
Does cryptographic software work correctly?

1. The scale of the problem

Daniel J. Bernstein
University of Illinois at Chicago; Ruhr University Bochum

CVE-2018-0733, an OpenSSL bug

“Because of an implementation bug the PA-RISC CRYPTO_memcmp
function is effectively reduced to only comparing the least
significant bit of each byte.” Bug introduced 2016.05.

How severe is this? “This allows an attacker to forge messages that
would be considered as authenticated in an amount of tries lower
than that guaranteed by the security claims of the scheme.”
— Yes, 216 is “lower than” 2128.

Does cryptographic software work correctly? Daniel J. Bernstein

CVE-2018-0733, an OpenSSL bug

“Because of an implementation bug the PA-RISC CRYPTO_memcmp
function is effectively reduced to only comparing the least
significant bit of each byte.” Bug introduced 2016.05.
How severe is this? “This allows an attacker to forge messages that
would be considered as authenticated in an amount of tries lower
than that guaranteed by the security claims of the scheme.”

— Yes, 216 is “lower than” 2128.

Does cryptographic software work correctly? Daniel J. Bernstein

CVE-2018-0733, an OpenSSL bug

“Because of an implementation bug the PA-RISC CRYPTO_memcmp
function is effectively reduced to only comparing the least
significant bit of each byte.” Bug introduced 2016.05.
How severe is this? “This allows an attacker to forge messages that
would be considered as authenticated in an amount of tries lower
than that guaranteed by the security claims of the scheme.”
— Yes, 216 is “lower than” 2128.

Does cryptographic software work correctly? Daniel J. Bernstein

CVE-2017-3738, another OpenSSL bug

Don’t care about PA-RISC? How about Intel?
“There is an overflow bug in the AVX2 Montgomery multiplication
procedure used in exponentiation with 1024-bit moduli.”
Bug introduced 2013.07.

“Attacks against DH1024 are considered just feasible”
— How much time? How much hardware?

Does cryptographic software work correctly? Daniel J. Bernstein

CVE-2017-3738, another OpenSSL bug

Don’t care about PA-RISC? How about Intel?
“There is an overflow bug in the AVX2 Montgomery multiplication
procedure used in exponentiation with 1024-bit moduli.”
Bug introduced 2013.07.
“Attacks against DH1024 are considered just feasible”

— How much time? How much hardware?

Does cryptographic software work correctly? Daniel J. Bernstein

CVE-2017-3738, another OpenSSL bug

Don’t care about PA-RISC? How about Intel?
“There is an overflow bug in the AVX2 Montgomery multiplication
procedure used in exponentiation with 1024-bit moduli.”
Bug introduced 2013.07.
“Attacks against DH1024 are considered just feasible”
— How much time? How much hardware?

Does cryptographic software work correctly? Daniel J. Bernstein

CVE-2017-3738, continued
Are you safe if you aren’t using DH1024? “Analysis suggests that
attacks against RSA and DSA as a result of this defect would be
very difficult to perform and are not believed likely.”

— Really? How much public scrutiny
has the actual computation received from cryptanalysts?
What this looks like to me: “We have analyzed our new
cryptosystem and concluded that attacks are not likely.”
— Don’t we require attack analyses to be published and reviewed?
2019.12: Similar OpenSSL advisory for CVE-2019-1551.

Does cryptographic software work correctly? Daniel J. Bernstein

CVE-2017-3738, continued
Are you safe if you aren’t using DH1024? “Analysis suggests that
attacks against RSA and DSA as a result of this defect would be
very difficult to perform and are not believed likely.”
— Really? How much public scrutiny
has the actual computation received from cryptanalysts?

What this looks like to me: “We have analyzed our new
cryptosystem and concluded that attacks are not likely.”
— Don’t we require attack analyses to be published and reviewed?
2019.12: Similar OpenSSL advisory for CVE-2019-1551.

Does cryptographic software work correctly? Daniel J. Bernstein

CVE-2017-3738, continued
Are you safe if you aren’t using DH1024? “Analysis suggests that
attacks against RSA and DSA as a result of this defect would be
very difficult to perform and are not believed likely.”
— Really? How much public scrutiny
has the actual computation received from cryptanalysts?
What this looks like to me: “We have analyzed our new
cryptosystem and concluded that attacks are not likely.”

— Don’t we require attack analyses to be published and reviewed?
2019.12: Similar OpenSSL advisory for CVE-2019-1551.

Does cryptographic software work correctly? Daniel J. Bernstein

CVE-2017-3738, continued
Are you safe if you aren’t using DH1024? “Analysis suggests that
attacks against RSA and DSA as a result of this defect would be
very difficult to perform and are not believed likely.”
— Really? How much public scrutiny
has the actual computation received from cryptanalysts?
What this looks like to me: “We have analyzed our new
cryptosystem and concluded that attacks are not likely.”
— Don’t we require attack analyses to be published and reviewed?

2019.12: Similar OpenSSL advisory for CVE-2019-1551.

Does cryptographic software work correctly? Daniel J. Bernstein

CVE-2017-3738, continued
Are you safe if you aren’t using DH1024? “Analysis suggests that
attacks against RSA and DSA as a result of this defect would be
very difficult to perform and are not believed likely.”
— Really? How much public scrutiny
has the actual computation received from cryptanalysts?
What this looks like to me: “We have analyzed our new
cryptosystem and concluded that attacks are not likely.”
— Don’t we require attack analyses to be published and reviewed?
2019.12: Similar OpenSSL advisory for CVE-2019-1551.

Does cryptographic software work correctly? Daniel J. Bernstein

Part of the CVE-2017-3738 patch
@@ -1093,7 +1093,9 @@

vmovdqu -8+32*2-128($ap),$TEMP2

mov $r1, %rax
+ vpblendd \$0xfc, $ZERO, $ACC9, $ACC9 # correct $ACC3
imull $n0, %eax

+ vpaddq $ACC9,$ACC4,$ACC4 # correct $ACC3
and \$0x1fffffff, %eax

imulq 16-128($ap),%rbx
@@ -1329,15 +1331,12 @@

Does cryptographic software work correctly? Daniel J. Bernstein

2019.09: bug announced in Falcon software
“The consequences of these bugs are the following:
• Produced signatures were valid but leaked information on

the private key. [emphasis added]
• Performance was artificially inflated: . . .

The fact that these bugs existed in the first place shows that the
traditional development methodology (i.e. ‘being super careful’)
has failed.”

2018.01: Similar bug announced in Dilithium software
(which “can easily be exploited to recover the secret key”).
2020.07: NIST post-quantum competition announces Dilithium and
Falcon as the two lattice-based signature-system finalists.

Does cryptographic software work correctly? Daniel J. Bernstein

2019.09: bug announced in Falcon software
“The consequences of these bugs are the following:
• Produced signatures were valid but leaked information on

the private key. [emphasis added]
• Performance was artificially inflated: . . .

The fact that these bugs existed in the first place shows that the
traditional development methodology (i.e. ‘being super careful’)
has failed.”
2018.01: Similar bug announced in Dilithium software
(which “can easily be exploited to recover the secret key”).

