z/(2°™ + 1)m)[y]/(y*™ — 1); do remainder arithmetic
modulo m and 2™ + 1. (Remainder arithmetic was used the same way in [90].)
The Schonhage-Strassen trick expands the input by a factor of 2, while Karp’s
variant expands the input by a factor of 4.

The idea of the techniques in this section is to extend the base ring to contain
appropriate roots of 1 for an FFT. A smaller extension suffices if R already contains
some roots of 1. For example, 2 is a 215th root of —1 in Z/t for t = 1214251009, so
y is a 222nd root of —1 in (Z/t)[y]/(y'?® — 2). For further discussion see [66], [67],
and [68]. In extreme cases R already supports the desired FFT and no extension
is necessary.

Notes on the complex FFT. In [90], Schonhage and Strassen also suggested
mapping Z[z] to Clz], and using the FFT to compute an approximate product in
C[z]. This method requires calculations in C[x] sufficiently precise to determine
results in Z[z]. There are many analyses of FFT round-off error in the literature;
see, e.g., [13, page 252], [42, page 570], [56], [57, pages 293-294], [90, section 3], or
[101]. One can save time and space with Bergland’s real-input FFT; see [10].

An uncountable topological ring, such as R or C, is approximated inside a
computer by a countable dense subring, such as Q or Q[z]/(z? + 1). The most
common approximation to R is the set of floating-point numbers, i.e., rationals
with power-of-2 denominators; see, e.g., [12]. Then R[z]/(z? + 1) represents C.

12 DANIEL J. BERNSTEIN

Dubois and Venetsanopoulos in [32] suggested an alternative for the radix-3 FFT,
namely R[z]/(z? + x + 1); compare this to Schonhage’s trick. Martens in [69)
suggested R[z]/(z? — x + 1). Cozzens and Finkelstein in [30] pointed out the
following alternative: Z[x]/(xz* + 1) is dense in C.

One can multiply in Z/(2%9536 — 1) as follows. Map to the isomorphic ring
(Z[z]/(z*0%% — 1))/(232 — z); lift to Z[z]/(2*°?% — 1); map to Clz]/(2*0% —1);
apply the FFT. The product can be recovered from approximate FFT results.
Crandall and Fagin in [31] observed that the same technique can be applied to,
e.g., Z/(270001 _ 1) as follows. Let A be the set of algebraic integers in C. Map
Z/(270901 — 1) to A/(279901 — 1); map to (A[z]/(2*%% —1))/(a —), where a =
270001/409. 1ift to A[x]/(x*% — 1); apply the FFT as before. The polynomials

in Afz]/(z%% — 1) can be stored as integer vectors (cy,...,cs095) Tepresenting
S ¢, 237271 mod 4096)/4096 ;0.

10. CLASSICAL MULTIPLICATION

Let R be a ring. Let a = > a;2° and b = > bjz’/ be polynomials in R[z].
Classical multiplication means computing ab directly from its definition: ab =
Y j a;b; z'tJ. Classical multiplication uses at most n? multiplications in R, and
n(n — 1) additions in R, if @ and b have degree under n.

Notes. See [57, section 4.3.1] for a discussion of the classical algorithms for multi-
digit integer arithmetic.

11. THE CANTOR-KALTOFEN THEOREM

Let a,b be polynomials over any ring. Here is an essentially-linear-time method
to compute ab. Nussbaumer’s trick plus the FFT, applied recursively, produces ab
times a certain power of 2; see Theorem 11.1. The radix-3 Nussbaumer trick plus
the radix-3 FF'T, applied recursively, produces ab times a certain power of 3; see
Theorem 11.2. But 2 and 3 are coprime, so ab is a certain integer combination of
the results; see Theorem 11.3.

Theorem 11.1. Let R be a ring. Let e > 0 and m > 1 be integers with 267l «em <
2¢. There is an algorithm that, given a,b € R[z]/(z*" + 1), computes 2" 1ab
with 2T multiplications in R and at most 2™ (2¢(3e + 8) — 7) additions in R.

Here elements of R[z]/(22" 4 1) are represented by polynomials of degree under
2™, Note that subtractions are counted as additions.

