
Draft. Aimed at Math. Comp.

SCALED REMAINDER TREES

DANIEL J. BERNSTEIN

Abstract. It is well known that one can compute U mod p1, U mod p2, . . .

in time n(lg n)2+o(1) where n is the number of bits in U, p1, p2, Here
U, p1, p2, . . . can be integers or polynomials over a fixed finite field. Bostan,
Lecerf, and Schost recently introduced an algorithm for the polynomial case
that takes time n(lg n)2+o(1) with a smaller o(1). They did not claim any
similar speedup for integers; their algorithm uses polynomial reversal and
coefficient-matrix transposition, neither of which applies to integers. This
paper presents a simpler algorithm that achieves the same speedup and that
works for both polynomials and integers. This paper then points out several
redundancies that can be eliminated from the algorithm, saving even more

time.

1. Introduction

Let U be an integer. Let p1, p2, p3, p4 be positive integers. Here is the remainder

tree of U, p1, p2, p3, p4:

U mod p1p2p3p4

ttjjjjjjjjj

**TTTTTTTTT

U mod p1p2

zztt
tt

tt

$$
JJ

JJ
JJ

U mod p3p4

zztt
tt

tt

$$
JJ

JJ
JJ

U mod p1 U mod p2 U mod p3 U mod p4

Each U mod P is represented inside a computer as a bit string in base 2: the string
b0, b1, . . . , be−1 represents the integer b0 + 2b1 + · · · + 2e−1be−1.

A well-known method to compute U mod p1, U mod p2, U mod p3, U mod p4 is
to compute this remainder tree. Compute U mod p1p2p3p4; reduce modulo p1p2 to
obtain U mod p1p2; reduce that modulo p1 to obtain U mod p1; and so on.

This paper introduces the scaled remainder tree of U, p1, p2, p3, p4:

(U/p1p2p3p4) mod 1

ttjjjjjjjjj

**TTTTTTTTT

(U/p1p2) mod 1

zzttttt

$$
JJJJJ

(U/p3p4) mod 1

zzttttt

$$
JJJJJ

(U/p1) mod 1 (U/p2) mod 1 (U/p3) mod 1 (U/p4) mod 1

Each scaled-remainder-tree node (U/P) mod 1 is simply 1/P times the remainder-
tree node U mod P . The node is represented inside a computer as a nearby real

Date: 2004.08.20. Permanent ID of this document: e2b8da026cf72d01d97e20cf2874f278.
2000 Mathematics Subject Classification. Primary 11Y16.
The author was supported by the National Science Foundation under grant DMS–0140542,

and by the University of Sydney.

1

2 DANIEL J. BERNSTEIN

number 2−1b
−1 + 2−2b

−2 + · · ·+ 2−eb
−e, which in turn is represented as the string

b
−1, b−2, . . . , b−e. A precise definition of “nearby” is given in Section 2 of this paper.

One can compute the remainders U mod p1, U mod p2, U mod p3, U mod p4 by
computing this scaled remainder tree. Divide U by p1p2p3p4, and reduce modulo 1,
to obtain (U/p1p2p3p4) mod 1; multiply by p3p4, and reduce modulo 1, to obtain
(U/p1p2) mod 1; multiply that by p2, and reduce modulo 1, to obtain (U/p1) mod 1;
and so on. Then multiply each (U/pj) mod 1 by pj to recover U mod pj .

The advantage of the scaled remainder tree over the original unscaled remainder
tree is that almost all of the divisions are replaced by similar-size multiplications.
Multiplications are faster than divisions by a constant factor. Section 3 of this
paper discusses scaled-remainder-tree speed in more detail.

Similar comments apply to 2-adic division and to polynomial division. One can
also consider scaling remainders in contexts other than remainder trees.

Previous work. Fiduccia in [6, Section 2, Method C] introduced the remainder
tree of polynomials U, p1, p2, . . . , pm, when each pj has degree 1.

Moenck and Borodin in [9] proved that this remainder tree can be computed
using n(lg n)3+o(1) coefficient operations, where n is the total number of coefficients
in U, p1, p2, . . . , pm. Moenck and Borodin developed, as a subroutine, a polynomial-
division algorithm using n(lg n)2+o(1) coefficient operations, where n is the number
of input coefficients.

