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sage: fxg == f*x2+f*x(7*x)+f*xx72

True

sage:



x.<x> = ZZI[]
now Zx 1s a class
Zx objects are polys

1n X with int coeffs

= Zx([3,1,4])

x + 3

= Zx([2,7,1])

kX + 2
tg # built-in add

3xx + b

sage: f*x # built-in mul

4*x~3 + x72 + 3*x

sage: f*x"2

4*xx"4 + x°3 + 3*x72

sage: f*2

3*x"2 + 2%xx + 6

sage: f*x(7*x)

28*xx"3 + T*x72 + 21%*x

sage: f*xg

4*xx"4 + 29%x"3 + 18*x"2 + 23*x
+ 6

sage: fxg == f*2+fx(7*x)+f*x72
True

sage:




Z[]
S a class
ts are polys

h int coeffs

1,4])

7,11)

uilt—-in add

sage: f*x # built-in mul

4*x~3 + x72 + 3*x

sage: f*xx"2

4*xx"4 + x°3 + 3*x72

sage: f*2

3*x"2 + 2%xx + 6

sage: f*x(7*x)

28*%x"3 + 7*x72 + 21*x

sage: f*xg

4*xx"4 + 29%x"3 + 18*x"2 + 23*x
+ 6

sage: fxg == f*x2+f*x(7*x)+f*xx72
True

sage:

. # replace
. # x"(n+1)

: def convol

return (



dd

sage: f*x # built-in mul

4*x~3 + x72 + 3*x

sage: f*x"2

4*xx"4 + x°3 + 3*x72

sage: f*2

3*x"2 + 2%xx + 6

sage: f*x(7*x)

28*xx"3 + T*x72 + 21%*x

sage: f*xg

4*xx"4 + 29%x"3 + 18*x"2 + 23*x
+ 6

sage: f*xg == f*2+fx(7*x)+f*x72
True

sage:

. # replace x'n with
. # x"(n+l1) with x, e

: def convolution(f,g

return (fxg) 7 (x



sage: f*x # built-in mul sage: # replace x'n with 1,
4xx"3 + x72 + 3*x sage: # x"(n+1l) with x, etc.
sage: f*x"2 sage: def convolution(f,g):
4xx"4 + x73 + 3%x72 ...t return (fxg) % (x"n-1)
sage: f*2 Cee

S*xx"2 + 2%x + 6 sage:

sage: f*x(7*x)
28*%x"3 + 7*x72 + 21*x

sage: f*xg
4xx"4 + 20%x"3 + 18*%x72 + 23*x
+ 6

sage: fxg == f*x2+fx(7*x)+f*x72
True

sage:




sage: f*x # built-in mul sage: # replace x'n with 1,
4xx"3 + x72 + 3*x sage: # x"(n+1l) with x, etc.
sage: f*x"2 sage: def convolution(f,g):
4xx"4 + x73 + 3%x72 ...t return (fxg) % (x"n-1)
sage: f*2 Cee

3xx"2 + 2*xx + 6 sage: n = 3 # global variable
sage: fx(7*x) sage:

28*%x"3 + T*x"2 + 21%x

sage: f*xg
4xx"4 + 20%x"3 + 18*%x72 + 23*x
+ 6

sage: fxg == f*x2+fx(7*x)+f*x72
True

sage:




sage: f*x # built-in mul 7 sage: # replace x'n with 1,
4xx"3 + x72 + 3*x sage: # x"(n+1l) with x, etc.
sage: f*x"2 sage: def convolution(f,g):
4xx"4 + x73 + 3%x72 ...t return (fxg) % (x"n-1)
sage: f*2 Cee

3xx"2 + 2*xx + 6 sage: n = 3 # global variable
sage: f*x(7*x) sage: convolution(f,x)

28*%x"3 + 7T*x"2 + 21%*x X"2 + 3xx + 4

sage: f*xg sage:
4*xx"4 + 29%x"3 + 18*x"2 + 23*x

+ 6

sage: fxg == f*x2+fx(7*x)+f*x72
True

sage:




sage: f*x # built-in mul 7 sage: # replace x'n with 1,
4xx"3 + x72 + 3*x sage: # x"(n+1l) with x, etc.
sage: f*x"2 sage: def convolution(f,g):
4xx"4 + x73 + 3%x72 ...t return (fxg) % (x"n-1)
sage: f*2 Cee

3xx"2 + 2*xx + 6 sage: n = 3 # global variable
sage: f*x(7*x) sage: convolution(f,x)

28*%x"3 + 7T*x"2 + 21%*x X"2 + 3xx + 4

sage: fx*xg sage: convolution(f,x"2)
4*xx"4 + 29%x"3 + 18*x"2 + 23*x 3xx"2 + 4*%x + 1

+ 6 sage:

sage: fxg == f*x2+fx(7*x)+f*x72
True

sage:




sage: f*x # built-in mul 7 sage: # replace x'n with 1,
4xx"3 + x72 + 3*x sage: # x"(n+1l) with x, etc.
sage: f*x"2 sage: def convolution(f,g):
4xx"4 + x73 + 3%x72 ...t return (fxg) % (x"n-1)
sage: f*2 Cee

3xx"2 + 2*xx + 6 sage: n = 3 # global variable
sage: f*x(7*x) sage: convolution(f,x)

28*%x"3 + 7T*x"2 + 21%*x X"2 + 3xx + 4

sage: fx*xg sage: convolution(f,x"2)
4*xx"4 + 29%x"3 + 18*x"2 + 23*x 3xx"2 + 4*%x + 1

+ 6 sage: convolution(f,g)

sage: fxg == f*x2+fx(7*x)+f*x72 18*%x~2 + 27*x + 35
True sage:

sage:




kX # built-in mul

X"2 + 3%X

kX~ 2

Xx"3 + 3*%x72

k2

2%x + 6

¥ (7*x)

t 7Txx72 + 21%x

g

29%x73 + 18*%x72 + 23%X

kg == f*2+fx (7*xx)+f*x"2

sage: # replace x'n with 1,
sage: # x"(nt+l) with x, etc.
sage: def convolution(f,g):
....: return (fxg) % (x"n-1)
sage: n = 3 # global variable
sage: convolution(f,x)

X"2 + 3xx + 4

sage: convolution(f,x"2)

3xx"2 + 4%x + 1

sage: convolution(f,g)

18%x72 + 27*x + 35

sage:




ilt-1n mul sage: # replace x'n with 1, sage: def random

X sage: # x"(n+l1l) with x, etc. c.o..: £ = 1list
sage: def convolution(f,g): Cee for j

X" 2 ...t return (fxg) % (x"n-1) ....: return Z
sage: n = 3 # global variable sage:

sage: convolution(f,x)
21%x X"2 + 3xx + 4

sage: convolution(f,x"2)
18*%x72 + 23%*x 3xx"2 + 4*x + 1

sage: convolution(f,g)
+fx (7*x)+f*x"2 18%x"2 + 27*x + 35

sage:




1 sage: # replace x"n with 1, sage: def randompoly():
sage: # x"(n+1l) with x, etc. ....: f = list(randrang
sage: def convolution(f,g): Cee for j in range(
....: return (fxg) % (x"n-1) ....: return Zx(f)
sage: n = 3 # global variable sage:

sage: convolution(f,x)
X2 + 3xx + 4

sage: convolution(f,x"2)
- 23%*X 3xx"2 + 4%x + 1

sage: convolution(f,g)
Txx™2 18%x72 + 27*x + 35

sage:




sage: # replace x'n with 1,
sage: # x"(nt+l) with x, etc.
sage: def convolution(f,g):
....: return (fxg) % (x"n-1)
sage: n = 3 # global variable
sage: convolution(f,x)

X"2 + 3xx + 4

sage: convolution(f,x"2)

3xx"2 + 4*x + 1

sage: convolution(f,g)

18*%x"2 + 27*x + 35

sage:

sage: def randompoly():

f = list(randrange(3)-1
for j in range(n))

return Zx(f)



sage: # replace x'n with 1,
sage: # x"(nt+l) with x, etc.
sage: def convolution(f,g):
....: return (fxg) % (x"n-1)
sage: n = 3 # global variable
sage: convolution(f,x)

X"2 + 3xx + 4

sage: convolution(f,x"2)

3xx"2 + 4*x + 1

sage: convolution(f,g)

18*%x"2 + 27*x + 35

sage:

sage: def randompoly():

f = list(randrange(3)-1
for j in range(n))

return Zx(f)



sage: # replace x'n with 1,
sage: # x"(nt+l) with x, etc.
sage: def convolution(f,g):
....: return (fxg) % (x"n-1)
sage: n = 3 # global variable
sage: convolution(f,x)

X"2 + 3xx + 4

sage: convolution(f,x"2)

3xx"2 + 4*x + 1

sage: convolution(f,g)

18*%x"2 + 27*x + 35

sage:

: def randompoly():

f = list(randrange(3)-1
for j in range(n))

return Zx(f)

: randompoly ()

- x"2-x -1



sage: # replace x'n with 1,
sage: # x"(nt+l) with x, etc.
sage: def convolution(f,g):
....: return (fxg) % (x"n-1)
sage: n = 3 # global variable
sage: convolution(f,x)

X"2 + 3xx + 4

sage: convolution(f,x"2)

3xx"2 + 4*x + 1

sage: convolution(f,g)

18*%x"2 + 27*x + 35

sage:

sage: def randompoly():
....: f = list(randrange(3)-1
Cee for j in range(n))

e return Zx(f)

sage: randompoly()
-Xx"3 - x2-x-1
sage: randompoly()
X6 + x5+ x"3 - x

sage:



sage: # replace x'n with 1,
sage: # x"(nt+l) with x, etc.
sage: def convolution(f,g):
....: return (fxg) % (x"n-1)
sage: n = 3 # global variable
sage: convolution(f,x)

X"2 + 3xx + 4

sage: convolution(f,x"2)

3xx"2 + 4*x + 1

sage: convolution(f,g)

18*%x"2 + 27*x + 35

sage:

sage: def randompoly():
....: f = list(randrange(3)-1
Cee for j in range(n))

e return Zx(f)

sage: randompoly()

-Xx"3 - x2-x-1

sage: randompoly()

X6 + x5+ x"3 - x

sage: randompoly()

-Xx"6 + x5 + x4 - x"3 - x"2 +
x + 1

sage:



replace x"n with 1,
x"(n+1) with x, etc.
ef convolution(f,g):

return (f*xg) % (x"n-1)

= 3 # global variable
onvolution(f,x)

kx + 4
onvolution(f,x~2)

4dxx + 1
onvolution(f,g)

+ 27*x + 35

sage: def randompoly():
....: f = list(randrange(3)-1
Cee for j in range(n))

e return Zx(f)

sage: randompoly()

-Xx"3 - x2-x-1

sage: randompoly()

X6 + x5+ x"3 - x

sage: randompoly()

-Xx"6 + x5+ x4 - x"3 - x"2 +
x + 1

sage:

Will use

Some ch

In submi

n—= 701
n— 743
n—= 761



Xx"n with 1,
with x, etc.
ution(f,g):
fxg) 7 (x"n-1)

lobal wvariable

n(f,x)

n(f,x"2)

n(f,g)
35

sage: def randompoly():
....: f = list(randrange(3)-1
Cee for j in range(n))

e return Zx(f)

sage: randompoly()

-Xx"3 - x2-x-1

sage: randompoly()

X6 + x5+ x"3 - x

sage: randompoly()

-Xx"6 + x5 + x4 - x"3 - x72 +
x + 1

sage:

Wil use bigger n 1

Some choices of n
In submissions to

n = 701 for NTRL
n =743 for NTRL
n = 761 for sntrt



1able

sage: def randompoly():
....: f = list(randrange(3)-1
Ceel for j in range(n))

e return Zx(f)

sage: randompoly()

-Xx"3 - x2-x-1

sage: randompoly()

X6 + x5+ x"3 - x

sage: randompoly()

-Xx"6 + x5+ x4 - x"3 - x"2 +
x + 1

sage:

Will use bigger n for securit

Some choices of n
In submissions to NIST:

n = 701 for NTRU HRSS.
n = 743 for NTRUEncrypt.
n =761 for sntrup459176:



sage: def randompoly():
....: f = list(randrange(3)-1
Cee for j in range(n))

e return Zx(f)

sage: randompoly()

-Xx"3 - x2-x-1

sage: randompoly()

X6 + x5+ x"3 - x

sage: randompoly()

-Xx"6 + x5 + x4 - x"3 - x72 +
x + 1

sage:

Will use bigger n for security.

Some choices of n
In submissions to NIST:

n =701 for NTRU HRSS.
n = 743 tor NTRUEncrypt.

n =761 for sntrup4591761.

10



sage: def randompoly():
....: f = list(randrange(3)-1
Cee for j in range(n))

e return Zx(f)

sage: randompoly()

-Xx"3 - x2-x-1

sage: randompoly()

X6 + x5+ x"3 - x

sage: randompoly()

-Xx"6 + x5 + x4 - x"3 - x72 +
x + 1

sage:

10
Will use bigger n for security.

Some choices of n
In submissions to NIST:

n =701 for NTRU HRSS.
n = 743 tor NTRUEncrypt.
n =761 for sntrup4591761.

Overkill against attack algorithms
known today, even for future
attacker with quantum computer.



sage: def randompoly():
....: f = list(randrange(3)-1
Cee for j in range(n))

e return Zx(f)

sage: randompoly()

-Xx"3 - x2-x-1

sage: randompoly()

X6 + x5+ x"3 - x

sage: randompoly()

-Xx"6 + x5 + x4 - x"3 - x72 +
x + 1

sage:

10
Will use bigger n for security.

Some choices of n
In submissions to NIST:

n =701 for NTRU HRSS.
n = 743 tor NTRUEncrypt.
n =761 for sntrup4591761.

Overkill against attack algorithms
known today, even for future
attacker with quantum computer.

Can we find better algorithms?



sage: def randompoly():

....: f = list(randrange(3)-1
Cee for j in range(n))
....: return Zx(f)

sage: n =7

sage: randompoly()

-Xx"3 - x2-x-1

sage: randompoly()

X6 + x5+ x"3 - x

sage: randompoly()

-Xx"6 + x5 + x4 - x"3 - x72 +
x + 1

sage:

10
Will use bigger n for security.

Some choices of n
In submissions to NIST:

n =701 for NTRU HRSS.
n = 743 tor NTRUEncrypt.
n =761 for sntrup4591761.

Overkill against attack algorithms
known today, even for future
attacker with quantum computer.

Can we find better algorithms?

1998 NTRU paper took n = 503.



ef randompoly () :
f = list(randrange(3)-1
for j in range(n))

return Zx(f)

=7
andompoly ()
x"2 - x -1
andompoly ()
"5 + x73 - X
andompoly ()

x"b + x4 - x3 - x72 +

Will use bigger n for security.

Some choices of n
In submissions to NIST:

n = 701 for NTRU HRSS.
n = 743 for NTRUEncrypt.
n =761 for sntrup4591761.

Overkill against attack algorithms
known today, even for future
attacker with quantum computer.

Can we find better algorithms?

1998 NTRU paper took n = 503.

10

Modular

For Inte
Sage's *
outputs

Matches



poly():
(randrange(3)-1
in range(n))

x (f)

O

9,

9,

- X3 - x"2 +

Will use bigger n for security.

Some choices of n
In submissions to NIST:

n =701 for NTRU HRSS.
n = 743 tor NTRUEncrypt.
n =761 for sntrup4591761.

Overkill against attack algorithms
known today, even for future
attacker with quantum computer.

Can we find better algorithms?