2020.07: NIST post-quantum competition announces Dilithium and
Falcon as the two lattice-based signature-system finalists.

Does cryptographic software work correctly? Daniel J. Bernstein

2019.09: bug announced in Falcon software
“The consequences of these bugs are the following:
• Produced signatures were valid but leaked information on

the private key. [emphasis added]
• Performance was artificially inflated: . . .

The fact that these bugs existed in the first place shows that the
traditional development methodology (i.e. ‘being super careful’)
has failed.”
2018.01: Similar bug announced in Dilithium software
(which “can easily be exploited to recover the secret key”).
2020.07: NIST post-quantum competition announces Dilithium and
Falcon as the two lattice-based signature-system finalists.

Does cryptographic software work correctly? Daniel J. Bernstein

Cryptography is notoriously hard to review
Mathematical complications in cryptography lead to subtle bugs.

Side-channel countermeasures add more complexity.
Post-quantum cryptography: even more complex.
Cryptography is applied to large volumes of data.
Often individual cryptographic computations are time-consuming.
Pursuit of speed ⇒ many different cryptographic systems, and
cryptographic code optimized in many ways for particular CPUs.
e.g. Keccak Code Package: >20 implementations of SHA-3.
e.g. Google added hand-written Cortex-A7 asm to Linux kernel for
Speck128/128-XTS, then switched to (faster) Adiantum-XChaCha.

Does cryptographic software work correctly? Daniel J. Bernstein

Cryptography is notoriously hard to review
Mathematical complications in cryptography lead to subtle bugs.
Side-channel countermeasures add more complexity.

Post-quantum cryptography: even more complex.
Cryptography is applied to large volumes of data.
Often individual cryptographic computations are time-consuming.
Pursuit of speed ⇒ many different cryptographic systems, and
cryptographic code optimized in many ways for particular CPUs.
e.g. Keccak Code Package: >20 implementations of SHA-3.
e.g. Google added hand-written Cortex-A7 asm to Linux kernel for
Speck128/128-XTS, then switched to (faster) Adiantum-XChaCha.

Does cryptographic software work correctly? Daniel J. Bernstein

Cryptography is notoriously hard to review
Mathematical complications in cryptography lead to subtle bugs.
Side-channel countermeasures add more complexity.
Post-quantum cryptography: even more complex.

Cryptography is applied to large volumes of data.
Often individual cryptographic computations are time-consuming.
Pursuit of speed ⇒ many different cryptographic systems, and
cryptographic code optimized in many ways for particular CPUs.
e.g. Keccak Code Package: >20 implementations of SHA-3.
e.g. Google added hand-written Cortex-A7 asm to Linux kernel for
Speck128/128-XTS, then switched to (faster) Adiantum-XChaCha.

Does cryptographic software work correctly? Daniel J. Bernstein

Cryptography is notoriously hard to review
Mathematical complications in cryptography lead to subtle bugs.
Side-channel countermeasures add more complexity.
Post-quantum cryptography: even more complex.
Cryptography is applied to large volumes of data.
Often individual cryptographic computations are time-consuming.
Pursuit of speed ⇒ many different cryptographic systems, and
cryptographic code optimized in many ways for particular CPUs.

e.g. Keccak Code Package: >20 implementations of SHA-3.
e.g. Google added hand-written Cortex-A7 asm to Linux kernel for
Speck128/128-XTS, then switched to (faster) Adiantum-XChaCha.

Does cryptographic software work correctly? Daniel J. Bernstein

Cryptography is notoriously hard to review
Mathematical complications in cryptography lead to subtle bugs.
Side-channel countermeasures add more complexity.
Post-quantum cryptography: even more complex.
Cryptography is applied to large volumes of data.
Often individual cryptographic computations are time-consuming.
Pursuit of speed ⇒ many different cryptographic systems, and
cryptographic code optimized in many ways for particular CPUs.
e.g. Keccak Code Package: >20 implementations of SHA-3.
e.g. Google added hand-written Cortex-A7 asm to Linux kernel for
Speck128/128-XTS, then switched to (faster) Adiantum-XChaCha.

Does cryptographic software work correctly? Daniel J. Bernstein

Is open-source software bug-free?

Eric S. Raymond, 1999: “Given a large enough beta-tester and
co-developer base, almost every problem will be characterized
quickly and the fix obvious to someone. Or, less formally,
‘Given enough eyeballs, all bugs are shallow.’ ”

— “Beta-tester”: Ultimately, the unhappy user?
— “Almost every problem”: That’s not “all bugs”!
Don’t we care about the exceptions, the bugs not found quickly?
Rare bugs can be devastating, especially for security!

Does cryptographic software work correctly? Daniel J. Bernstein

Is open-source software bug-free?

Eric S. Raymond, 1999: “Given a large enough beta-tester and
co-developer base, almost every problem will be characterized
quickly and the fix obvious to someone. Or, less formally,
‘Given enough eyeballs, all bugs are shallow.’ ”
— “Beta-tester”: Ultimately, the unhappy user?

— “Almost every problem”: That’s not “all bugs”!
Don’t we care about the exceptions, the bugs not found quickly?
Rare bugs can be devastating, especially for security!

Does cryptographic software work correctly? Daniel J. Bernstein

Is open-source software bug-free?

Eric S. Raymond, 1999: “Given a large enough beta-tester and
co-developer base, almost every problem will be characterized
quickly and the fix obvious to someone. Or, less formally,
‘Given enough eyeballs, all bugs are shallow.’ ”
— “Beta-tester”: Ultimately, the unhappy user?
— “Almost every problem”: That’s not “all bugs”!
Don’t we care about the exceptions, the bugs not found quickly?
Rare bugs can be devastating, especially for security!

Does cryptographic software work correctly? Daniel J. Bernstein

More reasons for skepticism

— How do we know how many exceptions there are?
How many people are looking for unobvious bugs in our code?

— How can there be enough people looking for bugs
when most developers prefer writing new code?
— ESR advocates a development methodology
that releases a constant flood of new bugs.
Doesn’t this make his “law” automatically true?
Is this the correctness metric that users want?

Does cryptographic software work correctly? Daniel J. Bernstein

More reasons for skepticism

— How do we know how many exceptions there are?
How many people are looking for unobvious bugs in our code?
— How can there be enough people looking for bugs
when most developers prefer writing new code?

— ESR advocates a development methodology
that releases a constant flood of new bugs.
Doesn’t this make his “law” automatically true?
Is this the correctness metric that users want?

Does cryptographic software work correctly? Daniel J. Bernstein

More reasons for skepticism

— How do we know how many exceptions there are?
How many people are looking for unobvious bugs in our code?
— How can there be enough people looking for bugs
when most developers prefer writing new code?
— ESR advocates a development methodology
that releases a constant flood of new bugs.
Doesn’t this make his “law” automatically true?
Is this the correctness metric that users want?

Does cryptographic software work correctly? Daniel J. Bernstein

So we should use closed source?

“Closed source stops attackers from finding bugs.”

