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ABSTRACT. Kronecker matrices are a simple axiomatization of successive convergents
to a rational function. This paper develops the basic theory of Kronecker matrices,
including the best-approximation property, composition, division, Euclid’s algorithm,
Lehmer’s lemma, the Brent-Gustavson-Yun algorithm, and the Berlekamp-Massey
algorithm.

1. INTRODUCTION

This paper has two purposes. The first is to show how continued fraction theory
for polynomials can be developed from the concept of a Kronecker matrix, which
characterizes successive convergents to a rational function. The second is to serve
as a reference for the Brent-Gustavson-Yun algorithm, which quickly computes any
desired convergent, or even the entire continued fraction, for a rational function.

In section 2, I define Kronecker matrices and prove that they are essentially
unique at each degree. I also prove a strong best-approximation property.

In section 3, I present a composition law for Kronecker matrices.

In section 4, I prove the existence of Kronecker matrices at every degree. The
construction is Euclid’s algorithm.

In section 5, I present Lehmer’s trick and the Brent-Gustavson-Yun algorithm
for constructing Kronecker matrices. Given fast polynomial arithmetic, the Brent-
Gustavson-Yun algorithm is much faster than Euclid’s algorithm.

In section 6, I explain two applications of Kronecker matrices.

Notation. This paper works with polynomials in one variable, z, over a field. The
degree of 0 is —co. A constant means a polynomial of degree at most 0. If p is
a polynomial and m is a nonnegative integer, there is a unique polynomial f such
that deg(p — 2™ f) < m; this polynomial is denoted |p/z™]. If degp > m then
deg |p/z™| = degp — m; if degp < m then deg |p/z™| = —c0.
2. KRONECKER MATRICES AND THE BEST-APPROXIMATION PROPERTY

Let a, b be polynomials with deg a > degb. For n > 0, a Kronecker matrix for
(a,b) at degree n is a matrix ;}, :, such that vu'—v'u = 1, degu < degu’ < n,
and deg(v'a + u'd) < dega — n.
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Theorem 2.2 states a fundamental best-approximation property of Kronecker
matrices: —v/u is the closest fraction to b/a with denominator of degree under
degu’. The Kronecker matrix at degree n is essentially unique; see Theorem 2.3.
The existence of Kronecker matrices is proven in section 4.

For brevity I will write (:}], :j,) as ((v,u), (v',u")).

Theorem 2.1. Let a,b be polynomials with dega > degb. Let ((v,u), (v',u')) be a
Kronecker matriz for (a,b) at degree n. Then degu’ + deg(va + ub) = dega.

Thus deg(v'a + u'b) < dega — n < deg(va + ub) < dega — degu.

Proof. First u'(va + ub) — u(v'a + u'b) = (v'v — wv’)a = a. Second degu < n and
deg(v'a + u'b) < dega — n so degu(v'a + u'd) < dega. Thus degu'(va + ub) =
dega. O

Theorem 2.2 (the best-approximation property). Let a,b be polynomials
with dega > degb. Define D = dega. Let ((v,u), (v',u')) be a Kronecker matriz
for (a,b). Let f,g be polynomials with deg f < degu’ and deg(ga+ fb) < D —degu.
Then there is a polynomial d with f = ud and g = vd.

Proof. Definec=vf—ugandd=1u'g—2'f, so that v'c+ud = f and v'c+vd = g.
Define z = va+ub and '’ = v'a+u'b. Note that degz’ < D—n < D—degu’ = degzx
by Theorem 2.1.

Suppose that ¢ # 0. Then degu'c > degu' > deg f = deg(u'c+ ud), so degu'c =
degud; thus ud # 0 since u'c # 0. Next degc = degd + degu — degu’ < degd
so degex’ < degd + degz’ < degdz. But ga + fb = dz + cz’ so deg(ga + fb) =
degdr = degd+ D — degu’ =degc+ D — degu > D — degu. Contradiction.

Thus ¢ =0, and (f,g) = (u,v)d as claimed. O

Theorem 2.3. Let a,b be polynomials with dega > degb. Let ((v,u), (v',u')) and
((t,s),(t',s") be Kronecker matrices for (a,b) at degree n. Then ((t,s), (At',As")) =
(A, Au), (v',u')) for some invertible constant .

Proof. Write D = dega.