Moenck and Borodin in [9] also introduced remainder trees of integers. Moenck
and Borodin claimed that if p1, p2, . . . , pm are “single-precision integers” then the
remainder tree of U, p1, p2, . . . , pm can be computed in time n(lg n)2+o(1) where n is
the total number of bits in U, p1, p2, . . . , pm. It is, however, not clear what “single-
precision integers” are supposed to be. I don’t know who first proved that the same
n(lg n)2+o(1) bound holds for arbitrary U, p1, p2, . . . , pm.

In [3, Section 6], using a fast Newton-type division algorithm by Cook et al.,
Borodin and Moenck proved that the remainder tree of polynomials U, p1, p2, . . . , pm

can be computed using n(lg n)2+o(1) coefficient operations. Borodin and Moenck
also mentioned that p1, p2, . . . , pm did not need to be linear; as above, I don’t know
who first proved the n(lg n)2+o(1) bound in this case.

The exponent 2 in n(lg n)2+o(1) is conjectured to be optimal for both polynomials
and integers. There have nevertheless been some remainder-tree speedups:

• There is some redundancy in the usual algorithm for computing the product
tree p1, p2, p3, p4, p1p2, p3p4, p1p2p3p4. Removing this redundancy speeds
up the computation of product trees by a factor of roughly 3/2. This was
pointed out recently by Robert Kramer.

• There are redundancies in Newton’s method for computing reciprocals, in
the usual multiply-by-reciprocal method of computing quotients, and in
the multiply-by-quotient-and-subtract method of computing remainders.
Brent, Schönhage, Grotefeld, Vetter, Karp, Markstein, Harley, Hanrot,
Zimmermann, and I removed these redundancies, saving a factor of roughly
2 in the computation of remainders. See [2] for most of the details.

• One can use the product of approximate reciprocals of p1 and p2 as the
starting point for the Newton iteration for the reciprocal of p1p2.

There have also been various speedups in the underlying multiplication subroutines.

SCALED REMAINDER TREES 3

Bostan, Lecerf, and Schost recently introduced a new algorithm for computing
U mod p1, U mod p2, . . . , U mod pm, when U, p1, p2, . . . , pm are polynomials. See
[5] for the degree-1 case and [4, Section 3.1] for the general case; there were more
authors of [4], but the general case was already mentioned in [5, Section 7]. Bostan,
Lecerf, and Schost observed that their algorithm was faster than the Borodin-
Moenck algorithm. (On the other hand, they neglected to consider the recent
improvements in division.) They did not claim any similar speedups for integers;
their algorithm relies on coefficient-matrix transposition and polynomial reversal,
neither of which applies to integers.

The scaled-remainder-tree algorithm in this paper (without most of the speedups
discussed in Section 3), when applied to polynomials, is as fast as the Bostan-Lecerf-
Schost algorithm. In fact, its intermediate results—for various P , the coefficients
of x−1, x−2, . . . , x−deg P in U/P—are exactly the unidentified intermediate results
in the Bostan-Lecerf-Schost algorithm. This paper can be viewed as identifying
the ring structure, rather than merely the module structure, behind the Bostan-
Lecerf-Schost algorithm; this extra structure makes the algorithm much easier to
understand, exposes some redundancies, and allows similar speedups for integers.

2. Accuracy

Let m be a nonnegative integer. Let p1, p2, . . . , pm be positive integers. Let U be
an integer. The scaled remainder tree of U, p1, p2, . . . , pm is defined as follows.
The root of the tree is (U/p1p2 · · · pm) mod 1. If m ≤ 1 then that’s the complete
tree. If m ≥ 2 then the left subtree is the scaled remainder tree of U, p1, p2, . . . , pk,
and the right subtree is the scaled remainder tree of U, pk+1, pk+2, . . . , pm, where
k = dm/2e.

