
DETECTING PERFECT POWERS

BY FACTORING INTO COPRIMES

DANIEL J. BERNSTEIN, HENDRIK W. LENSTRA, JR., AND JONATHAN PILA

Abstract. This paper presents an algorithm that, given an integer n > 1,
finds the largest integer k such that n is a kth power. A previous algorithm
by the first author took time b1+o(1) where b = lg n; more precisely, time
b exp(O(

√

lg b lg lg b)); conjecturally, time b(lg b)O(1). The new algorithm takes

time b(lg b)O(1). It relies on relatively complicated subroutines—specifically,
on the first author’s fast algorithm to factor integers into coprimes—but it
allows a proof of the b(lg b)O(1) bound without much background; the previous

proof of b1+o(1) relied on transcendental number theory.
The computation of k is the first step, and occasionally the bottleneck, in

many number-theoretic algorithms: the Agrawal-Kayal-Saxena primality test,
for example, and the number-field sieve for integer factorization.

Here is an algorithm that, given an integer n > 1, finds the largest integer k such
that n is a kth power:

1. For each prime power q such that 2q ≤ n, write down a positive integer rq

such that if n is a qth power then n = rq
q .

2. Find a finite coprime set P of integers larger than 1 such that each of
n, r2, r3, r4, r5, r7, . . . is a product of powers of elements of P . (In this
paper, “coprime” means “pairwise coprime.”)

3. Factor n as
∏

p∈P pnp , and compute k = gcd{np : p ∈ P}.
It is easy to see that the algorithm is correct. Say n is an `th power. Take any
prime power q dividing `. Then n is a qth power, so n = rq

q ; but rq is a product∏
p∈P pap for some exponents ap, so n is a product

∏
p∈P pqap . Factorizations over

P are unique, so np = qap for each p. Thus q divides gcd{np : p ∈ P} = k. This is
true for all q, so ` divides k. Conversely, n is certainly a kth power.

Take, for example, n = 49787136 < 226. Compute approximations

r2 = 7056 ≈ n1/2 r8 = 9 ≈ n1/8 r17 = 3 ≈ n1/17

r3 = 368 ≈ n1/3 r9 = 7 ≈ n1/9 r19 = 3 ≈ n1/19

r4 = 84 ≈ n1/4 r11 = 5 ≈ n1/11 r23 = 2 ≈ n1/23

r5 = 35 ≈ n1/5 r13 = 4 ≈ n1/13 r25 = 2 ≈ n1/25

r7 = 13 ≈ n1/7 r16 = 3 ≈ n1/16

where ≈ means “within 0.6.” Factor {49787136, 7056, 368, 84, 35, 13, 9, 7, 5, 4, 3, 2}
into coprimes: each of these numbers is a product of powers of elements of P =

Date: 2004.11.13. Permanent ID of this document: bbd41ce71e527d3c06295aadccf60979.
2000 Mathematics Subject Classification. Primary 11Y16.
Initial work: Lenstra was supported by the National Science Foundation under grant DMS–

9224205. Subsequent work: Bernstein was supported by the National Science Foundation under
grant DMS–0140542. The authors thank the University of California at Berkeley and the Fields
Institute for Research in Mathematical Sciences.

1



2 DANIEL J. BERNSTEIN, HENDRIK W. LENSTRA, JR., AND JONATHAN PILA

{2, 3, 5, 7, 13, 23}. In particular, n = 28345074130230, so k = gcd{8, 4, 0, 4, 0, 0} = 4.
In other words, n is a 4th power, and is not an `th power for ` > 4.

As discussed below, the literature already shows how to perform each step of
this algorithm in time b(lg b)O(1), where b = lg n. Computing n1/k, which is used
by some applications, also takes time b(lg b)O(1).

Details of Step 1. Given n and q, one can use binary search and Newton’s method
to compute a floating-point number guaranteed to be within (e.g.) 2−32 of n1/q, as
explained in [4, Sections 8 and 10]. The algorithms of [4] rely on FFT-based integer
multiplication; see [6, Sections 2–4].

Define rq as an integer within 2−32 of this floating-point number. If no such
integer exists, define rq = 1.