Proof. Induct on e. If e = 0 then m = 1 so 2mte~1 = 1, 2mtetl — 4 and
2(2¢(3e+8) — 7) = 2. Classical multiplication produces ab with 4 multiplications
and 2 additions.

If e > 1, define k = [m/2]. Note that 2¢72 < k < 2¢~ 1, Write K = 2%, M = 2™,
and E = 2°. Define A = R[y]/(y® +1). Observe that A has an (M/K)th root of
—1, namely vy if m is even or y? if m is odd.

The multiplication procedure has five steps. First, apply Nussbaumer’s trick.
Map R[z]/(z™ + 1) to Afz]/(zM/K — y); lift to Alz]; map to Afz]/(x2M/K — 1),
This involves data shuffling with no arithmetic.

Second, apply the FFT over A, with y or y? as the (M/K)th root of —1. To
compute t + y'u for t,u € A takes just K additions in R, so the entire FFT takes
2M(m — k + 1) additions in R. This is done once for a and once for b.

MULTIDIGIT MULTIPLICATION FOR MATHEMATICIANS 13

Third, multiply recursively in A. By induction, computing a product in A,
scaled by KFE/4, takes K E multiplications in R and at most K ((E/2)(3e+5) —7)
additions in R. There are 2M /K such products.

Fourth, undo the FFT. This uses another 2M (m—k+1) additions in R. The final
division by 2M /K, necessary to invert the FFT, may not be doable in R; skip it.
The result is the product in A[z]/(x2M/K —1), scaled by (2M/K)(KE/4) = ME/2.

Finally, undo Nussbaumer’s trick. Extract the scaled product in A[x| from the
scaled product in A[z]/(z?™/% —1), and reduce modulo /% — . This reduction
takes fewer than M additions in R.

The total number of multiplications in R is (2M/K)KE = 2ME as claimed.
The total number of additions in R is at most 6 M (m — k + 1) < 3EM + 6M from
the FFT, plus (2M/K)K((E/2)(3e +5) — 7) from the recursion, plus M from the
final reduction, for a total of M times E(3e+5)—14+3E+6+1=FE(3e+8)—7
as claimed. O

Theorem 11.2. Let R be a ring. Let e > 0 and m > 1 be integers with 2°7! <
m < 2¢. There is an algorithm that, given a,b € R[z]/(2%>3" +2°" + 1), computes
3mte=laph with 3m 1272 multiplications in R and fewer than 3™ (2¢(18e + 39) — 26)
additions in R.

Proof. Similar to Theorem 11.1. Define k = [m/2] and A = Ry]/(y>3" + 3" + 1)
for e > 1. Map R[z]/(223" + 23" + 1) to Afz]/(z3" " — y); lift to A[z]; map to
A[ﬁ]/(ngm*k 423" g 1); apply the radix-3 FFT. 0

Theorem 11.3. Let R be a ring. Let n > 7 be an integer. There is an algorithm
that, given polynomials a,b € R[x] with dega+degb < n, computes ab with at most
(8 4+ 36/1g 3)nlgn multiplications in R and at most (12 4+ 54/lg3)nlgnlg(161lgn)
additions in R.

Here lg means logarithm base 2.

Proof. Let m be the smallest integer with 2”* > n, and let [be the smallest integer
with 3! > n/2. Define e = [lgm] and d = [lgl/]. Note that e > 1 and d > 1 so
267l <m—1<lgnand 2971 <1 —1< (Ign)/(1g3).

Compute 2m+¢~1gb by the algorithm of Theorem 11.1, and 3!*9~'ab by the
algorithm of Theorem 11.2. The number of multiplications is 8 -2m~12¢~! < 8nlgn
plus 72 - 31=124=1 < 72(n/2)(Ign)/(lg3). The number of additions is less than
4.2m=12¢=1(1143(e—1)) < 12(nlgn)(4+lglgn) plus 6 - 3 =129 1(57 + 18(d — 1)) <
(54/1g3)(nlgn)(3.5 +1glgn).

