Using fast power-series arithmetic in the
Kedlaya-Denef-Vercauteren algorithm

Daniel J. Bernstein *

djb@cr.yp.to

The problem. Let K be a field of characteristic 0. Fix a positive integer g.
We're given f,h,Q € K[x] where f is monic, deg f = 2¢g + 1, and degh < g¢.
How do we compute P, R € K[x] with deg R < 2g and Q — R = (2f" + hh')P +
(1/3)(4f + h?)P'? One can take (P, R) = (0,Q) if degQ < 2g, so assume that
deg Q > 2g.

Tiny example: Define K = C, g =2, f =254+ 2* +1, h = 2, and Q =
27 +112° + 2 + 1. How do we compute P, R € C[x] with

o+ 11a® 24+ 1— R= (100" + 823 +)P + (1/3)(4a® + 4a* + 2% + 4) P

and deg R < 47

Application. Kedlaya introduced an algorithm for computing the zeta function
of a genus-g hyperelliptic curve over a finite field of size p™ when p is odd.
Kedlaya’s algorithm uses roughly g*n® bit operations for fixed p.

Denef and Vercauteren adapted Kedlaya’s algorithm to the case p = 2. The
Kedlaya-Denef-Vercauteren algorithm uses roughly g*n> bit operations for a
“typical” curve but roughly ¢g°n? bit operations for some other curves.

At a meeting in Oberwolfach I asked Kedlaya about the discrepancy between
g*n3 and ¢°n3. He explained the problem of computing P, R from f,h,Q and
told me that this was one of the bottlenecks in the p = 2 case.

A slow solution. Apparently Denef and Vercauteren use the equation Q — R =
(2f" + hh/)P + (1/3)(4f + h2?)P’ to determine the coefficients of P one at a
time. The algebraic complexity of this computation over K—the number of
additions, subtractions, multiplications, and divisions of coefficients in K—grows
quadratically with g in the typical case deg) = 4g.

Tiny example: Consider again the problem of finding P, R € Clz] with 27 +
Nz + 2+ 1— R = (102* + 823 + 2)P + (1/3)(42® + 42* + 2% + 4)P’ and
deg R < 4. Assume that P will have degree at most 3; write P as P3z3 + Poz? +
Pz + Py; write R as Rsxz® + Rox? + Rix + Ry. The problem is now to find
P3,P2,P1,P0,R3,R2,R1,R0 such that

"+ 112° + 2 4+ 1 — (R32® + Ryx® + Rz + Ry)
= (103:4 + 82% + z)(P32® + Pya® + Piz + Ry)
+ (1/3)(42® + 42t + 2% + 4)(3P32® 4+ 2Py + Py).

* Permanent ID of this document: 4e30a3e7f413533744a20c9c48e7025f. Date of this
document: 2006.10.19.

Extract the coefficients of 27, 25, 2%, x4, 23, 22, 2!, 20 from this equation to form

a lower-triangular system of linear equations:

14 0 0 00000\ /P
1238/3 0 00000]| | P,
032/334/3 00000 | | P,
0 28/3100000]| | P
2/3 0 81000| |Rs
2 1/3 00100 | R
8/3 2 00010] | Ry
0 4/3 20001/ \R,

)—‘}—‘OOO:OH

OO =N

Use substitution to solve this system one variable at a time: use the first equation
1 = 14P5 to determine P3 = 1/14, then use the second equation 0 = 12P5 +
(38/3) P2 to determine P, = —9/133, etc.

A faster solution. The following solution produces the same output but is
much more efficient than the one-at-a-time solution when g and deg) — 2g are
large. This solution relies on standard FFT-based subroutines for fast power-
series multiplication, division, and square root. The higher-level aspects of the
solution are also standard, so I’d be embarrassed to receive any credit for the
solution; my interests here are purely expository, advertising yet another reason
that novices should learn how to use fast multiplication. Anyway, here’s the
solution:

e Compute (4f + h?)1/2 = (2)29+1/2 4 (-)29~ 1/2 4 (..)2x973/2 4 ... to high
precision in the field K((1//x)).

e Multiply by 3Q, producing 3Q(4f + h?)'/? to high precision in K((1/1/x)).

e Integrate with respect to x, producing f 3Q4f + hz)l/ 2 dx to high precision
in K((1/y/7)).

e Divide by (4f + h?)3/2 = (8)x39+3/2 4 (..)gB9+/2 4 (L.)gB9=1/2 ..
producing (4f +h?)=3/2 [3Q(4f +h?)}/2 dx to high precision in K((1/y/Z)).

e Round to a polynomial P € K|[x].

e Compute R =Q — (2f" + hh/)P — (1/3)(4f + h?)P' in K|x].

Why does this work? Answer: Write ¢ = P—(4f+h?)=3/2 1l 3Q(4f+h*)V/? da.
Multiply by (4f + h?)3/2, differentiate, and divide by 3(4f + h?)*/2 to see that
R = (2f'+hh")e+(1/3)(4f +h?)e. By construction € = (-)~ 4+ (-)24 -
so R = (2(2g+1)x29 +- -)((-+ -)a— L4+)+ (1/3) (4229 - (-)z~ 24+) =
(--)z297 1 4. e, deg R < 2g as desired.

