DETECTING PERFECT POWERS BY FACTORING INTO COPRIMES

DANIEL J. BERNSTEIN, HENDRIK W. LENSTRA, JR., AND JONATHAN PILA

Abstract

This paper presents an algorithm that, given an integer $n>1$, finds the largest integer k such that n is a k th power. A previous algorithm by the first author took time $b^{1+o(1)}$ where $b=\lg n$; more precisely, time $b \exp (O(\sqrt{\lg b \lg \lg b}))$; conjecturally, time $b(\lg b)^{O(1)}$. The new algorithm takes time $b(\lg b)^{O(1)}$. It relies on relatively complicated subroutines-specifically, on the first author's fast algorithm to factor integers into coprimes-but it allows a proof of the $b(\lg b)^{O(1)}$ bound without much background; the previous proof of $b^{1+o(1)}$ relied on transcendental number theory.

The computation of k is the first step, and occasionally the bottleneck, in many number-theoretic algorithms: the Agrawal-Kayal-Saxena primality test, for example, and the number-field sieve for integer factorization.

Here is an algorithm that, given an integer $n>1$, finds the largest integer k such that n is a k th power:

1. For each prime power q such that $2^{q} \leq n$, write down a positive integer r_{q} such that if n is a q th power then $n=r_{q}^{q}$.
2. Find a finite coprime set P of integers larger than 1 such that each of $n, r_{2}, r_{3}, r_{4}, r_{5}, r_{7}, \ldots$ is a product of powers of elements of P. (In this paper, "coprime" means "pairwise coprime.")
3. Factor n as $\prod_{p \in P} p^{n_{p}}$, and compute $k=\operatorname{gcd}\left\{n_{p}: p \in P\right\}$.

It is easy to see that the algorithm is correct. Say n is an ℓ th power. Take any prime power q dividing ℓ. Then n is a q th power, so $n=r_{q}^{q}$; but r_{q} is a product $\prod_{p \in P} p^{a_{p}}$ for some exponents a_{p}, so n is a product $\prod_{p \in P} p^{q a_{p}}$. Factorizations over P are unique, so $n_{p}=q a_{p}$ for each p. Thus q divides $\operatorname{gcd}\left\{n_{p}: p \in P\right\}=k$. This is true for all q, so ℓ divides k. Conversely, n is certainly a k th power.

Take, for example, $n=49787136<2^{26}$. Compute approximations

$$
\begin{aligned}
& r_{2}=7056 \approx n^{1 / 2} \\
& r_{3}=368 \approx n^{1 / 3} \\
& r_{4}=84 \approx n^{1 / 4} \\
& r_{5}=35 \approx n^{1 / 5} \\
& r_{7}=13 \approx n^{1 / 7}
\end{aligned}
$$

$$
r_{8}=9 \approx n^{1 / 8}
$$

$$
r_{9}=7 \approx n^{1 / 9}
$$

$$
r_{11}=5 \approx n^{1 / 11}
$$

$$
r_{13}=4 \approx n^{1 / 13}
$$

$$
\begin{aligned}
& r_{17}=3 \approx n^{1 / 17} \\
& r_{19}=3 \approx n^{1 / 19} \\
& r_{23}=2 \approx n^{1 / 23} \\
& r_{25}=2 \approx n^{1 / 25}
\end{aligned}
$$

$$
r_{16}=3 \approx n^{1 / 16}
$$

where \approx means "within 0.6." Factor $\{49787136,7056,368,84,35,13,9,7,5,4,3,2\}$ into coprimes: each of these numbers is a product of powers of elements of $P=$

[^0]$\{2,3,5,7,13,23\}$. In particular, $n=2^{8} 3^{4} 5^{0} 7^{4} 13^{0} 23^{0}$, so $k=\operatorname{gcd}\{8,4,0,4,0,0\}=4$. In other words, n is a 4 th power, and is not an ℓ th power for $\ell>4$.

As discussed below, the literature already shows how to perform each step of this algorithm in time $b(\lg b)^{O(1)}$, where $b=\lg n$. Computing $n^{1 / k}$, which is used by some applications, also takes time $b(\lg b)^{O(1)}$.

Details of Step 1. Given n and q, one can use binary search and Newton's method to compute a floating-point number guaranteed to be within (e.g.) 2^{-32} of $n^{1 / q}$, as explained in [4, Sections 8 and 10]. The algorithms of [4] rely on FFT-based integer multiplication; see [6, Sections 2-4].

Define r_{q} as an integer within 2^{-32} of this floating-point number. If no such integer exists, define $r_{q}=1$.

