Challenges in evaluating costs

of known lattice attacks

D. J. Bernstein

Textbook algorithm design:

1.
2.
3.

L

Write down algorithm A.
Prove algorithm costs C.
Repeat, trying to minimize C.

sual situation for hard problems:
No proof of min C for known A.

Even worse for lattice attacks:

Claims of min C for known A are

piles of poorly justified guesses.

sntrup761 evaluations from
"NTRU Prime: round 2" Table 2:

lgnoring hybrid attacks:

363
363
153
203

185
185
139
203

enum, free memory cost
enum, real memory cost
sieving, free memory cost
sieving, real memory cost

Including hybrid attacks:

230
2177
153
203

169
169
139
130

enum, free memory cost
enum, real memory cost
sieving, free memory cost
sieving, real memory cost

Security levels:
pre-quantum
- ‘post—quantum
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sntrup761 evaluations from
"NTRU Prime: round 2" Table 2:

lgnoring hybrid attacks:

368|185 |enum, free memory cost
368|185 |enum, real memory cost
153|139 |sieving, free memory cost
208|208 |sleving, real memory cost

Including hybrid attacks:

230(169 |enum, free memory cost
2771169 |enum, real memory cost
153|139 |sieving, free memory cost
208 |180|sieving, real memory cost

Security levels:
‘ ... |pre-quantum
e ‘post—quantum

Commer
that con

# XXX UNDER: msa
# XXX OVER: mar
# XXX UNDER/QVE
# XXX UNDER/QVE
# XXX UNDER/QVE
# XXX UNDER/QVE
# XXX UNDER/QVE
# XXX UNDER: as
# XXX UNDER: A
# XXX UNDER: e>
# XXX OVER: but
# XXX UNDER: ir
# XXX OVER: ass
# XXX OVER: cor
# XXX OVER: ass
# XXX OVER: 1lin
# XXX OVER: 1lin
# XXX OVER: 1lin
# XXX OVER/UNDE
# XXX OVER: 1lin
# XXX OVER: exj
# XXX OVER: ass
# XXX OVER: 1lin
# XXX OVER: ass
# XXX OVER: 1lin
# XXX OVER: ass
# XXX OVER: 1lin
# XXX UNDER/QVE
# XXX UNDER/QVE
# XXX UNDER/OQVI
# XXX OVER: 1lin
# XXX UNDER: ig
# XXX OVER: 1lin
# XXX UNDER: ig
# XXX OVER: 1lin
# XXX UNDER: ig
# XXX UNDER: ig
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M design:
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363
363
153
203

185|enum, free memory cost
185|enum, real memory cost
139 |sieving, free memory cost

Comments inside |
that computed the

# XXX UNDER: many underestimates
# XXX OVER: many overestimates a
# XXX UNDER/OVER: misuse of asym
# XXX UNDER/OVER: misuse of asym
# XXX UNDER/OVER: misuse of asym
# XXX UNDER/OVER: misuse of asym
# XXX UNDER/OVER: misuse of asym
# XXX UNDER: assumes instant QRA
# XXX UNDER: ’free’ options igno
# XXX UNDER: experiments suggest
# XXX OVER: but maybe delta cros
# XXX UNDER: incorrectly treats

208 [sieving, real memory cost

Including hybrid attacks:

230
277
153
203

169
169
139
130

enum, free memory cost
enum, real memory cost
sieving, free memory cost
sieving, real memory cost

# XXX OVER:
# XXX OVER:
# XXX OVER:
# XXX OVER:
# XXX OVER:
# XXX OVER:

assumes rotating t t
considers only equiv
assumes independence
limited force search
limited m search

limited scale search

# XXX OVER/UNDER: assumes averag

# XXX OVER:
# XXX OVER:
# XXX OVER:
# XXX OVER:
# XXX OVER:
# XXX OVER:
# XXX OVER:
# XXX OVER:

limited block-size s
experiments say smal
assumes dual attack

limited scale search
assumes that forcing
limited m search in
assumes even split i
limited blocksize se

Security levels:

pre-quantum
- ‘post—quantum

# XXX UNDER/OVER: takes average
# XXX UNDER/QOVER: ignores anti-c
# XXX UNDER/OVER: need more expe
# XXX OVER: limited imax search
# XXX UNDER: ignores cost of inn
# XXX OVER: limited imax search
# XXX UNDER: ignores cost of inn
# XXX OVER: limited imax search
# XXX UNDER: ignores cost of inn
# XXX UNDER: ignores collision p
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sntrup761 evaluations from
"NTRU Prime: round 2" Table 2:

lgnoring hybrid attacks:

