COMPOSING POWER SERIES OVER A FINITE RING IN ESSENTIALLY LINEAR TIME

DANIEL J. BERNSTEIN

ABSTRACT. Fix a finite commutative ring R. Let u and v be power series over R, with v(0)=0. This paper presents an algorithm that computes the first n terms of the composition u(v), given the first n terms of u and v, in $n^{1+o(1)}$ ring operations. The algorithm is very fast in practice when R has small characteristic.

1. Introduction

Let f be a polynomial over a commutative ring R, and let g be an element of $R[x]/x^n$. The point of this paper is a simple new algorithm to compute f(g) when R has finite characteristic.

For prime characteristic, see section 2. For prime-power characteristic more generally, see section 3. For other characteristics, use the Chinese Remainder Theorem, as in [5, equation 4.3.2–9].

Applications. The problem of computing f(g), under the restrictions deg f < n and g(0) = 0, is known as **order-**n **power series composition**. Here's the point: given power series u and v over R, with v(0) = 0, define $f = u(z) \mod z^n$ and $g = v(x) \mod x^n$; then $f(g) = u(v(x)) \mod x^n$.

Power series composition is the bottleneck in **reversion** and **iteration** of power series. See [2] and [5, section 4.7].

Previous work. Brent and Kung describe two power series composition algorithms in [2]. The first algorithm computes f(g) in n^{α} ring operations for some $\alpha > 1.5$, depending on the speed of matrix multiplication. This algorithm can be applied to the more general problem of **modular composition**; see [4]. The second algorithm computes f(g) in about $n^{1.5}$ ring operations, provided that g' is invertible and that all primes up to about \sqrt{n} are cancellable in R.

My algorithm takes $n^{1+o(1)}$ ring operations if R is fixed. It is the method of choice for power series composition over rings whose characteristic is a product of small primes; in particular, fields of small prime characteristic. The second Brent-Kung algorithm remains the fastest method for fields of large prime characteristic.

2. Prime Characteristic

Fix a ring R of prime characteristic p. I will reduce the problem of computing f(g), with deg f < d and $g \in R[x]/x^n$, to a sequence of p subproblems with d and n both reduced by a factor of p. Write $m = \lceil n/p \rceil$.

Date: 19971007.

¹⁹⁹¹ Mathematics Subject Classification. Primary 13P99.

The author was supported by the National Science Foundation under grant DMS-9600083.

Notice that g^p is a polynomial in x^p : there is a polynomial $h \in R[y]/y^m$ with $g^p = h(x^p)$. The coefficient of y^j in h is the pth power of the coefficient of x^j in g. Split f as $f(z) = f_0(z^p) + zf_1(z^p) + \cdots + z^{p-1}f_{p-1}(z^p)$. Compute each $f_j(h)$ recursively by the same procedure; substitute $y \mapsto x^p$ into $f_j(h)$ to obtain $f_j(g^p)$; finally apply Horner's rule to evaluate $f(g) = f_0(g^p) + \cdots + g^{p-1}f_{p-1}(g^p)$.

The recursion stops when d is sufficiently small. For example, f(g) is simply f(0) when d=1.

3. Prime-power characteristic

Fix a ring R of characteristic p^k , with p prime and $k \geq 1$.

Write $A = R[x]/x^n$. Also write $m = \lceil n/p \rceil$ and $B = R[y]/y^m$. Embed B into A by $y \mapsto x^p$; this embedding, which amounts to some copying inside the computer, is not stated explicitly in the following algorithm.

Algorithm C. Given $f \in R[z]$ and $g \in A$, to compute $f(g + \epsilon)$ in the ring $A[\epsilon]/(\epsilon^k, p\epsilon^{k-1}, \dots, p^{k-1}\epsilon)$:

- 1. If deg f < 1: Print f(0) and stop.
- 2. Find $h \in B$ with $g^p h \in pA$. Set $\beta \leftarrow (g + \epsilon)^p h$.
- 3. Set $j \leftarrow p-1$ and $s \leftarrow 0$.
- 4. Compute $f_j(h+\delta)$ in $B[\delta]/(\delta^k, p\delta^{k-1}, \dots, p^{k-1}\delta)$ by Algorithm C recursively, where $f(z) = f_0(z^p) + zf_1(z^p) + \dots + z^{p-1}f_{p-1}(z^p)$.
- 5. Set $s \leftarrow (g+\epsilon)s + \sum b_i\beta^i$, where $f_j(h+\delta) = \sum b_i\delta^i$.
- 6. If j = 0: Print s and stop.
- 7. Decrease j by 1 and return to step 4.