1998 NTRU paper took n = 503.

10

Modular reduction

For integers u, g v
Sage's "u%q’ alwe
outputs between (

Matches standard



e(3)-1
n))

X"2 +

10
Will use bigger n for security.

Some choices of n
In submissions to NIST:

n = 701 for NTRU HRSS.
n = 743 for NTRUEncrypt.
n =761 for sntrup4591761.

Overkill against attack algorithms
known today, even for future
attacker with quantum computer.

Can we find better algorithms?

1998 NTRU paper took n = 503.

Modular reduction

For integers u, g with g > 0
Sage's “u%q"’ always produc
outputs between 0 and g —

Matches standard math defi



Will use bigger n for security.

Some choices of n
In submissions to NIST:

n =701 for NTRU HRSS.
n = 743 tfor NTRUEncrypt.
n =761 for sntrup4591761.

Overkill against attack algorithms
known today, even for future
attacker with quantum computer.

Can we find better algorithms?

1998 NTRU paper took n = 503.
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Modular reduction

For integers u, g with g > 0,
Sage's “u%q"’ always produces
outputs between 0 and q — 1.

Matches standard math definition.



Will use bigger n for security.

Some choices of n
In submissions to NIST:

n =701 for NTRU HRSS.
n = 743 tfor NTRUEncrypt.
n =761 for sntrup4591761.

Overkill against attack algorithms
known today, even for future
attacker with quantum computer.

Can we find better algorithms?

1998 NTRU paper took n = 503.
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Modular reduction

For integers u, g with g > 0,
Sage's “u%q"’ always produces
outputs between 0 and q — 1.

Matches standard math definition.

Warning: Typically

u < 0 produces u%q < 0

in lower-level languages, so
nonzero output leaks input sign.



Will use bigger n for security.

Some choices of n
In submissions to NIST:

n =701 for NTRU HRSS.
n = 743 tfor NTRUEncrypt.
n =761 for sntrup4591761.

Overkill against attack algorithms
known today, even for future
attacker with quantum computer.

Can we find better algorithms?

1998 NTRU paper took n = 503.
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11
Modular reduction

For integers u, g with g > 0,
Sage's “u%q"’ always produces
outputs between 0 and q — 1.

Matches standard math definition.

Warning: Typically

u < 0 produces u%q < 0

in lower-level languages, so
nonzero output leaks input sign.

Warning: For polynomials u,

Sage can make the same mistake.
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Modular reduction

For integers u, g

with q > 0,

Sage's “u%q"’ always produces

outputs between

Matches standard math definition.

0 and g — 1.

Warning: Typically

u < 0 produces u%q < 0

in lower-level languages, so

nonzero output leaks input sign.

Warning: For po
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Modular reduction

For integers u, g

with g > 0,

Sage's “u%q"’ always produces

outputs between

Matches standard math definition.

0 and g — 1.

Warning: Typically

u < 0 produces u%q < 0

in lower-level languages, so

nonzero output leaks input sign.

Warning: For po
Sage can make t
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ne same mistake.
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sage:

def balanc
g=1list ((
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return Z
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Modular reduction

For integers u, g with g > 0,
Sage's “u%q"’ always produces
outputs between 0 and q — 1.

Matches standard math definition.

Warning: Typically

u < 0 produces u%qg < 0

in lower-level languages, so
nonzero output leaks input sign.

Warning: For polynomials u,

Sage can make the same mistake.

11

sage:
sage:
sage:
sage:
sage:

sage:

def balancedmod(f,qg
g=list (((£[il+q//
-q//2 for i in ra
return Zx(g)



Modular reduction

For integers u, g with g > 0,
Sage's “u%q"’ always produces
outputs between 0 and q — 1.

Matches standard math definition.

Warning: Typically

u < 0 produces u%q < 0

in lower-level languages, so
nonzero output leaks input sign.

Warning: For polynomials u,

Sage can make the same mistake.

11

sage:
sage:
sage:
sage:
sage:

sage:

def balancedmod(f,q):
g=1ist (((£[11+q//2)7%q)
-q//2 for i in range(n))
return Zx(g)

12



Modular reduction

For integers u, g with g > 0,
Sage's “u%q"’ always produces
outputs between 0 and q — 1.

Matches standard math definition.

Warning: Typically

u < 0 produces u%q < 0

in lower-level languages, so
nonzero output leaks input sign.

Warning: For polynomials u,

Sage can make the same mistake.
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sage:
sage:
sage:
sage:
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sage:

def balancedmod(f,q):
g=1ist (((£[11+q//2)7%q)
-q//2 for i in range(n))
return Zx(g)

u = 314-159*x

12



Modular reduction
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sage: return Zx(g)
sage:

sage: u = 314-159%x
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-159%x + 114
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Modular reduction

For integers u, q

with g > 0,

Sage's “u%q"’ always produces

outputs between

Matches standard math definition.

0 and g — 1.
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u < 0 produces u%q < 0

in lower-level languages, so

nonzero output leaks input sign.

Warning: For po
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ne same mistake.
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sage: def balancedmod(f,q):
sage: g=1list (((£[il+q//2)7q)

sage: -q//2 for i in range(n))
sage: return Zx(g)
sage:

sage: u = 314-159%x
sage: u /4 200

-159*%x + 114

sage: (u - 400) % 200
-159%x - 86

sage:

12



11 12

Modular reduction sage: def balancedmod(f,q):
For integers u, g with g > 0, sage:  g=list(((flil+q//2)%q)
Sage's “u%q" always produces sage:  -q//2 for i in range(n))
outputs between 0 and q — 1. sage:  return Zx(g)
sage:
Matches standard math definition. sage: u = 314-159%x
Warning: Typically sage: u % 200
u < 0 produces u%q < 0 -159*x + 114
in lower-level languages, so sage: (u - 400) % 200
-159%xx - 86

nonzero output leaks input sign.
sage: balancedmod(u,200)

Warning: For polynomials u, A1xx - 86

Sage can make the same mistake. sage:




reduction

yers u, q

with q > 0,
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between

- standard math definition.

0 and g — 1.

. Typically

oduces u%q < 0

level languages, so

output leaks Input sign.
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sage:

def invert
Fp = Int
Fpx = Zx
T = Fpx.

return Z
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Fp = Integers(p)
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Fpx = Zx.change_ring(Fp)
T = Fpx.quotient(x"n-1)
return Zx(1ift(1/T(£f)))

=]
Il

Hh
Il

: def invertmodprime(f,p):

-
randompoly ()

13



sage: def balancedmod(f,q):
sage: g=list(((f[il+q//2)%q)
sage: -q//2 for i in range(n))
sage: return Zx(g)
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sage: u = 314-159%*x
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sage: (u - 400) % 200
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: def invertmodprime(f,p):

Fp = Integers(p)

Fpx = Zx.change_ring(Fp)
T = Fpx.quotient(x"n-1)
return Zx(1ift(1/T(£)))

-
randompoly ()

invertmodprime (f,3)

13



sage: def balancedmod(f,q):
sage: g=list(((f[il+q//2)%q)
sage: -q//2 for i in range(n))
sage: return Zx(g)

sage:

sage: u = 314-159%*x

sage: u /4 200

-159*%x + 114

sage: (u - 400) % 200

-159%x - 86

sage: balancedmod(u,200)

41*%x — 86

sage:
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. n =7

sage:
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: def invertmodprime(f,p):

Fp = Integers(p)

Fpx = Zx.change_ring(Fp)
T = Fpx.quotient(x"n-1)
return Zx(1ift(1/T(£)))

: £ = randompoly ()
: £f3 = invertmodprime(f,3)

convolution(f,£3)

6*xx"6 + 6%x°b + 3*%x74 + 3%xx°3 +

3xx"2 + 3*%xx + 4

sage:



of balancedmod(f,q):
g=1ist (((£[11+q//2)%q)
-q//2 for i in range(n))
return Zx(g)

= 314-159%*x

% 200

+ 114

1 - 400) % 200

- 36
alancedmod (u, 200)
36
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sage: def invertmodprime(f,p):

....: Fp = Integers(p)

....: Fpx = Zx.change_ring(Fp)
....: T = Fpx.quotient(x"n-1)
.e..: return Zx(lift(1/T(£)))
sage: n = 7

sage: f = randompoly()

sage: f3 = invertmodprime(f,3)
sage: convolution(f,f3)

6*xx"6 + 6*xx"5 + 3*x"4 + 3*x"3 +
3xx"2 + 3*x + 4

sage:

def inv

assSer’

Exercise

invertn

Hint: C



edmod (f,q) :
(f[il+q//2)%q)
r i in range(n))

x(g)

O%x

% 200

d(u,200)
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Fp = Integers(p)

Fpx = Zx.change_ring(Fp)
T = Fpx.quotient(x"n-1)
return Zx(1ift(1/T(£)))

:n =7
: f = randompoly ()
: £f3 = invertmodprime(f,3)

convolution(f,£3)

6*xx"6 + 6%x°b + 3*%xx"4 + 3%xx°3 +

3xx"2 + 3*%xx + 4

sage:
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def invertmodpow
assert q.1s_po
g = 1nvertmodp
M = balancedmo
C = convolutio

while True:

r = M(C(g,f)
1if r == 1:
g = M(C(g,Q-

Exercise: Figure o
invertmodpowerc«

Hint: Compare r-
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nge(n))
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6*%xx"6 + 6%x°b + 3*%x7"4 + 3%xx°3 +

: def invertmodprime(f,p):

Fp = Integers(p)
Fpx =
T = Fpx.quotient(x"n-1)
return Zx(1ift(1/T(£)))

. n =7
I

randompoly ()

: £3 = invertmodprime(f,3)

convolution(f,£3)

3*x"2 + 3*%xx + 4

sage:

Zx .change_ring(Fp)
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def invertmodpowerof2(f,q

assert q.is_power_of (2)

g = invertmodprime (f,2)
M = balancedmod
C = convolution

while True:

r = M(C(g,f),q)

if . return g

g = M(C(g,2-r),q)

r==

Exercise: Figure out how
invertmodpowerof2 works

Hint: Compare r to previou
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def invertmodpowerof2(f,q):

assert q.is_power_of(2)
g = invertmodprime(f,2)
M = balancedmod
C = convolution
while True:

r = M(C(g,f),q)

if r == 1: return g

g = M(C(g,2-r),q)

Exercise: Figure out how
invertmodpowerof2 works.

Hint: Compare r to previous r.
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Fpx = Zx.change_ring(Fp)
T = Fpx.quotient(x"n-1)
return Zx(1ift(1/T(£)))

7
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onvolution(f,f3)
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def invertmodpowerof2(f,q):

assert q.is_power_of(2)
g = invertmodprime(f,2)
M = balancedmod
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while True:

r = M(C(g,f),q)

if r == 1. return g

g = M(C(g,2-r),q)

Exercise: Figure out how
invertmodpowerof2 works.

Hint: Compare r to previous r.
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modprime (f,p) :
egers (p)
.change_ring(Fp)
quotient (x"n-1)

x(1ift(1/T(£)))

poly ()
tmodprime (f,3)
n(f,£3)

3*x"4 + 3*xx°3 +
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invertmodpowerof2 works.

Hint: Compare r to previous r.
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-Xx"6 - x4 +x"2+x -1

sage: g = invertmodpowerof2(f,q)
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sage: n = 7
sage: q = 256
sage: f = randompoly()
sage: f

-X"6 - x4 +x"2+x -1

sage: g = invertmodpowerof2(f,q)
sage: g
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def invertmodpowerof2(f,q): sage: n = 7

assert q.is_power_of(2) sage: q = 256

g = invertmodprime(f,2) sage: f = randompoly()

M = balancedmod sage: f

C = convolution -X"6 - x4 +x2+x-1

while True: sage: g = invertmodpowerof2(f,q)
r = M(C(g,f),q) sage: g
if r == 1: return g 47xx"6 + 126*x"5 - b4*x7"4 -
g = M(C(g,2-r),q) 87*x"3 - 36*xx"2 - 58xx + 61

sage: convolution(f,g)

-256%x"5 - 256%x"4 + 256%x + 257

Exercise: Figure out how

invertmodpowerof2 works.
sage: balancedmod(_,q)

1

Hint: Compare r to previous r.
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t q.is_power_of (2)
nvertmodprime (f,2)
alancedmod
onvolution

True:

M(C(g,f),q)
r == 1: return g

M(C(g,2-r),q)

. Figure out how

1odpowerof2 works.
mpare r to previous r.

14

sage: n = 7

sage: q = 256

sage: f = randompoly()
sage: f

-Xx"6 - x4 +x72+x -1

sage: g = invertmodpowerof2(f,q)
sage: g

47*x"6 + 126*%x"5 - bd*x"4 -
87*xx"3 - 36*xx"2 - b8*x + 61

sage: convolution(f,g)

15

-256%x"5 - 256%x"4 + 256%x + 257

sage: balancedmod(_,q)
1

sage:

NTRU k

Paramet

n,

d,

HoSItl
Howe]




14 15
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sage: n = 7 N TRU key generation

sage: q = 256 Parameters:

sage: f = randompoly() n, positive integer (e.g., 701);
. 1

Sage q, power of 2 (e.g., 4096).

-X"6 - x4 +x"2+x -1

sage: g = invertmodpowerof2(f,q)
sage: g

47xx"6 + 120%x"b5 - b4*xx"4 -
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87*x"3 - 36*x"2 - b8*xx + 61
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sage:

N TRU key generation

Parameters:

n, positive integer (e.g., 701);

q, power of 2 (e.g., 4096).

Secret key:

ranc

ranc

om n-coeff
om n-coeff

DO

DO

ynomia
ynomia

a,
d;

all coefficients in {—1,0,1}.

16
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Parameters:

n, positive integer (e.g., 701);
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Secret key:
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DO

DO
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all coefficients in {—1,0,1}.

Require d invertib
Require d invertib
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qg.
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Public key: A = 3a/d in the ring

Rq = (Z/q)Ix]/(x" = 1),
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-
256

randompoly ()

x4 + x"2 +x -1

= invertmodpowerof2(f,q)

+ 126*%xx"5 - bd*xx"4 -

- 36*%x"2 - b38*x + 061
onvolution(f,g)

b — 256*%xx74 + 2b6*xx + 257
nlancedmod (_,q)

NTRU key generation

Parameters:
n, positive integer (e.g., 701);
g, power of 2 (e.g., 4096).

Secret key:
random n-coeff polynomial a;

random n-coeff polynomial d;
all coefficients in {—1,0,1}.

Require d invertible mod g.

Require d invertible mod 3.

Public key: A = 3a/d in the ring

Rq = (Z/q)Ix]/(x" = 1),

16

def key;

while

publi

SeCre

retur:
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poly ()

+ x - 1

modpowerof2(f,q)

- b4*xx"4 -

- 08*%x + 61
n(f,g)

"4 + 256*%x + 257
d(_,q)

N TRU key generation

Parameters:

n, positive integer (e.g., 701);
g, power of 2 (e.g., 4096).

Secret key:

ranc

ranc

om n-coeff
om n-coeff

DO

DO

ynomial a;

ynomial d;

all coefficients in {—1,0,1}.

Require d invertib
Require d invertib

Public key: A = 3a/d in the ring
Rq = (Z/q)[x]/(x" = 1).

€ MOC

€ MOC

qg.
3.

16

def keypair():
while True:
try:
d = random
d3 = inver
dq = 1nver
break
except:
pass
a = randompoly
publickey = ba
con
secretkey = d,

return publick
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f2(f,q)

- 61

X + 257

NTRU key generation

Parameters:

n, positive integer (e.g., 701);
g, power of 2 (e.g., 4096).