There are nonnegative integers u < 2™+¢~1 and v < 3791 such that 341y —
2mte—ly = 1. Compute u3't9 'ab and v2™T* lab by repeated doubling, and
subtract to obtain ab. The reader may verify that the number of additions here is
smaller than 0.5(54/1g 3)nlgn. O

Notes. Theorem 11.3 was proven by Cantor and Kaltofen in [25]. The extreme
generality of this method is pleasant for theoretical purposes, though of dubious
value in practice.

The constants in Theorem 11.3 can easily be improved. One can, for example,
use Karatsuba multiplication for small m in Theorem 11.1 and Theorem 11.2.

14 DANIEL J. BERNSTEIN

12. IMPLEMENTATION NOTES

Optimization. Most of the techniques shown in this paper are “divide and con-
quer” tools: they reduce a large multiplication problem to a set of smaller multipli-
cation problems. It is a mistake to use a single method recursively all the way down
to tiny problems. The optimal algorithm will generally use a different method for
the next level of reduction, a third method for the third level, and so on. In prac-
tice it is convenient to have one procedure for every finite ring, and one procedure
for every input size in every infinite ring, with the optimal code in each procedure
determined experimentally. This structure also makes it easy to allocate temporary
space for each procedure.

Handling numbers of different lengths. Consider the problem of multiplying
an m-bit integer by an n-bit integer, with m much smaller than n. Schonhage has
suggested breaking the n-bit integer into roughly n/m pieces and handling each
piece separately. See [57, exercise 4.3.3-13]. The optimal choice of piece size is
highly implementation-dependent.

Eliminating redundancy. A typical mapping or lifting procedure for computing
ab has the following shape: first transform a, then transform b, then multiply, then
undo the transform. One can record the transformed versions of a and b for reuse
in future products. (This idea was announced in [31, section 9], but it was already
well known in the folklore; see, e.g., [72, section 3.7].)

Saving space. Squaring generally takes somewhat less space than multiplication.
One can use the identity ab = ((a + b)? — (a — b)?)/4 when temporary storage is
limited.

Results. There have been many reports of implementations of multidigit arith-
metic: see, e.g., [6], [31], [60], [72], [79], [89], [116], and [118]. It is difficult to
compare these implementations, since speed varies wildly according to choice of
hardware, choice of language, choice of compiler for high-level languages, and pro-
grammer skill.

REFERENCES

[1] —, AFIPS 1966 Fall Joint Computer Conference, Spartan Books, Washington, 1966.

[2] Ramesh C. Agarwal, James W. Cooley, New algorithms for digital convolution, IEEE Trans-
actions on Acoustics, Speech, and Signal Processing 25 (1977), 392-410.

[3] Alfred V. Aho, John E. Hopcroft, Jeffrey D. Ullman, The design and analysis of computer
algorithms, Addison-Wesley, Reading, Massachusetts, 1974. ISBN 0-201-00029—-6.

[4] Louis Auslander, Ephraim Feig, Shmuel Winograd, New algorithms for the multidimensional
discrete Fourier transform, IEEE Transactions on Acoustics, Speech, and Signal Processing
31 (1983), 388—403.

[5] Eric Bach, Jonathan Sorenson, Ezplicit bounds for primes in residue classes, Mathematics
of Computation 65 (1996), 1717-1735. MR 97a:11143.

[6] David H. Bailey, The computation of m to 29,360,000 decimal digits using Borweins’
quartically convergent algorithm, Mathematics of Computation 50 (1988), 283-296. MR
88m:11114.

[7] David H. Bailey, FFTs in external or hierarchical memory, Journal of Supercomputing 4
(1990), 23-35.

[8] David H. Bailey, Paul N. Swarztrauber, The fractional Fourier transform and applications,
SIAM Review 33 (1991), 389-404. MR 92f:65162.

[9] James K. Beard, An inplace self reordering FFT, in [114] (1978), 632-633.

[10]
[11]
[12]
[13]

[14]

[15]
[16]
[17]
[18]
[19]
[20]
[21]
[22]
[23]
[24]
[25]
[26]

[27]

[28]
[29]

[30]

MULTIDIGIT MULTIPLICATION FOR MATHEMATICIANS 15

Glenn D. Bergland, A fast Fourier transform algorithm for real-valued series, Communica-
tions of the ACM 11 (1968), 703-710.