At the ith level of an `-level scaled remainder tree, a node (U/P) mod 1 is
represented by a bit string b

−1, b−2, . . . , b−e such that

U

P
− 2−1b

−1 − 2−2b
−2 − · · · − 2−eb

−e

has distance smaller than (` + i)/4`P from an integer.
Consider, for example, the scaled remainder tree of U, p1, p2, p3, p4. The root

(U/p1p2p3p4) mod 1 is represented by a bit string b
−1, b−2, . . . , b−e such that

∣

∣

∣

∣

U

p1p2p3p4
− 2−1b

−1 − 2−2b
−2 − · · · − 2−eb

−e − q

∣

∣

∣

∣

<
4

12p1p2p3p4

for some integer q. The second-level node (U/p1p2) mod 1 is represented by a bit
string b

−1, b−2, . . . , b−e such that
∣

∣

∣

∣

U

p1p2
− 2−1b

−1 − 2−2b
−2 − · · · − 2−eb

−e − q

∣

∣

∣

∣

<
5

12p1p2

for some integer q. The third-level node (U/p1) mod 1 is represented by a bit string
b
−1, b−2, . . . , b−e such that

∣

∣

∣

∣

U

p1
− 2−1b

−1 − 2−2b
−2 − · · · − 2−eb

−e − q

∣

∣

∣

∣

<
6

12p1

for some integer q.
These distance bounds balance three desirable features:

4 DANIEL J. BERNSTEIN

• The bounds—most importantly, the bounds at the bottom level—are tight
enough. The approximation to (U/P) mod 1 determines (U/P) mod 1:
multiplying the approximation by P , and rounding the result to an integer,
produces U mod P .

• The bounds at each level are slightly tighter than the bounds at the next
level. The 1/4`P gap means that a simple multiply-and-round is sufficient
to move from each level to the next. See Theorem 2.1.

• The bounds are not much tighter than necessary. Computations can thus
be carried out in reasonably low precision.

I do not claim that the bounds (` + 1)/4`P, (` + 2)/4`P, . . . , (2`)/4`P are optimal.
It might be a bit better to use 1/2`P, 2/2`P, . . . , `/2`P , for example.

Theorem 2.1. Let P and Q be positive integers. Let ` be a positive integer. Let

f be a positive integer. Let S be an integer. Let e be a positive integer such that

2e ≥ 2`P . Let Y be an integer such that Y ≡ QS (mod 2f). Let Z be an integer

within 1/2 of Y/2f−e. Define R = Z mod 2e. Then R/2e − QS/2f has distance at

most 1/4`P from an integer.

In particular, if S/2f − U/PQ has distance smaller than (` + i)/4`PQ from
an integer, then R/2e − U/P has distance smaller than (` + i + 1)/4`P from an
integer. In other words, if the f bits of S ∈ {0, 1, . . . , 2f − 1} represent a node
(U/PQ) mod 1 at the ith level of an `-level scaled remainder tree, then the e bits
of R represent a child node (U/P) mod 1 at the (i + 1)st level.

See Theorem 2.2 for a faster method of finding a representation for (U/P) mod 1.

Proof. R/2e has integer distance from Z/2e, which has distance at most 1/2e+1 ≤
1/4`P from Y/2f , which has integer distance from QS/2f . �

Theorem 2.2. Let P and Q be integers larger than 1. Let ` be a positive integer.

Let f be a positive integer such that 2f ≥ 8`PQ. Let S be an integer such that

0 ≤ S < 2f . Let e be a positive integer such that 2e ≥ 8`P . Let Y be an integer

such that −2f + 1 ≤ Y ≤ 2f − 1 and Y ≡ QS (mod 2f − 1). Let Z be an integer

within 1/2 of Y/2f−e. Define R = Z mod 2e. Then R/2e − QS/2f has distance at

most 1/4`P from an integer.

In particular, if the f bits of S represent a node (U/PQ) mod 1 at the ith level
of an `-level scaled remainder tree, then the e bits of R represent a child node
(U/P) mod 1 at the (i + 1)st level, as in Theorem 2.1.

The advantage of Theorem 2.2 over Theorem 2.1 is that multiplication modulo
2f − 1 is, for large f , about twice as fast as multiplication modulo 2f . See Section
3 for further discussion of speed. Theorem 2.2 requires two bits more precision
(which one could reduce by shifting the S interval and tightening the Y interval),
but this disadvantage is unnoticeable when f is large.

