
Algorithmic Number Theory
MSRI Publications
Volume 44, 2008

Fast multiplication and its applications
DANIEL J. BERNSTEIN

ABSTRACT. This survey explains how some useful arithmetic operations can
be sped up from quadratic time to essentially linear time.

1. Introduction

This paper presents fast algorithms for several useful arithmetic operations
on polynomials, power series, integers, real numbers, and 2-adic numbers.

Each section focuses on one algorithm for one operation, and describes seven
features of the algorithm:

• Input: What numbers are provided to the algorithm? Sections 2, 3, 4, and 5
explain how various mathematical objects are represented as inputs.

• Output: What numbers are computed by the algorithm?
• Speed: How many coefficient operations does the algorithm use to perform a

polynomial operation? The answer is at most n1+o(1), where n is the problem
size; each section states a more precise upper bound, often using the function
µ defined in Section 4.

• How it works: What is the algorithm? The algorithm may use previous algo-
rithms as subroutines, as shown in (the transitive closure of) Figure 1.

• The integer case (except in Section 2): The inputs were polynomials (or power
series); what about the analogous operations on integers (or real numbers)?
What difficulties arise in adapting the algorithm to integers? How much time
does the adapted algorithm take?

Mathematics Subject Classification: Primary 68–02. Secondary 11Y16, 12Y05, 65D20, 65T50, 65Y20,
68W30.

Permanent ID of this document: 8758803e61822d485d54251b27b1a20d. Date: 2008.05.15.

325

326 DANIEL J. BERNSTEIN

§ 2. Product:
the FFT case

��

§ 14. Fraction from
continued fraction

§ 16. Exponential:
the general case

§ 3. Product:
extension

��

§ 11. Matrix product

))TTTTTTTTTTTTTTTTTT
§ 15. Exponential:

the short case

OO

§ 4. Product:
zero-padding and

localization
��

55kkkkkkkkkkkk
§ 20. Small factors

of a sequence § 12. Product tree

��

ddIIIIIIIIIIIIIIIIIIIIIIII

OO

zzuuuuuuuuuuuuuuuuuuuuuuuuuu

§ 5. Product:
completion

��

§ 19. Small factors
of a product

OO

§ 6. Reciprocal

��

§ 18. Remainder tree

OO

))TTTTTTTTTTTTTTTTTT § 13. Sum of fractions

��
§ 7. Quotient

��

// § 17. Quotient
and remainder

OO

��

§ 23. Interpolator

§ 8. Logarithm:
the series case

��

§ 21. Continued fraction
from fraction

// § 22. Greatest
common divisor

OO

��§ 9. Exponential:
the series case

// § 10. Power:
the series case § 24. Coprime base

Figure 1. Outline of the paper. A vertex “§ N . F” here means that
Section N describes an algorithm to compute the function F . Arrows here
indicate prerequisite algorithms.

• History: How were these ideas developed?
• Improvements: The algorithm was chosen to be reasonably simple (subject

to the n1+o(1) bound) at the expense of speed; how can the same function be
computed even more quickly?

Sections 2 through 5 describe fast multiplication algorithms for various rings.
The remaining sections describe various applications of fast multiplication. Here
is a simplified summary of the functions being computed:

• § 6. Reciprocal. f 7→ 1/ f approximation.
• § 7. Quotient. f, h 7→ h/ f approximation.
• § 8. Logarithm. f 7→ log f approximation.

FAST MULTIPLICATION AND ITS APPLICATIONS 327

• § 9. Exponential. f 7→ exp f approximation. Also § 15, § 16.
• § 10. Power. f, e 7→ f e approximation.
• § 11. Matrix product. f, g 7→ f g for 2 × 2 matrices.
• § 12. Product tree. f1, f2, f3, . . . 7→ tree of products including f1 f2 f3 · · · .
• § 13. Sum of fractions. f1, g1, f2, g2, . . . 7→ f1/g1 + f2/g2 + · · · .
• § 14. Fraction from continued fraction. q1, q2, . . . 7→ q1 + 1/(q2 + 1/(· · ·)).
• § 17. Quotient and remainder. f, h 7→ bh/ f c , h mod f .
• § 18. Remainder tree. h, f1, f2, . . . 7→ h mod f1, h mod f2,
• § 19. Small factors of a product. S, h1, h2, . . . 7→ S(h1h2 · · ·) where S is a

set of primes and S(h) is the subset of S dividing h.
• § 20. Small factors of a sequence. S, h1, h2, . . . 7→ S(h1), S(h2),
• § 21. Continued fraction from fraction. f1, f2 7→ q1, q2, q3, . . . with f1/ f2 =

q1 + 1/(q2 + 1/(q3 + 1/(· · ·))).
• § 22. Greatest common divisor. f1, f2 7→ gcd{ f1, f2}.
• § 23. Interpolator. f1, g1, f2, g2, . . . 7→ h with h ≡ f j (mod g j).
• § 24. Coprime base. f1, f2, . . . 7→ coprime set S with f1, f2, . . . ∈ 〈S〉.

Acknowledgments. Thanks to Alice Silverberg, Paul Zimmermann, and the
referee for their comments.

2. Product: the FFT case

2.1. Input. Let n ≥ 1 be a power of 2. Let c be a nonzero element of C.
The algorithm described in this section is given two elements f, g of the ring
C[x]/(xn

− c).
An element of C[x]/(xn

− c) is, by convention, represented as a sequence of
n elements of C: the sequence (f0, f1, . . . , fn−1) represents f0 + f1x + · · · +

fn−1xn−1.

2.2. Output. This algorithm computes the product f g ∈ C[x]/(xn
− c), repre-

sented in the same way. If the input is f0, f1, . . . , fn−1, g0, g1, . . . , gn−1 then the
output is h0, h1, . . . , hn−1, where hi =

∑
0≤ j≤i f j gi− j + c

∑
i+1≤ j<n f j gi+n− j .

For example, for n = 4, the output is f0g0 + c f1g3 + c f2g2 + c f3g1, f0g1 +

f1g0 + c f2g3 + c f3g2, f0g2 + f1g1 + f2g0 + c f3g3, f0g3 + f1g2 + f2g1 + f3g0.

2.3. Model of computation. Let A be a commutative ring. An operation in
A is, by definition, one binary addition a, b 7→ a + b, one binary subtraction
a, b 7→ a − b, or one binary multiplication a, b 7→ ab. Here a is an input, a
constant, or a result of a previous operation; same for b.

For example, given a, b ∈ C, one can compute 10a +11b, 9a +10b with four
operations in C: add a and b to obtain a+b; multiply by 10 to obtain 10a+10b;
add b to obtain 10a + 11b; subtract a from 10a + 10b to obtain 9a + 10b.

328 DANIEL J. BERNSTEIN

Starting in Section 19 of this paper, the definition of operation in A is ex-
panded to allow equality tests. Starting in Section 21, the ring A is assumed to be
a field, and the definition of operation in A is expanded to allow divisions (when
the denominators are nonzero). Algorithms built out of additions, subtractions,
multiplications, divisions, and equality tests are called algebraic algorithms.
See [Bürgisser et al. 1997, Chapter 4] for a precise definition of this model of
computation.

Warning: It is tempting to think of an algebraic algorithm (e.g., “add a to b;
multiply by b”) as simply a chain of intermediate results (e.g., “a+b; ab+b2”).
Some authors define algebraic algorithms as chains of computable results; see,
e.g., the definition of addition chains in [Knuth and Papadimitriou 1981]. But
this simplification poses problems. Standard measurements of algebraic com-
plexity, such as the number of multiplications, are generally not determined by
the chain of intermediate results. (How many multiplications are in 2a, a2, 2a2?)
An algebraic algorithm, properly defined, is not a chain of computable results
but a chain of computations.

2.4. Speed. The algorithm in this section uses O(n lg n) operations — more
precisely, (9/2)n lg n + 2n additions, subtractions, and multiplications — in C.
Here lg = log2.

2.5. How it works. If n = 1 then the algorithm simply multiplies f0 by g0 to
obtain the output f0g0.

The strategy for larger n is to split an n-coefficient problem into two (n/2)-
coefficient problems, which are handled by the same method recursively. One
needs lg n levels of recursion to split the original problem into n easy single-
coefficient problems; each level of recursion involves 9/2 operations per coef-
ficient.

Consider, for any n, the functions ϕ : C[x]/(x2n
− c2) → C[x]/(xn

− c) and
ϕ′ :C[x]/(x2n

−c2)→C[x]/(xn
+c) that take f0+· · ·+ f2n−1x2n−1 to (f0+c fn)+

· · ·+(fn−1+c f2n−1)x2n−1 and (f0−c fn)+· · ·+(fn−1−c f2n−1)x2n−1 respectively.
Given f , one can compute ϕ(f), ϕ′(f) with n additions, n subtractions, and n
multiplications by the constant c.

These functions ϕ, ϕ′ are C[x]-algebra morphisms. In particular, they pre-
serve multiplication: ϕ(f g) = ϕ(f)ϕ(g) and ϕ′(f g) = ϕ′(f)ϕ′(g). Further-
more, ϕ ×ϕ′ is injective: one can recover f from ϕ(f) and ϕ′(f). It is simpler
to recover 2 f : this takes n additions, n subtractions, and n multiplications by
the constant 1/c.

Here, then, is how the algorithm computes 2n f g, given f, g ∈C[x]/(x2n
−c2):

• Compute ϕ(f), ϕ(g), ϕ′(f), ϕ′(g) with 2n additions, 2n subtractions, and 2n
multiplications by c.

FAST MULTIPLICATION AND ITS APPLICATIONS 329

C[x]/(x4
+ 1)

x 7→x

vvllllllllll x 7→x

((RRRRRRRRRR

C[x]/(x2
− i)

x 7→
√

i
||zz

zz
zz

z
x 7→−

√
i

""DD
DD

DD
D

C[x]/(x2
+ i)

x 7→
√

−i
||zz

zz
zz

z
x 7→−

√
−i

""DD
DD

DD
D

C C C C

Figure 2. Splitting product in C[x]/(x4
+ 1) into products in C.

• Recursively compute nϕ(f)ϕ(g) = ϕ(n f g) in C[x]/(xn
−c), and recursively

compute nϕ′(f)ϕ′(g) = ϕ′(n f g) in C[x]/(xn
+ c).

• Compute 2n f g from ϕ(n f g), ϕ′(n f g) with n additions, n subtractions, and n
multiplications by 1/c.

For example, given f = f0 + f1x + f2x2
+ f3x3 and g = g0 +g1x +g2x2

+g3x3,
the algorithm computes 4 f g in C[x]/(x4

+ 1) = C[x]/(x4
− i2) as follows:

• Compute ϕ(f)= (f0+i f2)+(f1+i f3)x and ϕ′(f)= (f0−i f2)+(f1−i f3)x ,
and similarly compute ϕ(g) and ϕ′(g).

• Recursively compute 2ϕ(f)ϕ(g) in C[x]/(x2
− i), and recursively compute

2ϕ′(f)ϕ′(g) in C[x]/(x2
+ i).

• Recover 4 f g.

See Figure 2.
A straightforward induction shows that the total work to compute the product

n f g, given f, g ∈ C[x]/(xn
− c), is (3/2)n lg n additions, (3/2)n lg n subtrac-

tions, (3/2)n lg n multiplications by various constants, and n more multiplica-
tions. The algorithm then computes f g with an additional n multiplications by
the constant 1/n.

2.6. Generalization. More generally, let A be a commutative ring in which 2
is invertible, let n ≥ 2 be a power of 2, let c be an invertible element of A, and
let ζ be an (n/2)nd root of −1 in A.

By exactly the same method as above, one can multiply two elements of
the ring A[x]/(xn

− cn) with (9/2)n lg n + 2n operations in A: specifically,
(3/2)n lg n additions, (3/2)n lg n subtractions, (3/2)n lg n + n multiplications
by constants, and n more multiplications. The constants are 1/n and products
of powers of c and ζ .

The assumption that A has a primitive nth root of 1 is a heavy restriction on
A. If Z/t has a primitive nth root of 1, for example, then every prime divisor
of t is in 1 + nZ. (This fact is a special case of Pocklington’s primality test.)
Section 3 explains how to handle more general rings A.

330 DANIEL J. BERNSTEIN

2.7. Variant: radix 3. Similarly, let A be a commutative ring in which 3 is
invertible, let n ≥ 3 be a power of 3, let c be an invertible element of A, and let
ζ be an element of A satisfying 1+ζ n/3

+ζ 2n/3
= 0. Then one can multiply two

elements of the ring A[x]/(xn
− cn) with O(n lg n) operations in A.

2.8. History. Gauss [1866, pages 265–327] was the first to point out that one
can quickly compute a ring isomorphism from R[x]/(x2n

− 1) to R2
× Cn−1

when n has no large prime factors. For example, Gauss [1866, pages 308–310]
(in completely different language) mapped R[x]/(x12

− 1) to R[x]/(x3
− 1) ×

R[x]/(x3
+ 1) × C[x]/(x3

+ i), then mapped R[x]/(x3
− 1) to R × C, mapped

R[x]/(x3
+ 1) to R × C, and mapped C[x]/(x3

+ i) to C × C × C.
The discrete Fourier transform — this isomorphism from R[x]/(x2n

− 1)

to R2
× Cn−1, or the analogous isomorphism from C[x]/(xn

− 1) to Cn — was
applied to many areas of scientific computation over the next hundred years.
Gauss’s method was reinvented several times, as discussed in [Heideman et al.
1985], and finally became widely known after it was reinvented and published
by Cooley and Tukey [1965]. Gauss’s method is now called the fast Fourier
transform or simply the FFT.

Shortly after the Cooley–Tukey paper, Sande and Stockham pointed out that
one can quickly multiply in C[x]/(xn

− 1) by applying the FFT, multiplying
in Cn , and applying the inverse FFT. See [Stockham 1966, page 229] and
[Gentleman and Sande 1966, page 573].

Fiduccia [1972] was the first to point out that each step of the FFT is an
algebra isomorphism. This fact is still not widely known, despite its tremendous
expository value; most expositions of the FFT use only the module structure of
each step. I have taken Fiduccia’s idea much further in this paper and in [Bern-
stein 2001], identifying the ring morphisms behind all known multiplication
methods.

2.9. Improvements. The algorithm explained above takes 15n lg n + 8n op-
erations in R to multiply in C[x]/(xn

− 1), if n ≥ 2 is a power of 2 and C is
represented as R[i]/(i2

+ 1):

• 5n lg n to transform the first input from C[x]/(xn
− 1) to Cn . The FFT takes

n lg n additions and subtractions in C, totalling 2n lg n operations in R, and
(1/2)n lg n multiplications by various roots of 1 in C, totalling 3n lg n oper-
ations in R.

• 5n lg n to transform the second input from C[x]/(xn
− 1) to Cn .

• 2n to scale one of the transforms, i.e., to multiply by 1/n. One can eliminate
most of these multiplications by absorbing 1/n into other constants.

• 6n to multiply the two transformed inputs in Cn .
• 5n lg n to transform the product from Cn back to C[x]/(xn

− 1).

FAST MULTIPLICATION AND ITS APPLICATIONS 331

One can reduce each 5n lg n to 5n lg n − 10n + 16 for n ≥ 4 by recognizing
roots of 1 that allow easy multiplications: multiplications by 1 can be skipped,
multiplications by −1 and ±i can be absorbed into subsequent computations,
and multiplications by ±

√
±i are slightly easier than general multiplications.

Gentleman and Sande [1966] pointed out another algorithm, which I call the
twisted FFT, to map C[x]/(xn

− 1) to Cn using 5n lg n − 10n + 16 opera-
tions. The twisted FFT maps C[x]/(x2n

−1) to C[x]/(xn
−1)×C[x]/(xn

+1),
twists C[x]/(xn

+1) into C[x]/(xn
−1) by mapping x → ζ x , and handles each

C[x]/(xn
− 1) recursively.

The split-radix FFT is faster: it uses only 4n lg n−6n+8 operations for n ≥2.
The split-radix FFT is a mixture of Gauss’s FFT with the Gentleman–Sande
twisted FFT: it maps C[x]/(x4n

− 1) to C[x]/(x2n
− 1)× C[x]/(x2n

+ 1), maps
C[x]/(x2n

+1) to C[x]/(xn
− i)×C[x]/(xn

+ i), twists each C[x]/(xn
± i) into

C[x]/(xn
−1) by mapping x → ζ x , and recursively handles both C[x]/(x2n

−1)

and C[x]/(xn
− 1).

Another method is the real-factor FFT: map C[x]/(x4n
− (2 cos 2α)x2n

+1)

to C[x]/(x2n
− (2 cos α)xn

+ 1) × C[x]/(x2n
+ (2 cos α)xn

+ 1), and handle
each factor recursively. If one represents elements of C[x]/(x2n

± · · ·) us-
ing the basis (1, x, . . . , xn−1, x−n, x1−n, . . . , x−1) then the real-factor FFT uses
4n lg n + O(n) operations.

It is difficult to assign credit for the bound 4n lg n+O(n). Yavne [1968, page
117] announced the bound 4n lg n − 6n + 8 (specifically, 3n lg n − 3n + 4 addi-
tions and subtractions and n lg n − 3n + 4 multiplications), and apparently had
in mind a method achieving that bound; but nobody, to my knowledge, has ever
deciphered Yavne’s explanation of the method. Ten years later, Bruun [1978]
published the real-factor FFT. Several years after that, Duhamel and Hollmann
[1984], Martens [1984], Vetterli and Nussbaumer [1984], and Stasinski (ac-
cording to [Duhamel and Vetterli 1990, page 263]) independently discovered
the split-radix FFT.

In 2004, Van Buskirk posted software demonstrating that the split-radix FFT
is not optimal: the tangent FFT uses only (34/9)n lg n + O(n) operations,
so multiplication in C[x]/(xn

− 1) uses only (34/3)n lg n + O(n) operations.
The tangent FFT avoids the standard basis 1, x, . . . , xn−1 of C[x]/(xn

− 1) and
instead uses the basis 1/sn,0, x/sn,1, . . . , xn−1/sn,n−1 where

sn,k =

∏
`≥0

max
{∣∣∣∣cos

4`2πk
n

∣∣∣∣ , ∣∣∣∣sin
4`2πk

n

∣∣∣∣}.

Aside from this change, the tangent FFT maps C[x]/(x8n
−1) to C[x]/(x2n

−1)×

C[x]/(x2n
−1)×C[x]/(x2n

−1)×C[x]/(xn
−1)×C[x]/(xn

−1) in essentially
the same way as the split-radix FFT. See [Bernstein 2007] for further details

332 DANIEL J. BERNSTEIN

and a cost analysis. See [Lundy and Van Buskirk 2007] and [Johnson and Frigo
2007] for two alternate explanations of the 34/9.

One can multiply in R[x]/(x2n
+ 1) with (34/3)n lg n + O(n) operations in

R, if n is a power of 2: map R[x]/(x2n
+1) to C[x]/(xn

−i), twist C[x]/(xn
−i)

into C[x]/(xn
− 1), and apply the tangent FFT. This is approximately twice as

fast as mapping R[x]/(x2n
+ 1) to C[x]/(x2n

+ 1).
One can also multiply in R[x]/(x2n

−1) with (34/3)n lg n+ O(n) operations
in R, if n is a power of 2: map R[x]/(x2n

−1) to R[x]/(xn
−1)×R[x]/(xn

+1);
handle R[x]/(xn

− 1) by the same method recursively; handle R[x]/(xn
+ 1)

as above. This is approximately twice as fast as mapping R[x]/(x2n
− 1) to

C[x]/(x2n
− 1). This speedup was announced by Bergland [1968], but it was

already part of Gauss’s FFT.
The general strategy of all of the above algorithms is to transform f , trans-

form g, multiply the results, and then undo the transform to recover f g. There
is some redundancy here if f = g: one can easily save a factor of 1.5+o(1) by
transforming f , squaring the result, and undoing the transform to recover f 2.
(Of course, f 2 is much easier to compute if 2 = 0 in A; this also saves time in
Section 6.)

More generally, one can save the transform of each input, and reuse the trans-
form in a subsequent multiplication if one knows (or observes) that the same
input is showing up again. I call this technique FFT caching. FFT caching was
announced in [Crandall and Fagin 1994, Section 9], but it was already widely
known; see, e.g., [Montgomery 1992, Section 3.7].

Further savings are possible when one wants to compute a sum of products.
Instead of undoing a transform to recover ab, undoing another transform to
recover cd, and adding the results to obtain ab + cd , one can add first and then
undo a single transform to recover ab +cd . I call this technique FFT addition.

There is much more to say about FFT performance, because there are much
more sophisticated models of computation. Real computers have operation la-
tency, memory latency, and instruction-decoding latency, for example; a serious
analysis of constant factors takes these latencies into account.

3. Product: extension

3.1. Input. Let A be a commutative ring in which 2 is invertible. Let n ≥ 1 be
a power of 2. The algorithm described in this section is given two elements f, g
of the ring A[x]/(xn

+ 1).
An element of A[x]/(xn

+1) is, by convention, represented as a sequence of
n elements of A: the sequence (f0, f1, . . . , fn−1) represents f0 + f1x + · · · +

fn−1xn−1.