368|185 |enum, free memory cost
368|185 |enum, real memory cost
153|139 |sieving, free memory cost
208|208 |sleving, real memory cost

Including hybrid attacks:

230169 |enum, free memory cost
2771169 |enum, real memory cost
153|139 |sieving, free memory cost
208 |180|sieving, real memory cost

Security levels:
‘ ... |pre-quantum
e ‘post—quantum

Comments inside published

that computed these numbe

XXX
XXX
XXX
XXX
XXX
XXX
XXX
XXX
XXX
XXX
XXX
XXX
XXX
XXX
XXX
XXX
XXX
XXX
XXX
XXX
XXX
XXX
XXX
XXX
XXX
XXX
XXX
XXX
XXX
XXX
XXX
XXX
XXX
XXX
XXX
XXX
XXX

HoH H H HHHHHHHHHHEHEHEHEHEHHHHHHHHHHHEHEHEHEHEHEHHHE

UNDER:
OVER:

many underestimates and potential unc
many overestimates and potential overe

UNDER/OVER:
UNDER/QVER:
UNDER/QVER:
UNDER/OVER':
UNDER/QVER:

misuse
misuse
misuse
misuse
misuse

of
of
of
of
of

asymptotics
asymptotics
asymptotics
asymptotics
asymptotics

UNDER:
UNDER:
UNDER:
OVER:
UNDER:
OVER:
OVER:
OVER:
OVER:
OVER:
OVER:

assumes instant (RAM
’free’ options ignore cost of RAM
experiments suggest delta is actually
but maybe delta crosses below this foz
incorrectly treats ntru prime as ntru
assumes rotating t to \Z is optimal
considers only equivalence by rotatior
assumes independence across equivalenc
limited force search
limited m search
limited scale search

OVER/UNDER: assumes average g weight

OVER:
OVER:
OVER:
OVER:
OVER:
OVER:
OVER:
OVER:

limited block-size search

experiments say smaller sizes often wc
assumes dual attack is non-competitive
limited scale search

assumes that forcing does not help wit
limited m search in hybrid context
assumes even split is optimal

limited blocksize search

UNDER/OVER: takes average weights
UNDER/QOVER: ignores anti-correlation with se
UNDER/OVER: need more experimental evidence

OVER:
UNDER.:
OVER:
UNDER.:
OVER:
UNDER.:
UNDER.:

limited imax search

ignores cost of inner loop
limited imax search

ignores cost of inner loop
limited imax search

ignores cost of inner loop

ignores collision probability



sntrup761 evaluations from
"NTRU Prime: round 2" Table 2:

lgnoring hybrid attacks:

368|185 |enum, free memory cost
368|185 |enum, real memory cost
153|139 |sieving, free memory cost
208|208 |sieving, real memory cost

Comments inside published script
that computed these numbers:

XXX
XXX
XXX
XXX
XXX
XXX
XXX
XXX
XXX

UNDER: many underestimates and potential underestimates
overestimates and potential overestimates

OVER: many

UNDER/OVER:
UNDER/QVER:
UNDER/QVER:
UNDER/OVER::
UNDER/QVER:

misuse
misuse
misuse
misuse
misuse

of
of
of
of
of

asymptotics
asymptotics
asymptotics
asymptotics
asymptotics

UNDER: assumes instant (QRAM

UNDER.:

Including hybrid attacks:

230169 |enum, free memory cost
2771169 |enum, real memory cost
153|139 |sieving, free memory cost
208|180|sieving, real memory cost

Security levels:

pre-quantum
- ‘post—quantum

XXX OVER:

XXX OVER:
XXX OVER:
XXX OVER:
XXX OVER:
XXX OVER:
XXX OVER:

XXX OVER:
XXX OVER:
XXX OVER:
XXX OVER:
XXX OVER:
XXX OVER:
XXX OVER:
XXX OVER:

XXX OVER:

XXX OVER:

XXX OVER:

HoH H H HF HHHFHHHHFHHHFHHHHFHHHFHHHEHFHHHFHHHEHFHHHEFH

XXX UNDER:

’free’ options ignore cost of RAM

XXX UNDER: experiments suggest delta is actually larger

but maybe delta crosses below this for large b
incorrectly treats ntru prime as ntru classic

assumes rotating t to \Z is optimal

considers only equivalence by rotations

assumes independence across equivalence class

limited force search

limited m search

limited scale search

XXX OVER/UNDER: assumes average g weight

limited block-size search

experiments say smaller sizes often work
assumes dual attack is non-competitive

limited scale search

assumes that forcing does not help with hybrid
limited m search in hybrid context

assumes even split is optimal

limited blocksize search

XXX UNDER/OVER: takes average weights
XXX UNDER/OVER: ignores anti-correlation with searched weight
XXX UNDER/OVER: need more experimental evidence

limited imax search

XXX UNDER: ignores cost of inner loop

limited imax search

XXX UNDER: ignores cost of inner loop

limited imax search

XXX UNDER: ignores cost of inner loop
XXX UNDER: ignores collision probability



’61 evaluations from
Prime: round 2" Table 2:

hybrid attacks:

enum, free memory cost
enum, real memory cost
sieving, free memory cost
sieving, real memory cost

-/ 1|

| W a1

hybrid attacks:

enum, free memory cost
enum, real memory cost
sieving, free memory cost
sieving, real memory cost

levels:
-quantum
‘ post-quantum

Comments inside published script

that computed these numbers:

XXX
XXX
XXX
XXX
XXX
XXX
XXX
XXX
XXX
XXX
XXX
XXX
XXX
XXX
XXX
XXX
XXX
XXX
XXX
XXX
XXX
XXX
XXX
XXX
XXX
XXX
XXX
XXX
XXX
XXX
XXX
XXX
XXX
XXX
XXX
XXX
XXX

HoH H H HHHHHHHHHHEHEHEHEHEHHHHHHHHHHFHEHEHEHEHEHEHEHHE

UNDER: many underestimates and potential underestimates
OVER: many overestimates and potential overestimates
UNDER/OVER: misuse of asymptotics

UNDER/OVER: misuse of asymptotics

UNDER/OVER: misuse of asymptotics

UNDER/OVER: misuse of asymptotics

UNDER/OVER: misuse of asymptotics

UNDER: assumes instant (QRAM

UNDER: ’free’ options ignore cost of RAM

UNDER: experiments suggest delta is actually larger
OVER: but maybe delta crosses below this for large b
UNDER: incorrectly treats ntru prime as ntru classic
OVER: assumes rotating t to \Z is optimal

OVER: considers only equivalence by rotations

OVER: assumes independence across equivalence class
OVER: limited force search

OVER: limited m search

OVER: limited scale search

OVER/UNDER: assumes average g weight

OVER: limited block-size search

OVER: experiments say smaller sizes often work

OVER: assumes dual attack is non-competitive

OVER: limited scale search

OVER: assumes that forcing does not help with hybrid
OVER: limited m search in hybrid context

OVER: assumes even split is optimal

OVER: limited blocksize search

UNDER/OVER: takes average weights

UNDER/OVER: ignores anti-correlation with searched weight
UNDER/OVER: need more experimental evidence

OVER: limited imax search

UNDER: ignores cost of inner loop

OVER: limited imax search

UNDER: ignores cost of inner loop

OVER: limited imax search

UNDER: ignores cost of inner loop

UNDER: ignores collision probability
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Comments inside published script

that computed these numbers:

XXX
XXX
XXX
XXX
XXX
XXX
XXX
XXX
XXX
XXX
XXX
XXX
XXX
XXX
XXX
XXX
XXX
XXX
XXX
XXX
XXX
XXX
XXX
XXX
XXX
XXX
XXX
XXX
XXX
XXX
XXX
XXX
XXX
XXX
XXX
XXX
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HoH H H HF HHHFHHHHFHHHFHHHHFHHHFHHHEHFHHHFHHHEHFHHHFH

UNDER: many underestimates and potential underestimates
OVER: many overestimates and potential overestimates
UNDER/OVER: misuse of asymptotics

UNDER/OVER: misuse of asymptotics

UNDER/OVER: misuse of asymptotics

UNDER/OVER: misuse of asymptotics

UNDER/OVER: misuse of asymptotics

UNDER: assumes instant (QRAM

UNDER: ’free’ options ignore cost of RAM

UNDER: experiments suggest delta is actually larger
OVER: but maybe delta crosses below this for large b
UNDER: incorrectly treats ntru prime as ntru classic
OVER: assumes rotating t to \Z is optimal

OVER: considers only equivalence by rotations

OVER: assumes independence across equivalence class
OVER: limited force search

OVER: limited m search

OVER: limited scale search

OVER/UNDER: assumes average g weight

OVER: limited block-size search

OVER: experiments say smaller sizes often work

OVER: assumes dual attack is non-competitive

OVER: limited scale search

OVER: assumes that forcing does not help with hybrid
OVER: limited m search in hybrid context