Proof. R/2e has integer distance from Z/2e, which has distance at most 1/2e+1 ≤
1/16`P from Y/2f , which has distance at most |Y | /2f (2f −1) ≤ 1/2f ≤ 1/8`PQ ≤
1/16`P from Y/(2f − 1), which has integer distance from QS/(2f − 1), which
has distance at most |QS| /2f (2f − 1) ≤ Q/2f ≤ 1/8`P from QS/2f . Finally
1/16`P + 1/16`P + 1/8`P = 1/4`P . �

Here is a concrete example of a scaled-remainder-tree calculation. Take U =
314159265358979323, ` = 3, m = 4, p1 = 977, p2 = 983, p3 = 991, and p4 = 997.

SCALED REMAINDER TREES 5

Compute p1p2 = 960391, p3p4 = 988027, and p1p2p3p4 = 948892238557. Select
exponents 45, 25, 15 satisfying 245 ≥ 8`p1p2p3p4, 225 ≥ 8` max{p1p2, p3p4}, and
215 ≥ 8` max{p1, p2, p3, p4}; also select an exponent 42 satisfying 242(` + 1) ≥
4`p1p2p3p4. Perform a high-precision division to see that U/p1p2p3p4 has distance
below 2−42 from 331080 + 853476536609/245. Discard the integer part 331080.
Multiply 853476536609 by 988027 modulo 245−1, obtaining 29200555256697; divide
the result by 245−25 and round to an integer, obtaining 27847820. Multiply by 983
modulo 225 − 1, obtaining 27545795; divide the result by 225−15 and round to an
integer, obtaining 26900. Continue in the same way, using Theorem 2.2 repeatedly,
to see that the scaled remainder tree of U, p1, p2, p3, p4 is approximately

853476536609/245

ttjjjjjjjj

**TTTTTTTT

27847820/225

zztt
tt

t

$$
JJ

JJ
J

15308656/225

zztt
tt

t

$$
JJ

JJ
J

26900/215 27569/215 28338/215 4175/215

—i.e., that the scaled remainder tree is represented by the 45 bits of 853476536609,
the 25 bits of 27847820, the 25 bits of 15308656, etc. Then round 977·26900/215, 983·
27569/215, 991·28338/215, 997·4175/215 to integers, obtaining (802, 827, 857, 127) =
(U mod p1, U mod p2, U mod p3, U mod p4).

The 2-adic case. At this point I should give a 2-adic example, probably using the
same inputs as above.

The x−1-adic case. Let m be a nonnegative integer. Let p1, p2, . . . , pm be monic
polynomials in one variable x over a commutative ring. Let U be a polynomial in
x over the same ring. The scaled remainder tree of U, p1, p2, . . . , pm is defined
exactly as above.

Each node (U/P) mod 1 is represented as follows. Expand U/P as a Laurent
series in the variable x−1. Then the representation is the sequence of coefficients
b
−1, b−2, . . . , b−deg P of x−1, x−2, . . . , x−deg P respectively. There is no need to keep

more than deg P coefficients: roundoff errors do not accumulate for polynomials.
The analogue of Theorem 2.2 is easy. Take the coefficients b

−1, b−2, . . . , b−f of
x−1, x−2, . . . , x−f in U/PQ, where f = deg PQ. Multiply b

−1x
f−1 + · · · + b

−fx0

by Q modulo xf − 1. Extract the coefficients of xf−1, xf−2, . . . , xf−deg P in the
product. The result is the representation of (U/P) mod 1.

Here is a concrete example. Take U = 3x3 + 1x2 + 4x + 1, m = 4, p1 = x − 1,
p2 = x − 2, p3 = x − 3, and p4 = x − 4. Compute p1p2 = x2 − 3x + 2, p3p4 =
x2−7x+12, and p1p2p3p4 = x4−10x3+35x2−50x+24. Multiply U by 1/p1p2p3p4 =
x−4+10x−5+65x−6+350x−7+· · · , obtaining 3x−1+31x−2+209x−3+1156x−4+· · · .
Multiply 3x3 + 31x2 + 209x + 1156 by x2 − 7x + 12 modulo x4 − 1, obtaining
28x3 +65x2 −5581x+13882; also multiply 3x3 +31x2 +209x+1156 by x2 −3x+2
modulo x4 − 1, obtaining 122x3 + 591x2 − 3047x + 2334. Multiply 28x + 65 by
x − 2 modulo x2 − 1, obtaining 9x − 102; also multiply 28x + 65 by x − 1 modulo
x2 − 1, obtaining 37x− 37. Multiply 122x + 591 by x− 4 modulo x2 − 1, obtaining
103x−2242; also multiply 122x+591 by x−3 modulo x2−1, obtaining 225x−1651.