FAST MULTIPLICATION AND ITS APPLICATIONS 333

3.2. Output. This algorithm computes the product f g ∈ A[x]/(xn
+ 1).

3.3. Speed. This algorithm uses O(n lg n lg lg n) operations in A: more pre-
cisely, at most (((9/2) lg lg(n/4) + 63/2) lg(n/4) − 33/2)n operations in A if
n ≥ 8.

3.4. How it works. For n ≤ 8, use the definition of multiplication in A[x]/(xn
+

1). This takes at most n2
+ n(n − 1) = (2n − 1)n operations in A. If n = 8 then

lg(n/4) = 1 so ((9/2) lg lg(n/4)+63/2) lg(n/4)−33/2 = 63/2−33/2 = 15 =

2n − 1.
For n ≥ 16, find the unique power m of 2 such that m2

∈ {2n, 4n}. Notice that
8 ≤ m < n. Notice also that lg(n/4)−1 ≤ 2 lg(m/4) ≤ lg(n/4), so lg lg(m/4) ≤

lg lg(n/4) − 1 and 2 lg(2n/m) ≤ lg(n/4) + 3.
Define B = A[x]/(xm

+1). By induction, given f, g ∈ B, one can compute the
product f g with at most (((9/2) lg lg(m/4)+63/2) lg(m/4)−33/2)m operations
in A. One can also compute any of the following with m operations in A: the
sum f + g; the difference f − g; the product c f , where c is a constant element
of A; the product c f , where c is a constant power of x .

There is a (2n/m)th root of −1 in B, namely xm2/2n . Therefore one can use
the algorithm explained in Section 2 to multiply quickly in B[y]/(y2n/m

+1) —
and, consequently, to multiply in A[x, y]/(y2n/m

+1) if each input has x-degree
smaller than m/2. This takes (9/2)(2n/m) lg(2n/m) + 2n/m easy operations
in B and 2n/m more multiplications in B.

Now, given f, g ∈ A[x]/(xn
+ 1), compute f g as follows. Consider the

A[x]-algebra morphism ϕ : A[x, y]/(y2n/m
+ 1) → A[x]/(xn

+ 1) that takes y
to xm/2. Find F ∈ A[x, y]/(y2n/m

+ 1) such that F has x-degree smaller than
m/2 and ϕ(F) = f ; explicitly, F =

∑
j
∑

0≤i<m/2 fi+(m/2) j x i y j if f =
∑

fi x i .
Similarly construct G from g. Compute FG as explained above. Then compute
ϕ(FG) = f g; this takes n additional operations in A.

One multiplication in A[x]/(xn
+ 1) has thus been split into

• 2n/m multiplications in B, i.e., at most ((9 lg lg(m/4)+63) lg(m/4)−33)n ≤

(((9/2) lg lg(n/4) + 27) lg(n/4) − 33)n operations in A;
• (9n/m) lg(2n/m) + 2n/m ≤ ((9/2) lg(n/4) + 31/2)n/m easy operations in

B, i.e., at most ((9/2) lg(n/4) + 31/2)n operations in A; and
• n additional operations in A.

The total is at most (((9/2) lg lg(n/4) + 63/2) lg(n/4) − 33/2)n as claimed.
For example, given f = f0+ f1x +· · ·+ f7x7 and g = g0+g1x +· · ·+g7x7 in

A[x]/(x8
+1), define F = (f0+ f1x)+(f2+ f3x)y+(f4+ f5x)y2

+(f6+ f7x)y3

and G = (g0+g1x)+(g2+g3x)y+(g4+g5x)y2
+(g6+g7x)y3 in A[x, y]/(y4

+1).

334 DANIEL J. BERNSTEIN

A[x]/(x8
+ 1)

A[x, y]/(y4
+ 1)

y 7→x2

OO

��
B[y]/(y4

+ 1)

y 7→yuulllllllllllll

y 7→y))RRRRRRRRRRRRR

B[y]/(y2
− x2)

y 7→x

||xx
xx

xx
xx

x y 7→−x

""FF
FF

FF
FF

F
B[y]/(y2

+ x2)
y 7→x3

||xx
xx

xx
xx

x y 7→−x3

""FF
FF

FF
FF

F

B B B B

Figure 3. Splitting product in A[x]/(x8
+ 1) into four products in

B = A[x]/(x4
+ 1), if 2 is invertible in A. Compare to Figure 2.

The product FG has the form

(h0 + h1x + h2x2) + (h3 + h4x + h5x2)y
+ (h6 + h7x + h8x2)y2

+ (h9 + h10x + h11x2)y3.

Compute this product in A[x, y]/(x4
+ 1, y4

+ 1), and substitute y = x2 to
recover f g = (h0 − h11) + h1x + (h2 + h3)x2

+ h4x3
+ (h5 + h6)x4

+ h7x5
+

(h8 + h9)x6
+ h10x7. The multiplication in A[x, y]/(x4

+ 1, y4
+ 1) splits into

four multiplications in A[x]/(x4
+ 1). See Figure 3.

3.5. Variant: radix 3. Similarly, let A be a commutative ring in which 3 is
invertible, and let n ≥ 3 be a power of 3. One can multiply two elements of
A[x]/(x2n

+ xn
+ 1) with O(n lg n lg lg n) operations in A.

3.6. The integer case; another model of computation. Algorithms that
multiply polynomials of high degree using very few coefficient operations are
analogous to algorithms that multiply integers with many bits in very little time.

There are many popular definitions of time. In this paper, time means number
of steps on a multitape Turing machine. See [Papadimitriou 1994, Section 2.3]
for a precise definition of multitape Turing machines.

Let n be a power of 2. There is an algorithm, analogous to the multiplication
algorithm for A[x]/(xn

+1), that multiplies two elements of Z/(2n
+1) in time

O(n lg n lg lg n). Here an element of Z/(2n
+ 1) is, by convention, represented

as a sequence of n +1 bits: the sequence (f0, f1, . . . , fn) represents f0 +2 f1 +

· · · + 2n fn . Note that most numbers have two representations.

FAST MULTIPLICATION AND ITS APPLICATIONS 335

The multiplication algorithm for Z/(2n
+ 1) performs 2n/m multiplications

in Z/(2m
+ 1), for n ≥ 16, where m2

∈ {2n, 4n}. Splitting a Z/(2n
+ 1) mul-

tiplication into Z/(2m
+ 1) multiplications is analogous to, but slightly more

complicated than, splitting an A[x]/(xn
+ 1) multiplication into A[x]/(xm

+ 1)

multiplications. The complication is that a sum of 2n/m products of (m/2)-
bit integers generally does not quite fit into m bits. On the other hand, the
sum does fit into m + k bits for a small k, so it is determined by its images
in Z/(2m

+ 1) and Z/2k . One multiplies in Z[y]/(y2n/m
+ 1) by multiplying

recursively in (Z/(2m
+1))[y]/(y2n/m

+1) and multiplying straightforwardly in
(Z/2k)[y]/(y2n/m

+ 1).

3.7. History. The ideas in this section were developed first in the integer case.
The crucial point is that one can multiply in Z[y]/(ym

±1) by selecting t so that
Z/t has an appropriate root of 1, mapping Z[y]/(ym

±1) to (Z/t)[y]/(ym
±1),

and applying an FFT over Z/t . This multiplication method was suggested by
Pollard [1971], independently by Nicholson [1971, page 532], and indepen-
dently by Schönhage and Strassen [1971]. Schönhage and Strassen suggested
the choice t = 2m

+ 1 and proved the O(n lg n lg lg n) time bound.
An analogous method for polynomials was mentioned by Schönhage [1977]

and presented in detail by Turk [1982, Section 2]. Schönhage also suggested
using the radix-3 FFT to multiply polynomials over fields of characteristic 2.

Nussbaumer [1980] introduced a different polynomial-multiplication algo-
rithm achieving the O(n lg n lg lg n) operation bound. Nussbaumer’s algorithm
starts in the same way, lifting (for example) A[x]/(x8

+ 1) to A[x, y]/(y4
+ 1)

by y 7→ x2. It then maps A[x, y]/(y4
+ 1) to (A[y]/(y4

+ 1))[x]/(x4
− 1) and

applies an FFT over A[y]/(y4
+ 1), instead of mapping A[x, y]/(y4

+ 1) to
(A[x]/(x4

+ 1))[y]/(y4
+ 1) and applying an FFT over A[x]/(x4

+ 1).

3.8. Improvements. Multiplication by a constant power of x in A[x]/(xm
+1)

is easier than the above analysis indicates: multiplications by 1 in A can be
eliminated, and multiplications by −1 in A can be absorbed into subsequent
computations. The total operation count drops from (9/2+o(1))n lg n lg lg n to
(3 + o(1))n lg n lg lg n.

The constant 3 here is the best known. There is much more to say about the
o(1). See [Bernstein 2001] for a survey of relevant techniques.

There is vastly more to say about integer multiplication, in part because
Turing-machine time is a more complicated concept than algebraic complexity,
and in part because real computers are more complicated than Turing machines.
I will restrict my discussion of this area to one recent piece of news, namely
that the Schönhage–Strassen time bound O(n lg n lg lg n) has been superseded:
Fürer [2007] reduced lg lg n to 2O(lg∗ n). Here lg∗ n = 0 for n = 1; lg∗ n = 1 for

336 DANIEL J. BERNSTEIN

2 ≤ n < 4; lg∗ n = 2 for 4 ≤ n < 16; lg∗ n = 3 for 16 ≤ n < 65536; lg∗ n = 4 for
65536 ≤ n < 265536; etc. All of the · · · lg lg n time bounds for integer operations
later in this paper are therefore unnecessarily pessimistic.

Here is Fürer’s idea in a nutshell. Recall that the split-radix FFT maps
C[x]/(x2n

−c2) to C[x]/(xn
−c)×C[x]/(xn

+c) when c is an “easy” root of 1,
specifically a power of i ; otherwise it twists C[x]/(x2n

−c2) into C[x]/(x2n
−1).

Generalize from C = R[i]/(i2
+ 1) to the ring R[i]/(i2k

+ 1), with ζ chosen as
an (n/2k+1)th root of i ; for example, take

ζ =

∑
0≤d<2k

id

2k−1

∑
0< j<2k ; j odd

cos
(

2π j
(

d
2k+1

−
1
n

))
.

A split-radix FFT of size n over R[i]/(i2k
+1), with b bits of precision in R, then

involves 2(n lg n) easy operations in R[i]/(i2k
+ 1), each of which takes time

2(2kb), and only 2((n lg n)/k) hard multiplications in R[i]/(i2k
+ 1), each of

which can be expressed as an integer multiplication of size 2(2kb). Fürer takes
both b and 2k on the scale of lg n, reducing an integer multiplication of size
2(n(lg n)2) to 2((n lg n)/lg lg n) integer multiplications of size 2((lg n)2).

4. Product: zero-padding and localization

4.1. Input. Let A be a commutative ring. Let n be a positive integer. The
algorithm in this section is given two elements f, g of the polynomial ring A[x]
such that deg f g < n: e.g., such that n is the total number of coefficients in f
and g.

An element of A[x] is, by convention, represented as a finite sequence of
elements of A: the sequence (f0, f1, . . . , fd−1) represents f0 + f1x + · · · +

fd−1xd−1.

4.2. Output. This algorithm computes the product f g ∈ A[x].

4.3. Speed. The algorithm uses O(n lg n lg lg n) operations in A.
Equivalently: The algorithm uses at most nµ(n) operations in A, where µ :

N → R is a nondecreasing positive function with µ(n) ∈ O(lg n lg lg n). The
µ notation helps simplify the run-time analysis in subsequent sections of this
paper.

4.4. Special case: how it works if A = C. Given f, g ∈ C[x] such that
deg f g < n, one can compute f g by using the algorithm of Section 2 to compute
f g mod (xm

−1) in C[x]/(xm
−1); here m is the smallest power of 2 with m ≥n.

This takes O(m lg m) = O(n lg n) operations in C.
For example, if f = f0 + f1x + f2x2 and g = g0 + g1x + g2x2

+ g3x3, use
the algorithm of Section 2 to multiply the elements f0 + f1x + f2x2

+ 0x3
+

FAST MULTIPLICATION AND ITS APPLICATIONS 337

0x4
+ 0x5

+ 0x6
+ 0x7 and g0 + g1x + g2x2

+ g3x3
+ 0x4

+ 0x5
+ 0x6

+ 0x7 of
C[x]/(x8

− 1), obtaining h0 + h1x + h2x2
+ h3x3

+ h4x4
+ h5x5

+ 0x6
+ 0x7.

Then f g = h0 + h1x + h2x2
+ h3x3

+ h4x4
+ h5x5. Appending zeros to an

input — for example, converting f0, f1, f2 to f0, f1, f2, 0, 0, 0, 0, 0 — is called
zero-padding.

In this special case A = C, the aforementioned bound µ(n) ∈ O(lg n lg lg n)

is unnecessarily pessimistic: one can take µ(n) ∈ O(lg n). Subsequent sections
of this paper use the bound µ(n) ∈ O(lg n lg lg n), and are correspondingly
pessimistic.

Similar comments apply to other rings A having appropriate roots of −1, and
to nearby rings such as R.

4.5. Intermediate generality: how it works if 2 is invertible in A. Let A be
any commutative ring in which 2 is invertible. Given f, g ∈ A[x] with deg f g <

n, one can compute f g by using the algorithm of Section 3 to compute f g mod
(xm

+ 1) in A[x]/(xm
+ 1); here m is the smallest power of 2 with m ≥ n. This

takes O(m lg m lg lg m) = O(n lg n lg lg n) operations in A.

4.6. Intermediate generality: how it works if 3 is invertible in A. Let A be
any commutative ring in which 3 is invertible. The previous algorithm has a
radix-3 variant that computes f g using O(n lg n lg lg n) operations in A.

4.7. Full generality: how it works for arbitrary rings. What if neither 2 nor
3 is invertible? Answer: Map A to the product of the localizations 2−N A and
3−N A. This map is injective; 2 is invertible in 2−N A; and 3 is invertible in 3−N A.

In other words: Given polynomials f, g over any commutative ring A, use
the technique of Section 3 to compute 2 j f g for some j ; use the radix-3 variant
to compute 3k f g for some k; and then compute f g as a linear combination of
2 j f g and 3k f g. This takes O(n lg n lg lg n) operations in A if deg f g < n.

Assume, for example, that deg f g < 8. Find 16 f g by computing 16 f g mod
(x8

− 1), and find 9 f g by computing 9 f g mod (x18
+ x9

+ 1); then f g =

4(16 f g)− 7(9 f g). The numbers 16 and 9 here are the denominators produced
by the algorithm of Section 3.

4.8. The integer case. An analogous algorithm computes the product of two
integers in time O(n lg n lg lg n), if the output size is known to be at most n
bits. (Given f, g ∈ Z with | f g| < 2n , use the algorithm of Section 3 to compute
f g mod (2m

+1) in Z/(2m
+1); here m is the smallest power of 2 with m ≥n+1.)

Here an integer is, by convention, represented in two’s-complement no-
tation: a sequence of bits (f0, f1, . . . , fk−1, fk) represents f0 + 2 f1 + · · · +

2k−1 fk−1 − 2k fk .

338 DANIEL J. BERNSTEIN

4.9. History. Karatsuba was the first to point out that integer multiplication can
be done in subquadratic time; see [Karatsuba and Ofman 1963]. This result is
often (e.g., in [Bürgisser et al. 1997, page 58]) incorrectly credited to Karatsuba
and Ofman, but [Karatsuba and Ofman 1963, Theorem 2] explicitly credited the
algorithm to Karatsuba alone.

Toom [1963] was the first to point out that integer multiplication can be done
in essentially linear time: more precisely, time n exp(O(

√
log n)). Schönhage

[1966] independently published the same observation a few years later. Cook
[1966, page 53] commented that Toom’s method could be used to quickly mul-
tiply polynomials over finite fields.

Stockham [1966, page 230] suggested zero-padding and FFT-based multipli-
cation in C[x]/(xn

− 1) as a way to multiply in C[x].
The O(n lg n lg lg n) time bound for integers is usually credited to Schönhage

and Strassen; see Section 3. Cantor and Kaltofen [1991] used A→2−N A×3−N A
to prove the O(n lg n lg lg n) operation bound for polynomials over any ring.

4.10. Improvements. The above algorithms take

• (m/n)(9/2 + o(1))n lg n operations in C to multiply in C[x]; or
• (m/n)(34/3+o(1))n lg n operations in R to multiply in C[x], using the tan-

gent FFT; or
• (m/n)(17/3 + o(1))n lg n operations in R to multiply in R[x]; or
• (m/n)(3 + o(1))n lg n lg lg n operations in any ring A to multiply in A[x], if

2 is invertible in A.

There are several ways to eliminate the m/n factor here. One good way is to
compute f g modulo xm

+1 for several powers m of 2 with
∑

m ≥n, then recover
f g. For example, if n = 80000, one can recover f g from f g mod (x65536

+ 1)

and f g mod (x16384
+ 1). A special case of this technique was pointed out by

Crandall and Fagin [1994, Section 7]. See [Bernstein 2001, Section 8] for an
older technique.

One can save time at the beginning of the FFT when the input is known to
be the result of zero-padding. For example, one does not need an operation to
compute f0 + 0. Similarly, one can save time at the end of the FFT when the
output is known to have zeros: the zeros need not be recomputed.

In the context of FFT addition — for example, computing ab + cd with only
five transforms — the transform size does not need to be large enough for ab
and cd; it need only be large enough for ab + cd. This is useful in applications
where ab + cd is known to be small.

When f has a substantially larger degree than g (or vice versa), one can often
save time by splitting f into pieces of comparable size to g, and multiplying
each piece by g. Similar comments apply in Section 7. In the polynomial case,

FAST MULTIPLICATION AND ITS APPLICATIONS 339

this technique is most often called the “overlap-add method”; it was introduced
by Stockham [1966, page 230] under the name “sectioning.” The analogous
technique for integers appears in [Knuth 1997, answer to Exercise 4.3.3–13]
with credit to Schönhage.

See [Bernstein 2001] for a survey of further techniques.

5. Product: completion

5.1. Input. Let A be a commutative ring. Let n be a positive integer. The
algorithm in this section is given the precision-n representations of two elements
f, g of the power-series ring A[[x]].

The precision-n representation of a power series f ∈ A[[x]] is, by definition,
the polynomial f mod xn . If f =

∑
j f j x j then f mod xn

= f0 + f1x + · · · +

fn−1xn−1. This polynomial is, in turn, represented in the usual way as its coef-
ficient sequence (f0, f1, . . . , fn−1).

This representation does not carry complete information about f ; it is only
an approximation to f . It is nevertheless useful.

5.2. Output. This algorithm computes the precision-n representation of the
product f g ∈ A[[x]]. If the input is f0, f1, . . . , fn−1, g0, g1, . . . , gn−1 then the
output is f0g0, f0g1 + f1g0, f0g2 + f1g1 + f2g0, . . . , f0gn−1 + f1gn−2 + · · · +

fn−1g0.

5.3. Speed. This algorithm uses O(n lg n lg lg n) operations in A: more pre-
cisely, at most (2n − 1)µ(2n − 1) operations in A.

5.4. How it works. Given f mod xn and g mod xn , compute the polynomial
product (f mod xn)(g mod xn) by the algorithm of Section 4. Throw away the
coefficients of xn, xn+1, . . . to obtain (f mod xn)(g mod xn) mod xn

= f g mod
xn .

For example, given the precision-3 representation f0, f1, f2 of the series f =

f0 + f1x + f2x2
+· · · , and given the precision-3 representation g0, g1, g2 of the

series g =g0+g1x+g2x2
+· · · , first multiply f0+ f1x+ f2x2 by g0+g1x+g2x2 to

obtain f0g0+(f0g1+ f1g0)x+(f0g2+ f1g1+ f2g0)x2
+(f1g2+ f2g1)x3

+ f2g2x4;
then throw away the coefficients of x3 and x4 to obtain f0g0, f0g1+ f1g0, f0g2+

f1g1 + f2g0.

5.5. The integer case, easy completion: Q → Q2. Consider the ring Z2 of
2-adic integers. The precision-n representation of f ∈ Z2 is, by definition, the
integer f mod 2n

∈ Z. This representation of elements of Z2 as nearby elements
of Z is analogous in many ways to the representation of elements of A[[x]] as
nearby elements of A[x]. In particular, there is an analogous multiplication

340 DANIEL J. BERNSTEIN

algorithm: given f mod 2n and g mod 2n , one can compute f g mod 2n in time
O(n lg n lg lg n).

5.6. The integer case, hard completion: Q → R. Each real number f ∈ R
is, by convention, represented as a nearby element of the localization 2−NZ: an
integer divided by a power of 2. If | f | < 1, for example, then there are one or
two integers d with |d| ≤ 2n such that |d/2n

− f | < 1/2n .
If another real number g with |g| < 1 is similarly represented by an integer e

then f g is almost represented by the integer bde/2nc, which can be computed
in time O(n lg n lg lg n). However, the distance from f g to bde/2nc /2n may be
somewhat larger than 1/2n . This effect is called roundoff error: the output is
known to slightly less precision than the input.

5.7. History. See [Knuth 1997, Section 4.1] for the history of positional nota-
tion.

5.8. Improvements. The coefficients of xn, xn+1, . . . in f g are thrown away,
so operations involved in multiplying f mod xn by g mod xn can be skipped
if they are used only to compute those coefficients. The number of operations
skipped depends on the multiplication method; optimizing u, v 7→ uv does not
necessarily optimize u, v 7→ uv mod xn . Similar comments apply to the integer
case.