Glenn D. Bergland, A fast Fourier transform algorithm using base 8 iterations, Mathematics
of Computation 22 (1968), 275-279. MR 37 #2485.

Daniel J. Bernstein, Detecting perfect powers in essentially linear time, Mathematics of
Computation 67 (1998), 1253-1283. MR 98j:11121.

Dario Bini, Victor Y. Pan, Polynomial and matriz computations, volume 1: fundamental
algorithms, Birkhaliser, Boston, 1994. ISBN 0-8176-3786—9. MR 95k:65003.

Leo I. Bluestein, A linear filtering approach to the computation of the discrete Fourier
transform, IEEE Northeast Electronics Research and Engineering Meeting 10 (1968), 218—
219.

Leo 1. Bluestein, A linear filtering approach to the computation of discrete Fourier trans-
form, IEEE Transactions on Audio and Electroacoustics 18 (1970), 451-455.

Allan Borodin, Ian Munro, The computational complexity of algebraic and numeric prob-
lems, Elsevier, New York, 1975. MR 57 #8145.

Jonathan M. Borwein, Peter B. Borwein, Pi and the AGM, Wiley, New York, 1987. ISBN
0-471-83138—-7. MR 89a:11134.

Gilles Brassard, Paul Bratley, Algorithmics: theory and practice, Prentice-Hall, Englewood
Cliffs, New Jersey, 1988. ISBN 0-13-023243-2. MR 90j:68002.

Norman M. Brenner, Fast Fourier transform of externally stored data, IEEE Transactions
on Audio and Electroacoustics 17 (1969), 128-132.

E. Oran Brigham, The fast Fourier transform and its applications, Prentice-Hall, Englewood
Cliffs, New Jersey, 1988. ISBN 0-13-307505—2.

Peter Biirgisser, Michael Clausen, Mohammed Amin Shokrollahi, Algebraic complexity the-
ory, Springer-Verlag, Berlin, 1997. ISBN 3-540-60582—7. MR 99¢:68002.

C. Sidney Burrus, Peter W. Eschenbacher, An in-place, in-order prime factor FFT algo-
rithm, IEEE Transactions on Acoustics, Speech, and Signal Processing 29 (1981), 806-817.
Jacques Calmet (editor), Computer algebra: EUROCAM ’82, Lecture Notes in Computer
Science 144, Springer-Verlag, Berlin, 1982. ISBN 3-540-11607-9. MR 83k:68003.

David G. Cantor, On arithmetical algorithms over finite fields, Journal of Combinatorial
Theory, Series A 50 (1989), 285-300. MR 90f:11100.

David G. Cantor, Erich Kaltofen, On fast multiplication of polynomials over arbitrary al-
gebras, Acta Informatica 28 (1991), 693—-701. MR 92i:68068.

Michael Clausen, Fast generalized Fourier transforms, Theoretical Computer Science 67
(1989), 55-63. MR 91£:68081.

William T. Cochran, James W. Cooley, David L. Favin, Howard D. Helms, Reginald A.
Kaenel, William W. Lang, George C. Maling, Jr., David E. Nelson, Charles M. Rader,
Peter D. Welch, What is the fast Fourier transform?, IEEE Transactions on Audio and
Electroacoustics 15 (1967), 45-55.

James W. Cooley, Peter A. W. Lewis, Peter D. Welch, Historical notes on the fast Fourier
transform, IEEE Transactions on Audio and Electroacoustics 15 (1967), 76-79.

James W. Cooley, John W. Tukey, An algorithm for the machine calculation of complex
Fourier series, Mathematics of Computation 19 (1965), 297-301. MR 31 #2843.

John H. Cozzens, Larry A. Finkelstein, Computing the discrete Fourier transform using
residue number systems in a ring of algebraic integers, IEEE Transactions on Information
Theory 31 (1985), 580-588. MR 86k:94005.

Richard Crandall, Barry Fagin, Discrete weighted transforms and large-integer arithmetic,
Mathematics of Computation 62 (1994), 305-324. MR 94c:11123.

Eric Dubois, Anastasios N. Venetsanopoulos, A new algorithm for the radiz-3 FFT, IEEE
Transactions on Acoustics, Speech, and Signal Processing 26 (1978), 222-225.

