
The tangent FFT

Daniel J. Bernstein

Department of Mathematics, Statistics, and Computer Science (M/C 249)
University of Illinois at Chicago, Chicago, IL 60607–7045, USA

djb@cr.yp.to

Abstract. The split-radix FFT computes a size-n complex DFT, when
n is a large power of 2, using just 4n lg n−6n+8 arithmetic operations on
real numbers. This operation count was first announced in 1968, stood
unchallenged for more than thirty years, and was widely believed to be
best possible.

Recently James Van Buskirk posted software demonstrating that the
split-radix FFT is not optimal. Van Buskirk’s software computes a size-
n complex DFT using only (34/9 + o(1))n lg n arithmetic operations on
real numbers. There are now three papers attempting to explain the
improvement from 4 to 34/9: Johnson and Frigo, IEEE Transactions on
Signal Processing, 2007; Lundy and Van Buskirk, Computing, 2007; and
this paper.

This paper presents the “tangent FFT,” a straightforward in-place cache-
friendly DFT algorithm having exactly the same operation counts as Van
Buskirk’s algorithm. This paper expresses the tangent FFT as a sequence
of standard polynomial operations, and pinpoints how the tangent FFT
saves time compared to the split-radix FFT. This description is helpful
not only for understanding and analyzing Van Buskirk’s improvement
but also for minimizing the memory-access costs of the FFT.

Keywords: tangent FFT; split-radix FFT; modified split-radix FFT;
scaled odd tail; DFT; convolution; polynomial multiplication; algebraic
complexity; communication complexity

1 Introduction

Consider the problem of computing the size-n complex DFT (“discrete Fourier
transform”), where n is a power of 2; i.e., evaluating an n-coefficient univariate
complex polynomial f at all of the nth roots of 1. The input is a sequence of n
complex numbers f0, f1, . . . , fn−1 representing the polynomial f = f0 + f1x +
· · ·+fn−1x

n−1. The output is the sequence f(1), f(ζn), f(ζ2
n), . . . , f(ζn−1

n ) where
ζn = exp(2πi/n).

The size-n FFT (“fast Fourier transform”) is a well-known algorithm to
compute the size-n DFT using (5 + o(1))n lg n arithmetic operations on real

* Permanent ID of this document: a9a77cef9a7b77f9b8b305e276d5fe25. Date of this
document: 2007.09.19.



2 Daniel J. Bernstein

numbers. One can remember the coefficient 5 as half the total cost of a complex
addition (2 real operations), a complex subtraction (2 real operations), and a
complex multiplication (6 real operations).

The FFT was used for astronomical calculations by Gauss in 1805; see, e.g.,
[6, pages 308–310], published in 1866. It was reinvented and republished on
several subsequent occasions and was finally popularized in 1965 by Cooley and
Tukey in [2]. The advent of high-speed computers meant that users in the 1960s
were trying to handle large values of n in a wide variety of applications and
could see large benefits from the FFT.

The Cooley-Tukey paper spawned a torrent of FFT papers—showing, among
other things, that Gauss had missed a trick. The original FFT is not the optimal
way to compute the DFT. In 1968, Yavne stated that one could compute the
DFT using only (4+o(1))n lg n arithmetic operations, specifically 4n lg n−6n+8
arithmetic operations (if n ≥ 2), specifically n lg n− 3n + 4 multiplications and
3n lg n−3n+4 additions; see [13, page 117]. Nobody, to my knowledge, has ever
deciphered Yavne’s description of his algorithm, but a comprehensible algorithm
achieving exactly the same operation counts was introduced by Duhamel and
Hollmann in [3], by Martens in [9], by Vetterli and Nussbaumer in [12], and by
Stasinski (according to [4, page 263]). This algorithm is now called the split-
radix FFT.

The operation count 4n lg n−6n+8 stood unchallenged for more than thirty
years1 and was frequently conjectured to be optimal. For example, [11, page
152] said that split-radix FFT algorithms did not have minimal multiplication
counts but “have what seem to be the best compromise operation count.” Here
“compromise” refers to counting both additions and multiplications rather than
merely counting multiplications.