By Theorem 2.1, deg(t'a + s'b) < D —n < deg(va + ub) < D — degu. Suppose
that degs’ < degu’. By Theorem 2.2, there is a polynomial d with s’ = ud and
t' = vd. Then t'a + s'b = d(va + ub) so degd = deg(t'a + s'b) — deg(va + ub) < 0;
thus d = 0, so s’ =t' = 0, contradicting ts’' —t's = 1.

Similarly degu’ < deg s’ is impossible. Thus degu’ = degs’.

Next deg s < degs’ = degu’ and, by Theorem 2.1, deg(ta + sb) = D — degs’ =
D —degv’ < D —degu. By Theorem 2.2, there is a polynomial A with s = u) and
t=vA.

Next A(vs' —t'u) =ts'—t's = 1s0 a = A(vs'—t'u)a = A\(s'(va+ub) —u(t'a+s'D))
and b = A(vs’ — t'u)b = A(v(t'a + s'b) — t'(va + ub)). Thus

via+u'b = AN(v's' — u't")(va + ub) + (vu' — v'u)(t'a + s'b))
= A's" —u't')(va + ub) + A(t'a + s'b).
But deg(v'a+ u'b) and deg A(t'a + s'b) are both under D — n, while deg(va + ub) >

D —n; thus v's' —u't’ = 0. Finally v/ = A(vs' —t'u)u’ = A(vs'v' —v's'u) = As' (vu' —
v'u) = As’ and v' = A(vs’ — t'u)v’ = A(vu't — t'v'u) = A (v’ — ') =M. O
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Notes. The proof of Theorem 2.2 is due in essence to Lagrange, who showed in [7]
that each convergent to the continued fraction for a rational number § is an optimal
approximation to 8. Kronecker proved the same theorem for rational functions in
[6]. Kronecker’s proof relies on only a few properties of successive convergents; my
definition of a Kronecker matrix is simply a statement of those properties.

Lagrange also showed that any good enough approximation to 8 must arise from
the continued fraction for 8. For polynomials, “good enough” means the same as
“optimal,” and Lagrange’s technique implies Theorem 2.3. The observation that
Theorem 2.3 can be proven directly, without continued fractions—in particular,
without polynomial division—appears to be new.

3. COMPOSITION OF KRONECKER MATRICES

Say ((v,u), (v',u')) is a Kronecker matrix for (a,b). Define z = va + ub and
z' = v'a + v'b. Composition says how to obtain further Kronecker matrices for
(a,b) given Kronecker matrices for (z,z').

Theorem 3.1. Let a,b be polynomials with dega > degb. Let ((v,u), (v',u')) be a
Kronecker matriz for (a,b). If u# 0 then degv < degv'.

Proof. By assumption degu > 0 so degu’ > 1. If v # 0 then degwvu’ > 1 >0 =
deg(vu' — v'u) so degvu’ = degv'u so degv = degv’ + degu — degu’ < degv'.
If v = 0 then v’ # 0 so degv = —oo0 < degv’. O

Theorem 3.2. Let a,b be polynomials with dega > degb. Let ((v,u), (v',u’)) be a
Kronecker matriz for (a,b) at degree n. Then degv’ < degu’ + degb — dega.

Proof. If v/ = 0 then deg v’ = —0o0 < degu’ + degb — dega.
If v # 0 then degv'a > dega > dega —n > deg(v'a + u'b) so degv'a = degu'd
so deg v’ = degu’ + degb —dega. [

Theorem 3.3. Let a,b be polynomials with dega > degb. Let ((v,u), (v',u')) be a
Kronecker matriz for (a,b). If u=0 then v' =0 and degv’ = degv = 0.

Proof. vu' = 1 so degv = degu’ = 0. By Theorem 3.2, degv’ < degb — dega <
0. O

Theorem 3.4. Let a,b be polynomials with dega > degb. Let ((v,u), (v',u')) be a
Kronecker matriz for (a,b). Then degv’' < degu' and degv < degu’.

Proof. If u =0 then degv’ < 0 = degv = degu’ by Theorem 3.3.
If u # 0 then deg v < deg v’ by Theorem 3.1; and deg v’ < degu’+degb—dega <
degu’ by Theorem 3.2. [

Theorem 3.5 (composition). Let a,b be polynomials with dega > degb. Let
((v,u), (v',u")) be a Kronecker matriz for (a,b). Define x = va + ub and ' =
v'a+ u'b. Let ((¢,5),(t',s")) be a Kronecker matriz for (z,z') at degree m. Then
the product ((t,s), (t',s"))((v,u), (v',u")) is a Kronecker matriz for (a,b) at degree
m + dega — deg x.

