
Article No. sy980216
J. Symbolic Computation (1998) 26, 339–341

Composing Power Series Over a Finite Ring in
Essentially Linear Time

DANIEL J. BERNSTEIN†‡

Department of Mathematics, Statistics, and Computer Science,
The University of Illinois at Chicago, Chicago, IL 60607–7045

Fix a finite commutative ring R. Let u and v be power series over R, with v(0) = 0. This
paper presents an algorithm that computes the first n terms of the composition u(v),
given the first n terms of u and v, in n1+o(1) ring operations. The algorithm is very fast
in practice when R has small characteristic.

c© 1998 Academic Press

1. Introduction

Let f be a polynomial over a commutative ring R, and let g be an element of R[x]/xn.
The point of this paper is a simple new algorithm to compute f(g) when R has nonzero
characteristic.

For prime characteristic, see Section 2. For prime-power characteristic more generally,
see Section 3. For other characteristics, use the Chinese Remainder Theorem, as in Knuth
(1981, Equation 4.3.2–9).

Applications. The problem of computing f(g), under the restrictions deg f < n and
g(0) = 0, is known as order-n power series composition. Here is the point: given power
series u and v over R, with v(0) = 0, define f = u(z) mod zn and g = v(x) mod xn; then
f(g) = u(v(x)) mod xn.

Power series composition is the bottleneck in reversion and iteration of power series.
See Brent and Kung (1978) and Knuth (1981, Section 4.7).

Previous work. Brent and Kung (1978) describe two power series composition al-
gorithms. The first algorithm computes f(g) in nα ring operations for some α > 1.5,
depending on the speed of matrix multiplication. This algorithm can be applied to the
more general problem of modular composition; see Kaltofen and Shoup (1997). The sec-
ond algorithm computes f(g) in about n1.5 ring operations, provided that g′ is invertible
and that all primes up to about

√
n are cancellable in R.

My algorithm takes n1+o(1) ring operations if R is fixed. It is the method of choice for
power series composition over rings whose characteristic is a product of small primes; in
particular, fields of small prime characteristic. The second Brent–Kung algorithm remains
the fastest method for fields of large prime characteristic.

†The author was supported by the National Science Foundation under grant DMS–9600083.
‡E-mail: djb@pobox.com

0747–7171/98/090339 + 03 $30.00/0 c© 1998 Academic Press

340 D. J. Bernstein

2. Prime Characteristic

Fix a ring R of prime characteristic p. I will reduce the problem of computing f(g),
with deg f < d and g ∈ R[x]/xn, to a sequence of p subproblems with d and n both
reduced by a factor of p. Write m = dn/pe.

Observe that gp is a polynomial in xp: there is a polynomial h ∈ R[y]/ym with gp =
h(xp). The coefficient of yj in h is the pth power of the coefficient of xj in g.

Split f as f(z) = f0(zp)+zf1(zp)+ · · ·+zp−1fp−1(zp). Compute each fj(h) recursively
by the same procedure; substitute y 7→ xp into fj(h) to obtain fj(gp); finally apply
Horner’s rule to evaluate f(g) = f0(gp) + · · ·+ gp−1fp−1(gp).

The recursion stops when d is sufficiently small. For example, f(g) is simply f(0) when
d = 1.

3. Prime-power Characteristic

Fix a ring R of characteristic pk, with p prime and k ≥ 1.
Write A = R[x]/xn. Also write m = dn/pe and B = R[y]/ym. Embed B into A by

y 7→ xp; this embedding, which amounts to some copying inside the computer, is not
stated explicitly in the following algorithm.

Algorithm C. Given f ∈ R[z] and g ∈ A, to compute f(g + ε) in the ring A[ε]/(εk,
pεk−1, . . . , pk−1ε):

1. If deg f < 1: print f(0) and stop.
2. Find h ∈ B with gp − h ∈ pA. Set β ← (g + ε)p − h.
3. Set j ← p− 1 and s← 0.
4. Compute fj(h+δ) in B[δ]/(δk, pδk−1, . . . , pk−1δ) by Algorithm C recursively, where
f(z) = f0(zp) + zf1(zp) + · · ·+ zp−1fp−1(zp).

5. Set s← (g + ε)s+
∑
biβ

i, where fj(h+ δ) =
∑
biδ

i.
6. If j = 0: print s and stop.
7. Decrease j by 1 and return to Step 4.