— Serious attackers extract, disassemble, decompile the code,
and understand it without our code comments, function names, etc.
“Closed source scares away some lazy academics,
so we have fewer public bug announcements to deal with.”
— Sounds plausible, but is the delay worthwhile?
e.g. Infineon deployed RSALib very widely before its keygen was
broken by 2017 Nemec–Sys–Svenda–Klinec–Matyas “ROCA”.

Does cryptographic software work correctly? Daniel J. Bernstein

So we should use closed source?

“Closed source stops attackers from finding bugs.”
— Serious attackers extract, disassemble, decompile the code,
and understand it without our code comments, function names, etc.

“Closed source scares away some lazy academics,
so we have fewer public bug announcements to deal with.”
— Sounds plausible, but is the delay worthwhile?
e.g. Infineon deployed RSALib very widely before its keygen was
broken by 2017 Nemec–Sys–Svenda–Klinec–Matyas “ROCA”.

Does cryptographic software work correctly? Daniel J. Bernstein

So we should use closed source?

“Closed source stops attackers from finding bugs.”
— Serious attackers extract, disassemble, decompile the code,
and understand it without our code comments, function names, etc.
“Closed source scares away some lazy academics,
so we have fewer public bug announcements to deal with.”

— Sounds plausible, but is the delay worthwhile?
e.g. Infineon deployed RSALib very widely before its keygen was
broken by 2017 Nemec–Sys–Svenda–Klinec–Matyas “ROCA”.

Does cryptographic software work correctly? Daniel J. Bernstein

So we should use closed source?

“Closed source stops attackers from finding bugs.”
— Serious attackers extract, disassemble, decompile the code,
and understand it without our code comments, function names, etc.
“Closed source scares away some lazy academics,
so we have fewer public bug announcements to deal with.”
— Sounds plausible, but is the delay worthwhile?
e.g. Infineon deployed RSALib very widely before its keygen was
broken by 2017 Nemec–Sys–Svenda–Klinec–Matyas “ROCA”.

Does cryptographic software work correctly? Daniel J. Bernstein

https://www.forbes.com/sites/daveywinder/2019/06/12/warning-windows-10-crypto-vulnerability-outed-by-google-researcher-before-microsoft-can-fix-it/

https://www.forbes.com/sites/daveywinder/2019/06/12/warning-windows-10-crypto-vulnerability-outed-by-google-researcher-before-microsoft-can-fix-it/

Does cryptographic software work correctly?

2. Computer-verified proofs

Daniel J. Bernstein
University of Illinois at Chicago; Ruhr University Bochum

Formal logic to the rescue?
Whitehead and Russell, Principia Mathematica, volume 1,
1st edition (1910), page 379:

Does cryptographic software work correctly? Daniel J. Bernstein

Formal verification today
Require code reviewer to prove correctness.
Require proofs to pass a proof-checking computer program.

Mathematicians rarely use these proof-checking tools today.
Proving crypto code correct is tedious. But not impossible!
Latest EverCrypt release: verified software for Curve25519,
Ed25519, ChaCha20, Poly1305, AES-CTR (if CPU has AES-NI),
AES-GCM (same), MD5, SHA-1, SHA-2, SHA-3, BLAKE2.
Good: High confidence that subtle bugs are gone
(in the code; but worry about bugs in compiler, CPU, . . .).
Bad: Tons of effort for each implementation.
e.g. EverCrypt doesn’t have fast software for smartphone CPUs.

Does cryptographic software work correctly? Daniel J. Bernstein

https://eprint.iacr.org/2019/757

Formal verification today
Require code reviewer to prove correctness.
Require proofs to pass a proof-checking computer program.
Mathematicians rarely use these proof-checking tools today.
Proving crypto code correct is tedious.

But not impossible!
Latest EverCrypt release: verified software for Curve25519,
Ed25519, ChaCha20, Poly1305, AES-CTR (if CPU has AES-NI),
AES-GCM (same), MD5, SHA-1, SHA-2, SHA-3, BLAKE2.
Good: High confidence that subtle bugs are gone
(in the code; but worry about bugs in compiler, CPU, . . .).
Bad: Tons of effort for each implementation.
e.g. EverCrypt doesn’t have fast software for smartphone CPUs.

Does cryptographic software work correctly? Daniel J. Bernstein

https://eprint.iacr.org/2019/757

Formal verification today
Require code reviewer to prove correctness.
Require proofs to pass a proof-checking computer program.
Mathematicians rarely use these proof-checking tools today.
Proving crypto code correct is tedious. But not impossible!
Latest EverCrypt release: verified software for Curve25519,
Ed25519, ChaCha20, Poly1305, AES-CTR (if CPU has AES-NI),
AES-GCM (same), MD5, SHA-1, SHA-2, SHA-3, BLAKE2.

Good: High confidence that subtle bugs are gone
(in the code; but worry about bugs in compiler, CPU, . . .).
Bad: Tons of effort for each implementation.
e.g. EverCrypt doesn’t have fast software for smartphone CPUs.

Does cryptographic software work correctly? Daniel J. Bernstein

https://eprint.iacr.org/2019/757

Formal verification today
Require code reviewer to prove correctness.
Require proofs to pass a proof-checking computer program.
Mathematicians rarely use these proof-checking tools today.
Proving crypto code correct is tedious. But not impossible!
Latest EverCrypt release: verified software for Curve25519,
Ed25519, ChaCha20, Poly1305, AES-CTR (if CPU has AES-NI),
AES-GCM (same), MD5, SHA-1, SHA-2, SHA-3, BLAKE2.
Good: High confidence that subtle bugs are gone
(in the code; but worry about bugs in compiler, CPU, . . .).

Bad: Tons of effort for each implementation.
e.g. EverCrypt doesn’t have fast software for smartphone CPUs.

Does cryptographic software work correctly? Daniel J. Bernstein

https://eprint.iacr.org/2019/757

Formal verification today
Require code reviewer to prove correctness.
Require proofs to pass a proof-checking computer program.
Mathematicians rarely use these proof-checking tools today.
Proving crypto code correct is tedious. But not impossible!
Latest EverCrypt release: verified software for Curve25519,
Ed25519, ChaCha20, Poly1305, AES-CTR (if CPU has AES-NI),
AES-GCM (same), MD5, SHA-1, SHA-2, SHA-3, BLAKE2.
Good: High confidence that subtle bugs are gone
(in the code; but worry about bugs in compiler, CPU, . . .).
Bad: Tons of effort for each implementation.
e.g. EverCrypt doesn’t have fast software for smartphone CPUs.

Does cryptographic software work correctly? Daniel J. Bernstein

https://eprint.iacr.org/2019/757

Case study: Beneš networks
• //

**

• //

%%

• //

��

• //

%%

• //

**

•

• //

44

• //

%%

• //

��

• //

%%

• //

44

•

• //

**

• //

99

• //

��

• //

99

• //

**

•

• //

44

• //

99

• //

��

• //

99

• //

44

•

• //

**

• //

%%

• //

CC

• //

%%

• //

**

•

• //

44

• //

%%

• //

CC

• //

%%

• //

44

•

• //

**

• //

99

• //

CC

• //

99

• //

**

•

• //

44

• //

99

• //

CC

• //

99

• //

44

•
Does cryptographic software work correctly? Daniel J. Bernstein

Computing control bits for Beneš networks

Long literature on Beneš networks. Energy-efficient. Low latency.