In 2004, James Van Buskirk posted software that computed a size-64 DFT
using fewer operations than the size-64 split-radix FFT. Van Buskirk then posted
similar software handling arbitrary power-of-2 sizes using only (34/9+o(1))n lg n
arithmetic operations. Of course, 34/9 is still in the same ballpark as 4 (and 5),
but it is astonishing to see any improvement in such a widely studied, widely
used algorithm, especially after 36 years of no improvements at all!

Contents of this paper. This paper gives a concise presentation of the tangent
FFT, a straightforward in-place cache-friendly DFT algorithm having exactly
the same operation counts as Van Buskirk’s algorithm. This paper expresses the
tangent FFT as a sequence of standard polynomial operations, and pinpoints how
the tangent FFT saves time compared to the split-radix FFT. This description
1 The 1998 paper [14] claimed that its “new fast Discrete Fourier Transform” was much

faster than the split-radix FFT. For example, the paper claimed that its algorithm
computed a size-16 real DFT with 22 additions and 10 multiplications by various
sines and cosines. I spent half an hour with the paper, finding several blatant errors
and no new ideas; in particular, Figure 1 of the paper had many more additions than
the paper claimed. I pointed out the errors to the authors and have not received a
satisfactory response.



The tangent FFT 3

is helpful not only for understanding and analyzing Van Buskirk’s improvement
but also for minimizing the memory-access costs of the FFT.

There have been two journal papers this year—[8] by Lundy and Van Buskirk,
and [7] by Johnson and Frigo—presenting more complicated algorithms with
the same operation counts. Both algorithms can be transformed into in-place
algorithms but incur heavier memory-access costs than the algorithm presented
in this paper.

I chose the name “tangent FFT” in light of the essential role played by
tangents as constants in the algorithm. The same name could be applied to
all of the algorithms in this class. Lundy and Van Buskirk in [8] use the name
“scaled odd tail,” which I find less descriptive. Johnson and Frigo in [7] use the
name “our new FFT . . . our new algorithm . . . our algorithm . . . our modified
algorithm” etc., which strikes me as suboptimal terminology; I have already seen
three reports miscrediting Van Buskirk’s 34/9 to Johnson and Frigo. All of the
credit for these algorithms should be assigned to Van Buskirk, except in contexts
where extra features such as simplicity and cache-friendliness play a role.

2 Review of the original FFT

The remainder f mod x8−1, where f is a univariate polynomial, determines the
remainders f mod x4 − 1 and f mod x4 + 1. Specifically, if

f mod x8 − 1 = f0 + f1x + f2x
2 + f3x

3 + f4x
4 + f5x

5 + f6x
6 + f7x

7,

then f mod x4 − 1 = (f0 + f4) + (f1 + f5)x + (f2 + f6)x2 + (f3 + f7)x3 and
f mod x4 +1 = (f0−f4)+(f1−f5)x+(f2−f6)x2 +(f3−f7)x3. Computing the
coefficients f0+f4, f1+f5, f2+f6, f3+f7, f0−f4, f1−f5, f2−f6, f3−f7, given the
coefficients f0, f1, f2, f3, f4, f5, f6, f7, involves 4 complex additions and 4 complex
subtractions. Note that this computation is naturally carried out in place with
one sequential sweep through the input. Note also that this computation is easy
to invert: for example, the sum of f0 + f4 and f0 − f4 is 2f0, and the difference
is 2f4.

More generally, let r be a nonzero complex number, and let n be a power of
2. The remainder f mod x2n − r2 determines the remainders f mod xn − r and
f mod xn + r, since xn − r and xn + r divide x2n − r2. Specifically, if

f mod x2n − r2 = f0 + f1x + · · ·+ f2n−1x
2n−1,

then f mod xn− r = (f0 + rfn)+(f1 + rfn+1)x+ · · ·+(fn−1 + rf2n−1)xn−1 and
f mod xn + r = (f0 − rfn) + (f1 − rfn+1)x + · · · + (fn−1 − rf2n−1)xn−1. This
computation involves n complex multiplications by r; n complex additions; and
n complex subtractions; totalling 10n real operations. The following diagram
summarizes the structure and cost of the computation:

x2n − r2

yyrrrrrrrrrrrr

%%LLLLLLLLLLLL�� ���� ��10n

xn − r xn + r



4 Daniel J. Bernstein

Note that some operations disappear when multiplications by r are easy: this
computation involves only 8n real operations if r ∈

{√
i,−

√
i,
√
−i,−

√
−i

}
, and

only 4n real operations if r ∈ {1,−1, i,−i}.
The same idea can be applied recursively:

x8 − 1

wwooooooooooooo

''OOOOOOOOOOOOO�� ���� ��16

x4 − 1

����
��

��
��

�

��?
??