6. Reciprocal

6.1. Input. Let A be a commutative ring. Let n be a positive integer. The
algorithm in this section is given the precision-n representation of a power series
f ∈ A[[x]] with f (0) = 1.

6.2. Output. This algorithm computes the precision-n representation of the
reciprocal 1/ f = 1 + (1 − f) + (1 − f)2

+ (1 − f)3
+ · · · ∈ A[[x]]. If the

input is 1, f1, f2, f3, . . . , fn−1 then the output is 1, − f1, f 2
1 − f2, 2 f1 f2 − f 3

1 −

f3, . . . , · · · − fn−1.

6.3. Speed. This algorithm uses O(n lg n lg lg n) operations in A: more pre-
cisely, at most (8n +2k −8)µ(2n −1)+(2n +2k −2) operations in A if n ≤ 2k .

6.4. How it works. If n = 1 then (1/ f) mod xn
= 1. There are 0 operations

here; and (8n + 2k − 8)µ(2n − 1) + (2n + 2k − 2) = 2kµ(1) + 2k ≥ 0 since
k ≥ lg n = 0.

Otherwise define m = dn/2e. Recursively compute g0 = (1/ f) mod xm ; note
that m < n. Then compute (1/ f) mod xn as (g0 − (f g0 − 1)g0) mod xn , using
the algorithm of Section 5 for the multiplications by g0. This works because the

FAST MULTIPLICATION AND ITS APPLICATIONS 341

difference 1/ f −(g0 −(f g0 −1)g0) is exactly f (1/ f −g0)
2, which is a multiple

of x2m , hence of xn .
For example, given the precision-4 representation 1 + f1x + f2x2

+ f3x3 of
f , recursively compute g0 = (1/ f) mod x2

= 1− f1x . Multiply f by g0 modulo
x4 to obtain 1 + (f2 − f 2

1)x2
+ (f3 − f1 f2)x3. Subtract 1 and multiply by g0

modulo x4 to obtain (f2 − f 2
1)x2

+ (f3 + f 3
1 − 2 f1 f2)x3. Subtract from g0 to

obtain 1 − f1x + (f 2
1 − f2)x2

+ (2 f1 f2 − f 3
1 − f3)x3. This is the precision-4

representation of 1/ f .
The proof of speed is straightforward. By induction, the recursive computa-

tion uses at most (8m +2(k −1)−8)µ(2m −1)+(2m +2(k −1)−2) operations
in A, since m ≤ 2k−1. The subtraction from g0 and the subtraction of 1 use
at most n + 1 operations in A. The two multiplications by g0 use at most
2(2n − 1)µ(2n − 1) operations in A. Apply the inequalities m ≤ (n + 1)/2
and µ(2m −1) ≤ µ(2n −1) to see that the total is at most (8n +2k −8)µ(2n −

1) + (2n + 2k − 2) as claimed.

6.5. The integer case, easy completion: Q → Q2. Let f ∈ Z2 be an odd 2-adic
integer. Then f has a reciprocal 1/ f = 1 + (1 − f) + (1 − f)2

+ · · · ∈ Z2.
One can compute (1/ f) mod 2n , given f mod 2n , by applying the same for-

mula as in the power-series case: first recursively compute g0 = (1/ f) mod
2dn/2e; then compute (1/ f) mod 2n as (g0 + (1 − f g0)g0) mod 2n . This takes
time O(n lg n lg lg n).

6.6. The integer case, hard completion: Q → R. Let f ∈ R be a real number
between 0.25 and 1. Then f has a reciprocal g = 1+(1− f)+(1− f)2

+· · · ∈ R.
If g0 is a close approximation to 1/ f , then g0+(1− f g0)g0 is an approximation to
1/ f with nearly twice the precision. Consequently one can compute a precision-
n representation of 1/ f , given a slightly higher-precision representation of f ,
in time O(n lg n lg lg n).

The details are, thanks to roundoff error, more complicated than in the power-
series case, and are not included in this paper. See [Knuth 1997, Algorithm
4.3.3–R] or [Bernstein 1998, Section 8] for a complete algorithm.

6.7. History. Simpson [1740, page 81] presented the iteration g 7→g−(f g−1)g
for reciprocals. Simpson also commented that one can carry out the second-to-
last iteration at about 1/2 the desired precision, the third-to-last iteration at about
1/4 the desired precision, etc., so that the total time is comparable to the time
for the last iteration. I have not been able to locate earlier use of this iteration.

Simpson considered, more generally, the iteration g 7→ g − p(g)/p′(g) for
roots of a function p. The iteration g 7→ g−(f g−1)g is the case p(g)= g−1

− f .
The general case is usually called “Newton’s method,” but I see no evidence
that Newton deserves credit for it. Newton used the iteration for polynomials

342 DANIEL J. BERNSTEIN

p, but so did previous mathematicians. Newton’s descriptions never mentioned
derivatives and were not amenable to generalization. See [Kollerstrom 1992]
and [Ypma 1995] for further discussion.

Cook [1966, pages 81–86] published details of a variable-precision recip-
rocal algorithm for R taking essentially linear time, using the iteration g 7→

g − (f g − 1)g with Toom’s multiplication algorithm. Sieveking [1972], ap-
parently unaware of Cook’s result, published details of an analogous reciprocal
algorithm for A[[x]]. The analogy was pointed out by Kung [1974].

6.8. Improvements. Computing a reciprocal by the above algorithm takes
4 + o(1) times as many operations as computing a product. There are several
ways that this constant 4 can be reduced. The following discussion focuses on
C[[x]] and assumes that n is a power of 2. Analogous comments apply to other
values of n; to A[[x]] for other rings A; to Z2; and to R.

One can achieve 3+o(1) by skipping some multiplications by low zeros. The
point is that that f g0 −1 is a multiple of xm . Write u = ((f g0 −1) mod xn)/xm

and v = g0 mod xn−m ; then u and v are polynomials of degree below n − m,
and ((f g0 − 1)g0) mod xn

= xmuv mod xn . One can compute uv mod xn
− 1,

extract the bottom n−m coefficients of the product, and insert m zeros, to obtain
((f g0 − 1)g0) mod xn .

One can achieve 2+o(1) by skipping some multiplications by high zeros and
by not recomputing a stretch of known coefficients. To compute f g0 mod xn ,
one multiplies f mod xn by g0 and extracts the bottom n coefficients. The point
is that (f mod xn)g0 − 1 is a multiple of xm , and has degree at most m + n, so
it is easily computed from its remainder modulo xn

−1: it has m zeros, then the
top n − m coefficients of the remainder, then the bottom n − m coefficients of
the remainder.

One can achieve 5/3+o(1) by applying FFT caching. There is a multiplica-
tion of f mod xn by g0 modulo xn

−1, and a multiplication of (f g0−1) mod xn

by g0 modulo xn
−1; the transform of g0 can be reused rather than recomputed.

One can achieve 3/2+o(1) by evaluating a cubic rather than two quadratics.
The polynomial ((f mod xn)g0 −1)g0 is a multiple of xm and has degree below
n +2m, so it is easily computed from its remainders modulo xn

+1 and xm
−1.

One transforms f mod xn , transforms g0, multiplies the first transform by the
square of the second, subtracts the second, and untransforms the result.

Brent [1976c] published 3 + o(1). Schönhage, Grotefeld, and Vetter [1994,
page 256] announced 2 + o(1) without giving details. I published 28/15 + o(1)

in 1998, and 3/2 + o(1) in 2000, with a rather messy algorithm; see [Bernstein
2004c]. Schönhage [2000] independently achieved 3/2 + o(1) with the simpler
algorithm shown above.

FAST MULTIPLICATION AND ITS APPLICATIONS 343

7. Quotient

7.1. Input. Let A be a commutative ring. Let n be a positive integer. The
algorithm in this section is given the precision-n representations of power series
f, h ∈ A[[x]] such that f (0) = 1.

7.2. Output. This algorithm computes the precision-n representation of h/ f ∈

A[[x]]. If the input is 1, f1, f2, . . . , fn−1, h0, h1, h2, . . . , hn−1 then the output is

h0,

h1 − f1h0,

h2 − f1h1 + (f 2
1 − f2)h0,

...

hn−1 − · · · + (· · · − fn−1)h0.

7.3. Speed. This algorithm uses O(n lg n lg lg n) operations in A: more pre-
cisely, at most (10n + 2k − 9)µ(2n − 1) + (2n + 2k − 2) operations in A if
n ≤ 2k .

7.4. How it works. First compute a precision-n approximation to 1/ f as ex-
plained in Section 6. Then multiply by h as explained in Section 5.

7.5. The integer case, easy completion: Q → Q2. Let h and f be elements of
Z2 with f odd. Given f mod 2n and h mod 2n , one can compute (h/ f) mod 2n

in time O(n lg n lg lg n) by the same method.

7.6. The integer case, hard completion: Q→R. Let h and f be elements of R
with 0.5 ≤ f ≤ 1. One can compute a precision-n representation of h/ f , given
slightly higher-precision representations of f and h, in time O(n lg n lg lg n).
As usual, roundoff error complicates the algorithm.

7.7. Improvements. One can improve the number of operations for a reciprocal
to 3/2 + o(1) times the number of operations for a product, as discussed in
Section 6, so one can improve the number of operations for a quotient to 5/2+

o(1) times the number of operations for a product.
The reader may be wondering at this point why quotient deserves to be dis-

cussed separately from reciprocal. Answer: Further improvements are possible.
Karp and Markstein [1997] pointed out that a quotient computation could prof-
itably avoid some of the work in a reciprocal computation. I achieved a gap of
2.6/3+o(1) in 1998 and 2/3+o(1) in 2000, combining the Karp–Markstein idea
with some FFT reuse; see [Bernstein 2004c]. In 2004, Hanrot and Zimmermann
announced a gap of 1.75/3 + o(1): i.e., the number of operations for a quotient
is 6.25/3 + o(1) times the number of operations for a product. More recently,
Joris van der Hoeven [2006] announced 5/3 + o(1).

344 DANIEL J. BERNSTEIN

8. Logarithm: the series case

8.1. Input. Let A be a commutative ring containing Q. Let n be a positive
integer. The algorithm in this section is given the precision-n representation of
a power series f ∈ A[[x]] with f (0) = 1.

8.2. Output. This algorithm computes the precision-n representation of the
series log f = −(1 − f) − (1 − f)2/2 − (1 − f)3/3 − · · · ∈ A[[x]]. If the input
is 1, f1, f2, f3, . . . then the output is 0, f1, f2 − f 2

1 /2, f3 − f1 f2 + f 3
1 /3,

Define D(
∑

a j x j)=
∑

ja j x j . The reader may enjoy checking the following
properties of log and D:

• D(f g) = gD(f) + f D(g);
• D(gn) = ngn−1 D(g);
• if f (0) = 1 then D(log f) = D(f)/ f ;
• if f (0) = 1 and log f = 0 then f = 1;
• if f (0) = 1 and g(0) = 1 then log f g = log f + log g;
• log is injective: i.e., if f (0) = 1 and g(0) = 1 and log f = log g then f = g.

8.3. Speed. This algorithm uses O(n lg n lg lg n) operations in A: more pre-
cisely, at most (10n + 2k − 9)µ(2n − 1) + (4n + 2k − 4) operations in A if
n ≤ 2k .

8.4. How it works. Given f mod xn , compute D(f) mod xn from the defini-
tion of D; compute (D(f)/ f) mod xn as explained in Section 7; and recover
(log f) mod xn from the formula D((log f) mod xn) = (D(f)/ f) mod xn .

8.5. The integer case. This A[[x]] algorithm does not have a useful analogue for
Z2 or R, because Z2 and R do not have adequate replacements for the differential
operator D. See, however, Section 16.

8.6. History. This algorithm was published by Brent [1976c, Section 13].

8.7. Improvements. See Section 7 for improved quotient algorithms. I do
not know any way to compute log f more quickly than computing a generic
quotient.

9. Exponential: the series case

9.1. Input. Let A be a commutative ring containing Q. Let n be a positive
integer. The algorithm in this section is given the precision-n representation of
a power series f ∈ A[[x]] with f (0) = 0.

FAST MULTIPLICATION AND ITS APPLICATIONS 345

9.2. Output. This algorithm computes the precision-n representation of the
series exp f =1+ f + f 2/2!+ f 3/3!+· · ·∈ A[[x]]. If the input is 0, f1, f2, f3, . . .

then the output is 1, f1, f2 + f 2
1 /2, f3 + f1 f2 + f 3

1 /6,
The reader may enjoy checking the following properties of exp:

• if f (0) = 0 then D(exp f) = D(f) exp f ;
• if f (0) = 0 then log exp f = f ;
• if g(0) = 1 then exp log g = g;
• if f (0) = 0 and g(0) = 0 then exp(f + g) = (exp f) exp g.

9.3. Speed. This algorithm uses O(n lg n lg lg n) operations in A: more pre-
cisely, at most (24n +k2

+3k −24)µ(2n −1)+ (12n +k2
+3k −12) operations

in A if n ≤ 2k .

9.4. How it works. If n = 1 then (exp f) mod xn
= 1. Otherwise define

m = dn/2e. Recursively compute g0 = (exp f) mod xm . Compute (log g0) mod
xn as explained in Section 8. Then compute (exp f) mod xn as (g0 + (f −

log g0)g0) mod xn . This works because exp(f − log g0) − 1 − (f − log g0) is a
multiple of (f − log g0)

2, hence of x2m , hence of xn .
The recursive step uses at most (24(n+1)/2+(k−1)2

+3(k−1)−24)µ(2n−

1) + (12(n + 1)/2 + (k − 1)2
+ 3(k − 1) − 12) operations by induction. The

computation of (log g0) mod xn uses at most (10n + 2k − 9)µ(2n − 1)+ (4n +

2k−4) operations. The subtraction from f and the addition of g0 use at most 2n
operations. The multiplication by g0 uses at most (2n −1)µ(2n −1) operations.
The total is at most (24n + k2

+ 3k − 24)µ(2n − 1) + (12n + k2
+ 3k − 12) as

claimed.

9.5. The integer case. See Section 16.

9.6. History. The iteration g 7→ g + (f − log g)g is an example of “Newton’s
method,” i.e., Simpson’s method.

Brent [1976c, Section 13] pointed out that this is a particularly efficient way
to compute exp for R[[x]], since log is so easy to compute for R[[x]].

9.7. Improvements. Brent [1976c, Section 13] stated that the number of op-
erations for an exponential in R[[x]] could be improved to 22/3 + o(1) times
the number of operations for a product. In fact, one can achieve 8.5/3 + o(1);
see [Bernstein 2004c]. More recently, Joris van der Hoeven [2006] announced
7/3 + o(1).

346 DANIEL J. BERNSTEIN

10. Power: the series case

10.1. Input. Let A be a commutative ring containing Q. Let n be a positive
integer. The algorithm in this section is given the precision-n representations of
power series f, e ∈ A[[x]] such that f (0) = 1.

10.2. Output. This algorithm computes the precision-n representation of the
series f e

= exp(e log f) ∈ A[[x]]. If the input is 1, f1, f2, . . . , e0, e1, . . . then
the output is 1, e0 f1, e1 f1 + e0 f2 + e0(e0 − 1) f 2

1 /2,
The reader may enjoy checking the following properties of f, e 7→ f e:

• f 0
= 1;

• f 1
= f ;

• f d+e
= f d

· f e, so the notation f e for exp(e log f) is, for positive integers e,
consistent with the usual notation f e for

∏
1≤ j≤e f ;

• f −1
= 1/ f ;

• (f d)e
= f de;

• (f g)e
= f ege;

• D(f e) = D(e) f e log f + D(f)e f e−1;
• f e

= 1 + e(f − 1) + (e(e − 1)/2)(f − 1)2
+ · · · .

10.3. Speed. This algorithm uses O(n lg n lg lg n) operations in A: more pre-
cisely, at most (36n +k2

+5k −34)µ(2n −1)+ (16n +k2
+5k −16) operations

in A if n ≤ 2k .

10.4. How it works. Given f mod xn , compute (log f) mod xn as explained
in Section 8; compute (e log f) mod xn as explained in Section 5; compute
(exp(e log f)) mod xn as explained in Section 9.

10.5. The integer case. See Section 16.

10.6. History. According to various sources, Napier introduced the functions
exp and log for R, along with the idea of using exp and log to compute products
in R. I do not know the history of exp and log for Z2 and A[[x]].

10.7. Improvements. As in Sections 6, 7, and 9, one can remove some redun-
dancy from the above algorithm. See [Bernstein 2004c].

Brauer [1939] pointed out that, if e is a positive integer, one can compute f e

with about lg e squarings and at most about (lg e)/ lg lg e other multiplications.
This is faster than the exp-log algorithm if e is small. See [Bernstein 2002b] for
further discussion of square-and-multiply exponentiation algorithms.

One can compute f e for any rational number e with a generalization of the
algorithm of Section 6. This takes essentially linear time for fixed e, as pointed
out by Cook [1966, page 86]; it is faster than the exp-log algorithm if the height

FAST MULTIPLICATION AND ITS APPLICATIONS 347

of e is small, i.e., the numerator and denominator of e are small. The special
case e = 1/2 — i.e., square roots — is discussed in detail in [Bernstein 2004c].

11. Matrix product

11.1. Input. Let A be a commutative ring. The algorithm in this section is

given two 2 × 2 matrices F =

(
F11 F12

F21 F22

)
and G =

(
G11 G12

G21 G22

)
with entries in

the polynomial ring A[x].

11.2. Output. This algorithm computes the 2 × 2 matrix product FG.

11.3. Speed. This algorithm uses O(n lg n lg lg n) operations in A, where n
is the total number of input coefficients. More precisely, the algorithm uses at
most n(2µ(n) + 2) operations in A. This bound is pessimistic.

Here, and elsewhere in this paper, number of coefficients means the number
of elements of A provided as input. Reader beware: the number of coefficients
of an input polynomial is not determined by the polynomial; it depends on
how the polynomial is represented. For example, the sequence (5, 7, 0), with
3 coefficients, represents the same polynomial as the sequence (5, 7), with 2
coefficients.

11.4. How it works. Multiply F11 by G11, multiply F12 by G21, add, etc., to

obtain FG =

(
F11G11 + F12G21 F11G12 + F12G22

F21G11 + F22G21 F21G12 + F22G22

)
.

11.5. The integer case. An analogous algorithm computes the product of two
2×2 matrices with entries in Z in time O(n lg n lg lg n), where n is the number
of input bits.

11.6. History. The matrix concept is generally credited to Sylvester and Cayley.

11.7. Improvements. The above algorithm involves 24 transforms. FFT
caching — transforming each of the input polynomials F11, F12, F21, F22, G11,

G12, G21, G22 just once — saves 8 transforms. FFT addition — untransforming
F11G11 + F12G21, for example, rather than separately untransforming F11G11

and F12G21 — saves 4 more transforms.
Strassen [1969] published a method to multiply 2 × 2 matrices using just 7

multiplications of entries and 18 additions or subtractions of entries, rather than
8 multiplications and 4 additions. Winograd observed that 18 could be replaced
by 15; see, e.g., [Knuth 1997, page 500].

Many applications involve matrices of particular shapes: for example, matri-
ces F in which F12 = 0. One can often save time accordingly.

348 DANIEL J. BERNSTEIN

11.8. Generalization: larger matrices. Strassen [1969] published a general
method to multiply d × d matrices using O(dα) multiplications, additions, and
subtractions of entries; here α = log2 7 = 2.807 Subsequent work by Pan,
Bini, Capovani, Lotti, Romani, Schönhage, Coppersmith, and Winograd showed
that there is an algorithm to multiply d×d matrices using dβ+o(1) multiplications
and additions of entries, for a certain number β < 2.38. See [Bürgisser et al.
1997, Chapter 15] for a detailed exposition and further references.

It is not known whether matrix multiplication can be carried out in essentially
linear time, when the matrix size is a variable.

12. Product tree

12.1. Input. Let A be a commutative ring. Let t be a nonnegative integer. The
algorithm in this section is given 2×2 matrices M1, M2, . . . , Mt with entries in
A[x].

12.2. Output. This algorithm computes the product tree of M1, M2, . . . , Mt ,
which is defined as follows. The root of the tree is the 2×2 matrix M1 M2 · · · Mt .
If t ≤ 1 then that’s the complete tree. If t ≥ 2 then the left subtree is the
product tree of M1, M2, . . . , Ms , and the right subtree is the product tree of
Ms+1, Ms+2, . . . , Mt , where s = dt/2e. For example, here is the product tree of
M1, M2, M3, M4, M5, M6:

M1 M2 M3 M4 M5 M6

M1 M2 M3

33ffffff
M4 M5 M6

kkXXXXXX

M1 M2

66mmm
M3

hhQQQQ
M4 M5

66mmm
M6

hhQQQQ

M1

66mmmm
M2

hhQQQQ
M4

66mmmm
M5

hhQQQQ

Most applications use only the root M1 M2 · · · Mt of the product tree. This
root is often described in the language of linear recurrences as follows. De-
fine X i = M1 M2 · · · Mi ; then X i = X i−1 Mi , i.e., X i, j,k = X i−1, j,0 Mi,0,k +

X i−1, j,1 Mi,1,k . The algorithm computes X t,0,0, X t,0,1, X t,1,0, X t,1,1, given the
coefficients Mi, j,k of the linear recurrence X i, j,k = X i−1, j,0 Mi,0,k+X i−1, j,1 Mi,1,k ,
with the starting condition (X0,0,0, X0,0,1, X0,1,0, X0,1,1) = (1, 0, 0, 1).