Proof. (1) The original matrices have determinant 1, so their product does too.
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(2) By Theorem 3.4, degt < degs’. Thus degtu < degs'u < degs'u’. Also
degsu' < degs’u’. Thus deg(tu + su’) < degs'v’ = degs’ + dega — degz <
m + dega — deg x by Theorem 2.1.

(3) deg(t'z + s'z’) < degz —m =dega — (m + dega —degz). O

4. EUCLID’S ALGORITHM

There is a Kronecker matrix for (a,b) at every degree n > 0, by Theorem 4.3
below. The construction combines division, as expressed in Theorem 4.2, with
composition.

Theorem 4.1. Let a,b be polynomials with dega > degb. If n < dega — degb
then ((1,0),(0,1)) is a Kronecker matriz for (a,b) at degree n.

In particular, ((1,0),(0,1)) is a Kronecker matrix for (a,0) at every degree.
Proof. 1-0—-0-1=1;deg0=—00 <0=degl <mn;degb<dega—n. O

Theorem 4.2 (division). Let a,b be polynomials with dega > degb. Let q,r be
polynomials with a = bg — r and degr < degb. Define m = dega — degb. Then
((0,1),(—1,q)) is a Kronecker matriz for (a,b) at degree m.

Proof. 0-q—1(—1) =1;degl =0 < m = deggq; degr < degb =dega—m. O

Theorem 4.3. Let a,b be polynomials with dega > degb. Then, for any n > 0,
there is a Kronecker matriz for (a,b) at degree n.

Proof. Define m = dega — degb.

If n < m then ((1,0),(0,1)) works by Theorem 4.1.

If n > m then b # 0 so there are polynomials ¢,r with a = bg — r and degr <
degb. By Theorem 4.2, ((0,1),(—1, ¢)) is a Kronecker matrix for (a,b) at degree m.
By induction there is a Kronecker matrix for (b,r) at degree n — m < n. Thus, by
Theorem 3.5, there is a Kronecker matrix for (a, b) at degree n—m+dega—degb =
n. O

Notes. The construction in Theorem 4.3 is Euclid’s algorithm: divide a by b,
divide b by the remainder, and so on; from the quotients ¢ build the matrices
((0,1),(—1,q)); multiply to obtain the desired Kronecker matrix. Simon Stevin
observed in 1585 that Euclid’s algorithm can be applied to polynomials over a field.

5. LEHMER’S LEMMA

This section describes a different way to construct a Kronecker matrix for (a, b)
at degree n. For n < dega — degb, the identity matrix works by Theorem 4.1. For
n > deg a—degb, there are two possibilities, stated in Theorem 5.3 and Theorem 5.6.
The construction uses Lehmer’s lemma, as expressed in Theorem 5.2, together
with division and composition.

Theorem 5.1. Let a,b be polynomials with dega > degb. Let n be an integer with
0 < n < dega. Define i = dega —n. Define f = |a/z'| and g = |b/z"|. Then
deg f =n > degg.

Proof. By assumption dega > i so deg f = dega — ¢ = n; and degg < degb—1i <
dega —i. O
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Theorem 5.2 (Lehmer’s lemma). In the situation of Theorem 5.1, let m be an
integer with 0 < m < n/2, and let ((v,u), (v',u')) be a Kronecker matriz for (f,g)
at degree m. Then ((v,u), (v',u")) is a Kronecker matriz for (a,b) at degree m.

Thus the Kronecker matrix for (a,b) at degree m is determined by the first
2m + 1 coefficients of a and the corresponding coefficients of b. In practice m is
always selected as |n/2].

Proof. Write D = dega. By assumption 2m <n=D —isom+1¢ < D —m. Now
vat+u'b = (2 fra—2'f)+u' (2g+b—2tg) = 2H (v f+ug)+v (a—2t f )+ (b—2g).
It suffices to show that z¢(v'f + u'g), v'(a — 2'f), and /(b — 2%g) all have degree
smaller than D —m: (1) deg(v'f+u'g) <n—m = D—i—msodegz(v'f+u'g) <
D—m. (2) degu' <msodegu'(b—2'g) <m+i<D-—m. (3)degv’ < degu’ <m
by Theorem 3.4 so degv'(a — 2'f) <m+i<D-m. O

Theorem 5.3. In the situation of Theorem 5.2, define ' = v'a+u'b, and assume
that degz’ < i. Then ((v,u), (V',u')) is a Kronecker matriz for (a,b) at degree n.