OVER: assumes even split is optimal

OVER: limited blocksize search

UNDER/OVER: takes average weights

UNDER/OVER: ignores anti-correlation with searched weight
UNDER/OVER: need more experimental evidence

OVER: limited imax search

UNDER: ignores cost of inner loop

OVER: limited imax search

UNDER: ignores cost of inner loop

OVER: limited imax search

UNDER: ignores cost of inner loop

UNDER: ignores collision probability
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y cost
y cost
ry cost
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y cost
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)ry cost
ry cost

Comments inside published script

that computed these numbers:

HoH H HHHHHHHHHHHEHEHEHHEHHHHHHHHHHFHEHEHEHEHEHEHHH

XXX
XXX
XXX
XXX
XXX
XXX
XXX
XXX
XXX
XXX
XXX
XXX
XXX
XXX
XXX
XXX
XXX
XXX
XXX
XXX
XXX
XXX
XXX
XXX
XXX
XXX
XXX
XXX
XXX
XXX
XXX
XXX
XXX
XXX
XXX
XXX
XXX

UNDER: many underestimates and potential underestimates

OVER: many

UNDER/OVER:
UNDER/QVER:
UNDER/QVER:
UNDER/OVER':
UNDER/QVER:

overestimates and potential overestimates
misuse of asymptotics
misuse of asymptotics
misuse of asymptotics
misuse of asymptotics
misuse of asymptotics

UNDER: assumes instant (QRAM

UNDER: ’free’ options ignore cost of RAM

UNDER: experiments suggest delta is actually larger
OVER: but maybe delta crosses below this for large b
UNDER: incorrectly treats ntru prime as ntru classic

OVER:
OVER:
OVER:
OVER:
OVER:
OVER:

OVER:
OVER:
OVER:
OVER.:
OVER:
OVER:
OVER:
OVER:

assumes rotating t to \Z is optimal

considers only equivalence by rotations
assumes independence across equivalence class
limited force search

limited m search

limited scale search

OVER/UNDER:

assumes average g weight

limited block-size search

experiments say smaller sizes often work
assumes dual attack is non-competitive

limited scale search

assumes that forcing does not help with hybrid
limited m search in hybrid context

assumes even split is optimal

limited blocksize search

UNDER/OVER:
UNDER/OVER:
UNDER/OVER:

takes average weights
ignores anti-correlation with searched weight
need more experimental evidence

OVER: limited imax search

UNDER: ignores cost of inner loop
OVER: limited imax search

UNDER: ignores cost of inner loop
OVER: limited imax search

UNDER: ignores cost of inner loop
UNDER: ignores collision probability

2019 Son “A note on param
choices of Round5”, illustrat
one change inside part of or
the 35 issues listed in script:

there is one significant
optimization of Albrecht’s d
attack, which was not reflec
to Roundb parameter choice
By taking this into consider:
some parameter choices of
Roundb cannot enjoy the
claimed security level.”

Goal: pre-quantum 128, 109:
2019 Son says: 123, 18:



Comments inside published script 2019 Son “A note on parameter
that computed these numbers: choices of Roundb”, illustrating
(G5 OVER: sy’ ovorcerinarss s pororeial sveresrinares | ON€ change inside part of one of

XXX UNDER/OVER: misuse of asymptotics . . ] .
XXX UNDER/OVER: misuse of asymptotics "
XXX UNDER/OVER: misuse of asymptotics the 35 ISSUGS ||Sted In Scrlpt
XXX UNDER/OVER: misuse of asymptotics

XXX UNDER/OVER: misuse of asymptotics y ] ] .
XXX UNDER: assumes instant (QRAM

XXX UNDER: ’free’ options ignore cost of RAM -t there IS OnE Slgnlflcant
XXX UNDER: experiments suggest delta is actually larger i i . ,
XXX OVER: but maybe delta crosses below this for large b Optlmlzatlon O'I: Albrecht S dual
XXX UNDER: incorrectly treats ntru prime as ntru classic

XXX OVER: assumes rotating t to \Z is optimal .
XXX OVER: considers only equivalence by rotations attaCk, Wh|Ch was nOt re'ﬂeCted
XXX OVER: assumes independence across equivalence class
XXX OVER: limited force search .
XXX OVER: limited m search to Roundb parameter choices.
XXX OVER: limited scale search

