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Be prepared for a culture shock

Applied math is driven by service goals.
e.g. “Please speed up this computation.”
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Be prepared for a culture shock

Applied math is driven by service goals.
e.g. “Please speed up this computation.”

Miscellaneous example, 1995 Bernstein:
Essentially-linear-time algorithm to detect
perfect powers. Proof of time bound uses
1995 Loxton correction of 1986 Loxton “proof”
in transcendental number theory.

Daniel . Bernstein, Formal proofs in applied cryptography


https://cr.yp.to/papers.html#powers
https://cr.yp.to/papers.html#powers2

Be prepared for a culture shock

Applied math is driven by service goals.
e.g. “Please speed up this computation.”

Miscellaneous example, 1995 Bernstein:
Essentially-linear-time algorithm to detect
perfect powers. Proof of time bound uses
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Be prepared for a culture shock

Applied math is driven by service goals.
e.g. “Please speed up this computation.”

Miscellaneous example, 1995 Bernstein:
Essentially-linear-time algorithm to detect
perfect powers. Proof of time bound uses
1995 Loxton correction of 1986 Loxton “proof”
in transcendental number theory.

2004 Bernstein-Lenstra-Pila: Another such
algorithm, simpler proof. Applied view: Great,
can skip the transcendental number theory!
Pure view: less proof depth; less interesting.
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Do algorithms work correctly?

Most applications can simply test algorithms
on typical examples and don’t need higher
assurance of algorithm correctness.
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Do algorithms work correctly?

Most applications can simply test algorithms
on typical examples and don’t need higher
assurance of algorithm correctness.

But high-risk applications care about proofs.
Maybe disastrous input randomly shows up.
Maybe attacker constructs disastrous input.
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Do algorithms work correctly?

Most applications can simply test algorithms
on typical examples and don’t need higher
assurance of algorithm correctness.

But high-risk applications care about proofs.
Maybe disastrous input randomly shows up.
Maybe attacker constructs disastrous input.

Formal-proof example, 2023 Bernstein,

for showing correctness of a recent fast
modular-inversion algorithm: 3711-line Sage
script producing 22771 lines in HOL Light
proving the theorem on the next slide.
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'i:num->int f:num->real g:num->real b:num m:num.

i(0) = &0 ==>

&0 <= g(0) ==>

g(0) <= £(0) ==>

£(0) <= &2 pow b ==>

('n. (i(n+1) = &1 + i(n) /\ f(n+1) = £(n) /\ gn+l) = gn) / &2)

\/ (if i(n) < &0

then i(n+1) = &1 + i(n) /\ f(n+1l) = £(n) /\ g+tl) = (gn)+f(n)) / &2
else i(n+1) = - i(n) /\ f(n+1) = g(n) /\ g+l) = (gn)-f(m)) / &2)

) =>

(!'n. integer(f(n))) ==>

('n. integer(g(n))) ==>

9437 * b + 1 <= 4096 * m ==>

?n. n <=m /\ g(n) = &0

Exercise: Understand how proof uses the number
((1591853137 + 3V273548757304312537) /25%)1/34,
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My formalization goal this week

Theorem: Let n,t be nonnegative integers. Let
k be a finite field with F» C k. Let g, ..., ap be
distinct elements of k. Define A = [].(x — ;).
Let g be an element of k[x] such that degg =t
and gcd{g, A} = 1. Let B, a, b be elements of
k[x] with gcd{a, b} =1, dega < t, A € ak[x],
and deg(aB — bA) < n— 2t + deg a. Assume
that g(a;)?B(a;) /A (a;) € F for all i, where A’
is the derivative of A. Define e € FJ by

e; = [a(aj) = 0]. Then wte = dega and
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A correct-computation challenge

Among published post-quantum signature
systems with no known feasible attacks:
2020 De Feo-Kohel-Leroux-Petit-Wesolowski
“SQISign” has smallest total sig+key size.

Maybe this smallness will attract usage.
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Maybe this smallness will attract usage.
(And that'’s scary! Is SQISign secure?)

Challenge: formally verify algorithms
used for SQISign computation.
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A correct-computation challenge

Among published post-quantum signature
systems with no known feasible attacks:
2020 De Feo-Kohel-Leroux-Petit-Wesolowski
“SQISign” has smallest total sig+key size.

Maybe this smallness will attract usage.
(And that'’s scary! Is SQISign secure?)