6 DANIEL J. BERNSTEIN

The scaled remainder tree of U, p1, p2, p3, p4 is

3x−1 + 31x−2 + 209x−3 + 1156x−4 + · · ·
ttjjjjjjjjj

**TTTTTTTTT

28x−1 + 65x−2 + · · ·
zztt

tt
tt

$$
JJ

JJ
JJ

122x−1 + 591x−2 + · · ·
zztt

tt
tt

$$
JJ

JJ
JJ

9x−1 + · · · 37x−1 + · · · 103x−1 + · · · 225x−1 + · · ·
represented by the coefficient sequences

(3, 31, 209, 1156), (28, 65), (122, 591), (9), (37), (103), (225).

The remainders U mod p1, U mod p2, U mod p3, U mod p4 are 9, 37, 103, 225.

3. Speed

Say m is large, and say U is not much larger than p1p2 · · · pm. How long does it
take to compute U mod p1, U mod p2, . . . , U mod pm?

Assume that p1, p2, . . . , pm are bounded by 2c. Assume for simplicity that m is
a power of 2, namely 2`−1. Assume that computing a product modulo 2n − 1 takes
time about 3n lg n, at least for various integers n with ratio converging to 1. Then
computing an n-bit product of two integers takes time about 3n lg n.

To compute the product tree p1p2, p3p4, . . . , p1p2p3p4, . . . , one multiplies m/2
pairs of c-bit numbers, then m/4 pairs of 2c-bit numbers, and so on through 1 pair
of (m/2)c-bit numbers. These multiplications take time about 3(m/2)2c lg 2c +

3(m/4)4c lg 4c + · · · + 3(1)mc lg mc ≈ 3(` − 1)mc lg(
√

2mc).
Computing the root of the scaled remainder tree takes time O(mc lg mc) since

U is not much larger than p1p2 · · · pm; this time becomes negligible as ` grows.
Computing each ith-level node, for i ≥ 2, takes one multiplication modulo 2f − 1
and some easy rounding; here f has to be at least (m/2i−2)c + dlg 8`e for Theorem
2.2. These multiplications take time about 3(2)(mc+dlg 8`e) lg(mc+dlg 8`e)+ · · ·+
3(m)(2c+ dlg 8`e) lg(2c+ dlg 8`e) ≈ 6(`− 1)mc lg(

√
2mc). The final multiplications

by p1, . . . , pm take negligible time.
The 6-to-3 ratio here is unsurprising. The f -bit product involved in computing a

scaled-remainder-tree node is twice as large as the corresponding (f/2)-bit product-
tree node.

For comparison, computing the corresponding node in an unscaled remainder
tree means reducing an f -bit number modulo an (f/2)-bit number. The fastest
known method to do this takes more than twice as long as computing an f -bit
product, when f is large.

The rest of this section points out various redundancies that can be eliminated
from the product-tree-and-scaled-remainder-tree computation, reducing the total
time from about 9(` − 1)mc lg(

√
2mc) to about 5(` − 1)mc lg(

√
2mc). See [13] for

additional speedups in the unusual case that p1, p2, . . . , pm vary wildly in size.

FFT doubling. There are four steps in multiplying p1 by p2. The first step is to
compute a size-n Schönhage-Strassen transform of p1 mod 2n−1, for an appropriate
n. The second step is to compute a size-n transform of p2 mod 2n − 1. The third
step is to multiply the transforms. The fourth step is to un-transform the product,
obtaining p1p2 mod 2n−1. The first, second, and fourth steps each take time about
n lg n; the third step takes negligible time.

SCALED REMAINDER TREES 7

Suppose that p1p2 is then multiplied by p3p4. The first step is to compute a
size-2n transform of p1p2 mod 22n − 1. But the first half of the size-2n transform
of p1p2 mod 22n − 1 is exactly the size-n transform of p1p2 mod 2n − 1, which is
already known. This redundancy was pointed out (in the polynomial case) by
Robert Kramer in 2004.