Secret key:

ranc

ranc

om n-coeff
om n-coeff

DO

DO

ynomial a;

ynomial d;

all coefficients in {—1,0,1}.

Require d invertib
Require d invertib

Public key: A = 3a/d in the ring
Rq = (Z/q)[x]/(x" = 1).

€ MOC

€ MOC

qg.
3.

16

def keypair():
while True:
try:
d = randompoly ()
d3 = invertmodprime
dq = 1nvertmodpower
break
except:
pass
a = randompoly()
publickey = balancedmod
convolution/(
secretkey = d,d3

return publickey,secret



NTRU key generation

Parameters:

n, positive integer (e.g., 701);
q, power of 2 (e.g., 4096).

Secret key:

ranc

ranc

om n-coeff
om n-coeff

DO

DO

ynomial a;

ynomial d;

all coefficients in {—1,0,1}.

Require d invertib
Require d invertib

€ MOC

€ MOC

qg.
3.

Public key: A = 3a/d in the ring

Rq = (Z/q)Ix]/(x" = 1),

16
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def keypair():

while True:
try:
d = randompoly ()
d3 = invertmodprime(d,3)
dq = invertmodpowerof2(d,q)
break
except:
pass
a = randompoly()
publickey = balancedmod(3 *
convolution(a,dq),q)
secretkey = d,d3

return publickey,secretkey
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return publickey,secretkey

sage: A,secretke

sage:



16

2 ring

17
def keypair():
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return publickey,secretkey

sage: A,secretkey = keypair()
sage: A

-126*x"6 - 31*xx"5 - 118*x"4 -
33*x"3 + 73*x"2 - 16*%x + 7

sage:

18



17
def keypair():

while True:
try:
d = randompoly ()
d3 = invertmodprime(d,3)
dq = invertmodpowerof2(d,q)
break
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for j in range(w):

while True:

r = R(n)

if not clr]: break

clr] = 1-2*%R(2)
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- c = nx[0] ....: C = balancedmod(Ab + c,q)
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C = balancedmod(Ab + c,q)
return C

secretkey = keypair ()
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R = randrange ....: b = randommessage ()

5 5 Comput
assert w <= n Ce Ab = convolution(A,b)
c = nx[0] ....: C = balancedmod(Ab + c,q)
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sage:

22
N TRU decryption

Compute dC = 3ab+ dc in Ry.

a, b, ¢, d have small coeffs,

so 3ab + dc is not very big.
Assume that coeffs of 3ab + dc
are between —q/2 and q/2 — 1.
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return C

: A,secretkey = keypair()

= randommessage ()

C
: C = encrypt(c,A)
C

21*%x"6 - 48*%x"5 + 31*%xx"4 -
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Compute dC = 3ab+ dc in Ry.
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= encrypt(c,A)

- 48xx"5 + 31*xx"4 -
- 77*%x"2 + 1b*%x - 113

22
N TRU decryption

Compute dC = 3ab+ dc in Ry.

a, b, c, d have small coeffs,

so 3ab + dc iIs not very big.
Assume that coeffs of 3ab + dc
are between —q/2 and q/2 — 1.

Then 3ab+ dc in Rq reveals
3ab+ dcin R=Z|x]/(x" —1).
Reduce modulo 3: dc in R3.

Multiply by 1/d in R3
to recover message ¢ in R3.
Coeffs are between —1 and 1,

so recover ¢ In R.
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t(c,A):

ommessage ()
volution(A,Db)
ncedmod(Ab + c,q)

y = keypair ()
message ()

t(c,A)

+ 31*xx74 -
+ 15%x - 113

N TRU decryption

Compute dC = 3ab+ dc in Ry.

a, b, ¢, d have small coeffs,

so 3ab + dc is not very big.
Assume that coeffs of 3ab + dc
are between —q/2 and q/2 — 1.

Then 3ab+ dc in Rq reveals
3ab+ dcin R=Z|x]/(x" —1).
Reduce modulo 3: dc in R3.

Multiply by 1/d in R3

to recover message ¢ In R3.
Coeffs are between —1 and 1,
so recover ¢ In R.

22

sage: def decryp
M = ba

f,r =

u=M(co

c=M(co

return
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()
A,b)
b+ c,q)
ir()
- 113

N TRU decryption

Compute dC = 3ab+ dc in Ry.

a, b, c, d have small coeffs,

so 3ab + dc is not very big.
Assume that coeffs of 3ab + dc
are between —q/2 and q/2 — 1.

Then 3ab+ dc in Rq reveals
3ab+ dcin R=Z|x]/(x" —1).
Reduce modulo 3: dc in R3.

Multiply by 1/d in R3

to recover message ¢ in R3.
Coeffs are between —1 and 1,
so recover ¢ In R.

22

sage: def decrypt(C,secre

M = balancedmod
f,r = secretkey
u=M(convolution
c=M(convolution

return c



N TRU decryption

Compute dC = 3ab+ dc in Ry.

a, b, ¢, d have small coeffs,

so 3ab + dc is not very big.
Assume that coeffs of 3ab + dc
are between —q/2 and q/2 — 1.

Then 3ab+ dc in Rq reveals
3ab+ dcin R=Z|x]/(x" —1).
Reduce modulo 3: dc in R3.

Multiply by 1/d in R3

to recover message ¢ In R3.
Coeffs are between —1 and 1,
so recover ¢ in R.

22

sage: def decrypt(C,secretkey):
M = balancedmod

f,r = secretkey

return cC

23

u=M(convolution(C,f) ,q)

c=M(convolution(u,r),3)



N TRU decryption

Compute dC = 3ab+ dc in Ry.

a, b, ¢, d have small coeffs,

so 3ab + dc is not very big.
Assume that coeffs of 3ab + dc
are between —q/2 and q/2 — 1.

Then 3ab+ dc in Rq reveals
3ab+ dcin R=Z|x]/(x" —1).
Reduce modulo 3: dc in R3.

Multiply by 1/d in R3

to recover message ¢ In R3.
Coeffs are between —1 and 1,
so recover ¢ in R.

22

23
sage: def decrypt(C,secretkey):

- M = balancedmod

Cee f,r = secretkey

Ce u=M(convolution(C,f),q)
Ce c=M(convolution(u,r),3)
- return c

sage: C

x’b+x4 -x"3+x+1

sage:



N TRU decryption

Compute dC = 3ab+ dc in Ry.

a, b, ¢, d have small coeffs,

so 3ab + dc is not very big.
Assume that coeffs of 3ab + dc
are between —q/2 and q/2 — 1.

Then 3ab+ dc in Rq reveals
3ab+ dcin R=Z|x]/(x" —1).
Reduce modulo 3: dc in R3.

Multiply by 1/d in R3

to recover message ¢ In R3.
Coeffs are between —1 and 1,
so recover ¢ in R.

22

23
sage: def decrypt(C,secretkey):

- M = balancedmod

Cee f,r = secretkey

Ce u=M(convolution(C,f),q)
Ce c=M(convolution(u,r),3)
Ce return c

sage: C

x’b+x4 -x"3+x+1

sage: decrypt(C,secretkey)

x’b+ x4 -x"3+x +1

sage:



lecryption
e dC = 3ab+dc in Ry.

“have small coeffs,

- dc Is not very big.
 that coeffs of 3ab + dc
een —q/2 and q/2 — 1.

b+ dc in Rg reveals
cin R=2Z|x]/(x" —1).
modulo 3: dc in R3.

by 1/d in R3

er message ¢ Iin R3.
re between —1 and 1,
er cin R.

22

23
sage: def decrypt(C,secretkey):

M = balancedmod

f,r = secretkey

u=M(convolution(C,f),q)

c=M(convolution(u,r),3)

return cC

sage: C

x5 +x4-x"3+x+1
sage: decrypt(C,secretkey)
x5 +x4-x"3+x+1

sage:

sage:
sage:
sage:

sage:



b+ dc in Ry.

|l coeffs,

. very big.

fs of 3ab + dc
and q/2 — 1.

Rq reveals

Z|x]/(x" —1).
dC’H]/?g.

' R3
e ¢ In R3.
1 —1 and 1,

22

23
sage: def decrypt(C,secretkey):

M = balancedmod

f,r = secretkey

u=M(convolution(C,f),q)

c=M(convolution(u,r),3)

return cC

sage: C

x5 +x4-x"3+x+1
sage: decrypt(C,secretkey)
x5 +x4-x"3+x+1

sage:

sage:
sage:
sage:

sage:

256
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23
sage: def decrypt(C,secretkey):

- M = balancedmod

Cee f,r = secretkey

Ce u=M(convolution(C,f),q)
Ce c=M(convolution(u,r),3)
e return c

sage: C

x5 +x4 -x"3+x+1

sage: decrypt(C,secretkey)

x’b+ x4 -x"3+x +1

sage:

sage:
sage:
sage:

sage:

256
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sage: def decrypt(C,secretkey):

- M = balancedmod

- f,r = secretkey

Ce u=M(convolution(C,f),q)
Ce c=M(convolution(u,r),3)
Ce return c

sage: C

x’b+x4 -x"3+x +1

sage: decrypt(C,secretkey)

x"b+ x4 -x"3+x +1

sage:

sage:
sage:
sage:

sage:

256

24
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sage: def decrypt(C,secretkey):

- M = balancedmod

- f,r = secretkey

Ce u=M(convolution(C,f),q)
Ce c=M(convolution(u,r),3)
Ce return c

sage: C

x’b+x4 -x"3+x +1

sage: decrypt(C,secretkey)

x"b+ x4 -x"3+x +1

sage:

sage:
sage:
sage:
sage:

sage:

n
W
9
A

=7

= O

= 256

,secretkey = keypair()

24
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sage: def decrypt(C,secretkey): sage: n = 7

- M = balancedmod sage: w = b

Cee f,r = secretkey sage: q = 256

- u=M(convolution(C,f),q) sage: A,secretkey = keypair()

Ce c=M(convolution(u,r),3) | sage: A

e return c -101*x"6 - 76*x"5 - 90*%xx74 -
e 33*x"3 + 40*%xx"2 + 108xx - b4
sage: C sage:

x’b+x4 -x"3+x +1
sage: decrypt(C,secretkey)
x"b+ x4 -x"3+x +1

sage:




23

sage: def decrypt(C,secretkey): sage: n = 7

- M = balancedmod sage: w = b

Cee f,r = secretkey sage: q = 256

- u=M(convolution(C,f),q) sage: A,secretkey = keypair()

Ce c=M(convolution(u,r),3) | sage: A

Cee return c -101*x"6 - 76*xx"5 - 90*x"4 -
- 83*%x"3 + 40*x"2 + 108*xx - 54
sage: C sage: d,d3 = secretkey
xb+x4-x3+x+1 sage:

sage: decrypt(C,secretkey)
x5 +x4-x"3+x+1

sage:
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sage: def decrypt(C,secretkey):

- M = balancedmod

- f,r = secretkey

Ce u=M(convolution(C,f),q)
Ce c=M(convolution(u,r),3)
Ce return c

sage: C

x’b+x4 -x"3+x +1

sage: decrypt(C,secretkey)

x"b+ x4 -x"3+x +1

sage:

sage: n = 7

sage: w = b

sage: q = 256

sage: A,secretkey = keypair()
sage: A

-101*x"6 - 76*xx"5 - 90*x"4 -
33*x"3 + 40*xx"2 + 108*xx - b4
sage: d,d3 = secretkey

sage: d

x5 +x4-x"3+x-1

sage:

24
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sage: def decrypt(C,secretkey):

- M = balancedmod

- f,r = secretkey

Ce u=M(convolution(C,f),q)
Ce c=M(convolution(u,r),3)
Ce return c

sage: C

x’b+x4 -x"3+x +1

sage: decrypt(C,secretkey)

x"b+ x4 -x"3+x +1

sage:

sage:
sage:
sage:
sage:

sage:

n=>1

w =25

q = 256

A,secretkey = keypair()
A

-101*x"6 - 76%x"5 - 90*x"4 -

33*x"3 + 40*xx"2 + 108*xx - 54

sage:

sage:

d,d3 = secretkey
d

xbhb+ x4 - x3+x -1

sage:

sage:

conv = convolution

24
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sage: def decrypt(C,secretkey):

sage:

M = balancedmod
f,r = secretkey
u=M(convolution(C,f),q)
c=M(convolution(u,r),3)

return cC

xb + x4 - x3 +x + 1

sage: decrypt(C,secretkey)

xbhb+ x4 - x"3+x +1

sage:

sage: n = 7

sage: w = b

sage: q = 256

sage: A,secretkey = keypair()
sage: A

-101*x"6 - 76%x"5 - 90*x"4 -
83*%xx~3 + 40*xx"2 + 108%x - 54

sage: d,d3 = secretkey
sage: d

x5 +x4-x"3+x-1
sage: conv = convolution
sage: M = balancedmod

sage:

24
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sage: def decrypt(C,secretkey):

- M = balancedmod

- f,r = secretkey

Ce u=M(convolution(C,f),q)
Ce c=M(convolution(u,r),3)
Ce return c

sage: C

x’b+x4 -x"3+x +1

sage: decrypt(C,secretkey)

x"b+ x4 -x"3+x +1

sage:

sage:
sage:
sage:
sage:

sage:

n=>1

w =25

q = 256

A,secretkey = keypair()
A

-101*x"6 - 76%x"5 - 90*x"4 -

33*x"3 + 40*xx"2 + 108*xx - 54

sage:

sage:

d,d3 = secretkey
d

xbhb+ x4 - x3+x -1

sage:
sage:
sage:

sage:

conv = convolution
M = balancedmod

a3 = M(conv(d,A),q)

24
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sage: def decrypt(C,secretkey):

- M = balancedmod

- f,r = secretkey

Ce u=M(convolution(C,f),q)
Ce c=M(convolution(u,r),3)
Ce return c

sage: C

x’b+x4 -x"3+x +1

sage: decrypt(C,secretkey)

x"b+ x4 -x"3+x +1

sage:

sage:
sage:
sage:
sage:

sage:

> Q0 =5 B

b

A

=7

= O

= 256

secretkey = keypair()

-101*x"6 - 76%x"5 - 90*x"4 -

33*x"3 + 40*xx"2 + 108*xx - 54

sage: d,d3 = secretkey

sage:

d

xbhb+ x4 - x3+x -1

sage:
sage:
sage:

sage:

conv = convolution

M
a3
a3

= balancedmod

= M(conv(d,A),q)

3*kx"2 - 3%x

24
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of decrypt(C,secretkey):

M = balancedmod
f,r = secretkey
u=M(convolution(C,f),q)
c=M(convolution(u,r),3)

return cC

4 - x"3 +x+1
ecrypt (C,secretkey)

4 - x3 +x + 1

sage:
sage:
sage:
sage:

sage:

n=>97

w =25

q = 256

A,secretkey = keypair()
A

-101*%x"6 - 76%x"5 - 90*%x"4 -
83*%x~3 + 40*xx"2 + 108*%x - 54

sage:

sage:

d,d3 = secretkey
d

xbh+ x4 - x3+x -1

sage:
sage:
sage:

sage:

conv = convolution
M = balancedmod

a3 = M(conv(d,A),q)
a3

3*%kx"2 - 3%*x

24

sage:

sage:

C



23 24

t (C,secretkey) : sage: n = 7 sage: c = random
lancedmod sage: w = b sage:

secretkey sage: q = 256

nvolution(C,f),q) sage: A,secretkey = keypair()

nvolution(u,r),3) sage: A

C -101*%x"6 - 76*xx"5 - 90*x"4 -
83*x"3 + 40*x”"2 + 108*xx - b4
sage: d,d3 = secretkey