1968 Stone: Fast algorithm that, given a permutation of 2m inputs,
computes Beneš-network control bits applying that permutation.
1981 Lev–Pippenger–Valiant, 1982 Nassimi–Sahni, 1996 Lee–Liew,
etc.: Fast parallel algorithms to compute control bits.
Post-quantum crypto (e.g., Classic McEliece) uses fast
constant-time software to compute and apply control bits.
Is this software always computing the right control bits?

Does cryptographic software work correctly? Daniel J. Bernstein

Computing control bits for Beneš networks

Long literature on Beneš networks. Energy-efficient. Low latency.
1968 Stone: Fast algorithm that, given a permutation of 2m inputs,
computes Beneš-network control bits applying that permutation.

1981 Lev–Pippenger–Valiant, 1982 Nassimi–Sahni, 1996 Lee–Liew,
etc.: Fast parallel algorithms to compute control bits.
Post-quantum crypto (e.g., Classic McEliece) uses fast
constant-time software to compute and apply control bits.
Is this software always computing the right control bits?

Does cryptographic software work correctly? Daniel J. Bernstein

Computing control bits for Beneš networks

Long literature on Beneš networks. Energy-efficient. Low latency.
1968 Stone: Fast algorithm that, given a permutation of 2m inputs,
computes Beneš-network control bits applying that permutation.
1981 Lev–Pippenger–Valiant, 1982 Nassimi–Sahni, 1996 Lee–Liew,
etc.: Fast parallel algorithms to compute control bits.

Post-quantum crypto (e.g., Classic McEliece) uses fast
constant-time software to compute and apply control bits.
Is this software always computing the right control bits?

Does cryptographic software work correctly? Daniel J. Bernstein

Computing control bits for Beneš networks

Long literature on Beneš networks. Energy-efficient. Low latency.
1968 Stone: Fast algorithm that, given a permutation of 2m inputs,
computes Beneš-network control bits applying that permutation.
1981 Lev–Pippenger–Valiant, 1982 Nassimi–Sahni, 1996 Lee–Liew,
etc.: Fast parallel algorithms to compute control bits.
Post-quantum crypto (e.g., Classic McEliece) uses fast
constant-time software to compute and apply control bits.
Is this software always computing the right control bits?

Does cryptographic software work correctly? Daniel J. Bernstein

Stone’s algorithm
0•

��

• • • • •0

1•

%%

• • • • •1

2•

%%

• • • • •2

3•

;;

• • • • •3

4•

%%

• • • • •4

5•

<<

• • • • •5

6•

88

• • • • •6

7•

>>

• • • • •7
Does cryptographic software work correctly? Daniel J. Bernstein

Stone’s algorithm
0•

��

• • •0

1•

%%

• • •1

2•

%%

• • •2

3•

;;

• • •3

4•

%%

• • •4

5•

<<

• • •5

6•

88

• • •6

7•

>>

• • •7
Does cryptographic software work correctly? Daniel J. Bernstein

Stone’s algorithm
0• //

��

• • •0

1• //

%%

• • •1

2•

%%

• • •2

3•

;;

• • •3

4•

%%

• • •4

5•

<<

• • •5

6•

88

• • •6

7•

>>

• • •7
Does cryptographic software work correctly? Daniel J. Bernstein

Stone’s algorithm
0• //

��

• • •0

1• //

%%

•

,,

• •1

2•

%%

• • //•2

3•

;;

• • //•3

4•

%%

• • •4

5•

<<

• • •5

6•

88

• • •6

7•

>>

• • •7
Does cryptographic software work correctly? Daniel J. Bernstein

Stone’s algorithm
0• //

��

• • •0

1• //

%%

•

,,

• •1

2•

%%

• • //•2

3•

;;

• • //•3

4•

%%

• • •4

5•

<<

• • •5

6•
**

88

•

66

• •6

7•

44

>>

• • •7
Does cryptographic software work correctly? Daniel J. Bernstein

Stone’s algorithm
0• //

��

• • •0

1• //

%%

•

,,

• •1

2•

%%

• • //•2

3•

;;

• • //•3

4•

%%

• • //•4

5•

<<

• • //•5

6•
**

88

•

66

• •6

7•

44

>>

•

22

• •7
Does cryptographic software work correctly? Daniel J. Bernstein

Stone’s algorithm
0• //

��

• • •0

1• //

%%

•

,,

• •1

2• //

%%

•

,,

• //•2

3• //

;;

• • //•3

4•

%%

• • //•4

5•

<<

• • //•5

6•
**

88

•

66

• •6

7•

44

>>

•

22

• •7
Does cryptographic software work correctly? Daniel J. Bernstein

Stone’s algorithm
0• //

��

• •
**

•0

1• //

%%

•

,,

•

44

•1

2• //

%%

•

,,

• //•2

3• //

;;

•

22

• //•3

4•

%%

• • //•4

5•

<<

• • //•5

6•
**

88

•

66

• •6

7•

44

>>

•

22

• •7
Does cryptographic software work correctly? Daniel J. Bernstein

Stone’s algorithm
0• //

��

• •
**

•0

1• //

%%

•

,,

•

44

•1

2• //

%%

•

,,

• //•2

3• //

;;

•

22

• //•3

4•
**

%%

•

66

• //•4

5•

44

<<

• • //•5

6•
**

88

•

66

• •6

7•

44

>>

•

22

• •7
Does cryptographic software work correctly? Daniel J. Bernstein

Stone’s algorithm
0• //

��

• •
**

•0

1• //

%%

•

,,

•

44

•1

2• //

%%

•

,,

• //•2

3• //

;;

•

22

• //•3

4•
**

%%

•

66

• //•4

5•

44

<<

•

,,

• //•5

6•
**

88

•

66

•
**

•6

7•

44

>>

•

22

•

44

•7
Does cryptographic software work correctly? Daniel J. Bernstein

Stone’s algorithm
0• //

��

•

%%

•
**

•0

1• //

%%

•

,,

•

44

•1

2• //

%%

•

,,

• //•2

3• //

;;

•

22

• //•3

4•
**

%%

•

66

• //•4

5•

44

<<

•

,,

• //•5

6•
**

88

•

66

•
**

•6

7•

44

>>

•

22

•

44

•7
Does cryptographic software work correctly? Daniel J. Bernstein

Control-bit formulas

“Verified fast formulas for control bits for permutation networks”,
https://cr.yp.to/papers.html#controlbits:
Start with any permutation π of {0, 1, . . . , 2b − 1}.
Compute first control bits f0, f1, . . . , fb−1 and last control bits
`0, `1, . . . , `b−1 according to particular formulas in terms of π.
Define F (x) = x ⊕ fbx/2c; L(x) = x ⊕ `bx/2c; M(x) = F (π(L(x))).