XXX OVER/UNDER: assumes average g weight . . - - -

XXX OVER: limited block-size Seacch By ta klng this into COnSIderathn,
XXX OVER: experiments say smaller sizes often work
XXX OVER: assumes dual attack is non-competitive

XXX OVER: limited scale search SOme pard meter choices of

XXX OVER: assumes that forcing does not help with hybrid

XXX OVER: limited m search in hybrid context ;

XXX OVER: assumes even split is optimal Round5 CannOt enJOy the

XXX OVER: limited blocksize search ] ] 0

XXX UNDER/OVER: takes average weights

XXX UNDER/OVER: ignores anti-correlation with searched weight Clalmed Securlty |eve| )

XXX UNDER/OVER: need more experimental evidence

XXX OVER: limited imax search

XXX UNDER: ignores cost of inner loop . _

XXX OVER: limited imax search GOal pre quantum 128’ 192’ 256

XXX UNDER: ignores cost of inner loop

XXX OVER: limited imax search 2019 Son Says: 123 183. 243
. y : .

XXX UNDER: ignores cost of inner loop
XXX UNDER: ignores collision probability
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1ts Iinside published script
1puted these numbers:

Ny underestimates and potential underestimates
1y overestimates and potential overestimates
‘R: misuse of asymptotics

‘R: misuse of asymptotics

‘R: misuse of asymptotics

‘R: misuse of asymptotics

‘R: misuse of asymptotics

ssumes instant QRAM

‘ree’ options ignore cost of RAM

cperiments suggest delta is actually larger
> maybe delta crosses below this for large b
1correctly treats ntru prime as ntru classic
sumes rotating t to \Z is optimal

1siders only equivalence by rotations

sumes independence across equivalence class
1ited force search

1ited m search

1ited scale search

‘R: assumes average g weight

1ited block-size search

>eriments say smaller sizes often work

sumes dual attack is non-competitive

1ited scale search

sumes that forcing does not help with hybrid
1ited m search in hybrid context

sumes even split is optimal

1ited blocksize search

‘R: takes average weights

‘R: ignores anti-correlation with searched weight
‘R: need more experimental evidence

1ited imax search

mores cost of inner loop

1ited imax search

mores cost of inner loop

1ited imax search

rmores cost of inner loop

mores collision probability

2019 Son “A note on parameter
choices of Roundb”, illustrating
one change inside part of one of
the 35 issues listed in script:

there is one significant
optimization of Albrecht's dual
attack, which was not reflected
to Roundb parameter choices.
By taking this into consideration,
some parameter choices of
Roundb cannot enjoy the
claimed security level.”

Goal: pre-quantum 128, 192, 256.
2019 Son says: 123, 183, 243.
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Attacker

small we
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2019 Son “A note on parameter
choices of Roundb”, illustrating
one change inside part of one of
the 35 issues listed in script:

there is one significant
optimization of Albrecht's dual
attack, which was not reflected
to Roundb parameter choices.
By taking this into consideration,
some parameter choices of
Roundb cannot enjoy the
claimed security level.”

Goal: pre-quantum 128, 192, 256.
123, 183, 243.

2019 Son says:

The main attack p

Define R = Z|x]/
“small’ = all coef
w = 2386; g = 459

Attacker wants to
small weight-w se:
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rs: choices of Roundb”, illustrating Define R — Z[x]/(x761 _

“small” = all coeffs in {—1,
w = 286; g = 4591.
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& Attacker wants to find

small weight-w secret s € 'k

- larger
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s attack, which was not reflected
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to Roundb parameter choices.
By taking this into consideration,
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h hybrid

Roundb cannot enjoy the
claimed security level.”

arched weight

Goal: pre-quantum 128, 192, 256.
2019 Son says: 123, 183, 243.




2019 Son “A note on parameter The main attack problems

choices of Roundb”, illustrating Define R — Z[x]/(x761 _x—1);

“small” = all coeffs in {—1,0,1};

one change inside part of one of
the 35 issues listed in script:

. there is one significant .
& Attacker wants to find

optimization of Albrecht’s dual .
small weight-w secret s € R.

attack, which was not reflected
to Roundb parameter choices.
By taking this into consideration,
some parameter choices of
Roundb cannot enjoy the
claimed security level.”

Goal: pre-quantum 128, 192, 256.
2019 Son says: 123, 183, 243.




