
Journal of Symbolic Computation 26 (1998), 339–341.

COMPOSING POWER SERIES OVER A FINITE RING

IN ESSENTIALLY LINEAR TIME

DANIEL J. BERNSTEIN

Abstract. Fix a finite commutative ring R. Let u and v be power series

over R, with v(0) = 0. This paper presents an algorithm that computes the

first n terms of the composition u(v), given the first n terms of u and v, in

n1+o(1) ring operations. The algorithm is very fast in practice when R has

small characteristic.

1. Introduction

Let f be a polynomial over a commutative ring R, and let g be an element of
R[x]/xn. The point of this paper is a simple new algorithm to compute f(g) when
R has finite characteristic.

For prime characteristic, see section 2. For prime-power characteristic more gen-
erally, see section 3. For other characteristics, use the Chinese Remainder Theorem,
as in [5, equation 4.3.2–9].

Applications. The problem of computing f(g), under the restrictions deg f < n
and g(0) = 0, is known as order-n power series composition. Here’s the point:
given power series u and v over R, with v(0) = 0, define f = u(z) mod zn and
g = v(x) mod xn; then f(g) = u(v(x)) mod xn.

Power series composition is the bottleneck in reversion and iteration of power
series. See [2] and [5, section 4.7].

Previous work. Brent and Kung describe two power series composition algo-
rithms in [2]. The first algorithm computes f(g) in nα ring operations for some
α > 1.5, depending on the speed of matrix multiplication. This algorithm can
be applied to the more general problem of modular composition; see [4]. The
second algorithm computes f(g) in about n1.5 ring operations, provided that g′ is
invertible and that all primes up to about

√
n are cancellable in R.

My algorithm takes n1+o(1) ring operations if R is fixed. It is the method of
choice for power series composition over rings whose characteristic is a product of
small primes; in particular, fields of small prime characteristic. The second Brent-
Kung algorithm remains the fastest method for fields of large prime characteristic.

2. Prime characteristic

Fix a ring R of prime characteristic p. I will reduce the problem of computing
f(g), with deg f < d and g ∈ R[x]/xn, to a sequence of p subproblems with d and
n both reduced by a factor of p. Write m = dn/pe.

Date: 19971007.
2000 Mathematics Subject Classification. Primary 13P99.

The author was supported by the National Science Foundation under grant DMS–9600083.

1



2 DANIEL J. BERNSTEIN

Notice that gp is a polynomial in xp: there is a polynomial h ∈ R[y]/ym with
gp = h(xp). The coefficient of yj in h is the pth power of the coefficient of xj in g.

Split f as f(z) = f0(zp) + zf1(zp) + · · · + zp−1fp−1(zp). Compute each fj(h)
recursively by the same procedure; substitute y 7→ xp into fj(h) to obtain fj(g

p);
finally apply Horner’s rule to evaluate f(g) = f0(gp) + · · ·+ gp−1fp−1(gp).

The recursion stops when d is sufficiently small. For example, f(g) is simply
f(0) when d = 1.

3. Prime-power characteristic

Fix a ring R of characteristic pk, with p prime and k ≥ 1.
Write A = R[x]/xn. Also write m = dn/pe and B = R[y]/ym. Embed B into A

by y 7→ xp; this embedding, which amounts to some copying inside the computer,
is not stated explicitly in the following algorithm.

Algorithm C. Given f ∈ R[z] and g ∈ A, to compute f(g + ε) in the ring
A[ε]/(εk, pεk−1, . . . , pk−1ε):

1. If deg f < 1: Print f(0) and stop.
2. Find h ∈ B with gp − h ∈ pA. Set β ← (g + ε)p − h.
3. Set j ← p− 1 and s← 0.
4. Compute fj(h+ δ) in B[δ]/(δk, pδk−1, . . . , pk−1δ) by Algorithm C recursively,

where f(z) = f0(zp) + zf1(zp) + · · ·+ zp−1fp−1(zp).
5. Set s← (g + ε)s+

∑
biβ

i, where fj(h+ δ) =
∑
biδ

i.
6. If j = 0: Print s and stop.
7. Decrease j by 1 and return to step 4.