Pages 4–7 of paper: Detailed math proof that M(x) ≡ x (mod 2).
Pages 21–66 of paper: Proof verified by HOL Light.

Does cryptographic software work correctly? Daniel J. Bernstein

https://cr.yp.to/papers.html#controlbits

Control-bit formulas

“Verified fast formulas for control bits for permutation networks”,
https://cr.yp.to/papers.html#controlbits:
Start with any permutation π of {0, 1, . . . , 2b − 1}.
Compute first control bits f0, f1, . . . , fb−1 and last control bits
`0, `1, . . . , `b−1 according to particular formulas in terms of π.
Define F (x) = x ⊕ fbx/2c; L(x) = x ⊕ `bx/2c; M(x) = F (π(L(x))).
Pages 4–7 of paper: Detailed math proof that M(x) ≡ x (mod 2).

Pages 21–66 of paper: Proof verified by HOL Light.

Does cryptographic software work correctly? Daniel J. Bernstein

https://cr.yp.to/papers.html#controlbits

Control-bit formulas

“Verified fast formulas for control bits for permutation networks”,
https://cr.yp.to/papers.html#controlbits:
Start with any permutation π of {0, 1, . . . , 2b − 1}.
Compute first control bits f0, f1, . . . , fb−1 and last control bits
`0, `1, . . . , `b−1 according to particular formulas in terms of π.
Define F (x) = x ⊕ fbx/2c; L(x) = x ⊕ `bx/2c; M(x) = F (π(L(x))).
Pages 4–7 of paper: Detailed math proof that M(x) ≡ x (mod 2).
Pages 21–66 of paper: Proof verified by HOL Light.

Does cryptographic software work correctly? Daniel J. Bernstein

https://cr.yp.to/papers.html#controlbits

Verifying claimed theorems in HOL Light
In a new Debian Stretch VM: # apt install git make camlp5
As a new user, download and compile HOL Light:
$ git clone https://github.com/jrh13/hol-light.git
$ cd hol-light; make

Download someone’s claimed HOL Light theorems: e.g.,
$ wget https://cr.yp.to/2020/controlbits-20200923.ml

Start HOL Light (takes a few minutes to verify built-in theorems):
$ ocaml
#use "hol.ml";;

Ask HOL Light to verify the claimed theorems:
#use "controlbits-20200923.ml";;

Does cryptographic software work correctly? Daniel J. Bernstein

Defining a mathematical function in HOL Light
let xor1 = new_definition

‘xor1 (n:num) = if EVEN n then n+1 else n-1‘;;

i.e. xor1(0) is 1; xor1(1) is 0; xor1(2) is 3; xor1(3) is 2; etc.

num means nonnegative integers: {0, 1, 2, . . .}.
EVEN n means True (T) if n is even, else False (F).
n+1 means what you think it means.
Warning: n-1 doesn’t mean exactly what you think it means.
If n is 0:num then n-1 is 0. Error-prone definition of -. Yikes!
Analogy: + on int in C isn’t math + on integers; can overflow.

Does cryptographic software work correctly? Daniel J. Bernstein

Defining a mathematical function in HOL Light
let xor1 = new_definition

‘xor1 (n:num) = if EVEN n then n+1 else n-1‘;;

i.e. xor1(0) is 1; xor1(1) is 0; xor1(2) is 3; xor1(3) is 2; etc.
num means nonnegative integers: {0, 1, 2, . . .}.
EVEN n means True (T) if n is even, else False (F).
n+1 means what you think it means.

Warning: n-1 doesn’t mean exactly what you think it means.
If n is 0:num then n-1 is 0. Error-prone definition of -. Yikes!
Analogy: + on int in C isn’t math + on integers; can overflow.

Does cryptographic software work correctly? Daniel J. Bernstein

Defining a mathematical function in HOL Light
let xor1 = new_definition

‘xor1 (n:num) = if EVEN n then n+1 else n-1‘;;

i.e. xor1(0) is 1; xor1(1) is 0; xor1(2) is 3; xor1(3) is 2; etc.
num means nonnegative integers: {0, 1, 2, . . .}.
EVEN n means True (T) if n is even, else False (F).
n+1 means what you think it means.
Warning: n-1 doesn’t mean exactly what you think it means.
If n is 0:num then n-1 is 0. Error-prone definition of -. Yikes!
Analogy: + on int in C isn’t math + on integers; can overflow.

Does cryptographic software work correctly? Daniel J. Bernstein

Quantifiers in HOL Light
“f is an involution” means: every x has f (f (x)) = x .

let involution = new_definition
‘involution (f:A->A) <=> !x. f(f x) = x‘;;

f:A->A is a function from A to A. Can write f x for f(x).
!x in HOL Light means “for all x of this type”.
HOL Light type-checker automatically chooses type of x as A
since x is an f input (and an f output). Or can write !x:A.
In xor1 definition could have written xor1 n =
Type-checker would have assumed num since EVEN wants a num.
Can even say involution f = ...; type-checker will invent an A.

Does cryptographic software work correctly? Daniel J. Bernstein

Quantifiers in HOL Light
“f is an involution” means: every x has f (f (x)) = x .

let involution = new_definition
‘involution (f:A->A) <=> !x. f(f x) = x‘;;

f:A->A is a function from A to A. Can write f x for f(x).

!x in HOL Light means “for all x of this type”.
HOL Light type-checker automatically chooses type of x as A
since x is an f input (and an f output). Or can write !x:A.
In xor1 definition could have written xor1 n =
Type-checker would have assumed num since EVEN wants a num.
Can even say involution f = ...; type-checker will invent an A.

Does cryptographic software work correctly? Daniel J. Bernstein

Quantifiers in HOL Light
“f is an involution” means: every x has f (f (x)) = x .

let involution = new_definition
‘involution (f:A->A) <=> !x. f(f x) = x‘;;

f:A->A is a function from A to A. Can write f x for f(x).
!x in HOL Light means “for all x of this type”.
HOL Light type-checker automatically chooses type of x as A
since x is an f input (and an f output). Or can write !x:A.

In xor1 definition could have written xor1 n =
Type-checker would have assumed num since EVEN wants a num.
Can even say involution f = ...; type-checker will invent an A.

Does cryptographic software work correctly? Daniel J. Bernstein

Quantifiers in HOL Light
“f is an involution” means: every x has f (f (x)) = x .

let involution = new_definition
‘involution (f:A->A) <=> !x. f(f x) = x‘;;

f:A->A is a function from A to A. Can write f x for f(x).
!x in HOL Light means “for all x of this type”.
HOL Light type-checker automatically chooses type of x as A
since x is an f input (and an f output). Or can write !x:A.
In xor1 definition could have written xor1 n =
Type-checker would have assumed num since EVEN wants a num.

Can even say involution f = ...; type-checker will invent an A.

Does cryptographic software work correctly? Daniel J. Bernstein

Quantifiers in HOL Light
“f is an involution” means: every x has f (f (x)) = x .

let involution = new_definition
‘involution (f:A->A) <=> !x. f(f x) = x‘;;

f:A->A is a function from A to A. Can write f x for f(x).
!x in HOL Light means “for all x of this type”.
HOL Light type-checker automatically chooses type of x as A
since x is an f input (and an f output). Or can write !x:A.
In xor1 definition could have written xor1 n =
Type-checker would have assumed num since EVEN wants a num.
Can even say involution f = ...; type-checker will invent an A.