Each r_{q} has $O(b / q)$ bits. Together the r_{q} 's have $\sum_{q \leq \lg n} O(b / q)=O(b \lg \lg b)$ bits by Mertens's theorem. The algorithms of [4] take time $(\lg b)^{O(1)}$ per bit.

An alternative approach to Step 1 is to define r_{q} as an integer 2-adically close to $n^{1 / q}$, as explained in [4, Section 21].

Details of Step 2. Given a finite set of positive integers, the algorithm of [5, Section 18] computes the "natural coprime base" for that set. The algorithm takes time $s(\lg s)^{O(1)}$ where s is the number of input bits. The algorithm relies on FFTbased multiplication, division, and gcd; see [6, Sections 17 and 22].

Use this algorithm to compute the "natural coprime base" P for $\left\{n, r_{2}, \ldots\right\}$. Together n, r_{2}, \ldots have $O(b \lg \lg b)$ bits, so this takes time $b(\lg b)^{O(1)}$.
Details of Step 3. Given a finite coprime set P of integers larger than 1 , and given a positive integer that has a factorization over P, the algorithm of $[5$, Section 20] finds that factorization. The algorithm takes time $s(\lg s)^{O(1)}$ where s is the number of input bits. The algorithm relies on FFT-based arithmetic.

Use this algorithm to factor n over P. Together n and P have $O(b \lg \lg b)$ bits, so this takes time $b(\lg b)^{O(1)}$.

Competition. Previous work by the first author in [4] had already shown that k could be computed in time $b^{1+o(1)}$. The algorithm of [4] computes r_{q} for prime numbers q, and then computes several increasingly precise approximations to r_{q}^{q}, stopping when an approximation demonstrates that $r_{q}^{q} \neq n$.

The run-time bound for the algorithm in this paper has two advantages over the run-time bound for the algorithm in [4]:

- The new bound is smaller. The old bound was $b \exp (O(\sqrt{\lg b \lg \lg b}))$; the new bound is $b(\lg b)^{O(1)}$.
- The new proof requires considerably less background. The new proof relies on the first author's results in [5] on factoring into coprimes, but the old proof relied on deep results in transcendental number theory.
The old algorithm is conjectured to take time $b(\lg b)^{O(1)}$, as discussed in [4, Section 15], but this conjecture seems very difficult to prove.

Performance in the typical case. For most values of n, computing a floatingpoint number within 2^{-32} of $n^{1 / 2}$ reveals immediately that n is not a square, because the floating-point number is not within 2^{-32} of an integer.

Similarly, for almost all values of n, computing reasonably precise floatingpoint approximations to $n^{1 / 2}, n^{1 / 3}, \ldots$ reveals immediately that $k=1$. Here
one can define "reasonably precise" as, e.g., "within $2^{-32} / b$." For example, take $n=3141592653589793238462643383$, and compute

$$
\begin{aligned}
& 56049912163979.2869928550892 \approx n^{1 / 2}, r_{2}=r_{4}=r_{8}=r_{16}=r_{32}=r_{64}=1 ; \\
& 1464591887.5615232630107 \approx n^{1 / 3}, \\
& 315812.9791837632319 \approx n_{3}=n_{9}=r_{27}=r_{81}=1 ; \\
& 8475.4793001649371 \approx n^{1 / 7}, r_{5}=r_{25}=1 ; \\
& 316.0391590557065 \approx n_{7}=r_{49}=1 ; \\
& 130.3663105302392 \approx n^{1 / 13}, r_{11}=1 ; \\
& 41.4456928612363 \approx n^{1 / 17}, r_{13}=1 ; \\
& 28.0038933071808 \approx n_{17}=1 ; \\
& 15.6865795173630 \approx n^{1 / 19}, r_{19}=1 ; \\
& 8.8751884186190 \approx n^{1 / 29}, r_{23}=1 ; \\
& 7.7091205087505 \approx n^{1 / 31}, r_{29}=1 ; \\
& 5.5356192737976 \approx n^{1 / 37}, r_{37}=1 ; \\
& 4.6844886605433 \approx n^{1 / 41}, r_{41}=1 ; \\
& 4.3598204254547 \approx n^{1 / 43}, r_{43}=1 ; \\
& 3.8463229122474 \approx n^{1 / 47}, r_{47}=1 ; \\
& 3.3022819333873 \approx n^{1 / 53}, r_{53}=1 ; \\
& 2.9245118649948 \approx n^{1 / 59}, r_{59}=1 ; \\
& 2.8234034999139 \approx n^{1 / 61}, r_{61}=1 ; \\
& 2.5727952305908 \approx n^{1 / 67}, r_{67}=1 ; \\
& 2.4394043898716 \approx n^{1 / 71}, r_{71}=1 ; \\
& 2.3805279554537 \approx n^{1 / 73}, r_{73}=1 ; \\
& 2.2287696658789 \approx n^{1 / 79}, r_{79}=1 ; \\
& 2.1443267449321 \approx n^{1 / 83}, r_{83}=1 ; \\
& 2.0368391790628 \approx n^{1 / 89}, r_{89}=1 ;
\end{aligned}
$$

where now \approx means "within 2^{-40}." Evidently $k=1$.
For these typical values of n, there is no difference between the algorithm in this paper and the algorithm of [4]. All the time is spent computing approximate roots. Doing better means computing fewer roots-see [4, Section 22]-or computing the roots more quickly; these improvements apply equally to both algorithms.