12.3. Speed. This algorithm uses O(n(lg n)2 lg lg n) operations in A, where n
is the total number of coefficients in M1, M2, . . . , Mt : more precisely, at most
nk(2µ(n) + 2) operations in A if k is a nonnegative integer and t ≤ 2k .

12.4. How it works. If t = 0 then the answer is the identity matrix. If t =

1 then the answer is M1. Otherwise recursively compute the product tree of
M1, M2, . . . , Ms and the product tree of Ms+1, Ms+2, . . . , Mt , where s = dt/2e.

FAST MULTIPLICATION AND ITS APPLICATIONS 349

Multiply the roots M1 M2 · · · Ms and Ms+1 · · · Mt , as discussed in Section 11, to
obtain M1 M2 · · · Mt .

Time analysis: Define m as the total number of coefficients in M1, . . . , Ms .
By induction, the computation of the product tree of M1, . . . , Ms uses at most
m(k − 1)(2µ(n) + 2) operations, and the computation of the product tree of
Ms+1, . . . , Mt uses at most (n − m)(k − 1)(2µ(n) + 2) operations. The final
multiplication uses at most n(2µ(n) + 2) operations. Add: m(k − 1) + (n −

m)(k − 1) + n = nk.

12.5. The integer case. An analogous algorithm takes time O(n(lg n)2 lg lg n)

to compute the product tree of a sequence M1, M2, . . . , Mt of 2 × 2 matrices
with entries in Z. Here n is the total number of input bits.

12.6. Generalization: larger matrices. One can use the same method to
compute a product of several d ×d matrices — in other words, to compute terms
in linear recurrences of any order. It is not known whether this can be done in
essentially linear time for variable d; see Section 11 for further comments.

12.7. History. Product trees are so simple and so widely applicable that they
have been reinvented many times. They are not only a basic tool in the con-
text of fast multiplication but also a basic tool for building low-depth parallel
algorithms.

Unfortunately, most authors state product trees for particular applications,
with no hint of the generality of the technique. They define ad-hoc product op-
erations, and prove associativity of their product operations from scratch, never
realizing that these operations are special cases of matrix product.

Weinberger and Smith [1958] published the “carry-lookahead adder,” a low-
depth parallel circuit for computing the sum of two nonnegative integers, with
the inputs and output represented in the usual way as bit strings. This circuit
computes (in different language) a product(

a1 0
b1 1

) (
a2 0
b2 1

)
· · ·

(
at 0
bt 1

)
=

(
a1a2 · · · at 0

bt + bt−1at + bt−2at−1at + · · · + b1a2 · · · at 1

)
of matrices over the Boole algebra {0, 1} by multiplying pairs of matrices in
parallel, then multiplying pairs of pairs in parallel, and so on for approximately
lg t steps.

Estrin [1960] published a low-depth parallel algorithm for evaluating a one-
variable polynomial. Estrin’s algorithm computes (in different language) a prod-
uct (

a 0
b1 1

) (
a 0
b2 1

)
· · ·

(
a 0
bt 1

)
=

(
at 0

bt + bt−1a + bt−2a2
+ · · · + b1at−1 1

)
by multiplying pairs, pairs of pairs, etc.

350 DANIEL J. BERNSTEIN

Schönhage, as reported in [Knuth 1971a, Exercise 4.4–13], pointed out that
one can convert integers from base 10 to base 2 in essentially linear time.
Schönhage’s algorithm computes (in different language) a product

(
10 0
b1 1

) (
10 0
b2 1

)
· · ·

(
10 0
bt 1

)
=

(
10t 0

bt + 10bt−1 + 100bt−2 + · · · + 10t−1b1 1

)

by multiplying pairs of matrices, then pairs of pairs, etc.
Knuth [1971b, Theorem 1] published an algorithm to convert a continued

fraction to a fraction in essentially linear time. Knuth’s algorithm is (in different
language) another example of the product-tree algorithm; see Section 14 for
details.

Moenck and Borodin [1972, page 91] pointed out that one can compute the
product tree — and thus the product — of a sequence of polynomials or a se-
quence of integers in essentially linear time; see also [Borodin and Moenck
1974, page 372]. Beware that the Moenck–Borodin “theorems” assume that all
of the inputs are “single precision”; it is unclear what this is supposed to mean
for integers.

Moenck and Borodin also pointed out an algorithm to add fractions in essen-
tially linear time. This algorithm is (in different language) yet another example
of the product-tree algorithm. See Section 13 for details and further historical
notes.

Meanwhile, in the context of parallel algorithms, Stone and Kogge pub-
lished the product-tree algorithm in a reasonable level of generality, with poly-
nomial evaluation and continued-fraction-to-fraction conversion (“tridiagonal-
linear-system solution”) as examples. See [Stone 1973], [Kogge and Stone
1973], and [Kogge 1974]. Stone commented that linear recurrences of any order
could be phrased as matrix products — see [Stone 1973, page 34] and [Stone
1973, page 37] — but, unfortunately, made little use of matrices elsewhere in
his presentation.

Kogge and Stone [1973, page 792] credited Robert Downs, Harvard Lomax,
and H. R. G. Trout for independent discoveries of general product-tree algo-
rithms. They also stated that special cases of the algorithm were “known to J.
J. Sylvester as early as 1853”; but I see no evidence that Sylvester ever formed
a product tree in that context or any other context. Sylvester [1853] (cited in
[Knuth 1971b] and [Stone 1973]) simply pointed out the associativity of con-
tinued fractions.

Brent [1976a, Section 6] pointed out that the numerator and denominator of
1+1/2+1/3!+· · ·+1/t!≈ exp 1 could be computed quickly. Brent’s algorithm

FAST MULTIPLICATION AND ITS APPLICATIONS 351

formed (in different language) a product tree for(
1 0
1 1

) (
2 0
1 1

)
· · ·

(
t 0
1 1

)
=

(
t! 0

t! + t!/2 + · · · + t (t − 1) + t + 1 1

)
.

Brent also addressed exp for more general inputs, as discussed in Section 15;
and π , via arctan. Brent described his method as a mixed-radix adaptation of
Schönhage’s base-conversion algorithm. Evidently he had in mind the product(

a1 0
b1 c

) (
a2 0
b2 c

)
· · ·

(
at 0
bt c

)
=

(
a1a2 · · · at 0

ct−1bt + ct−2bt−1at + · · · + b1a2 · · · at ct

)
corresponding to the sum

∑
1≤k≤t ck−1bk/a1 · · · ak . Brent and McMillan [1980,

page 308] mentioned that the sum
∑

1≤k≤t nk(−1)k−1/k!k could be handled
similarly.

I gave a reasonably general statement of the product-tree algorithm in [Bern-
stein 1987], with a few series and continued fractions as examples. I pointed out
that computing M1 M2 · · · Mt takes time O(t (lg t)3 lg lg t) in the common case
that the entries of M j are bounded by polynomials in j .

Gosper [1990] presented a wide range of illustrative examples of matrix
products, emphasizing their “notational, analytic, and computational virtues.”
Gosper then [1990, page 263] gave a brief statement of the product-tree algo-
rithm and credited it to Rich Schroeppel.

Chudnovsky and Chudnovsky [1990, pages 115–118] stated the product-tree
algorithm for matrices M j whose entries depend rationally on j . They gave a
broad class of series as examples in [Chudnovsky and Chudnovsky 1990, pages
123–134]. They called the algorithm “a well-known method to accelerate the
(numerical) solution of linear recurrences.”

Karatsuba used product trees (in different language) to evaluate various sums
in several papers starting in 1991 and culminating in [Karatsuba 1999].

See [Haible and Papanikolaou 1997], [van der Hoeven 1999], [Borwein et al.
2000, Section 7], and [van der Hoeven 2001] for further uses of product trees to
evaluate sums.

12.8. Improvements. One can change s in the definition of a product tree and
in the product-tree algorithm. The choice s = dt/2e, balancing s against t −s, is
not necessarily the fastest way to compute M1 M2 · · · Mt : when M1, M2, . . . , Mt

have widely varying degrees, it is much better to balance deg M1+deg M2+· · ·+

deg Ms against deg Ms+1 + deg Ms+2 + · · · + deg Mt . Strassen [1983, Theorem
3.2] proved that a slightly more complicated strategy is within a constant factor
of optimal.

In some applications, M1, M2, . . . , Mt are known to commute. One can often
permute M1, M2, . . . , Mt for slightly higher speed. Strassen [1983, Theorem

352 DANIEL J. BERNSTEIN

2.2] pointed out a particularly fast, and pleasantly simple, algorithm: find the
two matrices of smallest degree, replace them by their product, and repeat. See
[Bürgisser et al. 1997, Section 2.3] for an exposition.

Robert Kramer has recently pointed out another product-tree speedup. Sup-
pose, as an illustration, that M1, M2, M3, M4 each have degree close to n. To
multiply M1 by M2, one applies a size-2n transform to each of M1 and M2,
multiplies the transforms, and untransforms the result. To multiply M1 M2 by
M3 M4, one starts by applying a size-4n transform to M1 M2. Kramer’s idea,
which I call FFT doubling, is that the first half of the size-4n transform of
M1 M2 is exactly the size-2n transform of M1 M2, which is already known. This
idea saves two halves of every three transforms in a large balanced product-tree
computation.

13. Sum of fractions

13.1. Input. Let A be a commutative ring. Let t be a positive integer. The
algorithm in this section is given 2t polynomials f1, g1, f2, g2, . . . , ft , gt ∈ A[x].

13.2. Output. This algorithm computes h = f1g2 · · · gt + g1 f2 · · · gt + · · · +

g1g2 · · · ft , along with g1g2 · · · gt .
The reader may think of this output as follows: the algorithm computes

the sum h/g1g2 · · · gt of the fractions f1/g1, f2/g2, . . . , ft/gt . The equation
h/g1g2 · · · gt = f1/g1 + f2/g2 + · · · + ft/gt holds in any A[x]-algebra where
g1, g2, . . . , gt are invertible: in particular, in the localization g−N

1 · · · g−N
t A[x].

13.3. Speed. This algorithm uses O(n(lg n)2 lg lg n) operations in A, where n
is the total number of coefficients in the input polynomials.

13.4. How it works. The matrix product
(

g1 f1

0 g1

) (
g2 f2

0 g2

)
· · ·

(
gt ft

0 gt

)
is ex-

actly
(

g1g2 · · · gt h
0 g1g2 · · · gt

)
. Compute this product as described in Section

12.
The point is that adding fractions a/b and c/d to obtain (ad + bc)/bd is the

same as multiplying matrices
(

b a
0 b

)
and

(
d c
0 d

)
to obtain

(
bd ad + bc
0 bd

)
.

Another proof, using the language of recurrences: the quantities p j =g1 · · · g j

and q j = (f1/g1 + · · · + f j/g j)p j satisfy the recurrences p j = p j−1g j and

q j = q j−1g j + p j−1 f j , i.e.,
(

p j q j

0 p j

)
=

(
p j−1 q j−1

0 p j−1

) (
g j f j

0 g j

)
.

The reader may prefer to describe this algorithm without matrices: for t ≥ 2,
recursively compute f1/g1 + · · ·+ fs/gs and fs+1/gs+1 + · · ·+ ft/gt , and then
add to obtain f1/g1 + · · · + ft/gt . Here s = dt/2e.

FAST MULTIPLICATION AND ITS APPLICATIONS 353

13.5. The integer case. An analogous algorithm takes time O(n(lg n)2 lg lg n)

to compute f1g2 · · · gt + g1 f2 · · · gt + · · · + g1g2 · · · ft and g1g2 · · · gt , given
integers f1, g1, f2, g2, . . . , ft , gt . Here n is the total number of input bits.

13.6. History. Horowitz [1972] published an algorithm to compute the poly-
nomial (

b1

x − a1
+

b2

x − a2
+ · · · +

bt

x − at

)
(x − a1)(x − a2) · · · (x − at)

within a lg t factor of the time for polynomial multiplication. Horowitz’s al-
gorithm is essentially the algorithm stated above, except that it splits t into
t/2, t/4, t/8, . . . rather than t/2, t/2.

Borodin and Moenck [1974, Section 7] published a more general algorithm
to add fractions, in both the polynomial case and the integer case, for the appli-
cation described in Section 23.

13.7. Improvements. See Section 12 for improved product-tree algorithms.

14. Fraction from continued fraction

14.1. Input. Let A be a commutative ring. Let t be a nonnegative integer. The
algorithm in this section is given t polynomials q1, q2, . . . , qt ∈ A[x] such that,
for each i , at least one of qi , qi+1 is nonzero.

14.2. Output. This algorithm computes the polynomials F(q1, q2, . . . , qt) ∈

A[x] and G(q1, q2, . . . , qt) ∈ A[x] defined recursively by F() = 1, G() = 0,

F(q1, q2, . . . , qt) = q1 F(q2, . . . , qt) + G(q2, . . . , qt) for t ≥ 1, and

G(q1, q2, . . . , qt) = F(q2, . . . , qt) for t ≥ 1.

For example, F(q1, q2, q3, q4) = q1q2q3q4 +q1q2 +q1q4 +q3q4 +1. In general,
F(q1, q2, . . . , qt) is the sum of all products of subsequences of (q1, q2, . . . , qt)

obtained by deleting any number of non-overlapping adjacent pairs.
The reader may think of this output as the numerator and denominator of a

continued fraction:

F(q1, q2, . . . , qt)

G(q1, q2, . . . , qt)
= q1 +

1
F(q2, . . . , qt)

G(q2, . . . , qt)

= q1 +
1

q2 +
1

. . . +
1
qt

.

As in Section 13, these equations hold in any A[x]-algebra where all the divi-
sions make sense.

354 DANIEL J. BERNSTEIN

14.3. Speed. This algorithm uses O(n(lg n)2 lg lg n) operations in A, where n
is the total number of coefficients in the input polynomials.

14.4. How it works. The product
(

q1 1
1 0

) (
q2 1
1 0

) (
q3 1
1 0

)
· · ·

(
qt 1
1 0

) (
1
0

)
is

exactly
(

F(q1, q2, . . . , qt)

G(q1, q2, . . . , qt)

)
by definition of F and G. Compute this product

as described in Section 12.
The assumption that no two consecutive q’s are 0 ensures that the total number

of coefficients in these matrices is in O(n).

14.5. The integer case. An analogous algorithm, given integers q1, q2, . . . , qt ,
computes F(q1, q2, . . . , qt) and G(q1, q2, . . . , qt). This algorithm takes time
O(n(lg n)2 lg lg n), where n is the total number of input bits.

14.6. History. See Section 12.

14.7. Improvements. See Section 12 for improved product-tree algorithms.

15. Exponential: the short case

15.1. Input. Let A be a commutative ring containing Q. Let m and n be
positive integers. The algorithm in this section is given a polynomial f ∈ A[x]
with deg f < 2m and f mod xm

= 0. For example, if m = 2, the input is a
polynomial of the form f2x2

+ f3x3.

15.2. Output. This algorithm computes the precision-n representation of the
series exp f ∈ A[[x]] defined in Section 9.

15.3. Speed. This algorithm uses O(n(lg n)2 lg lg n) operations in A. It is
usually slower than the algorithm of Section 9; its main virtue is that the same
idea also works for Z2 and R.

15.4. How it works. Define k = dn/m − 1e. Compute the matrix product(
u v

0 w

)
=

(
1 1
0 1

) (
f f
0 1

) (
f f
0 2

)
· · ·

(
f f
0 k

)
as described in Section 12. Then

(exp f) mod xn
= (v/w) mod xn . Note that w is simply the integer k!, so the

division by w is a multiplication by the constant 1/k!.
The point is that (u, v, w) = (f k, k!(1 + f + f 2/2 + · · · + f k/k!), k!) by

induction, so (exp f)− v/w = f k+1/(k + 1)! + f k+2/(k + 2)! + · · · ; but k was
chosen so that f k+1 is divisible by xn .

15.5. The integer case, easy completion: Q → Q2. One can use the same
method to compute a precision-n representation of exp f ∈ Z2, given an integer
f ∈ {0, 2m, (2)2m, . . . , (2m

− 1)2m}, in time O(n(lg n)2 lg lg n), for m ≥ 2. Note

FAST MULTIPLICATION AND ITS APPLICATIONS 355

that k must be chosen somewhat larger in this case, because the final division of
v by w = k! loses approximately k bits of precision.

15.6. The integer case, hard completion: Q → R. One can compute a
precision-n representation of exp f , given a real number f such that | f | < 2−m

and f is a multiple of 2−2m , in time O(n(lg n)2 lg lg n). As usual, roundoff error
complicates the algorithm.

15.7. History. See Section 12.

15.8. Improvements. See Section 16.

16. Exponential: the general case

16.1. Input. Let A be a commutative ring containing Q. Let n be a positive
integer. The algorithm in this section is given the precision-n representation of
a power series f ∈ A[[x]] with f (0) = 0.

16.2. Output. This algorithm computes the precision-n representation of the
series exp f ∈ A[[x]] defined in Section 9.

16.3. Speed. This algorithm uses O(n(lg n)3 lg lg n) operations in A. It is
usually much slower than the algorithm of Section 9; its main virtue is that the
same idea also works for Z2 and R.

16.4. How it works. Write f as a sum f1 + f2 + f4 + f8 + · · · where fm mod
xm

= 0 and deg fm < 2m. In other words, put the coefficient of x1 into f1; the
coefficients of x2 and x3 into f2; the coefficients of x4 through x7 into f4; and
so on.

Compute precision-n approximations to exp f1, exp f2, exp f4, exp f8, . . . as
described in Section 15. Multiply to obtain exp f .

16.5. The integer case. Similar algorithms work for Z2 and R.

16.6. History. This method of computing exp is due to Brent [1976a, Theorem
6.2]. Brent also pointed out that, starting from a fast algorithm for exp, one can
use “Newton’s method” — i.e., Simpson’s method — to quickly compute log and
various other functions. Note the reversal of roles from Section 9, where exp
was obtained by inverting log.

16.7. Improvements. Salamin, and independently Brent, observed that one
could use the “arithmetic-geometric mean” to compute log and exp for R in
time only O(n(lg n)2 lg lg n). See [Beeler et al. 1972, Item 143], [Salamin
1976], [Brent 1976b], and [Brent 1976c, Section 9] for the basic idea; [Borwein
and Borwein 1987] for much more information about the arithmetic-geometric

356 DANIEL J. BERNSTEIN

mean; and my self-contained paper [Bernstein 2003] for constant-factor im-
provements.

17. Quotient and remainder

17.1. Input. Let A be a commutative ring. Let d and e be nonnegative integers.
The algorithm in this section is given two elements f, h of the polynomial ring
A[x] such that f is monic, deg f = d, and deg h < e.

17.2. Output. This algorithm computes q, r ∈ A[x] such that h = q f + r
and deg r < d. In other words, this algorithm computes r = h mod f and q =

(h − r)/ f .
For example, say d = 2 and e = 5. Given f = f0 + f1x + x2 and h =

h0 + h1x + h2x2
+ h3x3

+ h4x4, this algorithm computes

q = (h2 − h3 f1 + h4(f 2
1 − f0)) + (h3 − h4 f1)x + h4x2

and
r = h mod f = h − q f

= (h0 − h2 f0 + h3 f1 f0 + h4(f 2
1 − f0) f0)

+ (h1 − h2 f1 + h3(f 2
1 − f0) + h4((f 2

1 − f0) f1 + f1 f0))x .

17.3. Speed. This algorithm uses O(e lg e lg lg e) operations in A.
More precisely, the algorithm uses at most (10(e −d)+2k −9)µ(2(e −d)−

1) + (2(e − d) + 2k − 2) + eµ(e) + e operations in A if 1 ≤ e − d ≤ 2k . The
algorithm uses no operations if e ≤ d.

For simplicity, subsequent sections of this paper use the relatively crude upper
bound 12(e + 1)(µ(2e) + 1).

17.4. How it works: A(x) → A((x−1)). The point is that polynomial division
in A[x] is division in A((x−1)); A((x−1)), in turn, is isomorphic to A((x)).

If e ≤ d, the answer is q = 0 and r = h. Assume from now on that e > d.
Reverse the coefficient order in f =

∑
j f j x j to obtain F =

∑
j fd− j x j

∈

A[x]; in other words, define F = xd f (x−1). Then deg F ≤ d and F(0) = 1. For
example, if d = 2 and f = f0 + f1x + x2, then F = 1 + f1x + f0x2.

Similarly, reverse h =
∑

j h j x j to obtain H =
∑

j he−1− j x j
∈ A[x]; in other

words, define H = xe−1h(x−1). Then deg H < e. For example, if e = 5 and
h = h0 + h1x + h2x2

+ h3x3
+ h4x4, then H = h4 + h3x + h2x2

+ h1x3
+ h0x4.

