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COMPOSING POWER SERIES OVER A FINITE RING
IN ESSENTIALLY LINEAR TIME

DANIEL J. BERNSTEIN

ABSTRACT. Fix a finite commutative ring R. Let u and v be power series
over R, with v(0) = 0. This paper presents an algorithm that computes the
first n terms of the composition u(v), given the first n terms of v and v, in
ntto() ring operations. The algorithm is very fast in practice when R has
small characteristic.

1. INTRODUCTION

Let f be a polynomial over a commutative ring R, and let g be an element of
R[z]/z™. The point of this paper is a simple new algorithm to compute f(g) when
R has finite characteristic.

For prime characteristic, see section 2. For prime-power characteristic more gen-
erally, see section 3. For other characteristics, use the Chinese Remainder Theorem,
as in [5, equation 4.3.2-9].

Applications. The problem of computing f(g), under the restrictions deg f < n
and g(0) = 0, is known as order-n power series composition. Here’s the point:
given power series u and v over R, with v(0) = 0, define f = u(z) mod z" and
g = v(z) mod x™; then f(g) = u(v(z)) mod x™.

Power series composition is the bottleneck in reversion and iteration of power
series. See [2] and [5, section 4.7].

Previous work. Brent and Kung describe two power series composition algo-
rithms in [2]. The first algorithm computes f(g) in n® ring operations for some
a > 1.5, depending on the speed of matrix multiplication. This algorithm can
be applied to the more general problem of modular composition; see [4]. The
second algorithm computes f(g) in about n'-> ring operations, provided that ¢’ is
invertible and that all primes up to about /n are cancellable in R.

My algorithm takes n't°(Y) ring operations if R is fixed. It is the method of
choice for power series composition over rings whose characteristic is a product of
small primes; in particular, fields of small prime characteristic. The second Brent-
Kung algorithm remains the fastest method for fields of large prime characteristic.

2. PRIME CHARACTERISTIC

Fix a ring R of prime characteristic p. I will reduce the problem of computing
f(g), with deg f < d and g € R[x]/x", to a sequence of p subproblems with d and
n both reduced by a factor of p. Write m = [n/p].
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Notice that gP is a polynomial in zP: there is a polynomial h € R[y]/y™ with
gP = h(zP). The coefficient of 3/ in h is the pth power of the coefficient of 27 in g.

Split f as f(2) = fo(2P) + 2f1(2P) + -+ + 2P~ 1 f,_1(2P). Compute each f;(h)
recursively by the same procedure; substitute y — P into f;(h) to obtain f;(g?);
finally apply Horner’s rule to evaluate f(g) = fo(g?) 4+ -+ g* ' fp—1(g").

The recursion stops when d is sufficiently small. For example, f(g) is simply
f(0) when d = 1.

3. PRIME-POWER CHARACTERISTIC

Fix a ring R of characteristic p¥, with p prime and k > 1.

Write A = R[x]/z™. Also write m = [n/p] and B = R[y]/y™. Embed B into A
by y +— zP; this embedding, which amounts to some copying inside the computer,
is not stated explicitly in the following algorithm.

Algorithm C. Given f € R[z] and g € A, to compute f(g + €) in the ring
Ale]/ (¥, peb=1, ... pFLe):

If deg f < 1: Print f(0) and stop.

Find h € B with g —h € pA. Set 8 < (g + €) — h.

Set j < p—1and s < 0.

Compute f;(h+§) in B[§]/(6%,psk1, ..., pF=18) by Algorithm C recursively,
where [(2) = fo(2#) + 21 (27) -+ 271 fy (27)

5. Set s < (g+¢€)s+ > b8, where f;(h+8) = b4

6. If j = 0: Print s and stop.

7. Decrease j by 1 and return to step 4.

L=

The idea of Algorithm C is as follows. Consider f(g+ pt) in the polynomial ring
Alt]. Tt equals fo((g+pt)?)+- -+ (g+pt)?~! fr—1((g+pt)?). To compute f;((g+pt)?),
find h € B with ¢?» — h € pA, and find v € A[t] satisfying h + pv = (g + pt)?;
recursively compute f;(h 4+ pu) in the polynomial ring Blu|; then substitute u — v
to obtain f;((g + pt)P).

To avoid multiplications and divisions by p, Algorithm C works with polynomials
in € = pt and 0 = pu. Thus f(g+pt) becomes f(g+e€), fj(h+pu) becomes f;(h+9),
and u — v becomes § — (g + €)P — h.

Algorithm C computes f(g + €), not merely f(g). One can save some time by
eliminating € at the top level of the recursion, if the goal is to compute f(g). The
recursive call in step 4 still needs f;(h + ), not merely f;(h).

Details and improvements. I represent the ring Ale]/(e¥, pe*=1, ..., p*~1e) by

Ale]/€*. To multiply in Ale]/€*, T do k(k + 1)/2 multiplications in A. For large k
there are faster algorithms; see, e.g., [3].

To compute (g+€)? in step 2, I perform p — 1 multiplications by g+ ¢ in Ale]/€".
Each multiplication by g + € is implemented with k multiplications in A. There are
many faster algorithms; see, e.g., [5, section 4.6.3].

I choose h in step 2 as ) hi;y® where h; is the coefficient of 2P% in gP. Then h;
can be extracted from (g + €)P? with no extra arithmetic.

The sum Y b;8° = f;(h + 3) in step 5 can be viewed as an order-k composition
over A. Horner’s rule, which uses k — 1 multiplications in Ale]/e*, suffices for small
k. The first Brent-Kung algorithm is better for large k.
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One can skip the multiplication of g+¢ by s in step 5 when j = p—1, since s = 0.
One can speed up some of the remaining multiplications by taking advantage of the
sparseness of B inside A.

Speed. Let p be a nondecreasing function such that elements of R[x]/z™ can be
multiplied in time nu(n). I usually assume fast multiplication, meaning that
p(n) € n°M for n — oo. See [3] for a fast multiplication method. See [1] for a
survey of multiplication methods.

Algorithm C’s run time is dominated by multiplications. Its multiplication time
is at most

pe—1
-1
c<e(n )—l—p_l),u(n)
if deg f < p°©, where ¢ = (2p — 1)k + p(k — 1)k(k 4+ 1)/2. (Here c is the number of
multiplications in A performed in steps 2 and 5 of Algorithm C. It can be reduced

in several ways, as discussed above.) Indeed, for deg f < 1, Algorithm C uses no
multiplications. Otherwise it performs p recursive calls, taking time at most

pe (e~ 0m =1+ =) ) < ¢ (fe = D=1+ Z2 ) i)

p—1 p—1
by induction, and ¢ multiplications in A, taking time at most cnu(n).
(n

In particular, order-n power series composition takes time O(nu(n)logn) for
fixed characteristic.

e—1 _
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