The idea of Algorithm C is as follows. Consider f(g+ pt) in the polynomial ring
A[t]. It equals f0((g+pt)p)+· · ·+(g+pt)p−1fp−1((g+pt)p). To compute fj((g+pt)p),
find h ∈ B with gp − h ∈ pA, and find v ∈ A[t] satisfying h + pv = (g + pt)p;
recursively compute fj(h+ pu) in the polynomial ring B[u]; then substitute u 7→ v
to obtain fj((g + pt)p).

To avoid multiplications and divisions by p, Algorithm C works with polynomials
in ε = pt and δ = pu. Thus f(g+pt) becomes f(g+ε), fj(h+pu) becomes fj(h+δ),
and u 7→ v becomes δ 7→ (g + ε)p − h.

Algorithm C computes f(g + ε), not merely f(g). One can save some time by
eliminating ε at the top level of the recursion, if the goal is to compute f(g). The
recursive call in step 4 still needs fj(h+ δ), not merely fj(h).

Details and improvements. I represent the ring A[ε]/(εk, pεk−1, . . . , pk−1ε) by
A[ε]/εk. To multiply in A[ε]/εk, I do k(k + 1)/2 multiplications in A. For large k
there are faster algorithms; see, e.g., [3].

To compute (g+ ε)p in step 2, I perform p−1 multiplications by g+ ε in A[ε]/εk.
Each multiplication by g+ ε is implemented with k multiplications in A. There are
many faster algorithms; see, e.g., [5, section 4.6.3].

I choose h in step 2 as
∑
hiy

i where hi is the coefficient of xpi in gp. Then hi
can be extracted from (g + ε)p with no extra arithmetic.

The sum
∑
biβ

i = fj(h+ β) in step 5 can be viewed as an order-k composition
over A. Horner’s rule, which uses k− 1 multiplications in A[ε]/εk, suffices for small
k. The first Brent-Kung algorithm is better for large k.



COMPOSING POWER SERIES OVER A FINITE RING IN ESSENTIALLY LINEAR TIME 3

One can skip the multiplication of g+ε by s in step 5 when j = p−1, since s = 0.
One can speed up some of the remaining multiplications by taking advantage of the
sparseness of B inside A.

Speed. Let µ be a nondecreasing function such that elements of R[x]/xn can be
multiplied in time nµ(n). I usually assume fast multiplication, meaning that
µ(n) ∈ no(1) for n → ∞. See [3] for a fast multiplication method. See [1] for a
survey of multiplication methods.

Algorithm C’s run time is dominated by multiplications. Its multiplication time
is at most

c

(
e(n− 1) +

pe − 1

p− 1

)
µ(n)

if deg f < pe, where c = (2p − 1)k + p(k − 1)k(k + 1)/2. (Here c is the number of
multiplications in A performed in steps 2 and 5 of Algorithm C. It can be reduced
in several ways, as discussed above.) Indeed, for deg f < 1, Algorithm C uses no
multiplications. Otherwise it performs p recursive calls, taking time at most

pc

(
(e− 1)(m− 1) +

pe−1 − 1

p− 1

)
µ(m) ≤ c

(
(e− 1)(n− 1) +

pe − p
p− 1

)
µ(n)

by induction, and c multiplications in A, taking time at most cnµ(n).
In particular, order-n power series composition takes time O(nµ(n) log n) for

fixed characteristic.

References

[1] Daniel J. Bernstein, Multidigit multiplication for mathematicians, preprint available from

http://pobox.com/~djb/papers/m3.dvi.

[2] Richard P. Brent, H. T. Kung, Fast algorithms for manipulating formal power series, Journal
of the ACM 25 (1978), 581–595.

[3] David G. Cantor, Erich Kaltofen, On fast multiplication of polynomials over arbitrary algebras,

Acta Informatica 28 (1991), 693–701.
[4] Erich Kaltofen, Victor Shoup, Subquadratic-time factoring of polynomials over finite fields,

preprint.

[5] Donald E. Knuth, The art of computer programming, volume 2: seminumerical algorithms,
2nd edition, Addison-Wesley, Reading, Massachusetts, 1981.

Department of Mathematics, Statistics, and Computer Science, The University of

Illinois at Chicago, Chicago, IL 60607–7045
E-mail address: djb@pobox.com