+ x + 1 sage: d
secretkey) x"b + x4 - x"3 +x -1
+ x + 1 sage: conv = convolution

sage: M = balancedmod
sage: a3 = M(conv(d,A),q)
sage: a3

3*kx"2 - 3%x




23 24

tkey) : sage: n = 7 sage: ¢ = randommessage()
sage: W = 5 sage:
sage: q = 256

(C,f),q) sage: A,secretkey = keypair()
(u,r),3) sage: A

-101*%x"6 - 76*x"5 - 90*x"4 -
33*x"3 + 40*xx"2 + 108*xx - b4
sage: d,d3 = secretkey

sage: d

) x"b + x4 - x"3 +x -1

sage: conv = convolution
sage: M = balancedmod

sage: a3 = M(conv(d,A),q)
sage: a3

3*%kx"2 - 3%*x




24

sage: n = 7 sage: ¢ = randommessage()
sage: W = O sage:
sage: q = 256

sage: A,secretkey = keypair()
sage: A

-101*%x"6 - 76*xx"5 - 90*x"4 -
33*x"3 + 40*xx"2 + 108*xx - b4
sage: d,d3 = secretkey

sage: d

x5 +x4-x"3+x-1

sage: conv = convolution
sage: M = balancedmod

sage: a3 = M(conv(d,A),q)
sage: a3

3*kx"2 - 3%x




sage: n = 7
sage: w = b
sage: q = 256

sage: A,secretkey = keypair()

sage: A

-101*x"6 - 76%x"5 - 90*x"4 -
83*%xx~3 + 40*xx"2 + 108%x - 54

sage: d,d3 = secretkey
sage: d

x5 +x4-x"3+x-1
sage: conv = convolution

sage: M = balancedmod

sage: a3 = M(conv(d,A),q)

sage: a3

3*kx"2 - 3%x

24

sage:
sage:

sage:

C

b

randommessage ()

randommessage ()

25



sage: n = 7
sage: w = b
sage: q = 256

sage: A,secretkey = keypair()

sage: A

-101*x"6 - 76%x"5 - 90*x"4 -
83*%xx~3 + 40*xx"2 + 108%x - 54

sage: d,d3 = secretkey
sage: d

x5 +x4-x"3+x-1
sage: conv = convolution

sage: M = balancedmod

sage: a3 = M(conv(d,A),q)

sage: a3

3*kx"2 - 3%x

24

sage:
sage: b
sage:

sage:

randommessage ()

randommessage ()

M(conv(A,b)+c,q)

25



sage: n = 7

sage: w = b

sage: q = 256

sage: A,secretkey = keypair()
sage: A

-101*x"6 - 76%x"5 - 90*x"4 -
83*%xx~3 + 40*xx"2 + 108%x - 54

sage: d,d3 = secretkey
sage: d

x5 +x4-x"3+x-1
sage: conv = convolution

sage: M = balancedmod

sage: a3 = M(conv(d,A),q)

sage: a3

3*kx"2 - 3%x

24

sage: C
sage: b
sage: C
sage: C
-57*x"6
72%x"3
sage:

25
randommessage ()

randommessage ()

M(conv(A,b)+c,q)

28*%x"b + 114xx74 +
37*xx"2 + 16*x + 119



sage: n = 7

sage: w = b

sage: q = 256

sage: A,secretkey = keypair()
sage: A

-101*x"6 - 76%x"5 - 90*x"4 -
83*%xx~3 + 40*xx"2 + 108%x - 54

sage: d,d3 = secretkey
sage: d

x5 +x4-x"3+x-1
sage: conv = convolution

sage: M = balancedmod

sage: a3 = M(conv(d,A),q)

sage: a3

3*kx"2 - 3%x

24

sage: C
sage: b
sage: C
sage: C
-57*x"6
72%x"3
sage: u
sage:

25
randommessage ()

randommessage ()

M(conv(A,b)+c,q)

28*%x"5 + 114*%xx"4 +
37*x"2 + 16*xx + 119
M(conv(C,d),q)



sage: n = 7 - sage: ¢ = randommessage()
sage: w = 5 sage: b = randommessage()
sage: q = 256 sage: C = M(conv(A,b)+c,q)
sage: A,secretkey = keypair() sage: C

sage: A -57*x76 + 28*%x"b + 114*x"4 +
-101*x"6 - 76*x"5 - 90*x74 - 72%xx"3 — 37*x"2 + 16%xx + 119
83*%x"3 + 40*xx"2 + 108*xx - b4 sage: u = M(conv(C,d),q)
sage: d,d3 = secretkey sage: u

sage: d —8*x"6 + 2%xx"5 + 4*%x"4 - x73 -

x5 +x4-x"3+x-1 4*x~2 + bxx + 1

sage: conv = convolution sage:

sage: M = balancedmod

sage: a3 = M(conv(d,A),q)

sage: a3

3*xx"2 — 3*x




sage: n = 7 - sage: ¢ = randommessage()
sage: w = 5 sage: b = randommessage()
sage: q = 256 sage: C = M(conv(A,b)+c,q)
sage: A,secretkey = keypair() sage: C

sage: A -57*x76 + 28*%x"b + 114*x"4 +
-101%x"6 - 76*x"5 - 90*x~4 - 72*%x"3 - 37*x"2 + 16*x + 119
83*%x"3 + 40*xx"2 + 108*xx - b4 sage: u = M(conv(C,d),q)

sage: d,d3 = secretkey sage: u

sage: d —8*x"6 + 2%xx"5 + 4*%x"4 - x73 -

x5 +x4-x"3+x-1 4*xx"2 + b*xx + 1

sage: conv = convolution sage: conv(a3,b)+conv(c,d)
sage: M = balancedmod -8*xx"6 + 2%x"b + 4*%x"4 - x73 -
sage: a3 = M(conv(d,A),q) 4%x"2 + bxx + 1

sage: a3

3*xx"2 — 3*x




=7

= b

= 256

,secretkey = keypair ()

0 — 76xx”5 — 90*x74 -
+ 40*x"2 + 108*x - 54
,d3 = secretkey

4 - x"3 +x -1
onv = convolution
= balancedmod

3 = M(conv(d,A),q)
3

3% X

24

sage: C
sage: b
sage: C
sage: C
-57*x"6
72%x"3
sage: u
sage: u

-8*%x"6 + 2%x°b + 4%xx"4 - x°3 -

randommessage ()

randommessage ()

M(conv(A,b)+c,q)

28*xx"5 + 114%xx"4 +
37*x"2 + 16*%x + 119
M(conv(C,d),q)

Axx~2 + bxx + 1

sage: conv(a3,b)+conv(c,d)

-8*x"6 + 2%x°5 + 4*xx"4 - x°3 -

4dxx~2 + b*kxx + 1

25

sage: M

X6 - x
+ 1
sage:



y = keypair ()

5 - 90*%xx"4 -
+ 108*xx - b4
retkey

+ x -1
volution

edmod
v(d,A),q)

24

sage: C
sage: b
sage: C
sage: C
-57*x"6
72%x"3
sage: u
sage: u

-8*%x"6 + 2%x°5 + 4%xx"4 - x°3 -

randommessage ()

randommessage ()

M(conv(A,b)+c,q)

28*%x"5 + 114*%xx"4 +
37*x"2 + 16*xx + 119
M(conv(C,d),q)

Axx~2 + bxx + 1

sage: conv(a3,b)+conv(c,d)

-8*x"6 + 2%x°5 + 4*%xx"4 - x°3 -

Axx~2 + b*xx + 1

25

sage: M(u,3)
X6 - x5 + x74
+ 1

sage:



ir()

- 54

24

sage: C
sage: b
sage: C
sage: C
-57*x"6
72%x"3
sage: u
sage: u

-8*%x"6 + 2%x°b + 4%xx"4 - x°3 -

randommessage ()

randommessage ()

M(conv(A,b)+c,q)

28*xx"5 + 114%xx"4 +
37*x"2 + 16*%x + 119
M(conv(C,d),q)

Axx~2 + bxx + 1

sage: conv(a3,b)+conv(c,d)

-8*x"6 + 2%x°5 + 4*xx"4 - x°3 -

4dxx~2 + b*kxx + 1

25

sage: M(u,3)
X6 - xbh + x4 - x73 - X
+ 1

sage:



sage: C
sage: b
sage: C
sage: C
-57*x"6
72%x"3
sage: u
sage: u

-8*%x"6 + 2%x°5 + 4%xx"4 - x°3 -

randommessage ()

randommessage ()

M(conv(A,b)+c,q)

28*%x"5 + 114*%xx"4 +
37*x"2 + 16*xx + 119
M(conv(C,d),q)

Axx~2 + bxx + 1

sage: conv(a3,b)+conv(c,d)

-8*x"6 + 2%x°5 + 4*%xx"4 - x°3 -

Axx~2 + b*xx + 1

25

sage: M(u,3)
X6 - xb+x4 -x"3 -x"2-%X
+ 1

sage:

26



sage: ¢ = randommessage()
sage: b = randommessage()
sage: C = M(conv(A,b)+c,q)
sage: C

-57xx"6 + 28*%x"5 + 114xx"4 +
T2%x"3 - 37*x"2 + 16*xx + 119
M(conv(C,d),q)

sage: u
sage: u
-38*%xX"6 + 2*%x"b + 4*%x"4 - x"3 -
4xx~2 + bxx + 1

sage: conv(a3,b)+conv(c,d)
-3*%x"6 + 2%x"b + 4xx"4 - X3 -

Axx~2 + b*xx + 1

25

sage: M(u,3)

X6 - xb+x"4-%x"3-%x"2-X
+ 1

sage: M(conv(c,d),3)

X6 - xb+x74-%x"3-x"2-X
+ 1

sage:

26



sage: ¢ = randommessage()
sage: b = randommessage()
sage: C = M(conv(A,b)+c,q)
sage: C

-57xx"6 + 28*%x"5 + 114xx"4 +
T2%x"3 - 37*x"2 + 16*xx + 119
M(conv(C,d),q)

sage: u
sage: u
-38*%xX"6 + 2*%x"b + 4*%x"4 - x"3 -
4xx~2 + bxx + 1

sage: conv(a3,b)+conv(c,d)
-3*%x"6 + 2%x"b + 4xx"4 - X3 -

Axx~2 + b*xx + 1

25

sage: M(u,3)

X6 - xb+x"4-%x"3-x"2-X
+ 1

sage: M(conv(c,d),3)

X6 - xb+x74-%x"3-x"2-X
+ 1

sage: conv(M(u,3),d3)

X6 - x5 - x4 - 3*%kx"3 - x"2 +
X - 3

sage:

26



sage: C
sage: b
sage: C
sage: C
-57*x"6
72%x"3
sage: u
sage: u

-8*%x"6 + 2%x°5 + 4%xx"4 - x°3 -

randommessage ()

randommessage ()

M(conv(A,b)+c,q)

28*%x"5 + 114*%xx"4 +
37*x"2 + 16*xx + 119
M(conv(C,d),q)

Axx~2 + bxx + 1

sage: conv(a3,b)+conv(c,d)

-8*x"6 + 2%x°5 + 4*%xx"4 - x°3 -

Axx~2 + b*xx + 1

25

sage: M(u,3)

X6 - xb+x"4-%x"3-%x"2-X
+ 1

sage: M(conv(c,d),3)

X6 - xb+x74-%x"3-x"2-X
+ 1

sage: conv(M(u,3),d3)

X6 - x5 - x4 - 3*%kx"3 - x"2 +
X - 3

sage: M(_,3)

X6 - xb-x"4 - x"2 +X

sage:

26



sage: C
sage: b
sage: C
sage: C
-57*x"6
72%x"3
sage: u
sage: u

-8*%x"6 + 2%x°5 + 4%xx"4 - x°3 -

randommessage ()

randommessage ()

M(conv(A,b)+c,q)

28*%x"5 + 114*%xx"4 +
37*x"2 + 16*xx + 119
M(conv(C,d),q)

Axx~2 + bxx + 1

sage: conv(a3,b)+conv(c,d)

-8*x"6 + 2%x°5 + 4*%xx"4 - x°3 -

Axx~2 + b*xx + 1

25

sage: M(u,3)

X6 - x"b+x74 -x"3 -
+ 1

sage: M(conv(c,d),3)

X6 - x"b +x74 - x°3 -
+ 1

sage: conv(M(u,3),d3)
X6 - x°b - x74 - 3%x"3
X - 3

sage: M(_,3)

X6 - xb -x"4 - x"2 +
sage: C

X6 - x’b-x"4 -x"2+

sage:

X2 - X
X2 - x
- X"2 +

26



randommessage ()

randommessage ()

M(conv(A,b)+c,q)

+ 28xx”"5 + 114%xx"4 +
- 37xx"2 + 16%x + 119
M(conv(C,d),q)

+ 2%x"b + 4xx"4 - X3 -
+ b*xx + 1
onv(a3,b)+conv(c,d)

t 2%x"b + 4xx"4 - X3 -

+ bxx + 1

25

sage: M(u,3)

X6 - x"b+x74 - x"3 -
+ 1

sage: M(conv(c,d),3)

X6 - x"b +x74 - x°3 -
+ 1

sage: conv(M(u,3),d3)
X6 - x°b - x74 - 3%x”3
X - 3

sage: M(_,3)

X6 - xb-x"4 -x"2 +
sage: C

X6 - x"b - x4 - x"2 +

sage:

X2 - X

X2 - X

- X"2 +

26

Does de

A
A

coeff
coeff

and exa



message ()

message ()

(A,b)+c,q)

+ 114*xx74 +
+ 16*%x + 119
(C,d),q)

dxx~4 - x~3 -

+conv(c,d)

dxx~4 - x°3 -

25

sage: M(u,3)

X6 - x"b+ x4 -x"3 -
+ 1

sage: M(conv(c,d),3)

X6 - x"b +x74 - x°3 -
+ 1

sage: conv(M(u,3),d3)

X6 - x°b - x74 - 3%x"3
X - 3

sage: M(_,3)

X6 - xb -x"4 - x"2 +
sage: C

X6 - x’b-x"4 -x"2+

sage:

X"2 - X
Xx"2 - X
- x"2 +
X
X

26

Does decryption a

All coeffs of a are

All coeffs of b are
and exactly w are



25

sage: M(u,3)

X6 - x"b+x74 - x"3 -
+ 1

sage: M(conv(c,d),3)
X6 - x"b +x74 - x°3 -
+ 1

sage: conv(M(u,3),d3)
X6 - x°b - x74 - 3%x”3
X - 3

sage: M(_,3)

X6 - xb-x"4 -x"2 +
sage: C

X6 - x"b - x4 - x"2 +

sage:

X2 - X

X2 - X

- x"2 +

26

Does decryption always worl

All coeffs of a are in {—1, 0,

All coeffs of b are in {—1,0
and exactly w are nonzero.




sage: M(u,3)

X6 - x"b+x74 -x"3 -
+ 1

sage: M(conv(c,d),3)

X6 - x"b +x74 - x°3 -
+ 1

sage: conv(M(u,3),d3)
X6 - x°b - x74 - 3%x"3
X - 3

sage: M(_,3)

X6 - xb -x"4 - x"2 +
sage: C

X6 - x’b-x"4 -x"2+

sage:

X"2 - X
Xx"2 - X
- x"2 +
X
X

26

Does decryption always work?

All coeffs of a are in {—1,0, 1}.
All coeffs of b are in {—1,0, 1},
and exactly w are nonzero.

27



sage: M(u,3)

X6 - x"b+x74 -x"3 -
+ 1

sage: M(conv(c,d),3)

X6 - x"b +x74 - x°3 -
+ 1

sage: conv(M(u,3),d3)
X6 - x°b - x74 - 3%x"3
X - 3

sage: M(_,3)

X6 - xb -x"4 - x"2 +
sage: C

X6 - x’b-x"4 -x"2+

sage:

X"2 - X
Xx"2 - X
- x"2 +
X
X

26

Does decryption always work?