Does cryptographic software work correctly? Daniel J. Bernstein

Verified theorems in HOL Light: thm

xor1_involution;;
val it : thm = |- involution xor1

Always carefully check theorem statements and definitions: e.g.,

xor1;;
val it : thm = |- !n. xor1 n =

(if EVEN n then n + 1 else n - 1)

Also check (before running it!) that controlbits-20200923.ml
didn’t override HOL Light. Harder: check OCaml, gcc, OS, CPU.

Does cryptographic software work correctly? Daniel J. Bernstein

Verified theorems in HOL Light: thm

xor1_involution;;
val it : thm = |- involution xor1

Always carefully check theorem statements and definitions: e.g.,

xor1;;
val it : thm = |- !n. xor1 n =
(if EVEN n then n + 1 else n - 1)

Also check (before running it!) that controlbits-20200923.ml
didn’t override HOL Light. Harder: check OCaml, gcc, OS, CPU.

Does cryptographic software work correctly? Daniel J. Bernstein

Verified theorems in HOL Light: thm

xor1_involution;;
val it : thm = |- involution xor1

Always carefully check theorem statements and definitions: e.g.,

xor1;;
val it : thm = |- !n. xor1 n =
(if EVEN n then n + 1 else n - 1)

Also check (before running it!) that controlbits-20200923.ml
didn’t override HOL Light.

Harder: check OCaml, gcc, OS, CPU.

Does cryptographic software work correctly? Daniel J. Bernstein

Verified theorems in HOL Light: thm

xor1_involution;;
val it : thm = |- involution xor1

Always carefully check theorem statements and definitions: e.g.,

xor1;;
val it : thm = |- !n. xor1 n =
(if EVEN n then n + 1 else n - 1)

Also check (before running it!) that controlbits-20200923.ml
didn’t override HOL Light. Harder: check OCaml, gcc, OS, CPU.

Does cryptographic software work correctly? Daniel J. Bernstein

Proving theorems in HOL Light
Somewhere inside controlbits-20200923.ml:

let xor1_involution = prove(
‘involution xor1‘,
MESON_TAC[xor1xor1;involution]);;

MESON_TAC: “model elimination subgoal oriented”
theorem-proving tactic . . . meaning: this follows trivially.

involution;;
val it : thm = |- !f. involution f <=> (!x. f (f x) = x)
xor1xor1;;
val it : thm = |- !n. xor1 (xor1 n) = n

Does cryptographic software work correctly? Daniel J. Bernstein

Proving theorems in HOL Light
Somewhere inside controlbits-20200923.ml:

let xor1_involution = prove(
‘involution xor1‘,
MESON_TAC[xor1xor1;involution]);;

MESON_TAC: “model elimination subgoal oriented”
theorem-proving tactic . . . meaning: this follows trivially.

involution;;
val it : thm = |- !f. involution f <=> (!x. f (f x) = x)

xor1xor1;;
val it : thm = |- !n. xor1 (xor1 n) = n

Does cryptographic software work correctly? Daniel J. Bernstein

Proving theorems in HOL Light
Somewhere inside controlbits-20200923.ml:

let xor1_involution = prove(
‘involution xor1‘,
MESON_TAC[xor1xor1;involution]);;

MESON_TAC: “model elimination subgoal oriented”
theorem-proving tactic . . . meaning: this follows trivially.

involution;;
val it : thm = |- !f. involution f <=> (!x. f (f x) = x)
xor1xor1;;
val it : thm = |- !n. xor1 (xor1 n) = n

Does cryptographic software work correctly? Daniel J. Bernstein

Proving theorems in HOL Light, continued
let xor1xor1 = prove(
‘!n. xor1(xor1 n) = n‘,
MESON_TAC[xor1xor1_ifodd;xor1xor1_ifeven;EVEN_OR_ODD]);;

EVEN_OR_ODD;;
val it : thm = |- !n. EVEN n \/ ODD n
xor1xor1_ifeven;;
val it : thm = |- !n. EVEN n ==> xor1 (xor1 n) = n
xor1xor1_ifodd;;
val it : thm = |- !n. ODD n ==> xor1 (xor1 n) = n

Does cryptographic software work correctly? Daniel J. Bernstein

Proving theorems in HOL Light, continued
let xor1xor1 = prove(
‘!n. xor1(xor1 n) = n‘,
MESON_TAC[xor1xor1_ifodd;xor1xor1_ifeven;EVEN_OR_ODD]);;

EVEN_OR_ODD;;
val it : thm = |- !n. EVEN n \/ ODD n

xor1xor1_ifeven;;
val it : thm = |- !n. EVEN n ==> xor1 (xor1 n) = n
xor1xor1_ifodd;;
val it : thm = |- !n. ODD n ==> xor1 (xor1 n) = n

Does cryptographic software work correctly? Daniel J. Bernstein

Proving theorems in HOL Light, continued
let xor1xor1 = prove(
‘!n. xor1(xor1 n) = n‘,
MESON_TAC[xor1xor1_ifodd;xor1xor1_ifeven;EVEN_OR_ODD]);;

EVEN_OR_ODD;;
val it : thm = |- !n. EVEN n \/ ODD n
xor1xor1_ifeven;;
val it : thm = |- !n. EVEN n ==> xor1 (xor1 n) = n

xor1xor1_ifodd;;
val it : thm = |- !n. ODD n ==> xor1 (xor1 n) = n

Does cryptographic software work correctly? Daniel J. Bernstein

Proving theorems in HOL Light, continued
let xor1xor1 = prove(
‘!n. xor1(xor1 n) = n‘,
MESON_TAC[xor1xor1_ifodd;xor1xor1_ifeven;EVEN_OR_ODD]);;

EVEN_OR_ODD;;
val it : thm = |- !n. EVEN n \/ ODD n
xor1xor1_ifeven;;
val it : thm = |- !n. EVEN n ==> xor1 (xor1 n) = n
xor1xor1_ifodd;;
val it : thm = |- !n. ODD n ==> xor1 (xor1 n) = n

Does cryptographic software work correctly? Daniel J. Bernstein

Sometimes proofs feel a bit more complicated

let pow_num_bijection = prove(
‘!p:A->A. bijection p ==> !n. bijection (p pow_num n)‘,
GEN_TAC THEN DISCH_TAC THEN
INDUCT_TAC THENL
[REWRITE_TAC[pow_num_0;bijection_I]
; REWRITE_TAC[suc_isadd1] THEN
ASM_MESON_TAC[pow_num_plus1;bijection_composes]

]);;

Does cryptographic software work correctly? Daniel J. Bernstein

So we’re done?
middleperm_parity;;
val it : thm = |- !p x. bijection p ==>

(ODD (middleperm p x) <=> ODD x)

So we know M(x) ≡ x (mod 2).