Each rq has O(b/q) bits. Together the rq’s have
∑

q≤lg n O(b/q) = O(b lg lg b)

bits by Mertens’s theorem. The algorithms of [4] take time (lg b)O(1) per bit.
An alternative approach to Step 1 is to define rq as an integer 2-adically close

to n1/q, as explained in [4, Section 21].

Details of Step 2. Given a finite set of positive integers, the algorithm of [5,
Section 18] computes the “natural coprime base” for that set. The algorithm takes
time s(lg s)O(1) where s is the number of input bits. The algorithm relies on FFT-
based multiplication, division, and gcd; see [6, Sections 17 and 22].

Use this algorithm to compute the “natural coprime base” P for {n, r2, . . . }.
Together n, r2, . . . have O(b lg lg b) bits, so this takes time b(lg b)O(1).

Details of Step 3. Given a finite coprime set P of integers larger than 1, and
given a positive integer that has a factorization over P , the algorithm of [5, Section
20] finds that factorization. The algorithm takes time s(lg s)O(1) where s is the
number of input bits. The algorithm relies on FFT-based arithmetic.

Use this algorithm to factor n over P . Together n and P have O(b lg lg b) bits,
so this takes time b(lg b)O(1).

Competition. Previous work by the first author in [4] had already shown that
k could be computed in time b1+o(1). The algorithm of [4] computes rq for prime
numbers q, and then computes several increasingly precise approximations to rq

q ,
stopping when an approximation demonstrates that rq

q 6= n.
The run-time bound for the algorithm in this paper has two advantages over the

run-time bound for the algorithm in [4]:

• The new bound is smaller. The old bound was b exp(O(
√

lg b lg lg b)); the
new bound is b(lg b)O(1).

• The new proof requires considerably less background. The new proof relies
on the first author’s results in [5] on factoring into coprimes, but the old
proof relied on deep results in transcendental number theory.

The old algorithm is conjectured to take time b(lg b)O(1), as discussed in [4, Section
15], but this conjecture seems very difficult to prove.

Performance in the typical case. For most values of n, computing a floating-
point number within 2−32 of n1/2 reveals immediately that n is not a square, because
the floating-point number is not within 2−32 of an integer.

Similarly, for almost all values of n, computing reasonably precise floating-
point approximations to n1/2, n1/3, . . . reveals immediately that k = 1. Here



DETECTING PERFECT POWERS BY FACTORING INTO COPRIMES 3

one can define “reasonably precise” as, e.g., “within 2−32/b.” For example, take
n = 3141592653589793238462643383, and compute

56049912163979.2869928550892 ≈ n1/2, r2 = r4 = r8 = r16 = r32 = r64 = 1;
1464591887.5615232630107 ≈ n1/3, r3 = r9 = r27 = r81 = 1;

315812.9791837632319 ≈ n1/5, r5 = r25 = 1;
8475.4793001649371 ≈ n1/7, r7 = r49 = 1;
316.0391590557065 ≈ n1/11, r11 = 1;
130.3663105302392 ≈ n1/13, r13 = 1;
41.4456928612363 ≈ n1/17, r17 = 1;
28.0038933071808 ≈ n1/19, r19 = 1;
15.6865795173630 ≈ n1/23, r23 = 1;
8.8751884186190 ≈ n1/29, r29 = 1;
7.7091205087505 ≈ n1/31, r31 = 1;
5.5356192737976 ≈ n1/37, r37 = 1;
4.6844886605433 ≈ n1/41, r41 = 1;
4.3598204254547 ≈ n1/43, r43 = 1;
3.8463229122474 ≈ n1/47, r47 = 1;
3.3022819333873 ≈ n1/53, r53 = 1;
2.9245118649948 ≈ n1/59, r59 = 1;
2.8234034999139 ≈ n1/61, r61 = 1;
2.5727952305908 ≈ n1/67, r67 = 1;
2.4394043898716 ≈ n1/71, r71 = 1;
2.3805279554537 ≈ n1/73, r73 = 1;
2.2287696658789 ≈ n1/79, r79 = 1;
2.1443267449321 ≈ n1/83, r83 = 1;
2.0368391790628 ≈ n1/89, r89 = 1;

where now ≈ means “within 2−40.” Evidently k = 1.
For these typical values of n, there is no difference between the algorithm in this

paper and the algorithm of [4]. All the time is spent computing approximate roots.
Doing better means computing fewer roots—see [4, Section 22]—or computing the
roots more quickly; these improvements apply equally to both algorithms.

