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Abstract. This paper presents an algorithm that, given an integer n > 1,
finds the largest integer k such that n is a kth power. A previous algorithm
by the first author took time b1+o(1) where b = lg n; more precisely, time
b exp(O(

√

lg b lg lg b)); conjecturally, time b(lg b)O(1). The new algorithm takes

time b(lg b)O(1). It relies on relatively complicated subroutines—specifically,
on the first author’s fast algorithm to factor integers into coprimes—but it
allows a proof of the b(lg b)O(1) bound without much background; the previous

proof of b1+o(1) relied on transcendental number theory.

Here is an algorithm that, given an integer n > 1, finds the largest integer k such
that n is a kth power:

1. For each prime power q such that 2q ≤ n, write down a positive integer rq

such that if n is a qth power then n = rq
q .

2. Find a finite coprime set P of integers larger than 1 such that each of
n, r2, r3, r4, r5, r7, . . . is a product of powers of elements of P . (In this
paper, “coprime” means “pairwise coprime.”)

3. Factor n as
∏

p∈P pnp , and compute k = gcd{np : p ∈ P}.
It is easy to see that the algorithm is correct. Say n is an `th power. Take any
prime power q dividing `. Then n is a qth power, so n = rq

q ; but rq is a product∏
p∈P pap for some exponents ap, so n is a product

∏
p∈P pqap . Factorizations over

P are unique, so np = qap for each p. Thus q divides gcd{np : p ∈ P} = k. This is
true for all q, so ` divides k. Conversely, n is certainly a kth power.

Take, for example, n = 49787136 < 226. Compute approximations

r2 = 7056 ≈ n1/2 r8 = 9 ≈ n1/8 r17 = 3 ≈ n1/17

r3 = 368 ≈ n1/3 r9 = 7 ≈ n1/9 r19 = 3 ≈ n1/19

r4 = 84 ≈ n1/4 r11 = 5 ≈ n1/11 r23 = 2 ≈ n1/23

r5 = 35 ≈ n1/5 r13 = 4 ≈ n1/13 r25 = 2 ≈ n1/25

r7 = 13 ≈ n1/7 r16 = 3 ≈ n1/16

where ≈ means “within 0.6.” Factor {49787136, 7056, 368, 84, 35, 13, 9, 7, 5, 4, 3, 2}
into coprimes: each of these numbers is a product of powers of elements of P =
{2, 3, 5, 7, 13, 23}. In particular, n = 28345074130230, so k = gcd{8, 4, 0, 4, 0, 0} = 4.
In other words, n is a 4th power, and is not an `th power for ` > 4.
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As discussed below, the literature already shows how to perform each step of
this algorithm in time b(lg b)O(1), where b = lg n. Computing n1/k, which is used
by some applications, also takes time b(lg b)O(1).

Details of Step 1. Given n and q, one can use binary search and Newton’s method
to compute a floating-point number guaranteed to be within (e.g.) 2−32 of n1/q, as
explained in [4, Sections 8 and 10]. The algorithms of [4] rely on FFT-based integer
multiplication; see [6, Sections 2–4].

Define rq as an integer within 2−32 of this floating-point number. If no such
integer exists, define rq = 1.

Each rq has O(b/q) bits. Together the rq’s have
∑

q≤lg n O(b/q) = O(b lg lg b)

bits by Mertens’s theorem. The algorithms of [4] take time (lg b)O(1) per bit.
An alternative approach to Step 1 is to define rq as an integer 2-adically close

to n1/q, as explained in [4, Section 21].

Details of Step 2. Given a finite set of positive integers, the algorithm of [5,
Section 18] computes the “natural coprime base” for that set. The algorithm takes
time s(lg s)O(1) where s is the number of input bits. The algorithm relies on FFT-
based multiplication, division, and gcd; see [6, Sections 17 and 22].

Use this algorithm to compute the “natural coprime base” P for {n, r2, . . . }.
Together n, r2, . . . have O(b lg lg b) bits, so this takes time b(lg b)O(1).

Details of Step 3. Given a finite coprime set P of integers larger than 1, and
given a positive integer that has a factorization over P , the algorithm of [5, Section
20] finds that factorization. The algorithm takes time s(lg s)O(1) where s is the
number of input bits. The algorithm relies on FFT-based arithmetic.

Use this algorithm to factor n over P . Together n and P have O(b lg lg b) bits,
so this takes time b(lg b)O(1).

Competition. Previous work by the first author in [4] had already shown that
k could be computed in time b1+o(1). The algorithm of [4] computes rq for prime
numbers q, and then computes several increasingly precise approximations to rq

q ,
stopping when an approximation demonstrates that rq

q 6= n.
The run-time bound for the algorithm in this paper has two advantages over the

run-time bound for the algorithm in [4]:

• The new bound is smaller. The old bound was b exp(O(
√

lg b lg lg b)); the
new bound is b(lg b)O(1).

• The new proof requires considerably less background. The new proof relies
on the first author’s results in [5] on factoring into coprimes, but the old
proof relied on deep results in transcendental number theory.

The old algorithm is conjectured to take time b(lg b)O(1), as discussed in [4, Section
15], but this conjecture seems very difficult to prove.

For typical n’s, both algorithms see from the initial approximation to n1/q that
n is not a qth power; the bottleneck is the computation of that approximation.
The algorithms behave differently only in the atypical case that n is very close to
a power. Optimization of the worst case in more detail than b(lg b)O(1) is beyond
the scope of this paper.
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History. Bach, Driscoll, and Shallit in [2] introduced a quadratic-time algorithm
to factor integers into coprimes. The obvious algorithm takes cubic time.

Bach and Sorenson in [3] published various algorithms to detect perfect powers,
i.e., to check whether k > 1. One algorithm takes time O(b3). Another algorithm
is conjectured to take time O(b2/(lg b)2) for most, but not all, n’s.

The second and third authors of this paper observed in early 1994 that they
could compute k in time O(b2(lg lg b)2) by factoring n, r2, . . . into coprimes with
the Bach-Driscoll-Shallit algorithm; recall that n, r2, . . . together have O(b lg lg b)
bits. This line of work was abandoned several months later when the first author
announced that k could be computed in time b1+o(1) by the increasingly-precise-
approximations-to-rq

q method.
The first author later pointed out that this line of work deserved to be revived,

since he had found an essentially-linear-time algorithm—see [5]—to factor integers
into coprimes.
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