??
??

??
x4 + 1

����
��

��
��

�

��?
??

??
??

??�� ���� ��8
�� ���� ��8

x2 − 1

����
��
��
�

��/
//

//
//

x2 + 1

����
��
��
�

��/
//

//
//

x2 − i

����
��
��
�

��/
//

//
//

x2 + i

����
��
��
�

��/
//

//
//�� ���� ��4

�� ���� ��4
�� ���� ��8

�� ���� ��8

x− 1 x + 1 x− i x + i x−
√

i x +
√

i x−
√
−i x +

√
−i

The final outputs f mod x − 1, f mod x + 1, f mod x − i, . . . are exactly the
(permuted) DFT outputs f(1), f(−1), f(i), . . ., and this computation is exactly
Gauss’s original FFT. Note that the entire computation is naturally carried out
in place, with contiguous inputs to each recursive step. One can further reduce
the number of cache misses by merging (e.g.) the top two levels of recursion.

This view of the FFT, identifying each FFT step as a simple polynomial
operation, was introduced by Fiduccia in [5]. Most papers (and books) suppress
the polynomial structure, viewing each intermediate FFT result as merely a
linear function of the input; but “f mod xn − r” is much more concise than a
matrix expressing the same function!

One might object that the concisely expressed polynomial operations in this
section and in subsequent sections are less general than arbitrary linear functions.
Is this restriction compatible with the best FFT algorithms? For example, does
it allow Van Buskirk’s improved operation count? This paper shows that the
answer is yes. Perhaps some future variant of the FFT will force Fiduccia’s
philosophy to be reconsidered, but for the moment one can safely recommend
that FFT algorithms be expressed in polynomial form.

3 Review of the twisted FFT

The remainder f mod xn + 1 determines the remainder f(ζ2nx) mod xn − 1.
Specifically, if f mod xn + 1 = f0 + f1x + · · ·+ fn−1x

n−1, then

f(ζ2nx) mod xn − 1 = f0 + ζ2nf1x + · · ·+ ζn−1
2n fn−1x

n−1.

Computing the twisted coefficients f0, ζ2nf1, . . . , ζ
n−1
2n fn−1 from the coefficients

f0, f1, . . . , fn−1 involves one multiplication by ζ2n, one multiplication by ζ2
2n, and

so on through ζn−1
2n . These n − 1 multiplications cost 6(n − 1) real operations,



The tangent FFT 5

except that a few multiplications are easier: 6 operations are saved for ζ
n/2
2n when

n ≥ 2, and another 4 operations are saved for ζ
n/4
2n , ζ

3n/4
2n when n ≥ 4.

The remainder f mod x2n − 1 determines the remainders f mod xn − 1 and
f mod xn + 1, as discussed in the previous section. It therefore determines the
remainders f mod xn−1 and f(ζ2nx) mod xn−1, as summarized in the following
diagram:

x2n − 1

vvmmmmmmmmmmmmmmm

((QQQQQQQQQQQQQQQ�� ���� ��4n

xn − 1 xn + 1

ζ2n

��

�� ���� ��max{6n− 16, 0}

xn − 1

The twisted FFT performs this computation and then recursively evaluates
both f mod xn − 1 and f(ζ2nx) mod xn − 1 at the nth roots of 1, obtaining the
same results as the original FFT. Example, for n = 8:

x8 − 1

wwooooooooooooo

''OOOOOOOOOOOOO�� ���� ��16

x4 − 1

����
��
��
��
��
��
��
��
�

��/
//

//
//

//
//

//
//

//
x4 + 1

√
i

��

�� ���� ��8

x4 − 1

����
��

��
��

�

��?
??

??
??