With marginally more effort:
π 7→ full sequence of control bits 7→ Beneš network 7→ same π.
What we actually want to know: this software is computing the
same control bits, and this software is then applying the same π.
“Software” includes Python script in paper; reference C code;
gcc output from the C code; optimized assembly language; etc.

Does cryptographic software work correctly? Daniel J. Bernstein

So we’re done?
middleperm_parity;;
val it : thm = |- !p x. bijection p ==>

(ODD (middleperm p x) <=> ODD x)

So we know M(x) ≡ x (mod 2). With marginally more effort:
π 7→ full sequence of control bits 7→ Beneš network 7→ same π.

What we actually want to know: this software is computing the
same control bits, and this software is then applying the same π.
“Software” includes Python script in paper; reference C code;
gcc output from the C code; optimized assembly language; etc.

Does cryptographic software work correctly? Daniel J. Bernstein

So we’re done?
middleperm_parity;;
val it : thm = |- !p x. bijection p ==>

(ODD (middleperm p x) <=> ODD x)

So we know M(x) ≡ x (mod 2). With marginally more effort:
π 7→ full sequence of control bits 7→ Beneš network 7→ same π.
What we actually want to know: this software is computing the
same control bits, and this software is then applying the same π.
“Software” includes Python script in paper; reference C code;
gcc output from the C code; optimized assembly language; etc.

Does cryptographic software work correctly? Daniel J. Bernstein

Solution: More proofs?
CompCert is a compiler with
• a formal definition of a C-like input language;
• a formal definition of (e.g.) an “ARM assembly language”

(at least some instructions), maybe perfectly matching ARM;
• a formally verified proof that, for each input program,

the output program is equivalent to the input program.

So: write C-like code, prove it applies π. Compile with CompCert.
Oops: the output is too slow, and have to pay to use CompCert.
So: write assembly, prove it applies π. Feasible? Yes. Tedious? Yes.

Does cryptographic software work correctly? Daniel J. Bernstein

Solution: More proofs?
CompCert is a compiler with
• a formal definition of a C-like input language;
• a formal definition of (e.g.) an “ARM assembly language”

(at least some instructions), maybe perfectly matching ARM;
• a formally verified proof that, for each input program,

the output program is equivalent to the input program.

So: write C-like code, prove it applies π. Compile with CompCert.

Oops: the output is too slow, and have to pay to use CompCert.
So: write assembly, prove it applies π. Feasible? Yes. Tedious? Yes.

Does cryptographic software work correctly? Daniel J. Bernstein

Solution: More proofs?
CompCert is a compiler with
• a formal definition of a C-like input language;
• a formal definition of (e.g.) an “ARM assembly language”

(at least some instructions), maybe perfectly matching ARM;
• a formally verified proof that, for each input program,

the output program is equivalent to the input program.

So: write C-like code, prove it applies π. Compile with CompCert.
Oops: the output is too slow, and have to pay to use CompCert.

So: write assembly, prove it applies π. Feasible? Yes. Tedious? Yes.

Does cryptographic software work correctly? Daniel J. Bernstein

Solution: More proofs?
CompCert is a compiler with
• a formal definition of a C-like input language;
• a formal definition of (e.g.) an “ARM assembly language”

(at least some instructions), maybe perfectly matching ARM;
• a formally verified proof that, for each input program,

the output program is equivalent to the input program.

So: write C-like code, prove it applies π. Compile with CompCert.
Oops: the output is too slow, and have to pay to use CompCert.
So: write assembly, prove it applies π.

Feasible? Yes. Tedious? Yes.

Does cryptographic software work correctly? Daniel J. Bernstein

Solution: More proofs?
CompCert is a compiler with
• a formal definition of a C-like input language;
• a formal definition of (e.g.) an “ARM assembly language”

(at least some instructions), maybe perfectly matching ARM;
• a formally verified proof that, for each input program,

the output program is equivalent to the input program.

So: write C-like code, prove it applies π. Compile with CompCert.
Oops: the output is too slow, and have to pay to use CompCert.
So: write assembly, prove it applies π. Feasible? Yes.

Tedious? Yes.

Does cryptographic software work correctly? Daniel J. Bernstein

Solution: More proofs?
CompCert is a compiler with
• a formal definition of a C-like input language;
• a formal definition of (e.g.) an “ARM assembly language”

(at least some instructions), maybe perfectly matching ARM;
• a formally verified proof that, for each input program,

the output program is equivalent to the input program.

So: write C-like code, prove it applies π. Compile with CompCert.
Oops: the output is too slow, and have to pay to use CompCert.
So: write assembly, prove it applies π. Feasible? Yes. Tedious? Yes.

Does cryptographic software work correctly? Daniel J. Bernstein

Does cryptographic software work correctly?

3. Symbolic testing

Daniel J. Bernstein
University of Illinois at Chicago; Ruhr University Bochum

Testing

Testing is great. Test everything. Design for tests.
Why wasn’t the PA-RISC CRYPTO_memcmp software in OpenSSL
run through millions of tests on random inputs?
And tests on inputs differing in just a few positions?
SUPERCOP crypto test framework has always done this.

Good reaction to a bug:
“How can I build fast automated tests to catch this kind of bug?”
Even better to ask question before bug happens.

Does cryptographic software work correctly? Daniel J. Bernstein

Testing

Testing is great. Test everything. Design for tests.
Why wasn’t the PA-RISC CRYPTO_memcmp software in OpenSSL
run through millions of tests on random inputs?
And tests on inputs differing in just a few positions?
SUPERCOP crypto test framework has always done this.
Good reaction to a bug:
“How can I build fast automated tests to catch this kind of bug?”
Even better to ask question before bug happens.

Does cryptographic software work correctly? Daniel J. Bernstein

The most important complaint about testing
Testing can miss attacker-triggerable bugs for rare inputs.

e.g. 2019.11 paper from Nath and Sarkar points out
bugs with probability ≈1/264 in the fastest code for Curve448:
“On certain kinds of inputs, the code will lead to overflow
conditions and hence to incorrect results. This, however, is a very
low probability event and cannot be captured using some randomly
generated known answer tests (KATs). . . . We believe that it is
important to have proofs of correctness of the reduction algorithms
to ensure that the algorithms works correctly for all possible inputs.”

Does cryptographic software work correctly? Daniel J. Bernstein

https://eprint.iacr.org/2019/1304

The most important complaint about testing
Testing can miss attacker-triggerable bugs for rare inputs.
e.g. 2019.11 paper from Nath and Sarkar points out
bugs with probability ≈1/264 in the fastest code for Curve448:
“On certain kinds of inputs, the code will lead to overflow
conditions and hence to incorrect results.

This, however, is a very
low probability event and cannot be captured using some randomly
generated known answer tests (KATs). . . . We believe that it is
important to have proofs of correctness of the reduction algorithms
to ensure that the algorithms works correctly for all possible inputs.”