All coeffs of a are in {—1,0, 1}.
All coeffs of b are in {—1,0, 1},
and exactly w are nonzero.

Each coeff of ab in R
has absolute value at most w.

27



sage: M(u,3)

X6 - x"b+x74 -x"3 -
+ 1

sage: M(conv(c,d),3)

X6 - x"b +x74 - x°3 -
+ 1

sage: conv(M(u,3),d3)

X6 - x°b - x74 - 3%x"3
X - 3

sage: M(_,3)

X6 - xb -x"4 - x"2 +
sage: C

X6 - x’b-x"4 -x"2+

sage:

X2 - x

X2 - x

- x"2 +

26

Does decryption always work?

All coeffs of a are in {—1,0, 1}.
All coeffs of b are in {—1,0, 1},
and exactly w are nonzero.

Each coeff of ab in R

has absolute value at most w.
(Same argument would work for
b of any weight, a of weight w.)

27



sage: M(u,3)

X6 - xb+x4 -x"3 -x"2-%X

+ 1
sage: M(conv(c,d),3)

X6 - xbh+x4 - x"3 -x"2-X

+ 1

sage: conv(M(u,3),d3)
X6 - x°b - x74 - 3%x"3
X - 3

sage: M(_,3)
X6 - xb -x"4 - x"2 +
sage: C
X6 - x’b-x"4 -x"2+

sage:

- X"2 +

26

Does decryption always work?

All coeffs of a are in {—1,0, 1}.
All coeffs of b are in {—1,0, 1},
and exactly w are nonzero.

Each coeff of ab in R

has absolute value at most w.
(Same argument would work for
b of any weight, a of weight w.)

Similar comments for d, c.
Each coeff of 3ab+ dcin R
has absolute value at most 4w.

27



sage: M(u,3)

X6 - xb+x4 -x"3 -x"2-%X

+ 1
sage: M(conv(c,d),3)

X6 - xbh+x4 - x"3 -x"2-X

+ 1

sage: conv(M(u,3),d3)
X6 - x°b - x74 - 3%x"3
X - 3

sage: M(_,3)
X6 - xb -x"4 - x"2 +
sage: C
X6 - x’b-x"4 -x"2+

sage:

- X"2 +

26

Does decryption always work?

All coeffs of a are in {—1,0, 1}.
All coeffs of b are in {—1,0, 1},
and exactly w are nonzero.

Each coeff of abin R

has absolute value at most w.
(Same argument would work for
b of any weight, a of weight w.)

Similar comments for d, c.
Each coeff of 3ab+ dcin R
has absolute value at most 4w.

e.g. w =467: at most 1368.
Decryption works for g = 4096.

27



(u,3)

b+ x4 - x3 - xT2 - X

(conv(c,d),3)

b+ x4 - x3 - x72 - X

onv(M(u,3),d3)
"5 - x4 - 3*%x"3

(_,3)
"5 - x4 - x72 +

"h - x4 - x72 +

- x"2 +

26

Does decryption always work?

All coeffs of a are in {—1,0, 1}.
All coeffs of b are in {—1,0, 1},
and exactly w are nonzero.

Each coeff of abin R

has absolute value at most w.
(Same argument would work for
b of any weight, a of weight w.)

Similar comments for d, c.
Each coeff of 3ab+dcin R
has absolute value at most 4w.

e.g. w =467: at most 1368.
Decryption works for g = 4096.

27

What akt



- X3 - xT2 - X

) ,3)

- X3 - x"2 - X

) ,d3)
- 3%x~3

- X"2 +

- X2 +

- X"2 +

26

Does decryption always work?

All coeffs of a are in {—1,0,1}.
All coeffs of b are in {—1,0, 1},
and exactly w are nonzero.

Each coeff of abin R

has absolute value at most w.
(Same argument would work for
b of any weight, a of weight w.)

Similar comments for d, c.
Each coeff of 3ab+ dcin R
has absolute value at most 4w.

e.g. w =467: at most 1368.
Decryption works for g = 4096.

21

What about w =



26

"2 - X
"2 - X
X722 +

Does decryption always work?

All coeffs of a are in {—1,0, 1}.
All coeffs of b are in {—1,0, 1},
and exactly w are nonzero.

Each coeff of ab in R

has absolute value at most w.
(Same argument would work for
b of any weight, a of weight w.)

Similar comments for d, c.
Each coeff of 3ab+dcin R
has absolute value at most 4w.

e.g. w =467: at most 1368.
Decryption works for g = 4096.

27

What about w = 467, g =



27 28
Does decryption always work? What about w = 467, g = 20487

All coeffs of a are in {—1,0, 1}.
All coeffs of b are in {—1,0, 1},
and exactly w are nonzero.

Each coeff of abin R

has absolute value at most w.
(Same argument would work for
b of any weight, a of weight w.)

Similar comments for d, c.
Each coeff of 3ab+ dcin R
has absolute value at most 4w.

e.g. w =467: at most 1368.
Decryption works for g = 4096.




Does decryption always work?

All coeffs of a are in {—1,0, 1}.
All coeffs of b are in {—1,0, 1},
and exactly w are nonzero.

Each coeff of ab in R

has absolute value at most w.
(Same argument would work for
b of any weight, a of weight w.)

Similar comments for d, c.
Each coeff of 3ab+ dcin R
has absolute value at most 4w.

e.g. w =467: at most 1368.
Decryption works for g = 4096.

21

What about w = 467, g = 20487

Same argument doesn't work.
a=b=c=d=

14+ x+x2 44 xv 1
3ab + dc has a coeff 4w > q/2.

23



Does decryption always work?

All coeffs of a are in {—1,0, 1}.
All coeffs of b are in {—1,0, 1},
and exactly w are nonzero.

Each coeff of abin R

has absolute value at most w.
(Same argument would work for
b of any weight, a of weight w.)

Similar comments for d, c.
Each coeff of 3ab+ dcin R
has absolute value at most 4w.

e.g. w =467: at most 1368.
Decryption works for g = 4096.

21

What about w = 467, g = 20487

Same argument doesn't work.
a=b=c=d=

14+ x+x2 44 xv 1
3ab + dc has a coeff 4w > q/2.

But coeffs are usually <1024
when a, d are chosen randomly.

23



Does decryption always work?

All coeffs of a are in {—1,0, 1}.
All coeffs of b are in {—1,0, 1},
and exactly w are nonzero.

Each coeff of abin R

has absolute value at most w.
(Same argument would work for

b of any weight, a of weight w.)

Similar comments for d, c.
Each coeff of 3ab+ dcin R
has absolute value at most 4w.

e.g. w =467: at most 1368.
Decryption works for g = 4096.

21

What about w = 467, g = 20487

Same argument doesn't work.
a=b=c=d=

14+ x+x2 44 xv 1
3ab + dc has a coeff 4w > q/2.

But coeffs are usually <1024
when a, d are chosen randomly.

1996 N TRU handout mentioned
no-decryption-failure option,
but recommended smaller g
with some chance of failures.
1998 NTRU paper: decryption
failure “will occur so rarely that
It can be ignored In practice”.

23



cryption always work?

sof aarein {—1,0,1}.
s of barein{—1,0,1},
tly w are nonzero.

off of ab in R

lute value at most w.
rgument would work for
“weight, a of weight w.)

omments for d, c.
off of 3ab+ dcin R
lute value at most 4w.

- 467: at most 1868.
on works for g = 4096.

27

What about w = 467, g = 20487

Same argument doesn't work.
a=b=c=d=

1+ x+x2 44+ xWv 1

3ab + dc has a coeff 4w > q/2.

But coeffs are usually <1024
when a, d are chosen randomly.

1996 N TRU handout mentioned
no-decryption-failure option,
but recommended smaller g
with some chance of failures.
1998 NTRU paper: decryption
failure “will occur so rarely that
it can be ignored In practice’.

28

Crypto -
Nguyen-
Silverms
“The Im
decrypti
security

Decrypti
“all the
for vario
not be v



Iways work?

in {—1,0,1}.
in{—1,0,1},

NONZErO.

n R

-at most w.
vould work for
of weight w.)

for d, c.
+dcin R
-at most 4w.

most 1368.
for g = 4096.

21

What about w = 467, g = 20487

Same argument doesn't work.
a=b=c=d=

14+ x+x2 44 xv 1
3ab + dc has a coeff 4w > q/2.

But coeffs are usually <1024
when a, d are chosen randomly.

1996 N TRU handout mentioned
no-decryption-failure option,
but recommended smaller g
with some chance of failures.
1998 NTRU paper: decryption
failure “will occur so rarely that
It can be ignored In practice”.

23

Crypto 2003 Howsg
Nguyen—Pointche\
Silverman—Singer-
“The impact of

decryption failures
security of NTRU

Decryption failure:
“all the security p

for various NTRU
not be valid after




lw.

)96.

27

What about w = 467, g = 20487

Same argument doesn't work.
a=b=c=d=

1+ x+x2 44+ xwv 1

3ab + dc has a coeff 4w > q/2.

But coeffs are usually <1024
when a, d are chosen randomly.

1996 N TRU handout mentioned
no-decryption-failure option,
but recommended smaller g
with some chance of failures.
1998 NTRU paper: decryption
failure “will occur so rarely that
it can be ignored In practice’.

28

Crypto 2003 Howgrave-Gral
Nguyen—Pointcheval-Proos-
Silverman—Singer—Whyte
“The impact of

decryption failures on the
security of NTRU encryptiot

Decryption failures imply th.
“all the security proofs know
for various NTRU paddings

not be valid after all’.



What about w = 467, g = 20487

Same argument doesn't work.
a=b=c=d=

14+ x+x2 44 xv 1
3ab + dc has a coeff 4w > q/2.

But coeffs are usually <1024
when a, d are chosen randomly.

1996 N TRU handout mentioned
no-decryption-failure option,
but recommended smaller g
with some chance of failures.
1998 NTRU paper: decryption
failure “will occur so rarely that
It can be ignored In practice”.

23

29
Crypto 2003 Howgrave-Graham-—

Nguyen—Pointcheval-Proos—
Silverman—Singer—Whyte
“The impact of

decryption failures on the
security of NTRU encryption™:

Decryption failures imply that
“all the security proofs known . ..
for various NTRU paddings may

not be valid after all”.



What about w = 467, g = 20487

Same argument doesn't work.
a=b=c=d=

14+ x+x2 44 xv 1
3ab + dc has a coeff 4w > q/2.

But coeffs are usually <1024
when a, d are chosen randomly.

1996 N TRU handout mentioned
no-decryption-failure option,
but recommended smaller g
with some chance of failures.
1998 NTRU paper: decryption
failure “will occur so rarely that
It can be ignored In practice”.

23

Crypto 2003 Howgrave-Graham-—
Nguyen—Pointcheval-Proos—
Silverman—Singer—Whyte

“The impact of

decryption failures on the
security of NTRU encryption™:

Decryption failures imply that
“all the security proofs known . ..
for various NTRU paddings may

not be valid after all”.

Even worse: Attacker who sees
some random decryption failures
can figure out the secret key!



out w = 467, g = 20487

gument doesn't work.
c=d=
X2—|—---—|—XW_1:

¢ has a coeff 4w > q/2.

fs are usually <1024
d are chosen randomly.

"RU handout mentioned
ption-failure option,
mmended smaller g

ne chance of failures.
"RU paper: decryption
will occur so rarely that
> Ignored In practice”.

28

Crypto 2003 Howgrave-Graham-—
Nguyen—Pointcheval-Proos—
Silverman—Singer—Whyte

“The impact of

decryption failures on the
security of NTRU encryption™:

Decryption failures imply that

“all the security proofs known . ..

for various NTRU paddings may

not be valid after all”.

Even worse: Attacker who sees
some random decryption failures
can figure out the secret key!

Coeff of
codn—1 -

This coe
co, €1, - -
high cor
dn—11 dn



A67, g = 20487

yesn't work.
- xw—l
eff 4w > q/2.

ally <1024
sen randomly.

but mentioned
Ire option,
smaller g

of failures.

. decryption
so rarely that
n practice”.

23

Crypto 2003 Howgrave-Graham-—
Nguyen—Pointcheval-Proos—
Silverman—Singer—Whyte

“The impact of

decryption failures on the
security of NTRU encryption™:

Decryption failures imply that

“all the security proofs known . ..

for various NTRU paddings may

not be valid after all”.

Even worse: Attacker who sees
some random decryption failures
can figure out the secret key!

Coeff of x"~1 in ¢

codp—1 + c1dp—2 -

This coeff is large
€0, C1,...,Cnh—1 hc
high correlation w

d_1.do o ... dy



28 29
20487 Crypto 2003 Howgrave-Graham-— Coeff of x"~ 1 in cd is

Nguyen—Pointcheval-Proos— codn—1+ c1dp—o + ...+ cp.

Silverman—Singer—-Whyte This coeff is large <

“The impact of
€0, C1,...,Ch—1 has

decryption failures on the

q/2. | | high correlation with
security of NTRU encryption™:
1 dh_1,dp—2,...,dp.
ly. Decryption failures imply that
“all the security proofs known . ..
oned for various NTRU paddings may
not be valid after all”.
. Even worse: Attacker who sees
:)n some random decryption failures

can figure out the secret key!
hat & y




Crypto 2003 Howgrave-Graham-—

Nguyen—Pointcheval-Proos—

Silverman—Singer—Whyte

“The impact of

decryption failures on the

security of NTRU encryption™:

Decryption failures imply that

“all the security proofs known . ..

for various NTRU paddings may

not be valig

Even worse:

after all” .

Attacker who sees

some random decryption failures

can figure out the secret key!

29

Coeff of x" L in cd is

codn—1+ c1dn_—o+ ...+ ch_1dp.

This coeff is large <
€0, C1,...,Ch—1 has
high correlation with
do_1,dp—2,...,dp.

30



Crypto 2003 Howgrave-Graham-—
Nguyen—Pointcheval-Proos—
Silverman—Singer—Whyte

“The impact of

decryption failures on the
security of NTRU encryption™:

Decryption failures imply that

“all the security proofs known . ..

for various NTRU paddings may

not be valid after all”.

Even worse: Attacker who sees
some random decryption failures
can figure out the secret key!

29

Coeff of x" L in cd is

codn—1+ c1dn_—o+ ...+ ch_1dp.

This coeff is large <
€0, C1,...,Ch—1 has
high correlation with

d. 1.dy o, ... do.

Some coeff is large <
co,C1,...,Ch—1 has high
correlation with some rotation

of dy_1,dp—o, ..., dp.

30



Crypto 2003 Howgrave-Graham-—
Nguyen—Pointcheval-Proos—
Silverman—Singer—Whyte

“The impact of

decryption failures on the
security of NTRU encryption™:

Decryption failures imply that

“all the security proofs known . ..

for various NTRU paddings may

not be valid after all”.

Even worse: Attacker who sees
some random decryption failures
can figure out the secret key!

29

30
Coeff of x" L in cd is

codn—1+ c1dn_—o+ ...+ ch_1dp.

This coeff is large <
€0, C1,...,Ch—1 has
high correlation with
do_1,dp—2,...,dp.

Some coeff is large <
co,C1,...,Ch—1 has high
correlation with some rotation
of dy_1,dp—o, ..., dp.

l.e. ¢ Is correlated with
x! rev(d) for some i, where
rev(d) = d()—l—len_l—I—- —4dy_1X.