For the other values of n—the atypical integers that are close to squares, cubes,
etc.—the algorithms behave differently. It is not easy to analyze, or experiment
with, the actual worst-case behavior of the algorithms, because it is not easy to
find integers that are simultaneously close to many powers. We leave this as a
challenge for the reader.

History. Bach, Driscoll, and Shallit in [2] introduced a quadratic-time algorithm
to factor integers into coprimes. The obvious algorithm takes cubic time.

Bach and Sorenson in [3] published various algorithms to detect perfect powers,
i.e., to check whether k > 1. One algorithm takes time O(b3). Another algorithm
is conjectured to take time O(b2/(lg b)2) for most, but not all, n’s.

The second and third authors of this paper observed in early 1994 that they
could compute k in time O(b2(lg lg b)2) by factoring n, r2, . . . into coprimes with
the Bach-Driscoll-Shallit algorithm; recall that n, r2, . . . together have O(b lg lg b)
bits. This line of work was abandoned several months later when the first author
announced that k could be computed in time b1+o(1) by the increasingly-precise-
approximations-to-rq

q method.



4 DANIEL J. BERNSTEIN, HENDRIK W. LENSTRA, JR., AND JONATHAN PILA

The first author later pointed out that this line of work deserved to be revived,
since he had found an essentially-linear-time algorithm—see [5]—to factor integers
into coprimes.

References

[1] Eric Bach, James Driscoll, Jeffrey Shallit, Factor refinement, in [7] (1990), 201–211; see also
newer version [2]. URL: http://cr.yp.to/bib/entries.html#1990/bach-cba.

[2] Eric Bach, James Driscoll, Jeffrey Shallit, Factor refinement, Journal of Algorithms 15 (1993),
199–222; see also older version [1]. ISSN 0196–6774. MR 94m:11148. URL: http://cr.yp.to/
bib/entries.html#1993/bach-cba.

[3] Eric Bach, Jonathan Sorenson, Sieve algorithms for perfect power testing, Algorithmica 9

(1993), 313–328. ISSN 0178–4617. MR 94d:11103.
[4] Daniel J. Bernstein, Detecting perfect powers in essentially linear time, Mathematics of Com-

putation 67 (1998), 1253–1283. ISSN 0025–5718. MR 98j:11121. URL: http://cr.yp.to/

papers.html.
[5] Daniel J. Bernstein, Factoring into coprimes in essentially linear time, to appear, Journal of

Algorithms. ISSN 0196–6774. URL: http://cr.yp.to/papers.html. ID f32943f0bb67a9317d4

021513f9eee5a.
[6] Daniel J. Bernstein, Fast multiplication and its applications, to appear in Buhler-Stevenhagen

Algorithmic number theory book. URL: http://cr.yp.to/papers.html#multapps. ID 875880

3e61822d485d54251b27b1a20d.
[7] David S. Johnson (editor), Proceedings of the first annual ACM-SIAM symposium on dis-

crete algorithms, January 22–24, 1990, San Francisco, California, Society for Industrial and
Applied Mathematics, Philadelphia, 1990. ISBN 0–89871–251–3.

Department of Mathematics, Statistics, and Computer Science (M/C 249), The Uni-
versity of Illinois at Chicago, Chicago, IL 60607–7045, USA

E-mail address: djb@cr.yp.to

Mathematisch Instituut, Universiteit Leiden, Postbus 9512, 2300 RA Leiden, The
Netherlands

E-mail address: hwl@math.leidenuniv.nl

Department of Mathematics and Statistics, McGill University, Burnside Hall, Mon-
treal, Quebec, H2A 2K6, Canada

E-mail address: pila@math.mcgill.ca