Does cryptographic software work correctly? Daniel J. Bernstein

https://eprint.iacr.org/2019/1304

The most important complaint about testing
Testing can miss attacker-triggerable bugs for rare inputs.
e.g. 2019.11 paper from Nath and Sarkar points out
bugs with probability ≈1/264 in the fastest code for Curve448:
“On certain kinds of inputs, the code will lead to overflow
conditions and hence to incorrect results. This, however, is a very
low probability event and cannot be captured using some randomly
generated known answer tests (KATs). . . .

We believe that it is
important to have proofs of correctness of the reduction algorithms
to ensure that the algorithms works correctly for all possible inputs.”

Does cryptographic software work correctly? Daniel J. Bernstein

https://eprint.iacr.org/2019/1304

The most important complaint about testing
Testing can miss attacker-triggerable bugs for rare inputs.
e.g. 2019.11 paper from Nath and Sarkar points out
bugs with probability ≈1/264 in the fastest code for Curve448:
“On certain kinds of inputs, the code will lead to overflow
conditions and hence to incorrect results. This, however, is a very
low probability event and cannot be captured using some randomly
generated known answer tests (KATs). . . . We believe that it is
important to have proofs of correctness of the reduction algorithms
to ensure that the algorithms works correctly for all possible inputs.”

Does cryptographic software work correctly? Daniel J. Bernstein

https://eprint.iacr.org/2019/1304

Symbolic testing: beyond testing particular inputs
Arithmetic DAG for all 3-byte inputs:

x0
��

y0
��

x1
��

y1
��

x2
��

y2
��

^

**

^
��

^

tt

.globl CRYPTO_memcmp
CRYPTO_memcmp:
xor %rax,%rax
xor %r10,%r10
cmp $0x0,%rdx
je no_data
cmp $0x10,%rdx
jne loop
mov (%rdi),%r10
mov 0x8(%rdi),%r11
mov $0x1,%rdx
xor (%rsi),%r10
xor 0x8(%rsi),%r11
or %r11,%r10
cmovne %rdx,%rax
repz retq
loop:
mov (%rdi),%r10b
lea 0x1(%rdi),%rdi
xor (%rsi),%r10b
lea 0x1(%rsi),%rsi
or %r10b,%al
dec %rdx
jne loop
neg %rax
shr $0x3f,%rax
no_data:
repz retq

Ü |
��

uint64
��-
��

»63

Does cryptographic software work correctly? Daniel J. Bernstein

The power of modern reverse-engineering tools
Easy to use angr.io for automatic symbolic execution:
machine-language software Ü arithmetic DAG.
Simplifies analysis: simpler instructions, no memory, no jumps.

Limitation, sometimes exponential blowup: angr splits universes
whenever it reaches an input-dependent branch or address.
. . . which we try to avoid in crypto anyway.
angr (via Z3 SMT solver) often sees equivalence of small DAGs.
e.g. sees that OpenSSL x86_64 CRYPTO_memcmp on 3-byte inputs
outputs 0 if x0==y0 and x1==y1 and x2==y2,
and outputs 1 otherwise. Similarly for other input lengths.

Does cryptographic software work correctly? Daniel J. Bernstein

https://angr.io

The power of modern reverse-engineering tools
Easy to use angr.io for automatic symbolic execution:
machine-language software Ü arithmetic DAG.
Simplifies analysis: simpler instructions, no memory, no jumps.
Limitation, sometimes exponential blowup: angr splits universes
whenever it reaches an input-dependent branch or address.
. . . which we try to avoid in crypto anyway.

angr (via Z3 SMT solver) often sees equivalence of small DAGs.
e.g. sees that OpenSSL x86_64 CRYPTO_memcmp on 3-byte inputs
outputs 0 if x0==y0 and x1==y1 and x2==y2,
and outputs 1 otherwise. Similarly for other input lengths.

Does cryptographic software work correctly? Daniel J. Bernstein

https://angr.io

The power of modern reverse-engineering tools
Easy to use angr.io for automatic symbolic execution:
machine-language software Ü arithmetic DAG.
Simplifies analysis: simpler instructions, no memory, no jumps.
Limitation, sometimes exponential blowup: angr splits universes
whenever it reaches an input-dependent branch or address.
. . . which we try to avoid in crypto anyway.
angr (via Z3 SMT solver) often sees equivalence of small DAGs.
e.g. sees that OpenSSL x86_64 CRYPTO_memcmp on 3-byte inputs
outputs 0 if x0==y0 and x1==y1 and x2==y2,
and outputs 1 otherwise. Similarly for other input lengths.

Does cryptographic software work correctly? Daniel J. Bernstein

https://angr.io

#include <openssl/crypto.h>

unsigned char x[N];
unsigned char y[N];
int z;

int main()
{
z = CRYPTO_memcmp(x,y,N);
return 0;

}

#!/usr/bin/env python3

import sys
import angr

N = int(sys.argv[1]) if len(sys.argv) > 1 else 16

proj = angr.Project(’cmp%d’%N)
state = proj.factory.full_init_state()

state.options |= {
angr.options.ZERO_FILL_UNCONSTRAINED_MEMORY

}

x = {}
xaddr = proj.loader.find_symbol(’x’).rebased_addr
for i in range(N):
x[i] = state.solver.BVS(’x%d’%i,8)
state.mem[xaddr+i].char = x[i]

y = {}
yaddr = proj.loader.find_symbol(’y’).rebased_addr
for i in range(N):
y[i] = state.solver.BVS(’y%d’%i,8)
state.mem[yaddr+i].char = y[i]

simgr = proj.factory.simgr(state)
simgr.run()

assert len(simgr.errored) == 0
print(’%d universes’ % len(simgr.deadended))
for exit in simgr.deadended:
zaddr = proj.loader.find_symbol(’z’).rebased_addr
z = exit.mem[zaddr].int.resolved
print(’out = %s’ % z)

xeqy = True
for i in range(N):
xeqy = state.solver.And(xeqy,x[i]==y[i])

xney = state.solver.Not(xeqy)
for bugs in ((z!=0,z!=1),(z!=0,xeqy),(z!=1,xney)):
assert not exit.satisfiable(extra_constraints=bugs)

Symbolic execution with better equivalence testing
What if the DAG is too complicated for the SMT solver?
Answer: Build smarter tools to recognize DAG equivalence.

Case study, software library from sorting.cr.yp.to:
• New speed records for sorting of in-memory integer arrays.

This is a subroutine in some post-quantum cryptosystems.
• Side-channel countermeasures:

no secret branch conditions; no secret array indices.
• New tool verifies correct sorting of all size-N inputs.

No need for manual review of per-CPU optimized code.

Does cryptographic software work correctly? Daniel J. Bernstein

https://sorting.cr.yp.to

Symbolic execution with better equivalence testing
What if the DAG is too complicated for the SMT solver?
Answer: Build smarter tools to recognize DAG equivalence.
Case study, software library from sorting.cr.yp.to:
• New speed records for sorting of in-memory integer arrays.

This is a subroutine in some post-quantum cryptosystems.
• Side-channel countermeasures:

no secret branch conditions; no secret array indices.
• New tool verifies correct sorting of all size-N inputs.

No need for manual review of per-CPU optimized code.

Does cryptographic software work correctly? Daniel J. Bernstein

https://sorting.cr.yp.to