003 Howgrave-Graham-—
-Pointcheval-Proos—
n—Singer—\Whyte

pact of

on failures on the

of NTRU encryption”:

on failures imply that

security proofs known . ..

us NTRU paddings may

alid after all’ .

rse: Attacker who sees
rdom decryption failures
re out the secret key!

29

30
Coeff of x" L in cd is

codn—1+ c1dh—o+ ...+ ch_1dp.

This coeff is large <
co,C1,...,Ch—1 has
high correlation with
dh_1,dp—2,...,dp.

Some coeff is large <

€0, C1,...,Ch—1 has high
correlation with some rotation
of d,_1,dh—o, ..., dp.

l.e. ¢ Is correlated with
x! rev(d) for some 7, where
rev(d) = d0+d1X”_1—|—- 4dy_1X.

Reasona
random

Cc correl:



rrave-Graham-—

ral—Proos—
Whyte

on the
encryption’”:

s Imply that

-oofs known . ..

paddings may
all” .

ker who sees
yption failures
secret key!

29

Coeff of x" L in cd is

codn—1+ c1dn—o+ ...+ ch_1dp.

This coeff is large <
€0, C1, ..., Ch—1 has
high correlation with
dh_1,dp—2,..., dp.

Some coeff is large <
co,C1,...,Ch—1 has high
correlation with some rotation
of dy_1,dp—o, ..., dp.

l.e. ¢ Is correlated with
x! rev(d) for some i, where
rev(d) = d()—l—len_l—I—- - —4dy_1X.

30

Reasonable guesse
random decryptior
c correlated with :



1d M —

at

/n ...

may

ees
lures

29

Coeff of x" L in cd is

codn—1+ c1dh—o+ ...+ ch_1dp.

This coeff is large <
€0, C1,...,Ch—1 has
high correlation with
do_1,dp—2,...,dp.

Some coeff is large <

€0, C1,...,Ch—1 has high
correlation with some rotation
of dy_1,dh—o, ..., dp.

1.e. c Is correlated with
x' rev(d) for some i, where

rev(d) = d0+d1X”_1—|—- 4dy_1X.

30

Reasonable guesses given a
random decryption failure:
c correlated with some x' re



Coeff of x" L in cd is

codn—1+ c1dh—o+ ...+ ch_1dp.

This coeff is large <
€0, C1,...,Ch—1 has
high correlation with
dh_1,dp—2,...,dp.

Some coeff is large <
co,C1,...,Ch—1 has high
correlation with some rotation
of dy_1,dp—o, ..., dp.

l.e. ¢ Is correlated with
x' rev(d) for some i, where

rev(d) = d()—l—len_l—I—- —4dy_1X.

30

Reasonable guesses given a
random decryption failure:
c correlated with some x' rev(d).

31



Coeff of x" L in cd is

codn—1+ c1dh—o+ ...+ ch_1dp.

This coeff is large <
€0, C1,...,Ch—1 has
high correlation with
dh_1,dp—2,...,dp.

Some coeff is large <
co,C1,...,Ch—1 has high
correlation with some rotation
of dy_1,dp—o, ..., dp.

l.e. ¢ Is correlated with
x' rev(d) for some i, where

rev(d) = d()—l—len_l—I—- +d,_1x.

30

Reasonable guesses given a
random decryption failure:

c correlated with some x' rev(d).
rev(c) correlated with x~'d.

31



Coeff of x" L in cd is

codn—1+ c1dh—o+ ...+ ch_1dp.

This coeff is large <
€0, C1,...,Ch—1 has
high correlation with
dh_1,dp—2,...,dp.

Some coeff is large <
co,C1,...,Ch—1 has high
correlation with some rotation
of dy_1,dp—o, ..., dp.

l.e. ¢ Is correlated with
x' rev(d) for some i, where

rev(d) = d()—l—len_l—I—- —4dy_1X.

30

Reasonable guesses given a
random decryption failure:

c correlated with some x' rev(d).

rev(c) correlated with x™'d.

crev(c) correlated with drev(d).

31



Coeff of x" L in cd is

codn—1+ c1dh—o+ ...+ ch_1dp.

This coeff is large <
€0, C1,...,Ch—1 has
high correlation with
dh_1,dp—2,...,dp.

Some coeff is large <
co,C1,...,Ch—1 has high
correlation with some rotation
of dy_1,dp—o, ..., dp.

l.e. ¢ Is correlated with
x' rev(d) for some i, where

rev(d) = d()—l—len_l—I—- —4dy_1X.

30

Reasonable guesses given a
random decryption failure:

c correlated with some x' rev(d).

rev(c) correlated with x™'d.

crev(c) correlated with drev(d).

Experimentally confirmed:
Average of crev(c)

over some decryption failures
is close to d rev(d).

Round to integers: d rev(d).

31



Coeff of x" L in cd is

codn—1+ c1dh—o+ ...+ ch_1dp.

This coeff is large <
€0, C1,...,Ch—1 has
high correlation with

d 1.dy o, ... do.

Some coeff is large <
co,C1,...,Ch—1 has high
correlation with some rotation

of dy_1,dp—o, ..., dp.

l.e. ¢ Is correlated with
x' rev(d) for some i, where

rev(d) = d()—l—len_l—I—- —4dy_1X.

30

Reasonable guesses given a
random decryption failure:

c correlated with some x' rev(d).

rev(c) correlated with x™'d.

crev(c) correlated with drev(d).

Experimentally confirmed:
Average of crev(c)

over some decryption failures
is close to d rev(d).

Round to integers: d rev(d).

Eurocrypt 2002 Gentry—Szydlo
algorithm then finds d.

31



x"1in cd is

Fodypo+ ...+ cho1dp.

ff Is large <
., Ch—1 has
relation with

o do.

eff is large <

., Ch—1 has high

on with some rotation
do_o,...,dp.

correlated with
) for some i, where

- do—l—dlxn_l—l—- 4dy_1x.

30

Reasonable guesses given a
random decryption failure:

c correlated with some x' rev(d).

rev(c) correlated with x™'d.

crev(c) correlated with drev(d).

Experimentally confirmed:
Average of crev(c)

over some decryption failures
is close to d rev(d).

Round to integers: d rev(d).

Eurocrypt 2002 Gentry—Szydlo
algorithm then finds d.

31

1999 Ha
2000 Ja
Hoffsteir
Fluhrer,

using 1n



2 <~

s high

me rotation
dp.

with
I, where
b d, g x

30

Reasonable guesses given a
random decryption failure:

c correlated with some x' rev(d).

rev(c) correlated with x™'d.

crev(c) correlated with drev(d).

Experimentally confirmed:
Average of crev(c)

over some decryption failures
is close to d rev(d).

Round to integers: drev(d).

Eurocrypt 2002 Gentry—Szydlo
algorithm then finds d.

31

1999 Hall-Goldbel
2000 Jaulmes—Jou
Hoffstein—=Silverm:

Fluhrer, etc.: Evel
using invalid mess



on

dn_1X.

30

Reasonable guesses given a
random decryption failure:

c correlated with some x' rev(d).

rev(c) correlated with x™'d.

crev(c) correlated with drev(d).

Experimentally confirmed:
Average of crev(c)

over some decryption failures
is close to drev(d).

Round to integers: d rev(d).

Eurocrypt 2002 Gentry—-Szydlo
algorithm then finds d.

31

1999 Hal
2000 Jau

—Goldberg—Schneie
mes—Joux, 2000

Hoffstein—Silverman, 2016
Fluhrer, etc.: Even easier at

using invalid messages.



Reasonable guesses given a
random decryption failure:

c correlated with some x' rev(d).

rev(c) correlated with x™'d.

crev(c) correlated with drev(d).

Experimentally confirmed:
Average of crev(c)

over some decryption failures
is close to d rev(d).

Round to integers: d rev(d).

Eurocrypt 2002 Gentry—Szydlo
algorithm then finds d.

31

1999 Hal
2000 Jau

—Goldberg—Schneier,
mes—Joux, 2000

Hoffstein—Silverman, 2016
Fluhrer, etc.: Even easier attacks

using invalid messages.

32



Reasonable guesses given a
random decryption failure:

c correlated with some x' rev(d).

rev(c) correlated with x™'d.

crev(c) correlated with drev(d).

Experimentally confirmed:
Average of crev(c)

over some decryption failures
is close to d rev(d).

Round to integers: d rev(d).

Eurocrypt 2002 Gentry—Szydlo
algorithm then finds d.

31

1999 Hal
2000 Jau

—Goldberg—Schneier,
mes—Joux, 2000

Hoffstein—Silverman, 2016
Fluhrer, etc.: Even easier attacks

using invalid messages.

Attacker changes c to

C O

C

C

:]_, cCT X, ...
:2, C
- 3, etc.

:2X,

C T Xn_l;

¢+ 2xn— L

32



Reasonable guesses given a
random decryption failure:

c correlated with some x' rev(d).

rev(c) correlated with x™'d.

crev(c) correlated with drev(d).

Experimentally confirmed:
Average of crev(c)

over some decryption failures
is close to d rev(d).

Round to integers: d rev(d).

Eurocrypt 2002 Gentry—Szydlo
algorithm then finds d.

31

1999 Hal
2000 Jau

—Goldberg—Schneier,
mes—Joux, 2000

Hoffstein—Silverman, 2016
Fluhrer, etc.: Even easier attacks

using invalid messages.

Attacker changes c to

ct+t1l ctx, ..., C::Xn_l;
ct2, cEt2x, ..., cC 2Xn_1;
c + 3, etc.

This changes 3ab + dc: adds

+2d, -

::d, ::Xd, c ey,

:Xn_ld;

:2Xn_1d;

:2Xd,...,:

+3d, etc.

32



ble guesses given a
decryption failure:

ted with some x' rev(d).

orrelated with x 7 'd.

correlated with drev(d).

entally confirmed:
of crev(c)
1e decryption failures

to drev(d).
o integers: drev(d).

ot 2002 Gentry—Szydlo
n then finds d.

31

1999 Hal

2000 Jau

—Goldberg—Schneier,
mes—Joux, 2000

Hoffstein—Silverman, 2016
Fluhrer, etc.: Even easier attacks

using invalid messages.

Attacker changes c to

C ].,C::X,

C 2, C 2X,

n—1.

C X :
C 2Xn_1;

c + 3, etc.

This changes 3ab + dc: adds

::d, ::Xd

+3d, etc.

. ::Xn_ld;

+2d, +£2xd, ..., ::2Xn_1d;

32

e.g. 3at
all other

and d =



S given a
1 failure:

some x' rev(d).

vith x7'd.

with d rev(d).

nfirmed:

)

1on failures

).
- drev(d).

antry—Szydlo
ds d.

31

1999 Hal

2000 Jau

—Goldberg—Schneier,
mes—Joux, 2000

Hoffstein—Silverman, 2016

Fluhrer, etc.: Even easier attacks

using invalid messages.

Attacker changes c to

ct1l c X,...,C::Xn_l;
ct?2, c 2X,...,C::2Xn_1;
c + 3, etc.

This changes 3ab + dc: adds

::d, ::Xd

+3d, etc.

. ::Xn_ld;

+2d, £2xd, ..., ::2Xn_1d;

32

e.g. 3ab+dc = --
all other coeffs in
and d = - - + x*'



1lo

31

1999 Hall-Goldberg—Schneier,

2000 Jau

mes—Joux, 2000

Hoffstein—Silverman, 2016

Fluhrer, etc.: Even easier attacks

using invalid messages.

Attacker changes c to

ct1l ctx, ..., C::Xn_l;
ct2 ¢c+2x, ..., C::2Xn_1;
c + 3, etc.

This changes 3ab + dc: adds

::d, ::Xd

+3d, etc.

. ::Xn_ld;

+2d, +£2xd, ..., ::2Xn_1d;

32

e.g. 3ab+dc = ---+390x*
all other coeffs in [—389, 38
and d:---—I—X478—|—---.



1999 Hall-Goldberg—Schneier,

2000 Jau

mes—Joux, 2000

Hoffstein—Silverman, 2016

Fluhrer, e

tc.: Even easier attacks

using invalid messages.

Attacker changes c to

ctl ct+x, ..., C::Xn_l;
ct+2 ¢c+2x, ..., C::2Xn_1;
c + 3, etc.

This changes 3ab + dc: adds

::d, ::Xd

+3d, etc.

. ::Xn_ld;

+2d, £2xd, ..., ::2Xn_1d;

32

e.g. 3ab+dc =---+390x48+. ..
all other coeffs in [—389, 389];
and d:---—I—X478—|—---.

33



1999 Hall-Goldberg—Schneier,

2000 Jau

mes—Joux, 2000

Hoffstein—Silverman, 2016

Fluhrer, e

tc.: Even easier attacks

using invalid messages.

Attacker changes c to

ct+t1l ctx, ..., C::Xn_l;
ct?2 c*2x, ..., C::2Xn_1;
c + 3, etc.

This changes 3ab + dc: adds

::d, ::Xd

+3d, etc.

. ::Xn_ld;

+2d, £2xd, ..., ::2Xn_1d;

32

e.g. 3ab+dc =---+390x48+. ..

all other coeffs in [—389, 389];
and d:---—I—X478—|—---.

Then 3ab+ dc + kd =
4+ (390 + K)x*H8 4.
Decryption fails for big k.

33



1999 Hall-Goldberg—Schneier,

2000 Jau

mes—Joux, 2000

Hoffstein—Silverman, 2016

Fluhrer, e

tc.: Even easier attacks

using invalid messages.

Attacker changes c to

ct+t1l ctx, ..., C::Xn_l;
ct?2 c*2x, ..., C::2Xn_1;
c + 3, etc.

This changes 3ab + dc: adds

::d, ::Xd

+3d, etc.

. ::Xn_ld;

+2d, £2xd, ..., ::2Xn_1d;

32

e.g. 3ab+dc =---+390x48+. ..

all other coeffs in [—389, 389];
and d:---—I—X478—|—---.

Then 3ab+ dc + kd =
4+ (390 + K)x*H8 4.
Decryption fails for big k.

Search for smallest k that falis.

33



1999 Hal
2000 Jau

—Goldberg—Schneier,
mes—Joux, 2000

Hoffstein—Silverman, 2016
Fluhrer, etc.: Even easier attacks

using invalid messages.

Attacker changes c to

ct+t1l ctx, ..., C::Xn_l;
ct?2 c*2x, ..., C::2Xn_1;
c + 3, etc.

This changes 3ab + dc: adds

+2d, -

::d, ::Xd, c ey,

:Xn_ld;

:2Xn_1d;

:2Xd,...,:

+3d, etc.

32

33
e.g. 3ab+dc =---+390x48+. ..

all other coeffs in [—389, 389];
and d:---—I—X478—|—---.

Then 3ab+ dc + kd =
4+ (390 + K)x*H8 4.
Decryption fails for big k.

Search for smallest k that falis.

Does 3ab + dc + kxd also fail?
Yes if xd = -+ x*8 4+ ...
i.e., Ifd:—|—x477_|_




1999 Hal
2000 Jau

—Goldberg—Schneier,
mes—Joux, 2000

Hoffstein—Silverman, 2016
Fluhrer, etc.: Even easier attacks

using invalid messages.

Attacker changes c to

ctl ct+x, ..., C::Xn_l;
ct+2 ¢c+2x, ..., C::2Xn_1;
c + 3, etc.

This changes 3ab + dc: adds
+d, +xd, ..., ::Xn_ld;

+2d, £2xd, ..., ::2Xn_1d;

+3d, etc.

32

33
e.g. 3ab+dc =---+390x48+. ..

all other coeffs in [—389, 389];
and d:---—I—X478—|—---.

Then 3ab+ dc + kd =
4+ (390 + K)x*H8 4.
Decryption fails for big k.