??�� ���� ��8
�� ���� ��8

x2 − 1

����
��
��
��
��
��
��
�

��'
''
''
''
''
''
''
''

x2 + 1

i

��

x2 − 1

����
��
��
��
��
��
��
�

��'
''
''
''
''
''
''
''

x2 + 1

i

��

�� ���� ��0
�� ���� ��0

x2 − 1

����
��
��
�

��/
//

//
//

x2 − 1

����
��
��
�

��/
//

//
//�� ���� ��4

�� ���� ��4
�� ���� ��4

�� ���� ��4

x− 1 x + 1

−1

��

x− 1 x + 1

−1

��

x− 1 x + 1

−1

��

x− 1 x + 1

−1

��

�� ���� ��0
�� ���� ��0

�� ���� ��0
�� ���� ��0

x− 1 x− 1 x− 1 x− 1

Note that the twisted FFT never has to consider moduli other than xn ± 1.
The twisted FFT thus has a simpler recursive structure than the original FFT.



6 Daniel J. Bernstein

The recursive step does not need to distinguish f from f(ζ2nx): its job is simply
to evaluate an input modulo xn − 1 at the nth roots of 1.

One can easily prove that the twisted FFT uses the same number of real
operations as the original FFT: the cost of twisting xn + 1 into xn − 1 is exactly
balanced by the savings from avoiding xn/4−

√
i etc. In fact, the algorithms have

the same number of multiplications by each root of 1. (One way to explain this
coincidence is to observe that the algorithms are “transposes” of each other.) One
might speculate at this point that all FFT algorithms have the same number of
real operations; but this speculation is solidly disproven by the split-radix FFT,
as discussed in Section 4.

4 Review of the split-radix FFT

The split-radix FFT applies the following diagram recursively:

x4n − 1

vvmmmmmmmmmmmmmmm

((QQQQQQQQQQQQQQQ�� ���� ��8n

x2n − 1 x2n + 1

vvmmmmmmmmmmmmmmm

((QQQQQQQQQQQQQQQ�� ���� ��4n

xn − i

ζ4n

��

xn + i

ζ−1
4n

��

�� ���� ��max{6n− 8, 0}
�� ���� ��max{6n− 8, 0}

xn − 1 xn − 1

The notation here is the same as in previous sections:

• from f mod x4n − 1 compute f mod x2n − 1 and f mod x2n + 1;
• from f mod x2n + 1 compute f mod xn − i and f mod xn + i;
• from f mod xn − i compute f(ζ4nx) mod xn − 1;
• from f mod xn + i compute f(ζ−1

4n x) mod xn − 1;
• recursively evaluate f mod x2n − 1 at the 2nth roots of 1;
• recursively evaluate f(ζ4nx) mod xn − 1 at the nth roots of 1; and
• recursively evaluate f(ζ−1

4n x) mod xn − 1 at the nth roots of 1.

If f mod xn − i = f0 + f1x + · · · + fn−1x
n−1 then f(ζ4nx) mod xn − 1 = f0 +

ζ4nf1x + · · ·+ ζn−1
4n fn−1x

n−1. The n− 1 multiplications here cost 6(n− 1) real
operations, except that 2 operations are saved for ζ

n/2
4n when n ≥ 2. Similar

comments apply to xn + i.
The split-radix FFT uses only about 8n + 4n + 6n + 6n = 24n operations to

divide x4n−1 into x2n−1, xn−1, xn−1, and therefore only about (24/1.5)n lg n =
16n lg n operations to handle x4n − 1 recursively. Here 1.5 = (2/4) lg(4/2) +
(1/4) lg(4/1)+(1/4) lg(4/1) arises as the entropy of 2n/4n, n/4n, n/4n. An easy



The tangent FFT 7

induction produces a precise operation count: the split-radix FFT handles xn−1
using 0 operations for n = 1 and 4n lg n− 6n + 8 operations for n ≥ 2.

For the same split of x4n − 1 into x2n − 1, xn − 1, xn − 1, the twisted FFT
would use about 30n operations: specifically, 20n operations to split x4n−1 into
x2n − 1, x2n − 1, and then 10n operations to split x2n − 1 into xn − 1, xn − 1, as
discussed in Section 3. The split-radix FFT does better by delaying the expensive
twists, carrying out only two size-n twists rather than one size-2n twist and one
size-n twist.