Proof. deg(v'a+ u'b) = degz’ < i = dega — n by assumption. O

Theorem 5.4. In the situation of Theorem 5.2, define 2’ = v'a+u'b, and assume
that deg x’ > i. Define x = va+ub. Let q and r be polynomials such that t = z'q—r
and degr < degx’. Then the product ((0,1),(—1,q))((v,u), (v',u')) is a Kronecker
matriz for (a,b) at degree dega — dega’.

Proof. By Theorem 2.1, degz > degz’. By Theorem 4.2, ((0,1),(-1,q)) is a
Kronecker matrix for (z,z') at degree degz — degz’. Thus, by Theorem 3.5,
((0,1),(-1,¢))((v,uw), (v',u')) is a Kronecker matrix for (a,b) at degree degz —
degz’ + dega — degac =dega —dega’. O

Theorem 5.5. In the situation of Theorem 5.4, define k = max{0,2i — degz'}.
Then 0 < k < degx’.

Proof. degz' > i by assumption so degz’ > 2: —degz’. O

Theorem 5.6. In the situation of Theorem 5.5, define F = L 1) 2" J, = Lr/sz,
and j = degz’ —i. Then degF > degG. Furthermore, let ((t,s),(t',s')) be a
Kronecker matriz for (F,G) at degree j. Then the product

(e )G D6 )

is a Kronecker matriz for (a,b

)
Proof. 1 will show that ((¢,s), (¢, s')) is a Kronecker matrix for (z',r) at degree j.
Then, by Theorem 3.5, ((¢,s), (t,5'))((0,1), (-1, ¢))((v,u), (v',u')) is a Kronecker
matrix for (a,b) at degree j + dega — dega: =dega — 1 = n as claimed.

Easy case: k= 0. Then (F,G) = (z',r) so there is nothing to prove.

Hard case: k = 2i — degz’. In Theorem 5.1 and Theorem 5.2, substitute
z,r,F,G,k,j,t, s,t,s dega’ —k for a,b, f,g,7,m,v,u,v’, v, n respectively. Then,
by Theorem 5.1, deg F = degz’ — k > degG. Note that 2j = 2degz’ — 21 =
degz’ — k = deg F. Thus, by Theorem 5.2, ((¢,s), (t,s)) is a Kronecker matrix for
(z',r) at degree 5. O

at degree n.
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Notes. The construction in Theorem 5.6 has a long and checkered history.

Lehmer observed in [8] that the first few iterations of Euclid’s algorithm are
determined by the first few digits of the inputs. With fast polynomial multiplication
and division, and with optimal parameter choices, Lehmer’s algorithm produces
ged {a, b} in essentially linear time.

Unfortunately, Lehmer did not know about fast multiplication. Schénhage, in
[11], was the first to point out that gcd {a, b} can be computed quickly. Schénhage
also observed that the entire continued fraction for b/a can be computed at about
the same speed. (Every matrix is built up as a product of matrices ((0,1), (-1, q)).
The ¢’s are the quotients in the continued fraction.)

Both Lehmer and Schonhage focused on integers. In [9], Moenck translated
Schénhage’s algorithm from integers to polynomials, eliminating many boundary
cases that do not show up for polynomials. Moenck also claimed, incorrectly, that
his algorithm would work for integers.

Moenck’s algorithm was then repeated and oversimplified by Aho, Hopcroft,
and Ullman in [2]. According to [3], the algorithm stated in [2] does not always
successfully compute Kronecker matrices.

In [3], Brent, Gustavson, and Yun pointed out a generalization and two speedups
of Moenck’s algorithm. See below for a discussion of the generalization. The first
speedup was to apply Lehmer’s lemma to the second recursive Kronecker call—
the construction of ((¢,s),(t',s')) in Theorem 5.6—as well as the first. (To see
the algorithm without this speedup, replace k by 0 in Theorem 5.6.) The second
speedup is based on the observation that, after computing a Kronecker matrix
((v,u), (v',u")) for (a,b), one almost always calculates va + ub and v'a + u'b. It is
worth integrating this calculation into each of the Kronecker matrix constructions
to take advantage of common subexpressions. (For Euclid’s algorithm, this speedup
was already standard practice. See [5, page 325].)

To explain how Moenck’s algorithm was generalized, I'll introduce a bit of ter-
minology: a middle Kronecker matrix for (a,b) means one at degree |(dega)/2],
and a final Kronecker matrix for (a,b) means one at degree dega. Notice that, for
middle computations, both of the recursive Kronecker calls are also middle: m is
always taken as |(deg f)/2] in Theorem 5.2, and k = 2; — degz’ so j = (deg F')/2
in Theorem 5.6. On the other hand, for final computations, the first recursive call
is middle while the second is final: i =0so k =0 and j =dega’ =degF.