Pierre Duhamel, Implementation of “split-radix” FFT algorithms for complex, real, and
real-symmetric data, IEEE Transactions on Acoustics, Speech, and Signal Processing 34
(1986), 285—295. MR 87e:94006.

Pierre Duhamel, Martin Vetterli, Fast Fourier transforms: a tutorial review and a state of
the art, Signal Processing 19 (1990), 259—299. MR 91a:94004.

David M. W. Evans, An improved digit-reversal permutation algorithm for the fast Fourier
and Hartley transforms, IEEE Transactions on Acoustics, Speech, and Signal Processing 35
(1987), 1120-1125. MR 88g:11093.

16

[36]

37]
38)
39]
40]
1]
[42]
43)
[44]
[45]
46]
47]
48]

[49]

[50]

[51]
[52]
[53]
[54]
[55]
[56]
[57]
[58]
[59]
[60]
[61]

[62]

DANIEL J. BERNSTEIN

David M. W. Evans, A second improved digit-reversal permutation algorithm for fast trans-
forms, IEEE Transactions on Acoustics, Speech, and Signal Processing 37 (1989), 1288-
1291.

Warren E. Ferguson Jr., A simple derivation of Glassman’s general N fast Fourier trans-
form, Computers & Mathematics with Applications 8 (1982), 401-411. MR 84b:65138.
Charles M. Fiduccia, Polynomial evaluation via the division algorithm: the fast Fourier
transform revisited, in [85] (1972), 88-93.

Charles M. Fiduccia, Yechezkel Zalcstein, Algebras having linear multiplicative complezities,
Journal of the ACM 24 (1977), 311-331. MR 58 #3675.

Michael J. Fischer, Michael S. Paterson, String-matching and other products, in [55] (1974),
113-125. MR 53 #4612.

Keith O. Geddes, Stephen R. Czapor, G. Labahn, Algorithms for computer algebra, Kluwer,
Boston, 1992. ISBN 0-7923-9259-0. MR 96a:68049.

W. Morven Gentleman, Gordon Sande, Fast Fourier transforms—for fun and profit, in [1]
(1966), 563-578.

J. A. Glassman, A generalization of the fast Fourier transform, IEEE Transactions on
Computers 19 (1970), 105-116. MR 40 #6804.

Irving J. Good, Random motion on a finite abelian group, Proceedings of the Cambridge
Philosophical Society 47 (1951), 756-762. MR 13,363e.

Irving J. Good, The interaction algorithm and practical Fourier analysis, Journal of the
Royal Statistical Society, Series B 20 (1958), 361-372. MR 21 #1674.

Irving J. Good, The relationship between two fast Fourier transforms, IEEE Transactions
on Computers 20 (1971), 310-317.

Markus Hegland, A self-sorting in-place fast Fourier transform algorithm suitable for vector
and parallel processing, Numerische Mathematik 68 (1994), 507-547. MR 96e:65082.
Michael T. Heideman, Don H. Johnson, C. Sidney Burrus, Gauss and the history of the fast
Fourier transform, Archive for History of Exact Sciences 34 (1985), 265—277. MR 87{:01018.
Michael T. Heideman, C. Sidney Burrus, On the number of multiplications necessary to
compute a length-2" FFT, IEEE Transactions on Acoustics, Speech, and Signal Processing
34 (1986), 91-95. MR 87¢:94007.

Howard W. Johnson, C. Sidney Burrus, The design of optimal DFT algorithms using dy-
namic programming, IEEE Transactions on Acoustics, Speech, and Signal Processing 31
(1983), 378-387.

Howard W. Johnson, C. Sidney Burrus, An in-order, in-place radiz-2 FFT, in [107] (1984),
28A.2.1-28A.2.4.

Howard W. Johnson, C. Sidney Burrus, On the structure of efficient DF'T algorithms, IEEE
Transactions on Acoustics, Speech, and Signal Processing 33 (1985), 248-254.

Michael Kaminski, An algorithm for polynomial multiplication that does not depend on the
ring constants, Journal of Algorithms 9 (1988), 137-147. MR 89k:68066.