Most descriptions of the split-radix FFT replace ζ4n, ζ−1
4n with ζ4n, ζ3

4n. Both
ζ−1
4n and ζ3

4n are nth roots of −i; both variants compute (in different orders)
the same DFT outputs. There is, however, an advantage of ζ−1

4n over ζ3
4n in

reducing memory-access costs. The split-radix FFT naturally uses ζk
4n and ζ−k

4n as
multipliers at the same moment; loading precomputed real numbers cos(2πk/4n)
and sin(2πk/4n) produces not only ζk

4n = cos(2πk/4n) + i sin(2πk/4n) but also
ζ−k
4n = cos(2πk/4n)− i sin(2πk/4n). Reciprocal roots also play a critical role in

the tangent FFT; see Section 5.

5 The tangent FFT

The obvious way to multiply a + bi by a constant cos θ + i sin θ is to compute
a cos θ−b sin θ and a sin θ+b cos θ. A different approach is to factor cos θ+ i sin θ
as (1 + i tan θ) cos θ, or as (cot θ + i) sin θ. Multiplying by a real number cos θ is
relatively easy, taking only 2 real operations. Multiplying by 1 + i tan θ is also
relatively easy, taking only 4 real operations.

This change does not make any immediate difference in operation count:
either strategy takes 6 real operations, when appropriate constants such as tan θ
have been precomputed. But the change allows some extra flexibility: the real
multiplication can be moved elsewhere in the computation. Van Buskirk’s clever
observation is that these real multiplications can sometimes be combined!

Specifically, let’s change the basis 1, x, x2, . . . , xn−1 that we’ve been using to
represent polynomials modulo xn−1. Let’s instead use a vector (f0, f1, . . . , fn−1)
to represent the polynomial f0/sn,0 + f1x/sn,1 + · · ·+ fn−1x

n−1/sn,n−1 where

sn,k =
∏
`≥0

max
{∣∣∣∣cos

4`2πk

n

∣∣∣∣, ∣∣∣∣sin 4`2πk

n

∣∣∣∣}.

This might appear at first glance to be an infinite product, but 4`2πk/n is a
multiple of 2π once ` is large enough, so almost all of the terms in the product
are 1.

This wavelet sn,k is designed to have two important features. The first is
periodicity: s4n,k = s4n,k+n. The second is cost-4 twisting: ζk

4n(sn,k/s4n,k) is
±(1 + i tan · · · ) or ±(cot · · ·+ i).



8 Daniel J. Bernstein

The tangent FFT applies the following diagram recursively:

x8n − 1

xk/s8n,k

uukkkkkkkkkkkk

))SSSSSSSSSSSS�� ���� ��16n

x4n − 1 x4n + 1

xk/s8n,k

{{ww
ww

ww
w

##GG
GG

GG
G

xk/s8n,k

{{ww
ww

ww
w

##GG
GG

GG
G�� ���� ��8n

�� ���� ��8n

x2n − 1 x2n + 1 x2n − i x2n + i

xk/s8n,k

��

xk/s8n,k

��

xk/s8n,k

ζ8n

��

xk/s8n,k

ζ−1
8n

��

�� ���� ��4n− 2
�� ���� ��4n− 2

x2n − 1 x2n + 1
�� ���� ��8n− 6

�� ���� ��8n− 6

xk/s2n,k xk/s4n,k

{{wwwwwww

##GGGGGGG�� ���� ��4n

xn − i xn + i�� ��

�� ��
max{
4n− 6

, 0}
xk/s4n,k

ζ4n{{wwwwwww

�� ��

�� ��
max{
4n− 6

, 0}
xk/s4n,k

ζ−1
4n{{wwwwwww

xn − 1 xn − 1 x2n − 1 x2n − 1

xk/sn,k xk/sn,k xk/s2n,k xk/s2n,k

This diagram explicitly shows the basis used for each remainder f mod
x··· − · · · . The top node, x8n − 1 with basis xk/s8n,k, reads an input vector
(f0, f1, . . . , f8n−1) representing f mod x8n − 1 =

∑
0≤k<8n fkxk/s8n,k. The next

node to the left, x4n−1 with basis xk/s8n,k, computes a vector (g0, g1, . . . , g4n−1)
representing f mod x4n − 1 =

∑
0≤k<4n gkxk/s8n,k; the equation s8n,k+4n =

s8n,k immediately implies that

(g0, g1, . . . , g4n−1) = (f0 + f4n, f1 + f4n+1, . . . , f4n−1 + f8n−1).