Moenck was interested in computing a final Kronecker matrix so as to compute
gcd {a, b}; see Theorem 6.1 below. He stated an algorithm for middle Kronecker
matrices, which called itself twice, and an algorithm for final Kronecker matrices,
which called the middle algorithm and then called itself.

The Brent-Gustavson-Yun algorithm can compute any desired Kronecker matrix,
not just middle and final matrices. The generalized algorithm was neither stated
nor proven in [3]. According to the rough outline in [3], there is a “pre-middle” piece
and a “post-middle” piece. In my description I have unified these two pieces. My
version should be slightly faster than the original Brent-Gustavson-Yun algorithm
in the “post-middle” range.

In [10], much later than but independently of [3], Montgomery stated and proved
a similar generalization of Moenck’s algorithm, including a “pre-middle” algorithm
with the second Brent-Gustavson-Yun speedup. It is interesting to observe that
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Montgomery’s theorem makes no reference to continued fractions; Montgomery
showed that the result is (in my language) a Kronecker matrix.

6. APPLICATIONS OF KRONECKER MATRICES

In this section I survey the most common applications of Kronecker matrices:
computing greatest common divisors and finding linear recurrences.

Theorem 6.1. Let a,b be polynomials with dega > degb. Let ((v,u), (v',u’)) be
a Kronecker matriz for (a,b) at degree n. If n > dega then va + ub is a greatest
common divisor of {a,b}.

Proof. By assumption deg(v'a + u'b) < dega—n < 0 so v'a + u'b = 0. Thus
a = (va +ub) and b =v'(va+ ub). O

Theorem 6.2. Let b be a polynomial with degb < 2n. Let f be a polynomial
with 0 < deg f < n such that coefficient k of fb is 0 for degf < k < 2n. Let
((v,u), (v',u')) be a Kronecker matriz for (2°",b) at degree n. Then degu' < deg f,
and coefficient k of u'b is 0 for degu’ < k < 2n.

In other words, if there is any recurrence of degree at most n for the lowest 2n
coefficients of b, then ' is a recurrence of minimal degree.

Proof. By assumption fb = h (mod 22") for some polynomial A with deg h < deg f.
Say h = g2®" + fb.

Define 2 = v22" +ub and &’ = v/22" +u'b. By Theorem 2.1, degz’ < n < deg z.

Note that degh < n < 2n — degu. Suppose that deg f < degu’. By Theorem
2.2, there is a polynomial d with (f,h) = (u,z)d. But f is nonzero, so d is nonzero,
so deg h > degx > n; contradiction. Thus deg f > degu'.

Suppose that degz’ > degu’. Find polynomials q,r with z = gz’ — 7, degr <
degz’. By Theorem 4.2, ((0,1), (-1, ¢)) is a Kronecker matrix for (z,z') at degree
degz — dega’. Define t' = ¢qv' — v and s’ = qu’ — u. Then ((v',v),(t,s")) =
((0,1),(-1,9)((v,w), (v',u')). By Theorem 3.5, ((v,u'),(t,s')) is a Kronecker
matrix for (22", b) at degree 2n —degz’. By Theorem 2.1, deg s’ = 2n —deg(v' 22" +
u'b) = 2n — degx’ > n > deg f. Furthermore deg(gz>" + fb) = degh < deg f <
n < 2n — degw’. By Theorem 2.2, there is a polynomial d with (f,h) = (v/,2)d.
But then degz’ — degu’ = degh — deg f < 0. Contradiction.

Thus degz’ < degu’. For k < 2n, coefficient k of u'b is the same as coefficient k
of z’, which is 0 for k > degv’. O

Notes. Euclid’s algorithm for the construction in Theorem 6.2, with the standard
algorithm for polynomial division, and with all polynomials reversed from left to
right, is generally known as the “Berlekamp-Massey algorithm.” See [4] for some
background and [12] for a crucial application.

One can carry out the construction in Theorem 6.2 without knowing whether
there is a small recurrence for the coefficients of b. If v’ is a recurrence—i.e., if
deg 2’ < degu'—then, by Theorem 6.2, it is the minimal recurrence. Otherwise, by
Theorem 6.2 again, every recurrence must have degree larger than n. In the latter
case, one can find the minimal recurrence by doing one more division step, as in
the proof of Theorem 6.2.
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