Search for smallest k that falis.

Does 3ab + dc + kxd also fail?
Yes if xd = -+ x*8 4+ ...
i.e., Ifd:—|—x477_|_

Try xzkd, X3kd, etc.
See pattern of d coeffs.



|l-Goldberg—Schneier,
1Imes—Joux, 2000

1-Silverman, 2016
etc.: Even easier attacks

/alid messages.

- changes ¢ to
n—1.

T— X, ..., CITX :
+2x, ..., c=*t 2Xn_1;

[C.

inges 3ab + dc: adds
d, ..., ::Xn_ld;
’xd, ..., ::2Xn_1d;

=
s =

32

e.g. 3ab+dc =---+390x*8 ...

all other coeffs in [—389, 389];
and d:---—I—X478—|—---.

Then 3ab+ dc + kd =
4+ (390 + K)xH8 4.
Decryption fails for big k.

Search for smallest k that falis.

Does 3ab + dc + kxd also fail?
Yes ifXd:---—|—X478__...
i.e., Ifd:—|—x477_|_

Try szd, X3kd, etc.
See pattern of d coeffs.

33

How to

Approac
constant

For eact
generate
Use sign

that nok



-g—Schneier,

x, 2000

n, 2016

1 easler attacks
ages.

+ dc: adds

::2Xn_1d;

32

e.g. 3ab+dc =---+390x484+. ..

all other coeffs in [—389, 389];
and d:---—I—X478—|—---.

Then 3ab+ dc + kd =
4+ (390 + K)x*H8 4.
Decryption fails for big k.

Search for smallest k that falis.

Does 3ab + dc + kxd also fail?
Yes if xd = -+ x*8 4+ ...
i.e., Ifd:—|—x477_|_

Try xzkd, X3kd, etc.
See pattern of d coeffs.

33

How to handle inv

Approach 1: Tell i
constantly switch

For each new senc
generate new publ
Use signatures to

that nobody else 1



T,

tacks

Is

32

e.g. 3ab+dc =---+390x*8 ...

all other coeffs in [—389, 389];
and d:---—I—X478—|—---.

Then 3ab+ dc + kd =
4+ (390 + K)x*H8 4.
Decryption fails for big k.

Search for smallest k that falis.

Does 3ab + dc + kxd also fail?
Yes ifXd:---—|—X478__...

e ifd= - -+ x*0 ...

Try szd, X3kd, etc.
See pattern of d coeffs.

33

How to handle invalid mess:

Approach 1: Tell user to
constantly switch keys.

For each new sender,
generate new public key.
Use signatures to ensure

that nobody else uses key.



e.g. 3ab+dc =---+390x484+. ..

all other coeffs in [—389, 389];
and d:---—I—X478—|—---.

Then 3ab+ dc + kd =
4+ (390 + K)x*H8 4.
Decryption fails for big k.

Search for smallest k that falis.

Does 3ab + dc + kxd also fail?
Yes if xd = -+ x*8 4+ ...

e ifd= - -+ x*0 ...,

Try xzkd, X3kd, etc.
See pattern of d coeffs.

33

How to handle invalid messages

Approach 1: Tell user to
constantly switch keys.

For each new sender,
generate new public key.
Use signatures to ensure

that nobody else uses key.

34



e.g. 3ab+dc =---+390x484+. ..

all other coeffs in [—389, 389];
and d:---—I—X478—|—---.

Then 3ab+ dc + kd =
4+ (390 + K)x*H8 4.
Decryption fails for big k.

Search for smallest k that falis.

Does 3ab + dc + kxd also fail?
Yes if xd = -+ x*8 4+ ...
i.e., Ifd:—|—x477_|_

Try xzkd, X3kd, etc.
See pattern of d coeffs.

33

How to handle invalid messages

Approach 1: Tell user to
constantly switch keys.

For each new sender,
generate new public key.
Use signatures to ensure

that nobody else uses key.

e.g. original “IND-CPA" version
of New Hope; Ding.

34



e.g. 3ab+dc =---+390x484+. ..

all other coeffs in [—389, 389];
and d:---—I—X478—|—---.

Then 3ab+ dc + kd =
4+ (390 + K)x*H8 4.
Decryption fails for big k.

Search for smallest k that falis.

Does 3ab + dc + kxd also fail?
Yes if xd = -+ x*8 ...,
i.e., Ifd:—|—x477_|_

Try xzkd, X3kd, etc.
See pattern of d coeffs.

33

How to handle invalid messages

Approach 1: Tell user to
constantly switch keys.

For each new sender,
generate new public key.

Use signatures to ensure

that nobody else uses key.

e.g. original “IND-CPA" version
of New Hope; Ding.

If user reuses a key:
Blame user for the attacks.

34



+dc = ---+390x478 4. . .

“coeffs in [—389

b+ dc+ kd =
)0 + k)x*78 1 ..

1389);

on fails for big k.

or smallest k that falis.

b+ dc+ kxd a

so fail?

AT

d. X3kd, etc.
ern of d coeffs.

33

How to handle invalid messages

Approach 1: Tell user to
constantly switch keys.

For each new sender,
generate new public key.
Use signatures to ensure

that nobody else uses key.

e.g. original “IND-CPA" version
of New Hope; Ding.

If user reuses a key:
Blame user for the attacks.

34

Approac
encrypti
eliminat



+390x478 . ...

[—389, 389);

8 ...

kd =
8 ...
r big k.

t k that falis.

kxd also fail?

473

X —— & = =

477 |

tC.
oeffs.

33

How to handle invalid messages

Approach 1: Tell user to
constantly switch keys.

For each new sender,
generate new public key.

Use signatures to ensure

that nobody else uses key.

e.g. original “IND-CPA" version
of New Hope; Ding.

If user reuses a key:
Blame user for the attacks.

34

Approach 2: Mod

encryption and de
eliminate invalid n



U

ail?

33

How to handle invalid messages

Approach 1: Tell user to

constantly switch keys.

For each new sender,

generate new public key.

t

Use signatures to ensure

nat nobody else uses key.

e.g. original “IND-CPA" version

of New Hope; Ding.

If user reuses a key:

Blame user for the attacks.

34

Approach 2: Modity

encryption and decryption tc
eliminate invalid messages.



How to handle invalid messages

Approach 1: Tell user to
constantly switch keys.

For each new sender,
generate new public key.
Use signatures to ensure

that nobody else uses key.

e.g. original “IND-CPA" version
of New Hope; Ding.

If user reuses a key:
Blame user for the attacks.

34

Approach 2: Modity

encryption and decryption to
eliminate invalid messages.

35



How to handle invalid messages

Approach 1: Tell user to
constantly switch keys.

For each new sender,
generate new public key.
Use signatures to ensure

that nobody else uses key.

e.g. original “IND-CPA" version
of New Hope; Ding.

If user reuses a key:
Blame user for the attacks.

34

35
Approach 2: Modity

encryption and decryption to
eliminate invalid messages.

e.g. "IND-CCA" New Hope
submission; most submissions.



How to handle invalid messages

Approach 1: Tell user to

constantly switch keys.

For each new sender,

generate new public key.

t

Use signatures to ensure

nat nobody else uses key.

e.g. original “IND-CPA" version

of New Hope; Ding.

If user reuses a key:

Blame user for the attacks.

34

35
Approach 2: Modity

encryption and decryption to
eliminate invalid messages.

e.g. "IND-CCA" New Hope
submission; most submissions.

Basic idea, from Crypto 1999
Fujisaki-Okamoto: After
decrypting message, check
whether (1) message is valid
and (2) ciphertext matches
reencryption of message.



How to handle invalid messages

Approach 1: Tell user to
constantly switch keys.

For each new sender,
generate new public key.
Use signatures to ensure

that nobody else uses key.

e.g. original “IND-CPA" version
of New Hope; Ding.

If user reuses a key:
Blame user for the attacks.

34

35
Approach 2: Modity

encryption and decryption to
eliminate invalid messages.

e.g. "IND-CCA" New Hope
submission; most submissions.

Basic idea, from Crypto 1999
Fujisaki-Okamoto: After
decrypting message, check
whether (1) message is valid
and (2) ciphertext matches
reencryption of message.

But encryption is randomized!
Reencryption won't match.



handle invalid messages

h 1: Tell user to
ly switch keys.

' new sender,

' new public key.
atures to ensure
ody else uses key.

inal “IND-CPA" version
Hope; Ding.

2uses a key:
ser for the attacks.

34

Approach 2: Modity

encryption and decryption to
eliminate invalid messages.

e.g. "IND-CCA" New Hope
submission; most submissions.

Basic idea, from Crypto 1999
Fujisaki-Okamoto: After
decrypting message, check
whether (1) message is valid
and (2) ciphertext matches
reencryption of message.

But encryption is randomized!
Reencryption won't match.

35

Solution
randomr

e.g. afte
compute



alid messages

iser to
keys.

ler,

ic key.
ensure
Ises key.

CPA" version
g.

V:
 attacks.

34

Approach 2: Modity

encryption and decryption to
eliminate invalid messages.

e.g. "IND-CCA” New Hope
submission; most submissions.

Basic idea, from Crypto 1999
Fujisaki-Okamoto: After
decrypting message, check
whether (1) message is valid
and (2) ciphertext matches
reencryption of message.

But encryption is randomized!
Reencryption won't match.

35

Solution: Comput
randomness that v

e.g. after computi
compute b from 3



sion

34

Approach 2: Modity

encryption and decryption to
eliminate invalid messages.

e.g. "IND-CCA" New Hope
submission; most submissions.

Basic idea, from Crypto 1999
Fujisaki-Okamoto: After
decrypting message, check
whether (1) message is valid
and (2) ciphertext matches
reencryption of message.

But encryption is randomized!
Reencryption won't match.

35

Solution: Compute all
randomness that was used.

e.g. after computing ¢ in N
compute b from 3ab + dc.



Approach 2: Modity

encryption and decryption to
eliminate invalid messages.

e.g. "IND-CCA" New Hope
submission; most submissions.

Basic idea, from Crypto 1999
Fujisaki-Okamoto: After
decrypting message, check
whether (1) message is valid
and (2) ciphertext matches
reencryption of message.

But encryption is randomized!
Reencryption won't match.

35

Solution: Compute all
randomness that was used.

e.g. after computing ¢ in NTRU,
compute b from 3ab + dc.

36



Approach 2: Modity

encryption and decryption to
eliminate invalid messages.

e.g. "IND-CCA" New Hope
submission; most submissions.

Basic idea, from Crypto 1999
Fujisaki-Okamoto: After
decrypting message, check
whether (1) message is valid
and (2) ciphertext matches
reencryption of message.

But encryption is randomized!
Reencryption won't match.

35

Solution: Compute all
randomness that was used.

e.g. after computing ¢ in NTRU,
compute b from 3ab + dc.

Can view (b, ¢) as message,
no further randomness.
“Deterministic encryption.”

36



Approach 2: Modity

encryption and decryption to
eliminate invalid messages.

e.g. "IND-CCA" New Hope
submission; most submissions.

Basic idea, from Crypto 1999
Fujisaki-Okamoto: After
decrypting message, check
whether (1) message is valid
and (2) ciphertext matches
reencryption of message.

But encryption is randomized!
Reencryption won't match.

35

Solution: Compute all
randomness that was used.

e.g. after computing ¢ in NTRU,
compute b from 3ab + dc.

Can view (b, ¢) as message,
no further randomness.
“Deterministic encryption.”

“Product NTRU" variant
Is not naturally deterministic.

36



Approach 2: Modity

encryption and decryption to
eliminate invalid messages.

e.g. "IND-CCA" New Hope
submission; most submissions.

Basic idea, from Crypto 1999
Fujisaki-Okamoto: After
decrypting message, check
whether (1) message is valid
and (2) ciphertext matches
reencryption of message.

But encryption is randomized!
Reencryption won't match.

35

36
Solution: Compute all

randomness that was used.

e.g. after computing ¢ in NTRU,
compute b from 3ab + dc.

Can view (b, ¢) as message,
no further randomness.

“Deterministic encryption.”

“Product NTRU" variant
Is not naturally deterministic.

Generic Fujisaki-Okamoto
solution: Require sender to
compute randomness as
standard hash of message.



h 2: Modity
on and decryption to
e Invalid messages.

D-CCA" New Hope
on: most submissions.

2a, from Crypto 1999
-Okamoto: After

ng message, check
(1) message is valid
ciphertext matches
tion of message.

ryption is randomized!
otion won't match.

35

Solution: Compute all
randomness that was used.

e.g. after computing ¢ in NTRU,
compute b from 3ab + dc.

Can view (b, c) as message,
no further randomness.
“Deterministic encryption.”

“Product NTRU" variant
is not naturally deterministic.

Generic Fujisaki-Okamoto
solution: Require sender to
compute randomness as
standard hash of message.

36

How to

Eliminat
Nnot enol
using de
random



fy
cryption to
1essages.

lew Hope
submissions.

rypto 1999
-~ After

e, check
ge Is valid
matches
ssage.

randomized!
t match.

35

Solution: Compute all
randomness that was used.

e.g. after computing ¢ in NTRU,
compute b from 3ab + dc.

Can view (b, ¢) as message,
no further randomness.
“Deterministic encryption.”

“Product NTRU" variant
Is not naturally deterministic.

Generic Fujisaki-Okamoto
solution: Require sender to
compute randomness as
standard hash of message.

36

How to handle des

Eliminating invalic
not enough: reme
using decryption f.
random valid mes:



1S.

35

Solution: Compute all
randomness that was used.

e.g. after computing ¢ in NTRU,
compute b from 3ab + dc.

Can view (b, c) as message,
no further randomness.
“Deterministic encryption.”

“Product NTRU" variant
is not naturally deterministic.

Generic Fujisaki-Okamoto
solution: Require sender to
compute randomness as
standard hash of message.

36

How to handle decryption fz

Eliminating invalid message:s
not enough: remember atta
using decryption failures for
random valid messages.



Solution: Compute all
randomness that was used.

e.g. after computing ¢ in NTRU,
compute b from 3ab + dc.

Can view (b, ¢) as message,
no further randomness.
“Deterministic encryption.”

“Product NTRU" variant
Is not naturally deterministic.

Generic Fujisaki-Okamoto
solution: Require sender to
compute randomness as
standard hash of message.

36

How to handle decryption failures

Eliminating invalid messages Is
not enough: remember attack
using decryption failures for
random valid messages.

37



Solution: Compute all
randomness that was used.

e.g. after computing ¢ in NTRU,
compute b from 3ab + dc.

Can view (b, ¢) as message,
no further randomness.
“Deterministic encryption.”

“Product NTRU" variant
Is not naturally deterministic.

Generic Fujisaki-Okamoto
solution: Require sender to
compute randomness as
standard hash of message.

36

How to handle decryption failures

Eliminating invalid messages Is
not enough: remember attack
using decryption failures for
random valid messages.

NIST encryption submissions
vary in failure rates.

NTRU HRSS, NTRU Prime,
Odd Manhattan choose g to
eliminate decryption failures.

37



Solution: Compute all
randomness that was used.

e.g. after computing ¢ in NTRU,
compute b from 3ab + dc.

Can view (b, ¢) as message,
no further randomness.
“Deterministic encryption.”

“Product NTRU" variant
Is not naturally deterministic.

Generic Fujisaki-Okamoto
solution: Require sender to
compute randomness as
standard hash of message.

36

How to handle decryption failures

Eliminating invalid messages Is
not enough: remember attack
using decryption failures for
random valid messages.

NIST encryption submissions
vary in failure rates.

NTRU HRSS, NTRU Prime,
Odd Manhattan choose g to
eliminate decryption failures.