Eliminating this redundancy—reusing the first half of each size-2n transform
and computing merely the second half—saves two halves of every three product-
tree transforms, reducing the product-tree time from about 3(` − 1)mc lg(

√
2mc)

to about 2(` − 1)mc lg(
√

2mc).

FFT caching. Later in the computation, starting from a scaled-remainder-tree
node (U/p1p2p3p4) mod 1, one multiplies by p1p2 modulo 2f − 1, where f is about
2n. One can choose f and n so that f is exactly 2n; then the size-2n transform of
p1p2 is already known from the product-tree computation.

Eliminating this redundancy—caching the transform of p1p2 for future use—
saves one of every three scaled-remainder-tree transforms, reducing the scaled-
remainder-tree time from about 6(`−1)mc lg(

√
2mc) to about 4(`−1)mc lg(

√
2mc).

Similarly, the scaled-remainder-tree node (U/p1p2p3p4) mod 1 is multiplied by
both p1p2 and p3p4, so it is transformed twice. Eliminating this redundancy reduces
the scaled-remainder-tree time to about 3(` − 1)mc lg(

√
2mc).

References

[1] Daniel J. Bernstein, Fast multiplication and its applications, to appear in Buhler-Stevenhagen
Algorithmic number theory book. URL: http://cr.yp.to/papers.html#multapps.

[2] Daniel J. Bernstein, Removing redundancy in high-precision Newton iteration, draft. URL:
http://cr.yp.to/papers.html#fastnewton. ID def7f1e35fb654671c6f767b16b93d50.

[3] Allan Borodin, Robert T. Moenck, Fast modular transforms, Journal of Computer and System
Sciences 8 (1974), 366–386; older version, not a subset, in [9]. ISSN 0022–0000. MR 51:7365.

URL: http://cr.yp.to/bib/entries.html#1974/borodin.

[4] Alin Bostan, Grégoire Lecerf, Bruno Salvy, Éric Schost, Bernd Wiebelt, Complexity issues

in bivariate polynomial factorization, in [11] (2004), 42–49.

[5] Alin Bostan, Grégoire Lecerf, Éric Schost, Tellegen’s principle into practice, in [7] (2003),
37–44.

[6] Charles M. Fiduccia, Polynomial evaluation via the division algorithm: the fast Fourier

transform revisited, in [10] (1972), 88–93. URL: http://cr.yp.to/bib/entries.html#1972/
fiduccia-fft.

[7] Hoon Hong (editor), Proceedings of the 2003 international symposium on symbolic and alge-

braic computation, Association for Computing Machinery, New York, 2003. ISBN 1–58113–
641–2.

[8] Richard M. Karp (chairman), 13th annual symposium on switching and automata theory,
IEEE Computer Society, Northridge, 1972.

[9] Robert T. Moenck, Allan Borodin, Fast modular transforms via division, in [8] (1972), 90–
96; newer version, not a superset, in [3]. URL: http://cr.yp.to/bib/entries.html#1972/
moenck.

[10] Arnold L. Rosenberg (chairman), Fourth annual ACM symposium on theory of computing,
Association for Computing Machinery, New York, 1972. MR 50:1553.

[11] Josef Schicho (editor), Proceedings of the 2004 international symposium on symbolic and

algebraic computation, Association for Computing Machinery, New York, 2004. ISBN 1–
58113–827–X.

[12] Volker Strassen, The computational complexity of continued fractions, in [14] (1981), 51–67;
see also newer version [13]. URL: http://cr.yp.to/bib/entries.html#1981/strassen.

[13] Volker Strassen, The computational complexity of continued fractions, SIAM Journal on
Computing 12 (1983), 1–27; see also older version [12]. ISSN 0097–5397. MR 84b:12004.
URL: http://cr.yp.to/bib/entries.html#1983/strassen.

8 DANIEL J. BERNSTEIN

[14] Paul S. Wang (editor), SYM-SAC ’81: proceedings of the 1981 ACM Symposium on Symbolic

and Algebraic Computation, Snowbird, Utah, August 5–7, 1981, Association for Computing
Machinery, New York, 1981. ISBN 0–89791–047–8.

Department of Mathematics, Statistics, and Computer Science (M/C 249), The Uni-
versity of Illinois at Chicago, Chicago, IL 60607–7045, USA

E-mail address: djb@cr.yp.to