Anatoly A. Karatsuba, Y. Ofman, Multiplication of multidigit numbers on automata, Soviet
Physics Doklady 7 (1963), 595-596.

Richard M. Karp (editor), Complexity of computation, SIAM-AMS Proceedings 7, American
Mathematical Society, Providence, Rhode Island, 1974. ISBN 0-8218-1327-7. MR 50 #3631.
William R. Knight, R. Kaiser, A simple fized-point error bound for the fast Fourier trans-
form, IEEE Transactions on Acoustics, Speech, and Signal Processing 27 (1979), 615-620.
Donald E. Knuth, The art of computer programming, volume 2: seminumerical algorithms,
2nd edition, Addison-Wesley, Reading, Massachusetts, 1981.

Dean P. Kolba, Thomas W. Parks, A prime factor FFT algorithm using high-speed convo-
lution, IEEE Transactions on Acoustics, Speech, and Signal Processing 25 (1977), 281-294.
Lydia I. Kronsjo, Algorithms: their complexity and efficiency, 2nd edition, Wiley, New York,
1987. ISBN 0-471-91201-8. MR 90e:68003.

Wolfgang Kuechlin, David Lutz, Nicholas Nevin, Integer multiplication in PARSAC-2 on
stock microprocessors, in [70] (1991), 206-217.

Abraham Lempel, Gadiel Seroussi, Shmuel Winograd, On the complexity of multiplication
in finite fields, Theoretical Computer Science 22 (1983), 285-296. MR, 84c:68031.

Hendrik W. Lenstra, Jr., Robert Tijdeman (editors), Computational methods in number
theory I, Mathematical Centre Tracts 154, Mathematisch Centrum, Amsterdam, 1982. ISBN
90-6196—248-X. MR 84¢:10002.

[63]
[64]
[65]
[66]

[67]

MULTIDIGIT MULTIPLICATION FOR MATHEMATICIANS 17

John D. Lipson, Elements of algebra and algebraic computing, Addison-Wesley, Reading,
Massachusetts, 1981. ISBN 0-201-04115—-4. MR, 83f:00005.

Charles van Loan, Computational frameworks for the fast Fourier transform, Society for In-
dustrial and Applied Mathematics, Philadelphia, 1992. ISBN 0-89871-285-8. MR 93a:65186.
A. M. Macnaghten, Charles A. R. Hoare, Fast Fourier transform free from tears, The
Computer Journal 20 (1977), 78-83.

Jean-Bernard Martens, Number theoretic transforms for the calculation of convolutions,
IEEE Transactions on Acoustics, Speech, and Signal Processing 31 (1983), 969-978.
Jean-Bernard Martens, Marc C. Vanwormhoudt, Convolution using a conjugate symmetry
property for number theoretic transforms over rings of regular integers, IEEE Transactions
on Acoustics, Speech, and Signal Processing 31 (1983), 1121-1125.

Jean-Bernard Martens, Marc C. Vanwormhoudt, Convolution of long integer sequences by
means of number theoretic transforms over residue class polynomial rings, IEEE Transac-
tions on Acoustics, Speech, and Signal Processing 31 (1983), 1125-1134. MR 85m:94016.
Jean-Bernard Martens, Recursive cyclotomic factorization—a new algorithm for calculat-
ing the discrete Fourier transform, IEEE Transactions on Acoustics, Speech, and Signal
Processing 32 (1984), 750-761. MR 86b:94004.

Harold F. Mattson, Jr., Teo Mora, Thammavaram R. N. Rao (editors), Applied algebra,
algebraic algorithms and error-correcting codes 9, Lecture Notes in Computer Science 539,
Springer-Verlag, Berlin, 1991. ISBN 3-540-54522-0. MR 94b:68002.

Gerhard Merz, Fast Fourier transform algorithms with applications, in [106] (1983), 249-
278. MR 85g:65128.

Peter L. Montgomery, An FFT extension of the elliptic curve method of factorization,
dissertation, University of California, Los Angeles, 1992.

Bernard M. E. Moret, Henry D. Shapiro, Algorithms from P to NP, volume 1: design and
efficiency, Benjamin/Cummings, Redwood City, CA, 1990. ISBN 0-8053—-8008—6.