The idea of Algorithm C is as follows. Consider f(g+pt) in the polynomial ring A[t]. It equals $f_0((g+pt)^p)+\cdots+(g+pt)^{p-1}f_{p-1}((g+pt)^p)$. To compute $f_j((g+pt)^p)$, find $h \in B$ with $g^p - h \in pA$, and find $v \in A[t]$ satisfying $h + pv = (g+pt)^p$; recursively compute $f_j(h+pu)$ in the polynomial ring B[u]; then substitute $u \mapsto v$ to obtain $f_j((g+pt)^p)$.

To avoid multiplications and divisions by p, Algorithm C works with polynomials in $\epsilon = pt$ and $\delta = pu$. Thus f(g+pt) becomes $f(g+\epsilon)$, $f_j(h+pu)$ becomes $f_j(h+\delta)$, and $u \mapsto v$ becomes $\delta \mapsto (g+\epsilon)^p - h$.

Algorithm C computes $f(g + \epsilon)$, not merely f(g). One can save some time by eliminating ϵ at the top level of the recursion, if the goal is to compute f(g). The recursive call in step 4 still needs $f_j(h + \delta)$, not merely $f_j(h)$.

Details and improvements. I represent the ring $A[\epsilon]/(\epsilon^k, p\epsilon^{k-1}, \dots, p^{k-1}\epsilon)$ by $A[\epsilon]/\epsilon^k$. To multiply in $A[\epsilon]/\epsilon^k$, I do k(k+1)/2 multiplications in A. For large k there are faster algorithms; see, e.g., [3].

To compute $(g + \epsilon)^p$ in step 2, I perform p - 1 multiplications by $g + \epsilon$ in $A[\epsilon]/\epsilon^k$. Each multiplication by $g + \epsilon$ is implemented with k multiplications in A. There are many faster algorithms; see, e.g., [5, section 4.6.3].

I choose h in step 2 as $\sum h_i y^i$ where h_i is the coefficient of x^{pi} in g^p . Then h_i can be extracted from $(g + \epsilon)^p$ with no extra arithmetic.

The sum $\sum b_i \beta^i = f_j(h+\beta)$ in step 5 can be viewed as an order-k composition over A. Horner's rule, which uses k-1 multiplications in $A[\epsilon]/\epsilon^k$, suffices for small k. The first Brent-Kung algorithm is better for large k.

One can skip the multiplication of $g + \epsilon$ by s in step 5 when j = p - 1, since s = 0. One can speed up some of the remaining multiplications by taking advantage of the sparseness of B inside A.

Speed. Let μ be a nondecreasing function such that elements of $R[x]/x^n$ can be multiplied in time $n\mu(n)$. I usually assume **fast multiplication**, meaning that $\mu(n) \in n^{o(1)}$ for $n \to \infty$. See [3] for a fast multiplication method. See [1] for a survey of multiplication methods.

Algorithm C's run time is dominated by multiplications. Its multiplication time is at most

$$c\left(e(n-1)+\frac{p^e-1}{p-1}\right)\mu(n)$$

if deg $f < p^e$, where c = (2p-1)k + p(k-1)k(k+1)/2. (Here c is the number of multiplications in A performed in steps 2 and 5 of Algorithm C. It can be reduced in several ways, as discussed above.) Indeed, for deg f < 1, Algorithm C uses no multiplications. Otherwise it performs p recursive calls, taking time at most

$$pc\left((e-1)(m-1) + \frac{p^{e-1}-1}{p-1}\right)\mu(m) \le c\left((e-1)(n-1) + \frac{p^{e}-p}{p-1}\right)\mu(n)$$

by induction, and c multiplications in A, taking time at most $cn\mu(n)$.

In particular, order-n power series composition takes time $O(n\mu(n)\log n)$ for fixed characteristic.

References

- [1] Daniel J. Bernstein, Multidigit multiplication for mathematicians, preprint available from http://pobox.com/~djb/papers/m3.dvi.
- [2] Richard P. Brent, H. T. Kung, Fast algorithms for manipulating formal power series, Journal of the ACM 25 (1978), 581-595.
- [3] David G. Cantor, Erich Kaltofen, On fast multiplication of polynomials over arbitrary algebras, Acta Informatica 28 (1991), 693-701.
- [4] Erich Kaltofen, Victor Shoup, Subquadratic-time factoring of polynomials over finite fields, preprint.
- [5] Donald E. Knuth, The art of computer programming, volume 2: seminumerical algorithms, 2nd edition, Addison-Wesley, Reading, Massachusetts, 1981.

DEPARTMENT OF MATHEMATICS, STATISTICS, AND COMPUTER SCIENCE, THE UNIVERSITY OF ILLINOIS AT CHICAGO, CHICAGO, IL 60607-7045

E-mail address: djb@pobox.com