For the other values of n-the atypical integers that are close to squares, cubes, etc.-the algorithms behave differently. It is not easy to analyze, or experiment with, the actual worst-case behavior of the algorithms, because it is not easy to find integers that are simultaneously close to many powers. We leave this as a challenge for the reader.

History. Bach, Driscoll, and Shallit in [2] introduced a quadratic-time algorithm to factor integers into coprimes. The obvious algorithm takes cubic time.

Bach and Sorenson in [3] published various algorithms to detect perfect powers, i.e., to check whether $k>1$. One algorithm takes time $O\left(b^{3}\right)$. Another algorithm is conjectured to take time $O\left(b^{2} /(\lg b)^{2}\right)$ for most, but not all, n 's.

The second and third authors of this paper observed in early 1994 that they could compute k in time $O\left(b^{2}(\lg \lg b)^{2}\right)$ by factoring n, r_{2}, \ldots into coprimes with the Bach-Driscoll-Shallit algorithm; recall that n, r_{2}, \ldots together have $O(b \lg \lg b)$ bits. This line of work was abandoned several months later when the first author announced that k could be computed in time $b^{1+o(1)}$ by the increasingly-precise-approximations-to- r_{q}^{q} method.

The first author later pointed out that this line of work deserved to be revived, since he had found an essentially-linear-time algorithm - see [5]-to factor integers into coprimes.

References

[1] Eric Bach, James Driscoll, Jeffrey Shallit, Factor refinement, in [7] (1990), 201-211; see also newer version [2]. URL: http://cr.yp.to/bib/entries.html\#1990/bach-cba.
[2] Eric Bach, James Driscoll, Jeffrey Shallit, Factor refinement, Journal of Algorithms 15 (1993), 199-222; see also older version [1]. ISSN 0196-6774. MR 94m:11148. URL: http://cr.yp.to/ bib/entries.html\#1993/bach-cba.
[3] Eric Bach, Jonathan Sorenson, Sieve algorithms for perfect power testing, Algorithmica 9 (1993), 313-328. ISSN 0178-4617. MR 94d:11103.
[4] Daniel J. Bernstein, Detecting perfect powers in essentially linear time, Mathematics of Computation 67 (1998), 1253-1283. ISSN 0025-5718. MR 98j:11121. URL: http://cr.yp.to/ papers.html.
[5] Daniel J. Bernstein, Factoring into coprimes in essentially linear time, to appear, Journal of Algorithms. ISSN 0196-6774. URL: http://cr.yp.to/papers.html. ID f32943f0bb67a9317d4 021513f9eee5a.
[6] Daniel J. Bernstein, Fast multiplication and its applications, to appear in Buhler-Stevenhagen Algorithmic number theory book. URL: http://cr.yp.to/papers.html\#multapps. ID 875880 3e61822d485d54251b27b1a20d.
[7] David S. Johnson (editor), Proceedings of the first annual ACM-SIAM symposium on discrete algorithms, January 22-24, 1990, San Francisco, California, Society for Industrial and Applied Mathematics, Philadelphia, 1990. ISBN 0-89871-251-3.

Department of Mathematics, Statistics, and Computer Science (M/C 249), The University of Illinois at Chicago, Chicago, IL 60607-7045, USA

E-mail address: djb@cr.yp.to
Mathematisch Instituut, Universiteit Leiden, Postbus 9512, 2300 RA Leiden, The Netherlands

E-mail address: hwl@math.leidenuniv.nl
Department of Mathematics and Statistics, McGill University, Burnside Hall, Montreal, Quebec, H2A 2K6, Canada

E-mail address: pila@math.mcgill.ca

[^0]: Date: 2004.11.13. Permanent ID of this document: bbd41ce71e527d3c06295aadccf60979. 2000 Mathematics Subject Classification. Primary 11Y16.
 Initial work: Lenstra was supported by the National Science Foundation under grant DMS9224205. Subsequent work: Bernstein was supported by the National Science Foundation under grant DMS-0140542. The authors thank the University of California at Berkeley and the Fields Institute for Research in Mathematical Sciences.