2019 Son “A note on parameter
choices of Roundb”, illustrating
one change inside part of one of
the 35 issues listed in script:

. there is one significant
optimization of Albrecht’s dual
attack, which was not reflected
to Roundb parameter choices.
By taking this into consideration,
some parameter choices of
Roundb cannot enjoy the
claimed security level.”

Goal: pre-quantum 128, 192, 256.
2019 Son says: 123, 183, 243.

The main attack problems

Define R = Z[x]/(x"%! — x — 1);
“small” = all coeffs in {—1,0,1};
w = 286; g = 4591.

Attacker wants to find
small weight-w secret s € R.

Problem 1: Public A € R/q with
As + e = 0. Small secret e € R.



2019 Son “A note on parameter
choices of Roundb”, illustrating
one change inside part of one of
the 35 issues listed in script:

. there is one significant
optimization of Albrecht’s dual
attack, which was not reflected
to Roundb parameter choices.
By taking this into consideration,
some parameter choices of
Roundb cannot enjoy the
claimed security level.”

Goal: pre-quantum 128, 192, 256.
2019 Son says: 123, 183, 243.

The main attack problems

Define R = Z[x]/(x"%! — x — 1);
“small” = all coeffs in {—1,0,1};
w = 286; g = 4591.

Attacker wants to find
small weight-w secret s € R.

Problem 1: Public A € R/q with
As + e = 0. Small secret e € R.

Problem 2: Public A € R/q and
As + e. Small secret e € R.



2019 Son “A note on parameter
choices of Roundb”, illustrating
one change inside part of one of
the 35 issues listed in script:

. there is one significant
optimization of Albrecht’s dual
attack, which was not reflected
to Roundb parameter choices.
By taking this into consideration,
some parameter choices of
Roundb cannot enjoy the
claimed security level.”

Goal: pre-quantum 128, 192, 256.
123, 183, 243.

2019 Son says:

The main attack problems

Define R = Z[x]/(x"%! — x — 1);
“small” = all coeffs in {—1,0,1};
w = 286; g = 4591.

Attacker wants to find
small weight-w secret s € R.

Problem 1: Public A € R/q with
As + e = 0. Small secret e € R.

Problem 2: Public A € R/q and
As + e. Small secret e € R.

Problem 3: Public A1, A € R/q.
Public Ais + e, Arxs + e.
Small secrets e1, e € R.
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n says:

The main attack problems

Define R = Z[x]/(x"%! — x — 1);
“small” = all coeffs in {—1,0,1};

Attacker wants to find
small weight-w secret s € R.

Problem 1: Public A € R/q with
As + e = 0. Small secret e € R.

Problem 2: Public A € R/q and
As + e. Small secret e € 'R.

Problem 3: Public A1, A € R/q.
Public Ais + e1, Ays + e.
Small secrets e7,e0 € R.

Rewrite
short nc
of homo

Problem
with As
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The main attack problems

Define R = Z[x]/(x"% — x — 1);
“small” = all coeffs in {—1,0,1};

Attacker wants to find
small weight-w secret s € R.

Problem 1: Public A € R/q with
As + e = 0. Small secret e € 'R.

Problem 2: Public A € R/q and
As + e. Small secret e € R.

Problem 3: Public A1, Ay € R/q.
Public A1s + e1, Ays + e».
Small secrets e1, e € R.

Rewrite each prob

short nonzero soll
of homogeneous 7

Problem 1: Find (
with As + e =0, |
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The main attack problems

Define R = Z[x]/(x"% — x — 1);
“small” = all coeffs in {—1,0,1};

Attacker wants to find
small weight-w secret s € R.

Problem 1: Public A € R/q with
As + e = 0. Small secret e € 'R.

Problem 2: Public A € R/q and
As + e. Small secret e € 'R.

Problem 3: Public A1, A € R/q.
Public Ais + ey, Ars + e.
Small secrets e7, e € R.

Rewrite each pro
short nonzero so

hlem as fin

ution to sy

of homogeneous R/q equat

Problem 1: Find
with As + e = 0,

(s,e) € R
given A €



The main attack problems

Define R = Z[x]/(x"%! — x — 1);
“small” = all coeffs in {—1,0,1};
w = 286; g = 4591.

Attacker wants to find
small weight-w secret s € R.

Problem 1: Public A € R/q with
As + e = 0. Small secret e € 'R.

Problem 2: Public A € R/q and
As + e. Small secret e € R.

Problem 3: Public A1, A> € R/q.
Public A1s + e1, Ays + e».
Small secrets e1, e € R.

Rewrite each problem as finding

short nonzero solution to system
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