Challenge: formally verify algorithms
used for SQISign computation.

Concepts: supersingular elliptic curves over
finite fields, isogenies, ideals of quaternion
algebras, etc. See “Learning to SQI".
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Are crypto constructions secure?

Crypto often advertises “security proofs”:
type-T attack against construction X

with cost ¢ and probability p

implies type-U attack against problem Y
with cost d and probability q.
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Are crypto constructions secure?

Crypto often advertises “security proofs”:
type-T attack against construction X

with cost ¢ and probability p

implies type-U attack against problem Y
with cost d and probability q.

Common issues (see 2023 Koblitz-Menezes
survey for many examples):

e Yisn't actually a hard problem.
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survey for many examples):
e Yisn't actually a hard problem.
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Are crypto constructions secure?

Crypto often advertises “security proofs”:
type-T attack against construction X

with cost ¢ and probability p

implies type-U attack against problem Y
with cost d and probability q.

Common issues (see 2023 Koblitz-Menezes
survey for many examples):

e Yisn't actually a hard problem.

e T is too narrow for the application.

e Big (¢,p) vs. (d, g) gap is ignored.
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Are crypto constructions secure?

Crypto often advertises “security proofs”:
type-T attack against construction X

with cost ¢ and probability p

implies type-U attack against problem Y
with cost d and probability q.

Common issues (see 2023 Koblitz-Menezes
survey for many examples):

Y isn't actually a hard problem.

T is too narrow for the application.

Big (¢, p) vs. (d, q) gap is ignored.
“Proof” is wrong.
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A construction-security challenge

“Classic McEliece”: a public-key encryption
system using error-correcting codes.

Challenge: formalize the existing proof

that any “QROM IND-CCA2” attack against
Classic McEliece implies an “inversion” attack
with comparable effectiveness against the
original 1978 McEliece cryptosystem.
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A construction-security challenge

“Classic McEliece”: a public-key encryption
system using error-correcting codes.

Challenge: formalize the existing proof

that any “QROM IND-CCA2” attack against
Classic McEliece implies an “inversion” attack
with comparable effectiveness against the
original 1978 McEliece cryptosystem.

Relies a bit on basic coding theory (using
finite fields, matrices, polynomials) but main
task is to formalize the proofs tracking cost
and probability of quantum algorithms.
Warmup challenge: “ROM”, non-quantum.
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Are the underlying problems hard?

Very little change in McEliece inversion
security levels since 1978 despite many
papers attacking this inversion problem.
We hope there isn't a much better attack.
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Are the underlying problems hard?

Very little change in McEliece inversion
security levels since 1978 despite many
papers attacking this inversion problem.
We hope there isn't a much better attack.

Most cryptographic problems are less well
studied. Analogous hopes often fail.
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Are the underlying problems hard?

Very little change in McEliece inversion
security levels since 1978 despite many
papers attacking this inversion problem.
We hope there isn't a much better attack.

Most cryptographic problems are less well
studied. Analogous hopes often fail.

General issue: We have no proofs of useful
lower bounds on costs of high-Pr attacks.
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Are the underlying problems hard?

Very little change in McEliece inversion
security levels since 1978 despite many
papers attacking this inversion problem.
We hope there isn't a much better attack.

Most cryptographic problems are less well
studied. Analogous hopes often fail.

General issue: We have no proofs of useful
lower bounds on costs of high-Pr attacks.

And: Best proven performance among known
attacks is much worse than best conjectured
performance among known attacks.
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Are proofs useless here?

Sometimes proofs for components of attack
analyses help reduce risk of error.

e.g. 2023 Bernstein: 9950-line HOL Light
proof of asymptotics of a particular function.
Previous literature (1) uses this function as a
model of the cost of lattice attacks and (2)
makes claims about attack performance
incompatible with these asymptotics.
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Are proofs useless here?

Sometimes proofs for components of attack
analyses help reduce risk of error.

e.g. 2023 Bernstein: 9950-line HOL Light
proof of asymptotics of a particular function.
Previous literature (1) uses this function as a
model of the cost of lattice attacks and (2)
makes claims about attack performance
incompatible with these asymptotics.

Challenge: formally verify proofs given in
2021 Bernstein-Lange “Non-randomness of
S-unit lattices”. Need cyclotomic fields, units,
class groups, Brauer-Siegel theorem.
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