Now compute Q = (H/F) mod xe−d as explained in Section 7. Then deg Q <

e − d. Reverse Q =
∑

j qe−d−1− j x j to obtain q =
∑

j q j x j
∈ A[x]; in other

words, define q = xe−d−1 Q(x−1).
Compute r = h − q f ∈ A[x] as explained in Section 4. Then deg r < d.

Indeed, xe−1r(x−1) = H − QF is a multiple of xe−d by construction of Q.

FAST MULTIPLICATION AND ITS APPLICATIONS 357

17.5. The x-adic case: A(x) → A((x)). Omit the reversal of coefficients
in the above algorithm. The resulting algorithm, given two polynomials f, h
with f (0) = 1, deg f ≤ d, and deg h < e, computes polynomials q, r such that
h = q f + xmax{e−d,0}r and deg r < d.

17.6. The integer case, easy completion: Q → Q2. An analogous algorithm,
given integers f, h with f odd, | f | ≤ 2d , and |h| < 2e, computes integers
q, r such that h = q f + 2max{e−d,0}r and |r | < 2d . The algorithm takes time
O(n lg n lg lg n), where n is the total number of input bits.

17.7. The integer case, hard completion: Q → R. An analogous algorithm,
given integers f, h with f 6= 0, computes integers q, r such that h = q f + r
and 0 ≤ r < | f |. The algorithm takes time O(n lg n lg lg n), where n is the total
number of input bits.

It is often convenient to change the sign of r when f is negative; in other
words, to replace 0≤r < | f | with 0≤r/ f <1; in other words, to take q =bh/ f c.
The time remains O(n lg n lg lg n).

17.8. History. See Section 7 for historical notes on fast division in A[[x]] and
R.

The use of x 7→ x−1 for computing quotients dates back to at least 1973:
Strassen [1973, page 240] (translated) commented that “the division of two for-
mal power series can easily be used for the division of two polynomials with
remainder.” I have not attempted to trace the earlier history of the x−1 valuation.

17.9. Improvements. One can often save some time, particularly in the integer
case, by changing the problem, allowing a wider range of remainders. Most
applications do not need the smallest possible remainder of h modulo f ; any
reasonably small remainder is adequate.

A different way to divide h by f is to recursively divide the top half of h
by the top half of f , then recursively divide what’s left. Moenck and Borodin
[1972] published this algorithm (in the polynomial case), and observed that it
takes time O(n(lg n)2 lg lg n). Borodin and Moenck later [1974, Section 6] sum-
marized the idea in two sentences and then dismissed it in favor of multiply-by-
reciprocal. The Moenck–Borodin idea was reinvented many years later (in the
integer case) by Jebelean [1997], by Daniel Ford (according to email I received
from John Cannon in June 1998), and by Burnikel and Ziegler [1998]. The idea
is claimed in [Burnikel and Ziegler 1998, Section 4] to be faster than multiply-
by-reciprocal for fairly large values of n; on the other hand, the algorithm in
[Burnikel and Ziegler 1998, Section 4.2] is certainly not the state of the art in
reciprocal computation. Further investigation is needed.

358 DANIEL J. BERNSTEIN

Many applications of division in R can work equally well with division in
Z2. This fact — widely known to number theorists since Hensel’s introduction
of Z2 (and more general completions) in the early 1900s — has frequently been
applied to computations; replacing R with Z2 usually saves a little time and a
considerable amount of effort. See, e.g., [Krishnamurthy 1977], [Hehner and
Horspool 1979], [Gregory 1980], [Dixon 1982] (using Zp where, for simplicity,
p is chosen to not divide an input), [Montgomery 1985], and [Jebelean 1993].
Often Z2 division is called “Montgomery reduction,” but this gives too much
credit to [Montgomery 1985].

In some applications, one knows in advance that a division will be exact,
i.e., that the remainder will be zero. Schönhage and Vetter [1994] suggested
computing the top half of the quotient with division in R, and the bottom half
of the quotient with division in Z2. These two half-size computations are faster
than one full-size computation, because computation speed is not exactly lin-
ear. Similarly, for polynomials, one can combine x-adic division with the usual
division.

Another exact-division method, for h, f ∈C[x], is deconvolution: one solves
h =q f by transforming h, transforming f , dividing to obtain the transform of q,
and untransforming the result to obtain q. Extra work is required if the transform
of f is noninvertible.

18. Remainder tree

18.1. Input. Let A be a commutative ring. Let t be a nonnegative integer. The
algorithm in this section is given a polynomial h ∈ A[x] and monic polynomials
f1, f2, . . . , ft ∈ A[x].

18.2. Output. This algorithm computes h mod f1, h mod f2, . . . , h mod ft .
Actually, the algorithm computes more: the remainder tree of h, f1, f2, . . . , ft .

The remainder tree is defined as follows: for each vertex v in the prod-
uct tree of f1, f2, . . . , ft , there is a corresponding vertex h mod v in the re-
mainder tree of h, f1, f2, . . . , ft . In particular, the leaves of the product tree
are f1, f2, . . . , ft , so the leaves of the remainder tree are h mod f1, h mod
f2, . . . , h mod ft .

In other words: The root of the remainder tree is h mod f1 f2 · · · ft . If t ≤ 1
then that’s the complete tree. If t ≥ 2 then the left subtree is the remainder tree
of h, f1, . . . , fs , and the right subtree is the remainder tree of h, fs+1, . . . , ft ,
where s = dt/2e.

FAST MULTIPLICATION AND ITS APPLICATIONS 359

For example, here is the remainder tree of h, f1, f2, f3, f4, f5, f6:

h mod f1 f2 f3 f4 f5 f6

h mod f1 f2 f3

ww

oooooooooo
h mod f4 f5 f6

''

OOOOOOOOOO

h mod f1 f2

��

������
h mod f3

��

??????

h mod f4 f5

��

������
h mod f6

��

??????

h mod f1

��

������
h mod f2

��

??????

h mod f4

��

������
h mod f5

��

??????

18.3. Speed. This algorithm uses O(n(lg n)2 lg lg n) operations in A, where n
is the total number of coefficients in h, f1, f2, . . . , ft .

More precisely: Assume that d, m, k are nonnegative integers, that deg h <m,
that f1, f2, . . . , ft together have at most d coefficients, and that t ≤ 2k . Then
the algorithm uses at most (12m + 26dk + 24 · 2k

− 12)(µ(2 max{d, m}) + 1)

operations in A.

18.4. How it works: A(x) → A((x−1)). Here is a recursive algorithm that,
given h and the product tree P of f1, . . . , ft , computes the remainder tree
R of h, f1, f2, . . . , ft . This algorithm uses at most 12(m + 2dk + 2k+1

−

1)(µ(2 max{d, m}) + 1) operations in A; add 2dk(µ(2d) + 1) operations in
A to compute P in the first place as explained in Section 12.

The root of P is f1 f2 · · · ft . Compute g = h mod f1 f2 · · · ft as explained in
Section 17; this is the root of R. This uses at most 12(m + 1)(µ(2m) + 1) ≤

12(m + 1)µ(2 max{d, m}) + 1 operations in A.
The strategy is to compute each remaining vertex in R by reducing its par-

ent vertex modulo the corresponding vertex in P . For example, the algorithm
computes h mod f1 f2 · · · fs as (h mod f1 f2 · · · ft) mod f1 f2 · · · fs .

If t ≤ 1, stop. There are no operations here; and k ≥ 0 so 12(m + 1) ≤

12(m + 2dk + 2k+1
− 1).

Otherwise define s = dt/2e. Apply this algorithm recursively to g and the
left subtree of P to compute the remainder tree of g, f1, f2, . . . , fs , which is
exactly the left subtree of R. Apply this algorithm recursively to g and the right
subtree of P to compute the remainder tree of g, fs+1, fs+2, . . . , ft , which is
exactly the right subtree of R.

Time analysis: Define c as the number of coefficients of f1, . . . , fs . By in-
duction, the recursion for the left subtree uses at most 12(d +2c(k −1)+2k

−1)

times µ(2d)+ 1 ≤ µ(2 max{d, m})+ 1 operations, since deg g < d. The recur-
sion for the right subtree uses at most 12(d + 2(d − c)(k − 1) + 2k

− 1) times

360 DANIEL J. BERNSTEIN

µ(2 max{d, m}) + 1 operations. Add: m + 1 + d + 2c(k − 1) + 2k
− 1 + d +

2(d − c)(k − 1) + 2k
− 1 = m + 2dk + 2k+1

− 1.

18.5. The x-adic case: A(x) → A((x)). One obtains a simpler algorithm by
omitting the reversals described in Section 17. The simpler algorithm, given
polynomials h, f1, f2, . . . , ft where f1(0) = f2(0) = · · · = ft(0) = 1, computes
small polynomials r1, r2, . . . , rt such that h is congruent modulo f j to a certain
power of x times r j . The algorithm uses O(n(lg n)2 lg lg n) operations in A.

18.6. The integer case, easy completion: Q → Q2. An analogous algorithm,
given an integer h and odd integers f1, f2, . . . , ft , computes small integers
r1, r2, . . . , rt such that h is congruent modulo f j to a certain power of 2 times
r j . The algorithm takes time O(n(lg n)2 lg lg n), where n is the total number of
input bits.

18.7. The integer case, hard completion: Q → R. An analogous algo-
rithm, given an integer h and nonzero integers f1, f2, . . . , ft , computes integers
r1, r2, . . . , rt , with 0 ≤ r j <

∣∣ f j
∣∣, such that h is congruent modulo f j to r j . The

algorithm takes time O(n(lg n)2 lg lg n), where n is the total number of input
bits.

18.8. History. This algorithm was published by Moenck and Borodin for
“single-precision” moduli f1, f2, . . . , ft . See [Moenck and Borodin 1972] and
[Borodin and Moenck 1974, Sections 4–6].

18.9. Improvements. Montgomery [1992, Section 3.7] pointed out several
opportunities to remove redundancy — for example, by FFT caching — within
and across levels of computation of a remainder tree.

One can replace the remainder tree with the scaled remainder tree to save an-
other constant factor in the computation of h mod f1, h mod f2, . . . , h mod ft .
Where the remainder tree has integers such as h mod f1 f2, the scaled remainder
tree has real numbers such as (h mod f1 f2)/ f1 f2, represented in the usual way
as nearby floating-point numbers. Here’s the point: moving from h mod f1 f2

to h mod f1 means dividing by f1; moving from (h mod f1 f2)/ f1 f2 to (h mod
f1)/ f1 means multiplying by f2, which is faster. This speedup was achieved in
the polynomial case by Bostan, Lecerf, and Schost, using a more complicated
approach that does not work for integers; see [Bostan et al. 2003] and [Bostan et
al. 2004, Section 3.1]. I found the scaled-remainder-tree structure, achieved the
same speedup for integers, and then pointed out some redundancies that could
be removed, saving even more time. See [Bernstein 2004d].

FAST MULTIPLICATION AND ITS APPLICATIONS 361

19. Small factors of a product

19.1. Input. Let A be a commutative ring. Let s be a positive integer, and let
t be a nonnegative integer. The algorithm in this section is given polynomials
h1, h2, . . . , hs ∈ A[x] and monic polynomials f1, f2, . . . , ft ∈ A[x].

19.2. Output. This algorithm figures out which fi ’s divide h1h2 · · · hs : it
computes the subsequence g1, g2, . . . of f1, . . . , ft consisting of each fi that
divides h1h2 · · · hs .

The name “small factors” comes from the following important special case.
Let A be a finite field, and let f1, f2, . . . be all the small primes in A[x], i.e.,
all the low-degree monic irreducible polynomials in A[x]. Then this algorithm
computes the small factors of h1h2 · · · hs .

For example, say A = Z/2, s = 4, t = 5, h1 = 101111 = 1+x2
+x3

+x4
+x5,

h2 = 1101011, h3 = 00001011, h4 = 0001111, f1 = 01, f2 = 11, f3 = 111,
f4 = 1101, and f5 = 1011. This algorithm finds all the factors of h1h2h3h4

among f1, f2, f3, f4, f5. Its output is (01, 11, 111, 1011): the product h1h2h3h4

is divisible by 01, 11, 111, and 1011, but not by 1101.

19.3. Speed. This algorithm uses O(n(lg n)2 lg lg n) operations in A, where n
is the total number of coefficients in h1, h2, . . . , hs, f1, f2, . . . , ft .

More precisely: Assume that d, m, j, k are nonnegative integers, that s ≤

2 j , that t ≤ 2k , that h1, . . . , hs together have at most m coefficients, and that
f1, . . . , ft together have at most d coefficients. Then the algorithm uses at most
(2mj + 12m + 26dk + 24 · 2k

− 12)(µ(2 max{d, m}) + 1) + d operations in A.

19.4. How it works. Compute h = h1h2 · · · hs as explained in Section 12. This
uses at most 2mj (µ(m) + 1) ≤ 2mj (µ(2 max{d, m}) + 1) operations in A.

Compute h mod f1, . . . , h mod ft as explained in Section 18. This uses at
most (12m + 26dk + 24 · 2k

− 12)(µ(2 max{d, m}) + 1) operations in A.
Check whether h mod f1 = 0, h mod f2 = 0, . . . , h mod ft = 0. This uses at

most d equality tests in A.

19.5. The integer case. An analogous algorithm, given integers h1, h2, . . . , hs

and nonzero integers f1, f2, . . . , ft , figures out which fi ’s divide h1h2 · · · hs .
The algorithm takes time O(n(lg n)2 lg lg n), where n is the total number of
input bits.

19.6. History. See Section 20. This algorithm is a stepping-stone to the algo-
rithm of Section 20.

362 DANIEL J. BERNSTEIN

19.7. Improvements. See Section 12 for improved product-tree algorithms,
and Section 18 for improved remainder-tree algorithms.

As discussed in Section 17, Schönhage and Vetter combined Z2 and R to
compute a quotient more quickly when the remainder was known in advance
to be 0. A similar technique can be used to check more quickly whether a
remainder is 0.

20. Small factors of a sequence

20.1. Input. Let A be a commutative ring. Let s be a positive integer, and let t be
a nonnegative integer. The algorithm in this section is given nonzero polynomi-
als h1, h2, . . . , hs ∈ A[x] and monic coprime polynomials f1, f2, . . . , ft ∈ A[x]
with deg fi ≥ 1 for each i .

Here coprime means that A[x] = fi A[x] + f j A[x] for every i, j with i 6= j ;
in other words, there exist u, v ∈ A[x] with fi u + f jv = 1. (Warning: Some
authors instead say pairwise coprime, reserving “coprime” for the notion that
A[x] = f1 A[x] + f2 A[x] + · · · + ft A[x].)

The importance of coprimality is the Chinese remainder theorem: the A[x]-
algebra morphism from A[x]/ f1 f2 · · · ft to A[x]/ f1 × A[x]/ f2 × · · ·× A[x]/ ft

is an isomorphism. In particular, if each of f1, f2, . . . , ft divides a polynomial
h, then the product f1 f2 · · · ft divides h. This is crucial for the speed of the
algorithm.

20.2. Output. This algorithm figures out which fi ’s divide h1, which fi ’s divide
h2, which fi ’s divide h3, etc.

As in Section 19, the name “small factors” comes from the important special
case that A is a finite field and f1, f2, . . . are all of the small primes in A[x].
Then this algorithm computes the small factors of h1, the small factors of h2,
etc.

For example, say A = Z/2, s = 4, t = 5, h1 = 101111 = 1+x2
+x3

+x4
+x5,

h2 = 1101011, h3 = 00001011, h4 = 0001111, f1 = 01, f2 = 11, f3 = 111,
f4 = 1101, and f5 = 1011. This algorithm finds all the factors of h1, h2, h3, h4

among f1, f2, f3, f4, f5. Its output is (), (111), (01, 1011), (01, 11).

20.3. Speed. This algorithm uses O(n(lg n)3 lg lg n) operations in A, where n
is the total number of coefficients in h1, h2, . . . , hs, f1, f2, . . . , ft .

More precisely: Assume, as in Section 19, that d, m, j, k are nonnegative
integers, that h1, . . . , hs together have at most m coefficients, that f1, . . . , ft to-
gether have at most d coefficients, that s ≤2 j , and that t ≤2k . Then the algorithm
uses at most ((104 jk + j2

+ 109 j + 12)m + 26dk + 24 · 2k)(µ(2 max{d, m})+

1) + d + 4mj operations in A.

FAST MULTIPLICATION AND ITS APPLICATIONS 363

20.4. How it works. Figure out which of f1, . . . , ft divide h1 · · · hs , as ex-
plained in Section 19; write (g1, g2, . . .) for this subsequence of (f1, . . . , ft).
This uses at most (2mj + 12m + 26dk + 24 · 2k)(µ(2 max{d, m}) + 1) + d
operations in A, leaving (104 jk + j2

+ 107 j)m(µ(2 max{d, m}) + 1) + 4mj
operations for the remaining steps in the algorithm.

If s = 1, the answer is (g1, g2, . . .). There are no further operations in this
case, and (104 jk + j2

+ 107 j)m(µ(2 max{d, m}) + 1) + 4mj is nonnegative.
Otherwise apply the algorithm recursively to h1, h2, . . . , hr and g1, g2, . . . ,

and then apply the algorithm recursively to hr+1, hr+2, . . . , hs and g1, g2, . . . ,
where r = ds/2e. This works because any f ’s that divide hi also divide the
product h1h2 · · · hs and are therefore included among the g’s.

The central point in the time analysis is that deg(g1g2 · · ·) < m. Indeed,
g1, g2, . . . are coprime divisors of h1 · · · hs , so their product is a divisor of
h1 · · · hs ; but h1 · · · hs is a nonzero polynomial of degree smaller than m. Thus
there are at most min{m, t} polynomials in g1, g2, . . . , and the total number of
coefficients in g1, g2, . . . is at most min{2m, d}.

Define ` as the number of coefficients in h1, h2, . . . , hr , and define e as the
smallest nonnegative integer with min{m, t} ≤ 2e. Then ` ≤ m; e ≤ k; and
2e

≤ 2m, since m ≥ 1. The recursive computation for h1, . . . , hr , g1, g2, . . .

uses at most

((104(j − 1)e + (j − 1)2
+ 109(j − 1) + 12)` + 26 min{2m, d}e + 24 · 2e)

(µ(2 max{min{2m, d}, `}) + 1) + min{2m, d} + 4`(j − 1)

≤ ((104(j − 1)k + (j − 1)2
+ 109(j − 1) + 12)` + 52mk + 48m)

(µ(2 max{d, m}) + 1) + 2m + 4`(j − 1)

operations in A by induction. Similarly, the recursive computation for hr+1, . . . ,

hs, g1, g2, . . . uses at most

((104(j − 1)k + (j − 1)2
+ 109(j − 1) + 12)(m − `) + 52mk + 48m)

(µ(2 max{d, m}) + 1) + 2m + 4(m − `)(j − 1)

operations in A. The total is exactly (104 jk + j2
+ 107 j)m(µ(2 max{d, m})+

1) + 4mj as desired.
Here is an example of how the algorithm works. To factor h1 = 101111,

h2 =1101011, h3 =00001011, and h4 =0001111 over A =Z/2 using the primes
01, 11, 111, 1101, 1011, the algorithm first finds the factors 01, 11, 111, 1011
of h1h2h3h4 as explained in Section 19. It then recursively factors h1, h2 using
01, 11, 111, 1011, and recursively factors h3, h4 using 01, 11, 111, 1011.

At the first level of recursion in the same example: To factor h3, h4 using
01, 11, 111, 1011, the algorithm finds the factors 01, 11, 1011 of h3h4 as ex-
plained in Section 19. It then recursively factors h3 using 01, 11, 1011, and
recursively factors h4 using 01, 11, 1011.

364 DANIEL J. BERNSTEIN

20.5. The integer case. An analogous algorithm, given nonzero integers
h1, h2, . . . , hs and coprime integers f1, f2, . . . , ft ≥ 2, figures out which f j ’s
divide h1, which f j ’s divide h2, which f j ’s divide h3, etc. The algorithm takes
time O(n(lg n)3 lg lg n), where n is the total number of input bits.

An important special case is that f1, f2, . . . , ft are the first t prime numbers.
Then this algorithm computes the small factors of h1, the small factors of h2,
etc.

20.6. History. I introduced this algorithm in [Bernstein 2005, Section 21] and
[Bernstein 2002a]. The version in [Bernstein 2005] is slower but more general:
it relies solely on multiplication, exact division, and greatest common divisors.

20.7. Improvements. There are many previous algorithms to find small factors:
for example, Legendre’s root-finding method (when the inputs are polynomials
over a finite field), sieving (when the inputs are successive values of a poly-
nomial), Pollard’s p − 1 method, and Lenstra’s elliptic-curve method. These
algorithms, and their applications, are recurring topics in this volume. See
[Bernstein 2002a] for a comparison of speeds and for further pointers to the
literature. Combinations and optimizations of these algorithms are an active
area of research.

Many applications discard inputs that are not smooth, i.e., that do not factor
completely over the primes f1, f2, . . . , ft . One can identify and discard those
inputs without factoring them. Franke, Kleinjung, Morain, and Wirth [2004,
Section 4] published a smoothness-detection algorithm that typically takes time
O(n(lg n)2 lg lg n). My paper [Bernstein 2004b] explains a slight variant that al-
ways takes time O(n(lg n)2 lg lg n): first compute f = f1 f2 · · · ft ; then compute
f mod h1, f mod h2, . . . ; then, for each i , compute f 2bi mod hi by repeated
squaring, for a sensible choice of bi . The result is 0 if and only if hi is smooth.