I omitted one important detail above: What does “high precision” mean?
Answer: We compute the first deg Q@ — 2g + 1 coefficients of each series; this is
enough information to determine P € K[z]. This means that we compute

the coefficients of x911/2, z9=1/2 g39-degQ+1/2 iy (4f 4 p2)1/2,

the coefficients of xde8 Q+9+1/2 pdegQ+g=1/2 " 4:39+1/2 iy 3Q(4f + h?)1/?;
the coefficients of zde8 Q+9+3/2 339+3/2 in [3Q(4f + h?)'/2 dz; and
the coefficients of z4°¢@=29 . 20 in (4f + h2)73/2 [3Q(4f + h?)Y/? dx.

Rounding to P € K|[x] means simply copying the coefficients of 248 @29 . 20,

This computation has algebraic complexity essentially linear in g, rather than
quadratic in g, in the typical case deg) = 4g. More precisely, this computation
has algebraic complexity O(glg glglg g), with the lglg g disappearing for some
choices of K. The complexity here is within a constant factor of the complexity
of multiplication, division, and square root; I haven’t analyzed or optimized the
constant factor. Similar comments apply to other ranges of deg Q).

Tiny example: Consider once again the problem of finding P, R € C[z] with
2"+ 112° + 2+ 1 — R = (102" + 823 +)P + (1/3)(42° + 42* + 2% + 4) P’ and
deg R < 4. Compute the first 4 coefficients of each of the following series:

(42° + 42t + 2% 4+ 4)1/2

— 225/2 £ 145/2 — (1/4)2"% 4 (3/8)2~ /2 4 ... ;
3(27 +112° + x4 1) (42° + 4z + 22 + 4)1/2

= 622 + 32'7/% + (261/4)2"%/? + (273/8)2™¥/2 + .-

/3(907 +112° + 2 + 1) (4a® + 42* + 2% + 4)1/2 dx
= (12/21)2z/2 + (6/19)x'%/% + (261/34)2'/2 + (273/60)2'*/% + - - ;
(42° + 4z + 22 +4)—3/2/3($7 1125 4+ 2 + 1)(42® + 42t + 2% + 4)V2 da
= (1/14)2® — (9/133)2? + (4677/4522)z" — (22149/22610)2° + - - - .

Now round to P = (1/14)x3 —(9/133)x2 + (4677 /4522) ! — (22149/22610)2° and
compute R = 2" +112° +z+1— (102 + 823 +2) P — (1/3) (42° +4x* + 22 +4) P’ =
(89871/11305)2° — (3764/2261)22 + (6977/3230)z — (857/2261).

Impact on the application. Consider the cost of computing the zeta function
of a genus-g hyperelliptic curve y* + h(z)y = f(x) over a field of size 2". “Cost”
here refers to bit operations.

The Denef-Vercauteren “Theorem 17 reports cost “O((g* + g¥)g*Ten3+€).”
As a mathematician I feel compelled to point out that the order of quantifiers
here is horribly unclear. Do the authors mean “for each ¢ > 0 there exists ng
such that for each n > ng there exist gg, ¢ such that for each g > gg the cost is at
most c(g* + g¥)g*t*n3T?? Do they mean “for each ¢ > 0 there exist ¢, dy such
that for each n, g with ng > dy the cost is at most c(g* + g¥)g*Tn3+€"? There
are many other possibilities. How is a reader supposed to apply this “theorem”
without redoing the analysis?

Anyway, the Denef-Vercauteren parameters A and v refer to the size and
ramification of the polynomial h in the curve y? + h(z)y = f(x). Specifically,
g” is (modulo further O confusion) shorthand for deg f — 2degh, and g is
shorthand for the maximum exponent in the factorization of h.

For a uniform random curve, usually degh = ¢, and usually h has very
few repeated factors, so ¢g* + g” is close to 1. On the other hand, I can imagine
users selecting curves where ¢g* is much larger. Consider, for example, the Lange-
Stevens hyperelliptic-curve addition formulas; one reason that these formulas are

so fast is that they force h to have small degree. Perhaps users are also interested
in curves where g” is large.

Evidently there are two different ways that the Denef-Vercauteren cost can
grow more quickly than g*+e(M)p3+e().

e ¢* = deg f — 2degh can grow more quickly than ¢°V): e.g., degh could be
around g — /g, or around g/2. My impression is that the problem here is
exactly the problem I've addressed, and that the one-at-a-time solution is the
Denef-Vercauteren bottleneck; I speculate that the fast-arithmetic solution
eliminates this bottleneck.

e ¢”, the maximum exponent in the factorization of h, can grow more quickly
than g°(M); for example, h(x) could be x9/%(z — 1)(z — 2)--- (z — g/2). My
impression is that this is a completely different problem, caused by Denef
and Vercauteren working modulo, e.g., (z(x — 1) --- (z — g/2))9/2. Without
looking more closely at the computation—which I’'m certainly not planning
to do any time soon—I can’t guess whether such a large modulus is really
necessary.

Bottom line: I speculate that fast power-series arithmetic expands the set of

“g*n3 curves” to allow small h degrees. I have no idea whether the set can be

further expanded to allow large powers in h.