The idea of Algorithm C is as follows. Consider f(g+pt) in the polynomial ring A[t]. It
equals f0((g+pt)p)+· · ·+(g+pt)p−1fp−1((g+pt)p). To compute fj((g+pt)p), find h ∈ B
with gp − h ∈ pA, and find v ∈ A[t] satisfying h + pv = (g + pt)p; recursively compute
fj(h+ pu) in the polynomial ring B[u]; then substitute u 7→ v to obtain fj((g + pt)p).

To avoid multiplications and divisions by p, Algorithm C works with polynomials in
ε = pt and δ = pu. Thus f(g + pt) becomes f(g + ε), fj(h+ pu) becomes fj(h+ δ), and
u 7→ v becomes δ 7→ (g + ε)p − h.

Algorithm C computes f(g+ε), not merely f(g). One can save some time by eliminating
ε at the top level of the recursion, if the goal is to compute f(g). The recursive call in
Step 4 still needs fj(h+ δ), not merely fj(h).

Details and improvements. I represent the ring A[ε]/(εk, pεk−1, . . . , pk−1ε) by A[ε]/εk.
To multiply in A[ε]/εk, I do k(k + 1)/2 multiplications in A. For large k there are faster
algorithms; see, e.g., Cantor and Kaltofen (1991).

To compute (g + ε)p in Step 2, I perform p − 1 multiplications by g + ε in A[ε]/εk.
Each multiplication by g+ ε is implemented with k multiplications in A. There are many
faster algorithms; see, e.g., Knuth (1981, section 4.6.3).

Power Series Composition 341

I choose h in Step 2 as
∑
hiy

i where hi is the coefficient of xpi in gp. Then hi can be
extracted from (g + ε)p with no extra arithmetic.

The sum
∑
biβ

i = fj(h+β) in Step 5 can be viewed as an order-k composition over A.
Horner’s rule, which uses k − 1 multiplications in A[ε]/εk, suffices for small k. The first
Brent–Kung algorithm is better for large k.

One can skip the multiplication of g+ε by s in Step 5 when j = p−1, since s = 0. One
can speed up some of the remaining multiplications by taking advantage of the sparseness
of B inside A.

Speed. Let µ be a nondecreasing function such that elements of R[x]/xn can be multi-
plied in time nµ(n). I usually assume fast multiplication, meaning that µ(n) ∈ no(1) for
n→∞. See Cantor and Kaltofen (1991) for a fast multiplication method. See Bernstein
(1997) for a survey of multiplication methods.

Algorithm C’s run time is dominated by multiplications. Its multiplication time is at
most

c

(
e(n− 1) +

pe − 1
p− 1

)
µ(n)

if deg f < pe, where c = (2p− 1)k + p(k − 1)k(k + 1)/2. (Here c is the number of multi-
plications in A performed in Steps 2 and 5 of Algorithm C. It can be reduced in several
ways, as discussed above.) Indeed, for deg f < 1, Algorithm C uses no multiplications.
Otherwise it performs p recursive calls, taking time at most

pc

(
(e− 1)(m− 1) +

pe−1 − 1
p− 1

)
µ(m) ≤ c

(
(e− 1)(n− 1) +

pe − p
p− 1

)
µ(n)

by induction, and c multiplications in A, taking time at most cnµ(n).
In particular, order-n power series composition takes time O(nµ(n) logn) for fixed

characteristic.

References

——Bernstein, D.J. (1997). Multidigit multiplication for mathematicians. Preprint, available from http://
pobox.com/~djb/papers/m3.dvi.

——Brent, R.P., Kung, H.T. (1978). Fast algorithms for manipulating formal power series. J. ACM, 25,
581–595.

——Cantor, D.G., Kaltofen, E. (1991). On fast multiplication of polynomials over arbitrary algebras. Acta
Informatica, 28, 693–701.

——Kaltofen, E., Shoup, V. (1997) Subquadratic-time factoring of polynomials over finite fields. Preprint.
——Knuth, D.E. (1981). The Art of Computer Programming, Volume 2: Seminumerical Algorithms, 2nd edn.

Reading, MA, Addison-Wesley.

Originally received 30 April 1997
Accepted 14 October 1997