21. Continued fraction from fraction

21.1. Input. Let A be a field. Let d be a nonnegative integer. The algorithm in
this section is given polynomials f1, f2 ∈ A[x], not both zero.

Both f1 and f2 are assumed to be represented without leading zero coeffi-
cients, so the algorithm can see the degrees of f1 and f2 without any equality
tests in A.

21.2. Output. This algorithm computes polynomials M11, M12, M21, M22 in
A[x] such that deg M11, deg M12, deg M21, deg M22 are all at most d; M11 M22 −

M12 M21 is in {−1, 1}; and deg(M21 f1 + M22 f2) < max{deg f1, deg f2} − d. In
particular, M21 f1 + M22 f2 = 0 in the important case d = max{deg f1, deg f2}.

FAST MULTIPLICATION AND ITS APPLICATIONS 365

This algorithm also computes a factorization of the matrix M =

(
M11 M12

M21 M22

)
:

polynomials q1, q2, . . . , qt ∈ A[x] with M =

(
0 1
1 −qt

)
· · ·

(
0 1
1 −q2

) (
0 1
1 −q1

)
.

In particular,
(

f1

f2

)
=

(
q1 1
1 0

) (
q2 1
1 0

)
· · ·

(
qt 1
1 0

)
M

(
f1

f2

)
. The reader may

think of this equation as expanding f1/ f2 into a continued fraction

q1 +
1

q2 +
1

. . . +
1

qt +
g2

g1

with g1 = M11 f1 + M12 f2 and g2 = M21 f1 + M22 f2; see Section 14.
Note for future reference that if deg f1 ≥ deg f2 then deg g1 = deg f1 −

deg M22 ≥ deg f1 −d > deg g2; if also M21 6= 0 then deg g1 = deg f2 −deg M21.
(Proof: deg M12g2 < d + deg f1 − d = deg f1, and M22g1 = M12g2 ± f1, so
deg M22g1 = deg f1. If M21 6= 0 then deg M21 f1 ≥ deg f1 ≥ deg f1 −d > deg g2,
and M22 f2 = g2 − M21 f1, so deg M22 f2 = deg M21 f1.)

21.3. Speed. This algorithm uses O(d(lg d)2 lg lg d) operations in A.
More precisely: Assume that 2d ≤ 2k where k is a nonnegative integer. Then

this algorithm uses at most (46dk +44(2k+1
−1))(µ(4d +8)+1) operations in

A. This bound is pessimistic.

21.4. How it works. The desired matrix M is computed in nine steps shown
below. The desired factorization of M is visible from the construction of M , as
is the (consequent) fact that det M ∈ {−1, 1}.

There are several recursive calls in this algorithm. Most of the recursive
calls reduce d; the other recursive calls preserve d and reduce deg f2. The time
analysis inducts on (d, deg f2) in lexicographic order.

Step 1: fix the input order. If deg f1 < deg f2: Apply the algorithm recursively
to d, f2, f1 to find a matrix C , of degree at most d, such that deg(C21 f2 +

C22 f1) < deg f2 − d. Compute M = C
(

0 1
1 0

)
. The answer is M .

Time analysis: By induction, the recursive computation of C uses at most
(46dk + 44(2k+1

− 1))(µ(4d + 8)+ 1) operations. The computation of M uses
no operations: M is simply a reshuffling of C .

366 DANIEL J. BERNSTEIN

Step 2: check for large d. If deg f1 < d: Apply the algorithm recursively
to deg f1, f1, f2 to find a matrix M , of degree at most deg f1 < d, such that
M21 f1 + M22 f2 = 0. The answer is M .

Time analysis: By induction, the recursive computation of M uses at most
(46(deg f1)k + 44(2k+1

− 1))(µ(4(deg f1) + 8) + 1) ≤ (46dk + 44(2k+1
−

1))(µ(4d + 8) + 1) operations.

Step 3: if no quotients are needed, stop. If deg f2 < deg f1 − d: The answer

is
(

1 0
0 1

)
.

Time analysis: This computation uses 0 ≤ (46dk + 44(2k+1
− 1))(µ(4d +

8) + 1) operations.

Step 4: focus on the top 2d coefficients. Define i =deg f1−2d. If i >0: Apply
the algorithm recursively to d,

⌊
f1/x i

⌋
,
⌊

f2/x i
⌋

to find a matrix M , of degree
at most d, such that deg(M21

⌊
f1/x i

⌋
+ M22

⌊
f2/x i

⌋
) < deg(

⌊
f1/x i

⌋
) − d =

deg f1 − i − d.
The answer is M . Indeed, x i (M21

⌊
f1/x i

⌋
+ M22

⌊
f2/x i

⌋
) has degree below

deg f1 − d; M21(f1 mod x i) and M22(f2 mod x i) have degree below d + i =

deg f1 − d; add to see that M21 f1 + M22 f2 has degree below deg f1 − d.
Time analysis: By induction, the recursive computation of M uses at most

(46dk + 44(2k+1
− 1))(µ(4d + 8) + 1) operations as claimed.

From now on, 0 ≤ deg f1 − d ≤ deg f2 ≤ deg f1 ≤ 2d.

Step 5: handle degree 0. If d = 0 then deg f1 = deg f2 = 0; the answer is(
0 1
1 − f1/ f2

)
.

Time analysis: This computation uses 2 ≤ (46dk + 44(2k+1
− 1))(µ(4d +

8) + 1) operations as claimed.
From now on, d ≥ 1, so k ≥ 1.

Step 6: compute the first half of the continued fraction. Find a matrix C , of
degree at most bd/2c, with deg(C21 f1 + C22 f2) < deg f1 − bd/2c, by applying
this algorithm to bd/2c , f1, f2. Compute g2 = C21 f1 +C22 f2. Compute deg g2.

Time analysis: Note that 2 bd/2c ≤ d ≤ 2k−1. The recursive computation of
C uses at most (46(d/2)(k −1)+44(2k

−1))(µ(4(d/2)+8)+1) operations by
induction. The computation of C21 f1 uses at most 3dµ(3d) operations, since
deg C21 ≤ d and deg f1 ≤ 2d. The computation of C22 f2 uses at most 3dµ(3d)

operations. The computation of g2 uses at most 2d additions, since deg g2 <

deg f1 ≤ 2d. The computation of deg g2 uses at most 2d equality tests.

FAST MULTIPLICATION AND ITS APPLICATIONS 367

Step 7: if no more quotients are needed, stop. If deg g2 < deg f1 − d: The
answer is C . Time analysis: There are no operations here; for comparison, more
than 0 operations are counted below.

From now on, deg f1 − d ≤ deg g2 < deg f1 − bd/2c.

Step 8: compute one more quotient. Compute g1 = C11 f1 + C12 f2. Compute
polynomials q, r ∈ A[x] such that g1 = qg2 +r and deg r < deg g2, as explained
in Section 17. Compute deg r .

Problem: Section 17 considers division by monic polynomials; g2 is usually
not monic. Solution: Divide g2 by its leading coefficient, and adjust q accord-
ingly.

Observe that the matrix
(

0 1
1 −q

)
C =

(
C21 C22

C11 − qC21 C12 − qC22

)
has degree

at most deg f1 − deg g2. (Proof: Recall that deg C22 = deg f1 − deg g1; so
deg qC22 = deg q + deg C22 = (deg g1 − deg g2)+ (deg f1 − deg g1) = deg f1 −

deg g2. Similarly, recall that deg C21 ≤ deg f2 − deg g1 ≤ deg f1 − deg g1; so
deg qC21 ≤ deg f1 − deg g2. Finally, all of C11, C12, C21, C22 have degree at
most bd/2c < deg f1 − deg g2.)

Time analysis: The computation of g1 uses at most 6dµ(3d) + 2d + 1 op-
erations, since deg g1 ≤ deg f1 ≤ 2d. The division of g2 by its leading coeffi-
cient uses at most 2d operations. The division of g1 by the result uses at most
12(2d+2)(µ(4d+2)+1) operations. The division of the quotient by the leading
coefficient of g2 uses at most d +1 operations since deg q ≤ deg f1 −deg g2 ≤ d.
The computation of deg r uses at most 2d equality tests.

Step 9: compute the second half of the continued fraction. Find a matrix D,
of degree at most deg g2−(deg f1−d), such that deg(D21g2+D22r)<deg f1−d,
by applying the algorithm recursively to deg g2 − (deg f1 − d), g2, r .

Compute M = D
(

0 1
1 −q

)
C . Observe that M21 f1+M22 f2 =

(
0 1

)
M

(
f1

f2

)
=(

0 1
)

D
(

0 1
1 −q

)
C

(
f1

f2

)
=

(
D21 D22

) (
0 1
1 −q

) (
g1

g2

)
=

(
D21 D22

) (
g2

r

)
=

D21g2 + D22r .
The answer is M . Indeed, the degree of D is at most deg g2 − deg f1 + d,

and the degree of
(

0 1
1 −q

)
C is at most deg f1 − deg g2, so the degree of M is

at most d; and deg(M21 f1 + M22 f2) = deg(D21g2 + D22r) < deg f1 − d.
Time analysis: Note that deg g2−(deg f1−d)≤deg f1−bd/2c−1−(deg f1−

d) ≤ bd/2c. By induction, the recursive computation of D uses at most

(46(d/2)(k − 1) + 44(2k
− 1))(µ(4(d/2) + 8) + 1)

368 DANIEL J. BERNSTEIN

operations. The computation of qC21 uses at most (d + 1)µ(d + 1) operations
since deg qC21 ≤deg f1−deg g2 ≤d. The computation of qC22 uses at most (d+

1)µ(d + 1) operations since deg qC22 = deg f1 − deg g2 ≤ d. The computation
of C11 − qC21 uses at most d + 1 operations. The computation of C12 − qC22

uses at most d + 1 operations. The multiplication of D by
(

0 1
1 −q

)
C uses at

most (8d + 16)(µ(4d + 8) + 1) operations.
Totals: at most (46d(k −1)+44(2k+1

−2))(µ(4d +8)+1) operations for the
recursive computations of C and D, and at most (46d + 42)µ(4d + 8)+ 45d +

44 ≤ (46d +44)(µ(4d +8)+1) operations for everything else. The grand total
is at most (46dk + 44(2k+1

− 1))(µ(4d + 8) + 1) operations as claimed.

21.5. The integer case. A more complicated algorithm, given a nonnegative
integer d and given integers f1, f2 not both zero, computes a (factored) 2 × 2
integer matrix M with entries not much larger than 2d in absolute value, with
determinant in {−1, 1}, and with |M21 f1 + M22 f2| < max{| f1| , | f2|}/2d . This
algorithm takes time O(n(lg n)2 lg lg n), where n is the total number of input
bits.

The main complication here is that the answer for the top 2d bits of f1 and f2

is, in general, not exactly the answer for f1 and f2. One has to check whether
|M21 f1 + M22 f2| is too large, and divide a few more times if it is.

21.6. History. Almost all of the ideas in this algorithm were published by
Lehmer [1938] in the integer case. Lehmer made the crucial observation that
the top 2d bits of f1 and f2 determined approximately d bits of the continued
fraction for f1/ f2. Lehmer suggested computing the continued fraction for f1/ f2

by computing a small part of the continued fraction, computing another quotient,
and then computing the rest of the continued fraction.

Shortly after fast multiplication was widely understood, Knuth [1971b] sug-
gested replacing “a small part” with “half” in Lehmer’s algorithm. Knuth proved
that the continued fraction for f1/ f2 could be computed within a O((lg n)4)

factor of multiplication time. Schönhage [1971] streamlined the Lehmer–Knuth
algorithm and proved that the continued fraction for f1/ f2 could be computed
within a O(lg n) factor of multiplication time.

The (lg n)3 disparity between [Knuth 1971b] and [Schönhage 1971] arose
as follows. Knuth lost one lg n factor from continually re-multiplying matrices(

0 1
1 −q

)
instead of reusing their products M ; another lg n factor from doing a bi-

nary search, again with no reuse of partial results, to determine how much of the
continued fraction of f1/ f2 matched the continued fraction of

⌊
f1/2i

⌋
/
⌊

f2/2i
⌋

;
and one more lg n factor from an unnecessarily crude analysis.

FAST MULTIPLICATION AND ITS APPLICATIONS 369

Moenck [1973] claimed to have a simplified algorithm covering both the inte-
ger case and the polynomial case. In fact, Moenck’s algorithm does not work in
the integer case, does not work in the “nonnormal” situation of a quotient having
degree different from 1, and does not work except when deg f1 is a power of 2.
The errors in [Moenck 1973] begin on page 143, where the “degree” function
mapping an integer A to blg |A|c is claimed to be a homomorphism.

Brent, Gustavson, and Yun [1980, Section 3] outlined a simplified algorithm
for the polynomial case. Strassen [1983, page 16] stated the remarkably clean
algorithm shown above (under the assumption deg f1 ≥ deg f2), with one omis-
sion: Strassen’s algorithm recurses forever when d = deg f1 = deg f2 = 0.

21.7. Improvements. There are many opportunities for FFT caching and FFT
addition in this algorithm.

One can replace bd/2c in this algorithm by any integer between 0 and d −1.
The optimal choice depends heavily on the exact speed of multiplication.

It is often helpful (for applications, and for recursion inside this algorithm)
to compute M21 f1 + M22 f2, and sometimes M11 f1 + M12 f2, along with M . One
can often save time by incorporating these computations into the recursion. For
example, when M is constructed from D, q, C , one can compute M21 f1+M22 f2

as D21g2 + D22r , and one can compute M11 f1 + M12 f2 as D11g2 + D12r .
One can often save time by skipping M11 and M21, and working solely with

M12, M22, M11 f1+M12 f2, M21 f1+M22 f2. Applications that need M11 and M21

can use formulas such as M11 = ((M11 f1+M12 f2)−M12 f2)/ f1. In [Knuth 1997,
page 343] this observation is credited to Gordon H. Bradley.

Some applications need solely M11 f1 + M12 f2 and M21 f1 + M22 f2. The
algorithm, and some of its recursive calls, can be sped up accordingly.

Often f1 and f2 have an easily detected common factor, such as x or x − 1.
Dividing out this factor speeds up the algorithm, perhaps enough to justify the
cost of checking for the factor in the first place.

22. Greatest common divisor

22.1. Input. Let A be a field. The algorithm in this section is given polynomials
f1, f2 ∈ A[x].

22.2. Output. This algorithm computes gcd{ f1, f2}: in other words, a poly-
nomial g such that g A[x] = f1 A[x] + f2 A[x] and such that g is monic if it is
nonzero.

This algorithm also computes polynomials h1, h2 ∈ A[x], each of degree at
most max{deg f1, deg f2}, such that g = f1h1 + f2h2.

In particular, if f1 and f2 are coprime, then g = 1; h1 is a reciprocal of f1

modulo f2; and h2 is a reciprocal of f2 modulo f1.

370 DANIEL J. BERNSTEIN

22.3. Speed. This algorithm uses O(n(lg n)2 lg lg n) operations in A, where n
is the total number of coefficients in f1, f2.

22.4. How it works. If f1 = f2 = 0 then the answer is 0, 0, 0. Assume from
now on that at least one of f1 and f2 is nonzero.

Define d = max{deg f1, deg f2}. Apply the algorithm of Section 21 to com-
pute M11, M12, M21, M22 in A[x], of degree at most d, with M11 M22−M12 M21 =

±1 and M21 f1 + M22 f2 = 0.
Compute u = M11 f1 + M12 f2. Note that ± f1 = M22u and ∓ f2 = M21u, so

u A[x] = f1 A[x] + f2 A[x]. In particular, u 6= 0.
Compute g = u/c, h = M11/c, and h2 = M12/c, where c is the leading

coefficient of u. Then g is monic, and g A[x] = f1 A[x] + f2 A[x], so g =

gcd{ f1, f2}. The answer is g, h1, h2.

22.5. The integer case. An analogous algorithm, given integers f1 and f2,
computes gcd{ f1, f2} and reasonably small integers h1, h2 with gcd{ f1, f2} =

f1h1 + f2h2. This algorithm takes time O(n(lg n)2 lg lg n), where n is the total
number of input bits.

22.6. History. See Section 21. This application has always been one of the
primary motivations for studying the problem of Section 21.

22.7. Improvements. See Section 21.
The reader may have noticed that Section 21 and this section use division

in A((x−1)) and division in R. What about Q2? Answer: There are several
“binary” algorithms to compute greatest common divisors of integers. See, e.g.,
[Sorenson 1994] and [Knuth 1997, pages 338–341; Exercises 4.5.2–38, 4.5.2–
39, 4.5.2–40]. Stehlé and Zimmermann recently [2004] introduced a particuarly
clean “binary” gcd algorithm and proved that it takes time O(n(lg n)2 lg lg n).
The Stehlé–Zimmermann algorithm, given an odd integer f1 and an even integer
f2, expands f1/ f2 into what one might call a simple 2-adic continued fraction:
a continued fraction with all quotients chosen from the set

{±1/2, ±1/4, ±3/4, ±1/8, ±3/8, ±5/8, ±7/8, . . . }.

My initial impression is that this algorithm supersedes all previous work on gcd
computation.

23. Interpolator

23.1. Input. Let A be a field. Let t be a nonnegative integer. The algorithm
in this section is given polynomials f1, f2, . . . , ft ∈ A[x] and nonzero coprime
polynomials g1, g2, . . . , gt ∈ A[x].

FAST MULTIPLICATION AND ITS APPLICATIONS 371

23.2. Output. This algorithm computes h ∈ A[x], with deg h < deg g1g2 · · · gt ,
such that h ≡ f1 (mod g1), h ≡ f2 (mod g2), . . . , h ≡ ft (mod gt).

In particular, consider the special case that each g j is a monic linear poly-
nomial x − c j . The answer h is a polynomial of degree below t such that
h(c1) = f1(c1), h(c2) = f2(c2), . . . , h(ct) = ft(ct). Finding h is usually called
interpolation in this case, and I suggest using the same name for the general
case. Another common name is Chinese remaindering.

23.3. Speed. This algorithm uses O(n(lg n)2 lg lg n) operations in A, where n
is the total number of input coefficients.

23.4. How it works. For t = 0: The answer is 0.
Compute G = g1 · · · gt as explained in Section 12.
Compute G mod g2

1, . . . , G mod g2
t as explained in Section 18.

For each j divide G mod g2
j by g j , as explained in Section 17, to obtain

(G/g j) mod g j . Note that G/g j and g j are coprime; thus ((G/g j) mod g j) and
g j are coprime.

Compute a (reasonably small) reciprocal p j of ((G/g j) mod g j) modulo g j ,
as explained in Section 22. Compute q j = f j p j mod g j as explained in Section
17.

Now compute h = (q1/g1 +· · ·+qt/gt)G as explained in Section 13. (Proof
that, modulo g j , this works: h ≡ q j (G/g j) ≡ f j p j (G/g j) ≡ f j p j (G/g j mod
g j) ≡ f j .)

23.5. The integer case. An analogous algorithm, given integers f1, f2, . . . , ft

and given nonzero coprime integers g1, g2, . . . , gt , computes a reasonably small
integer h such that h ≡ f1 (mod g1), h ≡ f2 (mod g2), . . . , h ≡ ft (mod gt). The
algorithm takes time O(n(lg n)2 lg lg n), where n is the total number of input
bits.

23.6. History. Horowitz [1972] published most of the above algorithm, in
the special case that each g j is a monic linear polynomial. Horowitz did not
have a fast method (for large t) to compute (G/g1) mod g1, . . . , (G/gt) mod gt

from G. Moenck and Borodin [1972, page 95] suggested the above solution in
the (“single-precision”) integer case; see also [Borodin and Moenck 1974, page
381].

The special case t = 2 was published first by Heindel and Horowitz [1971],
along with a different essentially-linear-time interpolation algorithm for gen-
eral t . The Heindel–Horowitz algorithm is summarized below; it takes time
O(n(lg n)3 lg lg n).

372 DANIEL J. BERNSTEIN

23.7. Improvements. When g j is a linear polynomial, (G/g j) mod g j has de-
gree 0, so p j is simply 1/((G/g j) mod g j), and q j is (f j mod g j)/((G/g j) mod
g j). More generally, whenever g j is very small, the algorithm of this section
provides very small inputs to the modular-reciprocal algorithm of Section 22.

When g j is a monic linear polynomial, (G/g j) mod g j is the same as G ′ mod
g j , where G ′ is the derivative of G. Borodin and Moenck [1974, Sections 8–
9] suggested computing G ′ mod g1, . . . , G ′ mod gt as explained in Section 18,
instead of computing G mod g2

1, . . . , G mod g2
t .

More generally, if g j and its derivative g′

j are coprime, then (G/g j) mod g j

is the same as (g′

j)
−1G ′ mod g j . One can compute G ′ mod g1, . . . , G ′ mod gt ;

compute each reciprocal (G ′)−1 mod g j ; and compute q j = f j g′

j (G
′)−1 mod g j .

Another way to compute (G/g j) mod g j , published by Bürgisser, Clausen,
and Shokrollahi [1997, pages 77–78], is to first compute G/g1+· · ·+G/gt as ex-
plained in Section 13, then compute (G/g1+· · ·+G/gt) mod g j = (G/g j) mod
g j for all j as explained in Section 18.