Peter J. Nicholson, Algebraic theory of finite Fourier transforms, Journal of Computer and
System Sciences 5 (1971), 524-547. MR 44 #4112.

Henri J. Nussbaumer, Fast polynomial transform algorithms for digital convolution, IEEE
Transactions on Acoustics, Speech, and Signal Processing 28 (1980), 205-215. MR
80m:94004.

Marshall C. Pease, An adaptation of the fast Fourier transform for parallel processing,
Journal of the ACM 15 (1968), 252—-264.

John M. Pollard, The fast Fourier transform in a finite field, Mathematics of Computation
25 (1971), 365-374. MR 46 #1120.

John M. Pollard, Implementation of number-theoretic transforms, Electronics Letters 12
(1976), 378-379. MR 54 #7099.

Carl G. Ponder, Parallel multiplication and powering of polynomials, Journal of Symbolic
Computation 11 (1991), 307-320. MR 92f:68079.

Lawrence R. Rabiner, R. W. Schafer, Charles M. Rader, The chirp-z transform algorithm,
IEEE Transactions on Audio and Electroacoustics 17 (1969), 86-92.

Charles M. Rader, Discrete Fourier transforms when the number of samples is prime, Pro-
ceedings of the IEEE 56 (1968), 1107-1108.

Robert W. Ramirez, The FFT: fundamentals and concepts, Prentice-Hall, Englewood Cliffs,
New Jersey, 1985. MR 87j:94002.

Juan M. Rius, R. De Porrata-Doria, New FFT bit-reversal algorithm, IEEE Transactions
on Signal Processing 43 (1995), 991-994.

Jeffrey J. Rodriguez, An improved FFT digit-reversal algorithm, IEEE Transactions on
Acoustics, Speech, and Signal Processing 37 (1989), 1298-1300.

Arnold L. Rosenberg (chairman), Fourth annual ACM symposium on theory of computing,
Association for Computing Machinery, New York, 1972. MR 50 #1553.

Arnold Schénhage, Multiplikation grofier Zahlen, Computing 1 (1966), 182-196. MR 34
#8676.

Arnold Schonhage, Schnelle Multiplikation von Polynomen iber Koérpern der Charakteristik
2, Acta Informatica 7 (1977), 395-398. MR 55 #9604.

Arnold Schonhage, Asymptotically fast algorithms for the numerical multiplication and di-
vision of polynomials with complex coefficients, in [23] (1982), 3—-15. MR 83m:68064.

18

[89]

[107]
[108]
[109]
[110]
[111]
[112]

[113]

[114]

[115]

DANIEL J. BERNSTEIN

Arnold Schonhage, Andreas F. W. Grotefeld, Ekkehart Vetter, Fast algorithms: a multitape
Turing machine implementation, Bibliographisches Institut, Mannheim, 1994. ISBN 3-411-
16891-9. MR 96¢:68043.

Arnold Schénhage, Volker Strassen, Schnelle Multiplikation grofSer Zahlen, Computing 7
(1971), 281-292. MR 45 #1431.

Robert Sedgewick, Algorithms, 2nd edition, Addison-Wesley, Reading, Massachusetts, 1988.
ISBN 0-201-06673-4.

Richard C. Singleton, On computing the fast Fourier transform, Communications of the
ACM 10 (1967), 647-654.

Richard C. Singleton, A method for computing the fast Fourier transform with auziliary
memory and limited high-speed storage, IEEE Transactions on Audio and Electroacoustics
15 (1967), 91-97.

Richard C. Singleton, An algorithm for computing the mized radiz fast Fourier transform,
IEEE Transactions on Audio and Electroacoustics 17 (1969), 93—-103.

Jeffrey D. Smith, Design and analysis of algorithms, PWS-Kent, Boston, 1989. ISBN 0—
534-91572—-8. MR 91h:68002.

Henrik V. Sorenson, Michael T. Heideman, C. Sidney Burrus, On computing the split-radiz
FFT, IEEE Transactions on Acoustics, Speech, and Signal Processing 34 (1986), 152-156.
Ryszard Stasinski, The techniques of the generalized fast Fourier transform algorithm, IEEE
Transactions on Signal Processing 39 (1991), 1058-1069.