The next node to the left, x2n−1 with basis xk/s8n,k, similarly computes a vector
(h0, h1, . . . , h2n−1) representing f mod x2n−1 =

∑
0≤k<2n hkxk/s8n,k. The next

node after that, x2n − 1 with basis xk/s2n,k (suitable for recursion), computes
a vector (h′0, h

′
1, . . . , h

′
2n−1) representing f mod x2n − 1 =

∑
0≤k<2n h′kxk/s2n,k;

evidently h′k = hk(s2n,k/s8n,k), requiring a total of 2n real multiplications by
the precomputed real constants s2n,k/s8n,k, minus 1 skippable multiplication by
s2n,0/s8n,0 = 1. Similar comments apply throughout the diagram: for example,
moving from x2n − i with basis xk/s8n,k to x2n − 1 with basis xk/s2n,k involves
cost-4 twisting by ζk

8ns2n,k/s8n,k.



The tangent FFT 9

The total cost of the tangent FFT is about 68n real operations to divide
x8n − 1 into x2n − 1, x2n − 1, x2n − 1, xn − 1, xn − 1, and therefore about
(68/2.25)n lg n = (34/9)8n lg n to handle x8n − 1 recursively. Here 2.25 is the
entropy of 2n/8n, 2n/8n, 2n/8n, n/8n, n/8n. More precisely, the cost S(n) of
handling xn − 1 with basis xk/sn,k satisfies S(1) = 0, S(2) = 4, S(4) = 16, and
S(8n) = 60n−16+max{8n− 12, 0}+3S(2n)+2S(n). The S(n) sequence begins
0, 4, 16, 56, 164, 444, 1120, 2720, 6396, 14724, 33304, . . .; an easy induction shows
that S(n) = (34/9)n lg n− (142/27)n− (2/9)(−1)lg n lg n+(7/27)(−1)lg n +7 for
n ≥ 2.

For comparison, the split-radix FFT uses about 72n real operations for the
same division. The split-radix FFT uses the same 16n to divide x8n − 1 into
x4n − 1, x4n + 1, the same 8n to divide x4n − 1 into x2n − 1, x2n + 1, the same
8n to divide x4n + 1 into x2n − i, x2n + i, and the same 4n to divide x2n + 1 into
xn − i, xn + i. It also saves 4n changing basis for x2n − 1 and 4n changing basis
for x2n + 1. But the tangent FFT saves 4n twisting x2n − i, another 4n twisting
x2n + i, another 2n twisting xn − i, and another 2n twisting xn + i. The 12n
operations saved in twists outweigh the 8n operations lost in changing basis.

What if the input is in the traditional basis 1, x, x2, . . . , xn−1? One could
scale the input immediately to the new basis, but it is faster to wait until the
first twist:

x4n − 1

xk

ttjjjjjjjjjjjjjjj

**TTTTTTTTTTTTTTT�� ���� ��8n

x2n − 1 x2n + 1

xk xk

vvmmmmmmmmmmm

$$JJJ
JJJ

JJ�� ���� ��4n

xn − i xn + i

xk

ζ4n

��

xk

ζ−1
4n��

�� ���� ��max{6n− 8, 0}
�� ���� ��max{6n− 8, 0}

xn − 1 xn − 1

xk/sn,k xk/sn,k

The coefficient of xk in f mod xn − i is now twisted by ζk
4nsn,k, costing 6 real

operations except for the easy cases ζ0
4nsn,0 = 1 and ζ

n/2
4n sn,n/2 =

√
i.