When t = 2, one can use the algorithm of Section 22 to simultaneously com-
pute a reciprocal p2 of g1 = G/g2 modulo g2 and a reciprocal p1 of g2 = G/g1

modulo g1. The answer is then (f1 p1 mod g1)g2 + (f2 p2 mod g2)g1. It might
be faster to compute (f1 p1g2 + f2 p2g1) mod g1g2.

One can skip the computation of p1 when f1 = 0. One can reduce the general
case to this case: interpolate 0, f2 − f1, f3 − f1, . . . , ft − f1 and then add f1 to
the result. In particular, for t = 2, the answer is f1 + ((f2 − f1)p2 mod g2)g1, if
f1 is small enough for that answer to be in the right range.

The Heindel–Horowitz algorithm interpolates pairs, then pairs of pairs, etc.
This may be better than the Horowitz–Borodin–Moenck algorithm for small t .

One can cache the reciprocals p j for subsequent interpolations involving the
same g1, . . . , gt .

24. Coprime base

24.1. Input. Let A be a field. Let t be a nonnegative integer. The algorithm in
this section is given monic polynomials f1, f2, . . . , ft ∈ A[x].

24.2. Output. This algorithm computes a coprime base for { f1, f2, . . . , ft}:
coprime monic polynomials g1, g2, . . . ∈ A[x] such that each f j can be factored
as a product of powers of g1, g2, In fact, the algorithm computes the natural
coprime base for { f1, f2, . . . , ft}: the unique coprime base that does not contain
1 and that can be obtained from f1, f2, . . . , ft by multiplication, exact division,
and greatest common divisors.

Sample application: Given a polynomial f1 ∈ (Z/2)[x], compute a (Z/2)-
basis (f2, . . . , ft) for the vector space

{
h ∈ (Z/2)[x] : (f1h)′

= h2
}
. Then the

FAST MULTIPLICATION AND ITS APPLICATIONS 373

natural coprime base for f1, . . . , ft contains all irreducible divisors of f1. See
[Göttfert 1994].

Many applications also want factorization into coprimes: the factorization
of each f j over the coprime base g1, g2, These factorizations can be com-
puted quickly by an extension of the algorithm of Section 20.

24.3. Speed. This algorithm uses O(n(lg n)7 lg lg n) operations in A, where n
is the total number of input coefficients.

24.4. How it works. Exercise for the reader! Three hints: (1) There is no
need for any subroutines other than multiplication, exact division, and greatest
common divisors. (2) The natural coprime base for

{
f a, f b

}
is

{
f gcd{a,b}

}
−{1};

one can use a left-shift gcd algorithm. (3) Given coprime g1, g2, . . . one can
quickly construct a very small set having natural coprime base {g1, g2, . . .}−{1}.

24.5. The integer case. An analogous algorithm computes the natural co-
prime base of a set of positive integers f1, f2, . . . , ft . This algorithm takes time
O(n(lg n)7 lg lg n), where n is the total number of input bits.

Sample application: If f1 has at most n bits then one can, in time n(lg n)O(1),
find the maximum integer k such that f1 is a kth power. The idea is as follows:
compute good approximations f2, f3, . . . to f 1/2

1 , f 1/3
1 , . . .; factor f1, f2, f3, . . .

into coprimes; and compute the greatest common divisor of the exponents of the
factorization of f1. See [Bernstein et al. 2007] for details.

24.6. History. I published this algorithm in [Bernstein 2005], after a decade
of increasingly detailed outlines. No previous essentially-linear-time algorithms
were known, even in the case t = 2. My newer paper [Bernstein 2004a] outlines
an improvement from (lg n)7 to (lg n)4.

References

[AFIPS 17] — (no editor), AFIPS conference proceedings, volume 17: 1960 Western
Joint Computer Conference. ISSN 0095–6880. See [Estrin 1960].

[AFIPS 28] — (no editor), AFIPS conference proceedings, volume 28: 1966 Spring
Joint Computer Conference, Spartan Books, Washington. See [Stockham 1966].

[AFIPS 29] — (no editor), AFIPS conference proceedings, volume 29: 1966 Fall
Joint Computer Conference, Spartan Books, Washington. See [Gentleman and Sande
1966].

[AFIPS 33] — (no editor), AFIPS conference proceedings, volume 33, part one: 1968
Fall Joint Computer Conference, December 9–11, 1968, San Francisco, California,
Thompson Book Company, Washington. See [Yavne 1968].

[ICM 1971.3] — (no editor), Actes du congrès international des mathématiciens, tome
3, Gauthier-Villars Éditeur, Paris. MR 54:5. See [Knuth 1971b].

374 DANIEL J. BERNSTEIN

[Aho 1973] Alfred V. Aho (chairman), Proceedings of fifth annual ACM symposium
on theory of computing: Austin, Texas, April 30–May 2, 1973, Association for
Computing Machinery, New York. See [Moenck 1973].

[Anderssen and Brent 1976] Robert S. Anderssen and Richard P. Brent (editors), The
complexity of computational problem solving, University of Queensland Press, Bris-
bane. ISBN 0–7022–1213–X. URL: http://web.comlab.ox.ac.uk/oucl/work/richard.
brent/pub/pub031.html. See [Brent 1976a].

[Beeler et al. 1972] Michael Beeler, R. William Gosper, and Richard Schroeppel, HAK-
MEM, Artificial Intelligence Memo No. 239, Massachusetts Institute of Technology.
URL: http://www.inwap.com/pdp10/hbaker/hakmem/hakmem.html. Citations in
this document: §16.7.

[Bergland 1968] Glenn D. Bergland, “A fast Fourier transform algorithm for real-valued
series”, Communications of the ACM 11, 703–710. ISSN 0001–0782. URL: http://
cr.yp.to/bib/entries.html#1968/bergland-real. Citations in this document: §2.9.

[Bernstein 1987] Daniel J. Bernstein, “New fast algorithms for π and e”, paper
for the Westinghouse competition, distributed widely at the Ramanujan Centenary
Conference. URL: http://cr.yp.to/papers.html#westinghouse. Citations in this docu-
ment: §12.7.

[Bernstein 1998] Daniel J. Bernstein, “Detecting perfect powers in essentially lin-
ear time”, Mathematics of Computation 67, 1253–1283. ISSN 0025–5718. MR
98j:11121. URL: http://cr.yp.to/papers.html#powers. Citations in this document:
§6.6.

[Bernstein 2001] Daniel J. Bernstein, “Multidigit multiplication for mathematicians”.
URL: http://cr.yp.to/papers.html#m3. Citations in this document: §2.8, §3.8, §4.10,
§4.10.

[Bernstein 2002a] Daniel J. Bernstein, “How to find small factors of integers”. URL:
http://cr.yp.to/papers.html#sf. Citations in this document: §20.6, §20.7.

[Bernstein 2002b] Daniel J. Bernstein, “Pippenger’s exponentiation algorithm”. URL:
http://cr.yp.to/papers.html#pippenger. Citations in this document: §10.7.

[Bernstein 2003] Daniel J. Bernstein, “Computing logarithm intervals with the arith-
metic-geometric-mean iteration”. URL: http://cr.yp.to/papers.html#logagm. ID 8f92
b1e3ec7918d37b28b9efcee5e97f. Citations in this document: §16.7.

[Bernstein 2004a] Daniel J. Bernstein, “Research announcement: Faster factorization
into coprimes”. URL: http://cr.yp.to/papers.html#dcba2. ID 53a2e278e21bcbb7287
b81c563995925. Citations in this document: §24.6.

[Bernstein 2004b] Daniel J. Bernstein, “How to find smooth parts of integers”. URL:
http://cr.yp.to/papers.html#smoothparts. ID 201a045d5bb24f43f0bd0d97fcf5355a.
Citations in this document: §20.7.

[Bernstein 2004c] Daniel J. Bernstein, “Removing redundancy in high-precision New-
ton iteration”. URL: http://cr.yp.to/papers.html#fastnewton. ID def7f1e35fb654671
c6f767b16b93d50. Citations in this document: §6.8, §7.7, §9.7, §10.7, §10.7.

FAST MULTIPLICATION AND ITS APPLICATIONS 375

[Bernstein 2004d] Daniel J. Bernstein, “Scaled remainder trees”. URL: http://cr.yp.to/
papers.html#scaledmod. ID e2b8da026cf72d01d97e20cf2874f278. Citations in this
document: §18.9.

[Bernstein 2005] Daniel J. Bernstein, “Factoring into coprimes in essentially linear
time”, Journal of Algorithms 54, 1–30. ISSN 0196–6774. URL: http://cr.yp.to/
papers.html#dcba. ID f32943f0bb67a9317d4021513f9eee5a. Citations in this doc-
ument: §20.6, §20.6, §24.6.

[Bernstein 2007] Daniel J. Bernstein, “The tangent FFT”, pp. 291–300 in [Boztas and
Lu 2007]. URL: http://cr.yp.to/papers.html#tangentfft. ID a9a77cef9a7b77f9b8b305
e276d5fe25. Citations in this document: §2.9.

[Bernstein et al. 2007] Daniel J. Bernstein, Hendrik W. Lenstra, Jr., and Jonathan Pila,
“Detecting perfect powers by factoring into coprimes”, Mathematics of Computation
76, 385–388. Citations in this document: §24.5.

[Borodin and Moenck 1974] Allan Borodin and Robert T. Moenck, “Fast modular trans-
forms”, Journal of Computer and System Sciences 8, 366–386; older version, not a
subset, in [Moenck and Borodin 1972]. ISSN 0022–0000. MR 51:7365. URL: http://
cr.yp.to/bib/entries.html#1974/borodin. Citations in this document: §12.7, §13.6,
§17.9, §18.8, §23.6, §23.7.

[Borwein and Borwein 1987] Jonathan M. Borwein and Peter B. Borwein, Pi and the
AGM, Wiley, New York. ISBN 0–471–83138–7. MR 89a:11134. Citations in this
document: §16.7.

[Borwein et al. 2000] Jonathan M. Borwein, David M. Bradley, and Richard E. Crandall,
“Computational strategies for the Riemann zeta function”, Journal of Computational
and Applied Mathematics 121, 247–296. ISSN 0377–0427. MR 2001h:11110. URL:
http://www.sciencedirect.com/science/article/B6TYH-4118GDF-F/1/64371ba75fa0
e923ba6b231779fb0673. Citations in this document: §12.7.

[Bostan et al. 2003] Alin Bostan, Grégoire Lecerf, and Éric Schost, “Tellegen’s principle
into practice”, pp. 37–44 in [Hong 2003]. URL: http://cr.yp.to/bib/entries.html#
2003/bostan. Citations in this document: §18.9.

[Bostan et al. 2004] Alin Bostan, Grégoire Lecerf, Bruno Salvy, Éric Schost, and
Bernd Wiebelt, “Complexity issues in bivariate polynomial factorization”, pp. 42–49
in [Gutierrez 2004]. URL: http://cr.yp.to/bib/entries.html#2004/bostan. Citations in
this document: §18.9.

[Boztas and Lu 2007] Serdar Boztas and Hsiao-Feng Lu (editors), Applied alge-
bra, algebraic algorithms and error-correcting codes: 17th international sympo-
sium, AAECC-17, Bangalore, India, December 2007, proceedings, Lecture Notes
in Computer Science 4851, Springer-Verlag, Berlin. See [Bernstein 2007].

[Brauer 1939] Alfred Brauer, “On addition chains”, Bulletin of the American Mathe-
matical Society 45, 736–739. ISSN 0273–0979. MR 1,40a. URL: http://cr.yp.to/bib/
entries.html#1939/brauer. Citations in this document: §10.7.

376 DANIEL J. BERNSTEIN

[Brent 1976a] Richard P. Brent, “The complexity of multiple-precision arithmetic”,
pp. 126–165 in [Anderssen and Brent 1976]. URL: http://web.comlab.ox.ac.uk/oucl/
work/richard.brent/pub/pub032.html. Citations in this document: §12.7, §16.6.

[Brent 1976b] Richard P. Brent, “Fast multiple-precision evaluation of elementary
functions”, Journal of the ACM 23, 242–251. ISSN 0004–5411. MR 52:16111. URL:
http://web.comlab.ox.ac.uk/oucl/work/richard.brent/pub/pub034.html. Citations in
this document: §16.7.

[Brent 1976c] Richard P. Brent, “Multiple-precision zero-finding methods and the com-
plexity of elementary function evaluation”, pp. 151–176 in [Traub 1976]. MR 54:
11843. URL: http://web.comlab.ox.ac.uk/oucl/work/richard.brent/pub/pub028.html.
Citations in this document: §6.8, §8.6, §9.6, §9.7, §16.7.

[Brent and McMillan 1980] Richard P. Brent and Edwin M. McMillan, “Some new
algorithms for high-precision computation of Euler’s constant”, Mathematics of
Computation 34, 305–312. ISSN 0025–5718. MR 82g:10002. URL: http://web.
comlab.ox.ac.uk/oucl/work/richard.brent/pub/pub049.html. Citations in this docu-
ment: §12.7.

[Brent et al. 1980] Richard P. Brent, Fred G. Gustavson, and David Y. Y. Yun, “Fast
solution of Toeplitz systems of equations and computation of Padé approximants”,
Journal of Algorithms 1, 259–295. ISSN 0196–6774. MR 82d:65033. URL: http:
//web.comlab.ox.ac.uk/oucl/work/richard.brent/pub/pub059.html. Citations in this
document: §21.6.

[Bruun 1978] Georg Bruun, “z-transform DFT filters and FFTs”, IEEE Transactions on
Acoustics, Speech, and Signal Processing 26, 56–63. ISSN 0096–3518. URL: http://
cr.yp.to/bib/entries.html#1978/bruun. Citations in this document: §2.9.

[Buell 2004] Duncan A. Buell (editor), Algorithmic number theory: 6th international
symposium, ANTS-VI, Burlington, VT, USA, June 2004, proceedings, Lecture Notes
in Computer Science 3076, Springer-Verlag, Berlin. ISBN 3–540–22156–5. See
[Franke et al. 2004], [Stehlé and Zimmermann 2004].

[Bürgisser et al. 1997] Peter Bürgisser, Michael Clausen, and Mohammed Amin
Shokrollahi, Algebraic complexity theory, Springer-Verlag, Berlin. ISBN 3–540–
60582–7. MR 99c:68002. Citations in this document: §2.3, §4.9, §11.8, §12.8, §23.7.

[Buhler 1998] Joe P. Buhler (editor), Algorithmic number theory: ANTS-III, Lecture
Notes in Computer Science 1423, Springer-Verlag, Berlin. ISBN 3–540–64657–4.
MR 2000g:11002. See [Haible and Papanikolaou 1998].

[Burnikel and Ziegler 1998] Christoph Burnikel and Joachim Ziegler, Fast recur-
sive division, MPI research report I-98-1-022. URL: http://data.mpi-sb.mpg.de/
internet/reports.nsf/NumberView/1998-1-022. Citations in this document: §17.9,
§17.9, §17.9.

[Cantor and Kaltofen 1991] David G. Cantor and Erich Kaltofen, “On fast multi-
plication of polynomials over arbitrary algebras”, Acta Informatica 28, 693–701.
ISSN 0001–5903. MR 92i:68068. URL: http://www.math.ncsu.edu/˜kaltofen/biblio
graphy/. Citations in this document: §4.9.

FAST MULTIPLICATION AND ITS APPLICATIONS 377

[Chudnovsky and Chudnovsky 1990] David V. Chudnovsky and Gregory V. Chudnov-
sky, “Computer algebra in the service of mathematical physics and number theory”,
pp. 109–232 in [Chudnovsky and Jenks 1990]. MR 92g:11122. Citations in this doc-
ument: §12.7, §12.7.

[Chudnovsky and Jenks 1990] David V. Chudnovsky and Richard D. Jenks (editors),
Computers in mathematics, Lecture Notes in Pure and Applied Mathematics 125,
Marcel Dekker, New York. ISBN 0–8247–8341–7. MR 91e:00020. See [Chud-
novsky and Chudnovsky 1990], [Gosper 1990].

[Cook 1966] Stephen A. Cook, On the minimum computation time of functions, Ph.D.
thesis, Department of Mathematics, Harvard University. URL: http://cr.yp.to/bib/
entries.html#1966/cook. Citations in this document: §4.9, §6.7, §10.7.

[Cooley and Tukey 1965] James W. Cooley and John W. Tukey, “An algorithm for
the machine calculation of complex Fourier series”, Mathematics of Computation
19, 297–301. ISSN 0025–5718. MR 31:2843. URL: http://cr.yp.to/bib/entries.html#
1965/cooley. Citations in this document: §2.8.

[Crandall and Fagin 1994] Richard Crandall and Barry Fagin, “Discrete weighted
transforms and large-integer arithmetic”, Mathematics of Computation 62, 305–324.
ISSN 0025–5718. MR 94c:11123. URL: http://cr.yp.to/bib/entries.html#1994/cran
dall. Citations in this document: §2.9, §4.10.

[Dixon 1982] John D. Dixon, “Exact solution of linear equations using p-adic expan-
sions”, Numerische Mathematik 40, 137–141. ISSN 0029–599X. MR 83m:65025.
URL: http://cr.yp.to/bib/entries.html#1982/dixon. Citations in this document: §17.9.

[Duhamel and Hollmann 1984] Pierre Duhamel and H. Hollmann, “Split-radix FFT
algorithm”, Electronics Letters 20, 14–16. ISSN 0013–5194. URL: http://cr.yp.to/
bib/entries.html#1984/duhamel. Citations in this document: §2.9.

[Duhamel and Vetterli 1990] Pierre Duhamel and Martin Vetterli, “Fast Fourier trans-
forms: a tutorial review and a state of the art”, Signal Processing 19, 259–299. ISSN
0165–1684. MR 91a:94004. URL: http://cr.yp.to/bib/entries.html#1990/duhamel.
Citations in this document: §2.9.

[Estrin 1960] Gerald Estrin, “Organization of computer systems — the fixed plus
variable structure computer”, pp. 33–40 in [AFIPS 17]. URL: http://cr.yp.to/bib/
entries.html#1960/estrin. Citations in this document: §12.7.

[Fiduccia 1972] Charles M. Fiduccia, “Polynomial evaluation via the division algo-
rithm: the fast Fourier transform revisited”, pp. 88–93 in [Rosenberg 1972]. URL:
http://cr.yp.to/bib/entries.html#1972/fiduccia-fft. Citations in this document: §2.8.

[Franke et al. 2004] Jens Franke, Thorsten Kleinjung, François Morain, and T. Wirth,
“Proving the primality of very large numbers with fastECPP”, pp. 194–207 in
[Buell 2004]. URL: http://www.lix.polytechnique.fr/Labo/Francois.Morain/Articles/
large.ps.gz. Citations in this document: §20.7.

[Fürer 2007] Martin Fürer, “Faster integer multiplication”, pp. 57–66 in [Johnson and
Feige 2007]. URL: http://www.cse.psu.edu/˜furer/. Citations in this document: §3.8.

378 DANIEL J. BERNSTEIN

[Gauss 1866] Carl F. Gauss, Werke, Band 3, Königlichen Gesellschaft der Wis-
senschaften, Göttingen. URL: http://134.76.163.65/agora docs/41929TABLE OF
CONTENTS.html. Citations in this document: §2.8, §2.8.

[Gentleman and Sande 1966] W. Morven Gentleman and Gordon Sande, “Fast Fourier
transforms — for fun and profit”, pp. 563–578 in [AFIPS 29]. URL: http://cr.yp.to/
bib/entries.html#1966/gentleman. Citations in this document: §2.8, §2.9.

[Göttfert 1994] Rainer Göttfert, “An acceleration of the Niederreiter factorization
algorithm in characteristic 2”, Mathematics of Computation 62, 831–839. ISSN
0025–5718. MR 94g:11110. Citations in this document: §24.2.

[Gosper 1990] William Gosper, “Strip mining in the abandoned orefields of nine-
teenth century mathematics”, pp. 261–284 in [Chudnovsky and Jenks 1990]. MR
91h:11154. URL: http://cr.yp.to/bib/entries.html#1990/gosper. Citations in this doc-
ument: §12.7, §12.7.

[Gregory 1980] Robert T. Gregory, Error-free computation: why it is needed and
methods for doing it, Robert E. Krieger Publishing Company, New York. ISBN
0–89874–240–4. MR 83f:65061. Citations in this document: §17.9.

[Gutierrez 2004] Jamie Gutierrez (editor), Proceedings of the 2004 international
symposium on symbolic and algebraic computation, Association for Computing
Machinery, New York. ISBN 1–58113–827–X. See [Bostan et al. 2004].

[Haible and Papanikolaou 1997] Bruno Haible and Thomas Papanikolaou, Fast mul-
tiprecision evaluation of series of rational numbers, Technical Report TI-7/97,
Darmstadt University of Technology; see also newer version [Haible and Papani-
kolaou 1998]. URL: http://www.informatik.tu-darmstadt.de/TI/Mitarbeiter/papanik/
Welcome.html. Citations in this document: §12.7.