Clive Temperton, Self-sorting in-place fast Fourier transforms, SIAM Journal on Scientific
and Statistical Computing 12 (1991), 808-823. MR 92a:65358.

Richard Tolimieri, Myoung An, Chao Lu, Algorithms for discrete Fourier transform and
convolution, Springer-Verlag, New York, 1989. ISBN 0-387-97118-1. MR 93i:65131.
Andrei L. Toom, The complexity of a scheme of functional elements realizing the multipli-
cation of integers, Soviet Mathematics Doklady 3 (1963), 714-716.

Nai-Kuan Tsao, The equivalence of decimation in time and decimation in frequency in FFT
computations, Journal of the Franklin Institute 324 (1987), 43—63. MR 88h:65255.
Johannes W. M. Turk, Fast arithmetic operations on numbers and polynomials, in [62]
(1982), 43-54. MR 84£:10006.

Mark L. Uhrich, Fast Fourier transforms without sorting, IEEE Transactions on Audio and
Electroacoustics 17 (1969), 170-172.

Martin Vetterli, Pierre Duhamel, Split-radix algorithms for length-p™ DFT’s, IEEE Trans-
actions on Acoustics, Speech, and Signal Processing 37 (1989), 57-64. MR, 89k:94007.
James S. Walker, A new bit reversal algorithm, IEEE Transactions on Acoustics, Speech,
and Signal Processing 38 (1990), 1472-1473.

Helmut Werner, Luc Wuytack, Esmond Ng, Hans J. Biinger (editors), Computational as-
pects of complex analysis, D. Reidel, Dordrecht, Holland, 1983. ISBN 90-277-1571-8. MR
84h:65004.

Stanley A. White (chairman), 1984 international conference on acoustics, speech, and signal
processing, Institute of Electrical and Electronics Engineers, New York, 1984.

Herbert S. Wilf, Algorithms and complexity, Prentice-Hall, Englewood Cliffs, New Jersey,
1986. ISBN 0-13-021973-8. MR 88j:68073.

Franz Winkler, Polynomial algorithms in computer algebra, Springer-Verlag, Wien, 1996.
ISBN 3-211-82759-5. MR 97j:68063.

Shmuel Winograd, On the number of multiplications necessary to compute certain functions,
Communications on Pure and Applied Mathematics 23 (1970), 165-179. MR 41 #4778.
Shmuel Winograd, On computing the discrete Fourier transform, Mathematics of Compu-
tation 32 (1978), 175-199.

Shmuel Winograd, On the multiplicative complexity of the discrete Fourier transform, Ad-
vances in Mathematics 32 (1979), 83-117. MR 80e:68080.

Shmuel Winograd, Arithmetic complexity of computations, CBMS-NSF Regional Confer-
ence Series in Applied Mathematics 33, Society for Industrial and Applied Mathematics,
Philadelphia, 1980. ISBN 0-89871-163—-0. MR 81k:68039.

Rao Yarlagadda (chairman), 1978 international conference on acoustics, speech, and signal
processing, Institute of Electrical and Electronics Engineers, New York, 1978.

Angelo A. Yong, A better FFT bit-reversal algorithm without tables, IEEE Transactions on
Signal Processing 39 (1991), 2365—-2367.

MULTIDIGIT MULTIPLICATION FOR MATHEMATICIANS 19

[116] Jeff Young, Duncan A. Buell, The twentieth Fermat number is composite, Mathematics of
Computation 50 (1988), 261-263. MR 89b:11012.

[117] Shalhav Zohar, A prescription of Winograd’s discrete Fourier transform algorithm, IEEE
Transactions on Acoustics, Speech, and Signal Processing 27 (1979), 409-421. MR
81a:94011.

[118] Dan Zuras, More on squaring and multiplying large integers, IEEE Transactions on Com-
puters 43 (1994), 899-908.

DEPARTMENT OF MATHEMATICS, STATISTICS, AND COMPUTER SCIENCE (M/C 249), THE UNI-
VERSITY OF ILLINOIS AT CHICAGO, CHICAGO, IL 60607-7045
Email address: djb@pobox.com

