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Be prepared for a culture shock
Applied math is driven by service goals.
e.g. “Please speed up this computation.”

Miscellaneous example, 1995 Bernstein:
Essentially-linear-time algorithm to detect
perfect powers. Proof of time bound uses
1995 Loxton correction of 1986 Loxton “proof”
in transcendental number theory.
2004 Bernstein–Lenstra–Pila: Another such
algorithm, simpler proof. Applied view: Great,
can skip the transcendental number theory!
Pure view: less proof depth; less interesting.
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Do algorithms work correctly?
Most applications can simply test algorithms
on typical examples and don’t need higher
assurance of algorithm correctness.

But high-risk applications care about proofs.
Maybe disastrous input randomly shows up.
Maybe attacker constructs disastrous input.
Formal-proof example, 2023 Bernstein,
for showing correctness of a recent fast
modular-inversion algorithm: 3711-line Sage
script producing 22771 lines in HOL Light
proving the theorem on the next slide.
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!i:num->int f:num->real g:num->real b:num m:num.
i(0) = &0 ==>
&0 <= g(0) ==>
g(0) <= f(0) ==>
f(0) <= &2 pow b ==>
(!n. (i(n+1) = &1 + i(n) /\ f(n+1) = f(n) /\ g(n+1) = g(n) / &2)

\/ (if i(n) < &0
then i(n+1) = &1 + i(n) /\ f(n+1) = f(n) /\ g(n+1) = (g(n)+f(n)) / &2
else i(n+1) = – i(n) /\ f(n+1) = g(n) /\ g(n+1) = (g(n)-f(n)) / &2)

) ==>
(!n. integer(f(n))) ==>
(!n. integer(g(n))) ==>
9437 * b + 1 <= 4096 * m ==>
?n. n <= m /\ g(n) = &0

Exercise: Understand how proof uses the number
((1591853137 + 3

√
273548757304312537)/255)1/54.
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My formalization goal this week
Theorem: Let n; t be nonnegative integers. Let
k be a finite field with F2 ⊆ k. Let ¸1; : : : ; ¸n be
distinct elements of k . Define A =

Q
i (x − ¸i ).

Let g be an element of k[x ] such that deg g = t
and gcd{g; A} = 1. Let B; a; b be elements of
k[x ] with gcd{a; b} = 1, deg a ≤ t, A ∈ ak[x ],
and deg(aB − bA) < n − 2t + deg a. Assume
that g(¸i )

2B(¸i )=A
′(¸i ) ∈ F2 for all i , where A′

is the derivative of A. Define e ∈ Fn2 by
ei = [a(¸i ) = 0]. Then wt e = deg a and

X

i

„
g(¸i )

2B(¸i )

A′(¸i )
− ei

«
A

x − ¸i
∈ g2k[x ]:



A correct-computation challenge
Among published post-quantum signature
systems with no known feasible attacks:
2020 De Feo–Kohel–Leroux–Petit–Wesolowski
“SQISign” has smallest total sig+key size.
Maybe this smallness will attract usage.

(And that’s scary! Is SQISign secure?)
Challenge: formally verify algorithms
used for SQISign computation.
Concepts: supersingular elliptic curves over
finite fields, isogenies, ideals of quaternion
algebras, etc. See “Learning to SQI”.
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Are crypto constructions secure?
Crypto often advertises “security proofs”:
type-T attack against construction X
with cost c and probability p
implies type-U attack against problem Y
with cost d and probability q.

Common issues (see 2023 Koblitz–Menezes
survey for many examples):
• Y isn’t actually a hard problem.
• T is too narrow for the application.
• Big (c, p) vs. (d, q) gap is ignored.
• “Proof” is wrong.
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A construction-security challenge
“Classic McEliece”: a public-key encryption
system using error-correcting codes.
Challenge: formalize the existing proof
that any “QROM IND-CCA2” attack against
Classic McEliece implies an “inversion” attack
with comparable effectiveness against the
original 1978 McEliece cryptosystem.

Relies a bit on basic coding theory (using
finite fields, matrices, polynomials) but main
task is to formalize the proofs tracking cost
and probability of quantum algorithms.
Warmup challenge: “ROM”, non-quantum.
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Are the underlying problems hard?
Very little change in McEliece inversion
security levels since 1978 despite many
papers attacking this inversion problem.
We hope there isn’t a much better attack.

Most cryptographic problems are less well
studied. Analogous hopes often fail.
General issue: We have no proofs of useful
lower bounds on costs of high-Pr attacks.
And: Best proven performance among known
attacks is much worse than best conjectured
performance among known attacks.
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Are proofs useless here?
Sometimes proofs for components of attack
analyses help reduce risk of error.
e.g. 2023 Bernstein: 9950-line HOL Light
proof of asymptotics of a particular function.
Previous literature (1) uses this function as a
model of the cost of lattice attacks and (2)
makes claims about attack performance
incompatible with these asymptotics.

Challenge: formally verify proofs given in
2021 Bernstein–Lange “Non-randomness of
S-unit lattices”. Need cyclotomic fields, units,
class groups, Brauer–Siegel theorem.
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