The cost T (n) of handling xn − 1 with basis xk satisfies T (1) = 0, T (2) = 4,
and T (4n) = 12n + max{12n− 16, 0} + T (2n) + 2S(n). The T (n) sequence
begins 0, 4, 16, 56, 168, 456, 1152, 2792, 6552, 15048, 33968, . . .; an easy induction
shows that

T (n) =
34
9

n lg n− 124
27

n− 2 lg n− 2
9
(−1)lg n lg n +

16
27

(−1)lg n + 8

for n ≥ 2, exactly matching the operation count in [7, Equation (1)].



10 Daniel J. Bernstein

References

1. — (no editor), AFIPS conference proceedings, volume 33, part one: 1968 Fall Joint
Computer Conference, December 9–11, 1968, San Francisco, California, Thompson
Book Company, Washington, 1968. See [13].

2. James W. Cooley, John W. Tukey, An algorithm for the machine calculation
of complex Fourier series, Mathematics of Computation 19 (1965), 297–301.
ISSN 0025–5718. MR 31:2843. URL: http://cr.yp.to/bib/entries.html#1965/
cooley. Citations in this document: §1.

3. Pierre Duhamel, H. Hollmann, Split-radix FFT algorithm, Electronics Letters
20 (1984), 14–16. ISSN 0013–5194. URL: http://cr.yp.to/bib/entries.html#
1984/duhamel. Citations in this document: §1.

4. Pierre Duhamel, Martin Vetterli, Fast Fourier transforms: a tutorial review and
a state of the art, Signal Processing 19 (1990), 259–299. ISSN 0165–1684. MR
91a:94004. URL: http://cr.yp.to/bib/entries.html#1990/duhamel. Citations
in this document: §1.

5. Charles M. Fiduccia, Polynomial evaluation via the division algorithm: the fast
Fourier transform revisited, in [10] (1972), 88–93. URL: http://cr.yp.to/bib/
entries.html#1972/fiduccia-fft. Citations in this document: §2.

6. Carl F. Gauss, Werke, Band 3, Königlichen Gesellschaft der Wissenschaften,
Göttingen, 1866. URL: http://134.76.163.65/agora_docs/41929TABLE_OF_

CONTENTS.html. Citations in this document: §1.
7. Steven G. Johnson, Matteo Frigo, A modified split-radix FFT with fewer arithmetic

operations, IEEE Transactions on Signal Processing 55 (2007), 111–119. Citations
in this document: §1, §1, §5.

8. Thomas J. Lundy, James Van Buskirk, A new matrix approach to real FFTs and
convolutions of length 2k, Computing 80 (2007), 23–45. ISSN 0010–485X. Citations
in this document: §1, §1.

9. Jean-Bernard Martens, Recursive cyclotomic factorization—a new algorithm for
calculating the discrete Fourier transform, IEEE Transactions on Acoustics,
Speech, and Signal Processing 32 (1984), 750–761. ISSN 0096–3518. MR 86b:94004.
URL: http://cr.yp.to/bib/entries.html#1984/martens. Citations in this doc-
ument: §1.

10. Arnold L. Rosenberg (chairman), Fourth annual ACM symposium on theory of
computing, Association for Computing Machinery, New York, 1972. MR 50:1553.
See [5].

11. Henrik V. Sorensen, Michael T. Heideman, C. Sidney Burrus, On computing the
split-radix FFT, IEEE Transactions on Acoustics, Speech, and Signal Processing
34 (1986), 152–156. ISSN 0096–3518. URL: http://cr.yp.to/bib/entries.html#
1986/sorensen. Citations in this document: §1.

12. Martin Vetterli, Henri J. Nussbaumer, Simple FFT and DCT algorithms with re-
duced number of operations, Signal Processing 6 (1984), 262–278. ISSN 0165–1684.
MR 85m:65128. URL: http://cr.yp.to/bib/entries.html#1984/vetterli. Ci-
tations in this document: §1.

13. R. Yavne, An economical method for calculating the discrete Fourier transform,
in [1] (1968), 115–125. URL: http://cr.yp.to/bib/entries.html#1968/yavne.
Citations in this document: §1.

14. Feng Zhou, Peter Kornerup, A new fast discrete Fourier transform, The Jour-
nal of VLSI Signal Processing 20 (1998), 219–232. URL: http://cr.yp.to/bib/
entries.html#1998/zhou. Citations in this document: §1.