[Haible and Papanikolaou 1998] Bruno Haible and Thomas Papanikolaou, “Fast
multiprecision evaluation of series of rational numbers”, pp. 338–350 in [Buhler
1998]; see also older version [Haible and Papanikolaou 1997]. MR 2000i:11197.
URL: http://cr.yp.to/bib/entries.html#1998/haible.

[Hehner and Horspool 1979] Eric C. R. Hehner and R. Nigel Horspool, “A new
representation of the rational numbers for fast easy arithmetic”, SIAM Journal on
Computing 8, 124–134. ISSN 0097–5397. MR 80h:68027. URL: http://cr.yp.to/bib/
entries.html#1979/hehner. Citations in this document: §17.9.

[Heideman et al. 1985] Michael T. Heideman, Don H. Johnson, and C. Sidney Burrus,
“Gauss and the history of the fast Fourier transform”, Archive for History of Exact
Sciences 34, 265–277. ISSN 0003–9519. MR 87f:01018. URL: http://cr.yp.to/bib/
entries.html#1985/heideman. Citations in this document: §2.8.

[Heindel and Horowitz 1971] Lee E. Heindel and Ellis Horowitz, “On decreasing the
computing time for modular arithmetic”, pp. 126–128 in [Hennie 1971]. URL: http://
cr.yp.to/bib/entries.html#1971/heindel. Citations in this document: §23.6.

[Hennie 1971] Fred C. Hennie (chairman), 12th annual symposium on switching and
automata theory, IEEE Computer Society, Northridge. See [Heindel and Horowitz
1971].

FAST MULTIPLICATION AND ITS APPLICATIONS 379

[Hong 2003] Hoon Hong (editor), Proceedings of the 2003 international symposium on
symbolic and algebraic computation, Association for Computing Machinery, New
York. ISBN 1–58113–641–2. See [Bostan et al. 2003].

[Horowitz 1972] Ellis Horowitz, “A fast method for interpolation using precondition-
ing”, Information Processing Letters 1, 157–163. ISSN 0020–0190. MR 47:4413.
URL: http://cr.yp.to/bib/entries.html#1972/horowitz. Citations in this document:
§13.6, §23.6.

[Jebelean 1993] Tudor Jebelean, “An algorithm for exact division”, Journal of Symbolic
Computation 15, 169–180. ISSN 0747–7171. MR 93m:68092. URL: http://cr.yp.to/
bib/entries.html#1993/jebelean. Citations in this document: §17.9.

[Jebelean 1997] Tudor Jebelean, “Practical integer division with Karatsuba complexi-
ty”, pp. 339–341 in [Kuechlin 1997]. Citations in this document: §17.9.

[Johnson and Feige 2007] David S. Johnson and Uriel Feige (editors), Proceedings of
the 39th annual ACM symposium on theory of computing, San Diego, California,
USA, June 11–13, 2007, Association for Computing Machinery, New York. ISBN
978–1–59593–631–8. See [Fürer 2007].

[Johnson and Frigo 2007] Steven G. Johnson and Matteo Frigo, “A modified split-radix
FFT with fewer arithmetic operations”, IEEE Transactions on Signal Processing 55,
111–119. Citations in this document: §2.9.

[Karatsuba 1999] Ekatharine A. Karatsuba, “Fast evaluation of hypergeometric func-
tions by FEE”, pp. 303–314 in [Papamichael et al. 1999]. MR 2000e:65030. URL:
http://cr.yp.to/bib/entries.html#1999/karatsuba. Citations in this document: §12.7.

[Karatsuba and Ofman 1963] Anatoly A. Karatsuba and Y. Ofman, “Multiplication
of multidigit numbers on automata”, Soviet Physics Doklady 7, 595–596. ISSN
0038–5689. URL: http://cr.yp.to/bib/entries.html#1963/karatsuba. Citations in this
document: §4.9, §4.9.

[Karp 1972] Richard M. Karp (chairman), 13th annual symposium on switching and
automata theory, IEEE Computer Society, Northridge. See [Moenck and Borodin
1972].

[Karp and Markstein 1994] Alan H. Karp and Peter Markstein, High-precision division
and square root, Technical Report HPL-93-42(R.1); see also newer version [Karp
and Markstein 1997]. URL: http://www.hpl.hp.com/techreports/93/HPL-93-42.html.

[Karp and Markstein 1997] Alan H. Karp and Peter Markstein, “High-precision
division and square root”, ACM Transactions on Mathematical Software 23, 561–
589; see also older version [Karp and Markstein 1994]. ISSN 0098–3500. MR
1 671 702. URL: http://www.hpl.hp.com/personal/Alan Karp/publications/publica
tions.html. Citations in this document: §7.7.

[Knuth 1969] Donald E. Knuth, The art of computer programming, volume 2: seminu-
merical algorithms, 1st edition, 1st printing, Addison-Wesley, Reading; see also
newer version [Knuth 1971a]. MR 44:3531.

[Knuth 1971a] Donald E. Knuth, The art of computer programming, volume 2: seminu-
merical algorithms, 1st edition, 2nd printing, Addison-Wesley, Reading; see also

380 DANIEL J. BERNSTEIN

older version [Knuth 1969]; see also newer version [Knuth 1981]. MR 44:3531. Ci-
tations in this document: §12.7.

[Knuth 1971b] Donald E. Knuth, “The analysis of algorithms”, pp. 269–274 in [ICM
1971.3]. MR 54:11839. URL: http://cr.yp.to/bib/entries.html#1971/knuth-gcd. Cita-
tions in this document: §12.7, §12.7, §21.6, §21.6.

[Knuth 1981] Donald E. Knuth, The art of computer programming, volume 2: seminu-
merical algorithms, 2nd edition, Addison-Wesley, Reading; see also older version
[Knuth 1971a]; see also newer version [Knuth 1997]. ISBN 0–201–03822–6. MR
83i:68003.

[Knuth 1997] Donald E. Knuth, The art of computer programming, volume 2: seminu-
merical algorithms, 3rd edition, Addison-Wesley, Reading; see also older version
[Knuth 1981]. ISBN 0–201–89684–2. Citations in this document: §4.10, §5.7, §6.6,
§11.7, §21.7, §22.7.

[Knuth 2000] Donald E. Knuth (editor), Selected papers on analysis of algorithms,
CSLI Publications, Stanford. ISBN 1–57586–212–3. MR 2001c:68066. See [Knuth
and Papadimitriou 1981].

[Knuth and Papadimitriou 1981] Donald E. Knuth and Christos H. Papadimitriou,
“Duality in addition chains”, Bulletin of the European Association for Theoretical
Computer Science 13, 2–4; reprinted in [Knuth 2000]. ISSN 0252–9742. Citations
in this document: §2.3.

[Kogge 1974] Peter M. Kogge, “Parallel solution of recurrence problems”, IBM Journal
of Research and Development 18, 138–148. ISSN 0018–8646. MR 49:6552. URL:
http://cr.yp.to/bib/entries.html#1974/kogge. Citations in this document: §12.7.

[Kogge and Stone 1973] Peter M. Kogge and Harold S. Stone, “A parallel algorithm for
the efficient solution of a general class of recurrence equations”, IEEE Transactions
on Computers 22, 786–793. ISSN 0018–9340. URL: http://cr.yp.to/bib/entries.html#
1973/kogge. Citations in this document: §12.7, §12.7.

[Kollerstrom 1992] Nick Kollerstrom, “Thomas Simpson and ‘Newton’s method of
approximation’: an enduring myth”, British Journal for the History of Science
1992, 347–354. URL: http://www.ucl.ac.uk/sts/nk/newtonapprox.htm. Citations in
this document: §6.7.

[Krishnamurthy 1977] E. V. Krishnamurthy, “Matrix processors using p-adic arithmetic
for exact linear computations”, IEEE Transactions on Computers 26, 633–639.
ISSN 0018–9340. MR 57:7963. URL: http://cr.yp.to/bib/entries.html#1977/krish
namurthy. Citations in this document: §17.9.

[Kuechlin 1997] Wolfgang Kuechlin (editor), Symbolic and algebraic computation: IS-
SAC ’97, Association for Computing Machinery, New York. ISBN 0–89791–875–4.
See [Jebelean 1997].

[Kung 1974] H. T. Kung, “On computing reciprocals of power series”, Numerische
Mathematik 22, 341–348. ISSN 0029–599X. MR 50:3536. URL: http://cr.yp.to/bib/
entries.html#1974/kung. Citations in this document: §6.7.

FAST MULTIPLICATION AND ITS APPLICATIONS 381

[Lehmer 1938] Derrick H. Lehmer, “Euclid’s algorithm for large numbers”, American
Mathematical Monthly 45, 227–233. ISSN 0002–9890. URL: http://links.jstor.org/
sici?sici=0002-9890(193804)45:4<227:EAFLN>2.0.CO;2-Y. Citations in this docu-
ment: §21.6.

[Lenstra and Tijdeman 1982] Hendrik W. Lenstra, Jr. and Robert Tijdeman (editors),
Computational methods in number theory I, Mathematical Centre Tracts 154,
Mathematisch Centrum, Amsterdam. ISBN 90–6196–248–X. MR 84c:10002. See
[Turk 1982].

[Lundy and Van Buskirk 2007] Thomas J. Lundy and James Van Buskirk, “A new matrix
approach to real FFTs and convolutions of length 2k”, Computing 80, 23–45. ISSN
0010–485X. Citations in this document: §2.9.

[Martens 1984] Jean-Bernard Martens, “Recursive cyclotomic factorization — a new
algorithm for calculating the discrete Fourier transform”, IEEE Transactions on
Acoustics, Speech, and Signal Processing 32, 750–761. ISSN 0096–3518. MR
86b:94004. URL: http://cr.yp.to/bib/entries.html#1984/martens. Citations in this
document: §2.9.

[Moenck 1973] Robert T. Moenck, “Fast computation of GCDs”, pp. 142–151 in [Aho
1973]. URL: http://cr.yp.to/bib/entries.html#1973/moenck. Citations in this docu-
ment: §21.6, §21.6.

[Moenck and Borodin 1972] Robert T. Moenck and Allan Borodin, “Fast modular
transforms via division”, pp. 90–96 in [Karp 1972]; newer version, not a superset,
in [Borodin and Moenck 1974]. URL: http://cr.yp.to/bib/entries.html#1972/moenck.
Citations in this document: §12.7, §17.9, §18.8, §23.6.

[Montgomery 1985] Peter L. Montgomery, “Modular multiplication without trial
division”, Mathematics of Computation 44, 519–521. ISSN 0025–5718. MR 86e:
11121. Citations in this document: §17.9, §17.9.

[Montgomery 1992] Peter L. Montgomery, An FFT extension of the elliptic curve
method of factorization, Ph.D. thesis, University of California at Los Angeles. URL:
http://cr.yp.to/bib/entries.html#1992/montgomery. Citations in this document: §2.9,
§18.9.

[Nicholson 1971] Peter J. Nicholson, “Algebraic theory of finite Fourier transforms”,
Journal of Computer and System Sciences 5, 524–547. ISSN 0022–0000. MR
44:4112. Citations in this document: §3.7.

[Nussbaumer 1980] Henri J. Nussbaumer, “Fast polynomial transform algorithms for
digital convolution”, IEEE Transactions on Acoustics, Speech, and Signal Pro-
cessing 28, 205–215. ISSN 0096–3518. MR 80m:94004. URL: http://cr.yp.to/bib/
entries.html#1980/nussbaumer. Citations in this document: §3.7.

[Papadimitriou 1994] Christos M. Papadimitriou, Computational complexity, Addison-
Wesley, Reading, Massachusetts. ISBN 0201530821. MR 95f:68082. Citations in
this document: §3.6.

[Papamichael et al. 1999] Nicolas Papamichael, Stephan Ruscheweyh, and Edward
B. Saff (editors), Computational methods and function theory 1997: proceed-

382 DANIEL J. BERNSTEIN

ings of the third CMFT conference, 13–17 October 1997, Nicosia, Cyprus, Series
in Approximations and Decompositions 11, World Scientific, Singapore. ISBN
9810236263. MR 2000c:00029. See [Karatsuba 1999].

[Pollard 1971] John M. Pollard, “The fast Fourier transform in a finite field”, Mathe-
matics of Computation 25, 365–374. ISSN 0025–5718. MR 46:1120. URL: http://
cr.yp.to/bib/entries.html#1971/pollard. Citations in this document: §3.7.

[Rosenberg 1972] Arnold L. Rosenberg (chairman), Fourth annual ACM symposium
on theory of computing, Association for Computing Machinery, New York. MR
50:1553. See [Fiduccia 1972].

[Salamin 1976] Eugene Salamin, “Computation of π using arithmetic-geometric mean”,
Mathematics of Computation 30, 565–570. ISSN 0025–5718. MR 53:7928. Citations
in this document: §16.7.

[Schönhage 1966] Arnold Schönhage, “Multiplikation großer Zahlen”, Computing 1,
182–196. ISSN 0010–485X. MR 34:8676. URL: http://cr.yp.to/bib/entries.html#
1966/schoenhage. Citations in this document: §4.9.

[Schönhage 1971] Arnold Schönhage, “Schnelle Berechnung von Kettenbruchentwick-
lungen”, Acta Informatica 1, 139–144. ISSN 0001–5903. URL: http://cr.yp.to/bib/
entries.html#1971/schoenhage-gcd. Citations in this document: §21.6, §21.6.

[Schönhage 1977] Arnold Schönhage, “Schnelle Multiplikation von Polynomen über
Körpern der Charakteristik 2”, Acta Informatica 7, 395–398. ISSN 0001–5903. MR
55:9604. URL: http://cr.yp.to/bib/entries.html#1977/schoenhage. Citations in this
document: §3.7.

[Schönhage 2000] Arnold Schönhage, “Variations on computing reciprocals of power
series”, Information Processing Letters 74, 41–46. ISSN 0020–0190. MR 2001c:
68069. Citations in this document: §6.8.

[Schönhage and Strassen 1971] Arnold Schönhage and Volker Strassen, “Schnelle
Multiplikation großer Zahlen”, Computing 7, 281–292. ISSN 0010–485X. MR
45:1431. URL: http://cr.yp.to/bib/entries.html#1971/schoenhage-mult. Citations in
this document: §3.7.

[Schönhage and Vetter 1994] Arnold Schönhage and Ekkehart Vetter, “A new approach
to resultant computations and other algorithms with exact division”, pp. 448–459
in [van Leeuwen 1994]. MR 96d:68109. URL: http://cr.yp.to/bib/entries.html#1994/
schoenhage-exact. Citations in this document: §17.9.

[Schönhage et al. 1994] Arnold Schönhage, Andreas F. W. Grotefeld, and Ekkehart
Vetter, Fast algorithms: a multitape Turing machine implementation, Bibliograph-
isches Institut, Mannheim. ISBN 3–411–16891–9. MR 96c:68043. Citations in this
document: §6.8.

[Sieveking 1972] Malte Sieveking, “An algorithm for division of powerseries”, Comput-
ing 10, 153–156. ISSN 0010–485X. MR 47:1257. URL: http://cr.yp.to/bib/entries.
html#1972/sieveking. Citations in this document: §6.7.

FAST MULTIPLICATION AND ITS APPLICATIONS 383

[Simpson 1740] Thomas Simpson, Essays on several curious and useful subjects in
speculative and mix’d mathematics, illustrated by a variety of examples. URL: http://
cr.yp.to/bib/entries.html#1740/simpson. Citations in this document: §6.7.

[Sorenson 1994] Jonathan Sorenson, “Two fast GCD algorithms”, Journal of Algo-
rithms 16, 110–144. ISSN 0196–6774. MR 94k:11135. Citations in this document:
§22.7.

[Stehlé and Zimmermann 2004] Damien Stehlé and Paul Zimmermann, “A binary
recursive gcd algorithm”, pp. 411–425 in [Buell 2004]. Citations in this document:
§22.7.

[Stockham 1966] Thomas G. Stockham, Jr., “High-speed convolution and correlation”,
pp. 229–233 in [AFIPS 28]. URL: http://cr.yp.to/bib/entries.html#1966/stockham.
Citations in this document: §2.8, §4.9, §4.10.

[Stone 1973] Harold S. Stone, “An efficient parallel algorithm for the solution of
a tridiagonal linear system of equations”, Journal of the ACM 20, 27–38. ISSN
0004–5411. MR 48:12792. URL: http://cr.yp.to/bib/entries.html#1973/stone. Cita-
tions in this document: §12.7, §12.7, §12.7, §12.7.

[Strassen 1969] Volker Strassen, “Gaussian elimination is not optimal”, Numerische
Mathematik 13, 354–356. ISSN 0029–599X. MR 40:2223. URL: http://cr.yp.to/bib/
entries.html#1969/strassen. Citations in this document: §11.7, §11.8.

[Strassen 1973] Volker Strassen, “Die Berechnungskomplexität von elementarsymme-
trischen Funktionen und von Interpolationskoeffizienten”, Numerische Mathematik
20, 238–251. ISSN 0029–599X. MR 48:3296. Citations in this document: §17.8.

[Strassen 1981] Volker Strassen, “The computational complexity of continued frac-
tions”, pp. 51–67 in [Wang 1981]; see also newer version [Strassen 1983]. URL:
http://cr.yp.to/bib/entries.html#1981/strassen.

[Strassen 1983] Volker Strassen, “The computational complexity of continued frac-
tions”, SIAM Journal on Computing 12, 1–27; see also older version [Strassen
1981]. ISSN 0097–5397. MR 84b:12004. URL: http://cr.yp.to/bib/entries.html#
1983/strassen. Citations in this document: §12.8, §12.8, §21.6.

[Sylvester 1853] James J. Sylvester, “On a fundamental rule in the algorithm of
continued fractions”, Philosophical Magazine 6, 297–299. URL: http://cr.yp.to/bib/
entries.html#1853/sylvester. Citations in this document: §12.7.

[Toom 1963] Andrei L. Toom, “The complexity of a scheme of functional elements
realizing the multiplication of integers”, Soviet Mathematics Doklady 3, 714–716.
ISSN 0197–6788. Citations in this document: §4.9.

[Traub 1976] Joseph F. Traub, Analytic computational complexity, Academic Press,
New York. MR 52:15938. See [Brent 1976c].

[Turk 1982] Johannes W. M. Turk, “Fast arithmetic operations on numbers and
polynomials”, pp. 43–54 in [Lenstra and Tijdeman 1982]. MR 84f:10006. URL:
http://cr.yp.to/bib/entries.html#1982/turk. Citations in this document: §3.7.

384 DANIEL J. BERNSTEIN

[van der Hoeven 1999] Joris van der Hoeven, “Fast evaluation of holonomic functions”,
Theoretical Computer Science 210, 199–215. ISSN 0304–3975. MR 99h:65046.
URL: http://www.math.u-psud.fr/˜vdhoeven/. Citations in this document: §12.7.

[van der Hoeven 2001] Joris van der Hoeven, “Fast evaluation of holonomic functions
near and in regular singularities”, Journal of Symbolic Computation 31, 717–743.
ISSN 0747–7171. MR 2002j:30037. URL: http://www.math.u-psud.fr/˜vdhoeven/.
Citations in this document: §12.7.

[van der Hoeven 2006] Joris van der Hoeven, “Newton’s method and FFT trading”.
URL: http://www.math.u-psud.fr/˜vdhoeven/. Citations in this document: §7.7, §9.7.

[van Leeuwen 1994] Jan van Leeuwen (editor), Algorithms — ESA ’94: second an-
nual European symposium, Utrecht, The Netherlands, September 26–28, 1994, pro-
ceedings, Lecture Notes in Computer Science 855, Springer-Verlag, Berlin. ISBN
3–540–58434–X. MR 96c:68002. See [Schönhage and Vetter 1994].

[Vetterli and Nussbaumer 1984] Martin Vetterli and Henri J. Nussbaumer, “Simple
FFT and DCT algorithms with reduced number of operations”, Signal Processing 6,
262–278. ISSN 0165–1684. MR 85m:65128. URL: http://cr.yp.to/bib/entries.html#
1984/vetterli. Citations in this document: §2.9.

[Wang 1981] Paul S. Wang (editor), SYM-SAC ’81: proceedings of the 1981 ACM
Symposium on Symbolic and Algebraic Computation, Snowbird, Utah, August 5–
7, 1981, Association for Computing Machinery, New York. ISBN 0–89791–047–8.
See [Strassen 1981].

[Weinberger and Smith 1958] Arnold Weinberger and J. L. Smith, “A logic for
high-speed addition”, National Bureau of Standards Circular 591, 3–12. ISSN
0096–9648. URL: http://cr.yp.to/bib/entries.html#1958/weinberger. Citations in this
document: §12.7.

[Yavne 1968] R. Yavne, “An economical method for calculating the discrete Fourier
transform”, pp. 115–125 in [AFIPS 33]. URL: http://cr.yp.to/bib/entries.html#1968/
yavne. Citations in this document: §2.9.

[Ypma 1995] Tjalling J. Ypma, “Historical development of the Newton-Raphson
method”, SIAM Review 37, 531–551. ISSN 1095–7200. MR 97b:01003. Citations
in this document: §6.7.

DANIEL J. BERNSTEIN
DEPARTMENT OF MATHEMATICS, STATISTICS, AND COMPUTER SCIENCE
M/C 249
THE UNIVERSITY OF ILLINOIS AT CHICAGO
CHICAGO, IL 60607–7045

djb@cr.yp.to