LIMA tried to eliminate
decryption failures, but failed.

37



. Compute all
1ess that was used.

r computing ¢ in NTRU,
b from 3ab + dc.

v (b, c) as message,
er randomness.
1nistic encryption.”

t NTRU" variant
turally deterministic.

Fujisaki-Okamoto
- Require sender to
' randomness as

| hash of message.

36

How to handle decryption failures

Eliminating invalid messages Is
not enough: remember attack
using decryption failures for
random valid messages.

NIST encryption submissions
vary in failure rates.

NTRU HRSS, NTRU Prime,
Odd Manhattan choose g to
eliminate decryption failures.

LIMA tried to eliminate
decryption failures, but failed.

37

More cl:

LOTUS:
New Ho
KINDI: :

NTRUE
KCL: =~
Ding: ~

Current
what de

Is small
decrypti
were cal



e all
vas used.

ng ¢ in NTRU,
ab+ dc.

- message,
ness.
ryption.”

variant
terministic.

)kamoto
sender to
ess as
nessage.

36

How to handle decryption failures

Eliminating invalid messages Is
not enough: remember attack
using decryption failures for
random valid messages.

NIST encryption submissions
vary in failure rates.

NTRU HRSS, NTRU Prime,
Odd Manhattan choose g to
eliminate decryption failures.

LIMA tried to eliminate
decryption failures, but failed.

37

More claimed failt
LOTUS: <272
New Hope submis
KINDI: 2165

NTRUEncrypt: <
KCL: ~2790
Ding: ~27%0 onl

Current debates a
what decryption f:

Is small enough; w
decryption failure
were calculated co



[ RU,

36

How to handle decryption failures

Eliminating invalid messages iIs
not enough: remember attack
using decryption failures for
random valid messages.

NIST encryption submissions
vary in failure rates.

NTRU HRSS, NTRU Prime,
Odd Manhattan choose g to
eliminate decryption failures.

LIMA tried to eliminate
decryption failures, but failed.

37

More claimed failure rates:
LOTUS: <272°°

New Hope submission: <2~
KINDI: 27165,

NTRUEncrypt: <280,
KCL: ~2 60
Ding: ~27°0 only IND-CP/

Current debates about
what decryption failure prob

Is small enough; whether
decryption failure probabiliti
were calculated correctly; et



How to handle decryption failures

Eliminating invalid messages Is
not enough: remember attack
using decryption failures for
random valid messages.

NIST encryption submissions
vary in failure rates.

NTRU HRSS, NTRU Prime,
Odd Manhattan choose g to
eliminate decryption failures.

LIMA tried to eliminate
decryption failures, but failed.

37

More claimed failure rates:
LOTUS: <272

New Hope submission: <2213
KINDI: 27165,

NTRUEncrypt: <280,
KCL: ~2— 60
Ding: ~27°0 only IND-CPA.

Current debates about
what decryption failure probability

Is small enough; whether
decryption failure probabilities
were calculated correctly; etc.

38



handle decryption failures

Ing invalid messages Is
1igh: remember attack
cryption failures for
valid messages.

cryption submissions

atlure rates.

1RSS, NTRU Prime,
nhattan choose g to
e decryption failures.

led to eliminate
on failures, but failed.

37

More claimed failure rates:
LOTUS: <272°°

New Hope submission: <2213,
KINDI: 27165,

NTRUEncrypt: <280,
KCL: ~2— 60
Ding: ~27°0 only IND-CPA.

Current debates about
what decryption failure probability

Is small enough; whether
decryption failure probabilities
were calculated correctly; etc.

38

How to

If messa
Attacker
a guess



37 38
“ryption failures More claimed failure rates: How to randomize

LOTUS: <272°,
New Hope submission: <2213,

| messages Is If message is gues

mber attack Attacker can chec

. KINDI: 2716,
ailures for | a guess matches a
ages. '
NTRUEncrypt: <280,

ubmissions KCL: as2—60

S Ding: ~27°0 only IND-CPA.

RU Prime, Current debates about

noose g to what decryption failure probability

on failures. is small enough; whether

Jinate decryption failure probabilities

 but failed. were calculated correctly; etc.




1lures

1S
ck

37 38
More claimed failure rates:

LOTUS: <2—2%0,
New Hope submission: <2213,
KINDI: 2165

NTRUEncrypt: <280,
KCL: ~2 60
Ding: ~27°0 only IND-CPA.

Current debates about
what decryption failure probability

Is small enough; whether
decryption failure probabilities
were calculated correctly; etc.

How to randomize messages

If message Is guessable:
Attacker can check whether
a guess matches a ciphertex



More claimed failure rates:
LOTUS: <272

New Hope submission: <2213
KINDI: 27165,

NTRUEncrypt: <280,
KCL: ~2 60
Ding: ~27°0 only IND-CPA.

Current debates about
what decryption failure probability

Is small enough; whether
decryption failure probabilities
were calculated correctly; etc.

38

How to randomize messages

If message is guessable:
Attacker can check whether
a guess matches a ciphertext.

39



38 39
More claimed failure rates: How to randomize messages

LOTUS: <272°,
New Hope submission: <2213

If message is guessable:
Attacker can check whether

KINDI: 27165, _
| a guess matches a ciphertext.
NTRUEncrypt: «2—80 Also various attacks using

KCL: ~2-90 guesses of portion of message.

Ding: ~27°0 only IND-CPA.

Current debates about
what decryption failure probability

Is small enough; whether
decryption failure probabilities
were calculated correctly; etc.




More claimed failure rates:
LOTUS: <272

New Hope submission: <
KINDI: 27165,

2—213

NTRUEncrypt: <280,
KCL: ~2 60
Ding: ~27°0 only IND-CPA.

Current debates about
what decryption failure probability

Is small enough; whether
decryption failure probabilities
were calculated correctly; etc.

38

How to randomize messages

If message is guessable:
Attacker can check whether
a guess matches a ciphertext.

Also various attacks using
guesses of portion of message.

Modern “KEM-DEM" solution,
from Eurocrypt 2000 Shoup:
Choose random message.

Use hash of message as (e.g.)
AES-256-GCM key to encrypt
and authenticate user data.

39



imed failure rates:
<296

pe submission: <2213,
2—165_

nerypt: <2799,

)—00
2760 only IND-CPA.

debates about

cryption failure probability
enough; whether

on failure probabilities
culated correctly; etc.

38

How to randomize messages

If message Is guessable:
Attacker can check whether
a guess matches a ciphertext.

Also various attacks using
guesses of portion of message.

Modern “KEM-DEM" solution,
from Eurocrypt 2000 Shoup:
Choose random message.

Use hash of message as (e.g.)
AES-256-GCM key to encrypt
and authenticate user data.

39

Central

Can att:
a randor
public ke



Ire rates:

sion: <2213

»—80

/ IND-CPA.

bout

ilure probability
‘hether
probabilities
rrectly; etc.

38

How to randomize messages

If message is guessable:
Attacker can check whether
a guess matches a ciphertext.

Also various attacks using
guesses of portion of message.

Modern “KEM-DEM" solution,
from Eurocrypt 2000 Shoup:
Choose random message.

Use hash of message as (e.g.)
AES-256-GCM key to encrypt
and authenticate user data.

39

Central “one-wayr
Can attacker figur
a random message
public key and cip



213

ability

38

How to randomize messages

If message Is guessable:
Attacker can check whether
a guess matches a ciphertext.

Also various attacks using
guesses of portion of message.

Modern “KEM-DEM" solution,
from Eurocrypt 2000 Shoup:
Choose random message.

Use hash of message as (e.g.)
AES-256-GCM key to encrypt
and authenticate user data.

39

Central “one-wayness’ ques
Can attacker figure out

a random message given
public key and ciphertext?



How to randomize messages

If message is guessable:
Attacker can check whether
a guess matches a ciphertext.

Also various attacks using
guesses of portion of message.

Modern “KEM-DEM" solution,
from Eurocrypt 2000 Shoup:
Choose random message.

Use hash of message as (e.g.)
AES-256-GCM key to encrypt
and authenticate user data.

39

Central “one-wayness’ question:

Can attacker figure out
a random message given
public key and ciphertext?

40



How to randomize messages

If message is guessable:
Attacker can check whether
a guess matches a ciphertext.

Also various attacks using
guesses of portion of message.

Modern “KEM-DEM" solution,
from Eurocrypt 2000 Shoup:
Choose random message.

Use hash of message as (e.g.)
AES-256-GCM key to encrypt
and authenticate user data.

39

40
Central “one-wayness’ question:

Can attacker figure out
a random message given
public key and ciphertext?

Fujisaki-Okamoto and many
newer papers try to prove that all
chosen-ciphertext distinguishers

(“IND-CCA attacks”) are as
difficult as breaking one-wayness.



How to randomize messages

If message is guessable:
Attacker can check whether
a guess matches a ciphertext.

Also various attacks using
guesses of portion of message.

Modern “KEM-DEM" solution,
from Eurocrypt 2000 Shoup:
Choose random message.

Use hash of message as (e.g.)
AES-256-GCM key to encrypt
and authenticate user data.

39

40
Central “one-wayness’ question:

Can attacker figure out
a random message given
public key and ciphertext?

Fujisaki-Okamoto and many
newer papers try to prove that all
chosen-ciphertext distinguishers

(“IND-CCA attacks”) are as
difficult as breaking one-wayness.

Many limitations to proofs: bugs;
looseness; assumptions of “ROM”
or "QROM" attacks; assumptions
on failure probability; etc.



randomize messages

ge Is guessable:
- can check whether
matches a ciphertext.

lous attacks using
of portion of message.

"KEM-DEM" solution,
rocrypt 2000 Shoup:
random message.

1 of message as (e.g.)
-GCM key to encrypt
1enticate user data.

39

40
Central “one-wayness’ question:

Can attacker figure out
a random message given
public key and ciphertext?

Fujisaki-Okamoto and many
newer papers try to prove that all
chosen-ciphertext distinguishers

(“IND-CCA attacks”) are as
difficult as breaking one-wayness.

Many limitations to proofs: bugs;
looseness; assumptions of “ROM”
or “"QROM" attacks; assumptions
on failure probability; etc.

Brute-fo

Attacket
A= 3a/
Can att:



_messages

sable:
k whether
ciphertext.

Ks using
of message.

-M" solution,
00 Shoup:
essage.

ge as (e.g.)
/ TO encrypt
1ser data.

39

Central “one-wayness’ question:
Can attacker figure out

a random message given

public key and ciphertext?

Fujisaki-Okamoto and many
newer papers try to prove that all
chosen-ciphertext distinguishers

(“IND-CCA attacks”) are as
difficult as breaking one-wayness.

Many limitations to proofs: bugs;
looseness; assumptions of “ROM”
or “"QROM" attacks; assumptions
on failure probability; etc.

40

Brute-force search

Attacker Is given
A = 3a/d, ciphert
Can attacker find



39

Central “one-wayness’ question:
Can attacker figure out

a random message given

public key and ciphertext?

Fujisaki-Okamoto and many
newer papers try to prove that all
chosen-ciphertext distinguishers

(“IND-CCA attacks”) are as
difficult as breaking one-wayness.

Many limitations to proofs: bugs;
looseness; assumptions of “ROM”
or “"QROM" attacks; assumptions
on failure probability; etc.

40

Brute-force search

Attacker is given public key
A = 3a/d, ciphertext C = /
Can attacker find c?



Central “one-wayness’ question:
Can attacker figure out

a random message given

public key and ciphertext?

Fujisaki-Okamoto and many
newer papers try to prove that all
chosen-ciphertext distinguishers

(“IND-CCA attacks”) are as
difficult as breaking one-wayness.

Many limitations to proofs: bugs;
looseness; assumptions of “ROM”
or “"QROM" attacks; assumptions
on failure probability; etc.

40

Brute-force search

Attacker is given public key
A = 3a/d, ciphertext C = Ab + c.
Can attacker find c¢?

41



Central “one-wayness’ question:
Can attacker figure out

a random message given

public key and ciphertext?

Fujisaki-Okamoto and many
newer papers try to prove that all
chosen-ciphertext distinguishers

(“IND-CCA attacks”) are as
difficult as breaking one-wayness.

Many limitations to proofs: bugs;
looseness; assumptions of “ROM”
or “"QROM" attacks; assumptions
on failure probability; etc.

40

Brute-force search

Attacker is given public key
A = 3a/d, ciphertext C = Ab + c.
Can attacker find c¢?

Search (V':/)ZW choices of b.
If c = C — Ab is small: done!

41



Central “one-wayness’ question:
Can attacker figure out

a random message given

public key and ciphertext?

Fujisaki-Okamoto and many
newer papers try to prove that all
chosen-ciphertext distinguishers

(“IND-CCA attacks”) are as
difficult as breaking one-wayness.

Many limitations to proofs: bugs;
looseness; assumptions of “ROM”
or “"QROM" attacks; assumptions
on failure probability; etc.

40

41
Brute-force search

Attacker is given public key
A = 3a/d, ciphertext C = Ab + c.
Can attacker find c¢?

Search (V':/)ZW choices of b.
If c = C — Ab is small: done!

(Can this find two different
messages c¢? Unlikely. This would

also stop legitimate decryption.)



Central “one-wayness’ question:
Can attacker figure out

a random message given

public key and ciphertext?

Fujisaki-Okamoto and many
newer papers try to prove that all
chosen-ciphertext distinguishers
(“IND-CCA attacks”) are as

difficult as breaking one-wayness.

Many limitations to proofs: bugs;
looseness; assumptions of “ROM”
or “"QROM" attacks; assumptions
on failure probability; etc.

40

41
Brute-force search

Attacker is given public key
A = 3a/d, ciphertext C = Ab + c.
Can attacker find c¢?

Search (V':/)ZW choices of b.
If c = C — Ab is small: done!

(Can this find two different
messages c¢? Unlikely. This would

also stop legitimate decryption.)

Or search 3" choices of d.

If a = dA/3 is small, use (a, d) to
decrypt. Slightly slower but can
be reused for many ciphertexts.



“one-wayness’ question:
icker figure out

N message given

2y and ciphertext?

-Okamoto and many
pers try to prove that all
Iphertext distinguishers
CA attacks”) are as

as breaking one-wayness.

nitations to proofs: bugs;
s; assumptions of “ROM"
)M™ attacks; assumptions
e probability; etc.

40

Brute-force search

Attacker is given public key

A = 3a/d, ciphertext C = Ab + c.

Can attacker find c?

Search (V”V)2W choices of b.
If c = C — Ab is small: done!

(Can this find two different
messages c? Unlikely. This would

also stop legitimate decryption.)

Or search 3" choices of d.

If a = dA/3 is small, use (a, d) to
decrypt. Slightly slower but can
be reused for many ciphertexts.

41

Equivale

Secret k
secret ke
secret ke



ess’ question:
e out

 glven
hertext?

and many

o prove that all
distinguishers
s" ) are as

g one-wayness.

0 proofs: bugs;
tions of “ROM”
ks; assumptions
ity; etc.

40

Brute-force search

Attacker is given public key
A = 3a/d, ciphertext C = Ab + c.
Can attacker find c¢?

Search (V':/)ZW choices of b.
If c = C — Ab is small: done!

(Can this find two different
messages c? Unlikely. This would

also stop legitimate decryption.)

Or search 3" choices of d.

If a = dA/3 is small, use (a, d) to
decrypt. Slightly slower but can
be reused for many ciphertexts.

41

Equivalent keys

Secret key (a,d) i
secret key (xa, xd
secret key (x2a, x°



tion:

1at all
ers

'NESS.

bugs;
ROM”
ptions

40

Brute-force search

Attacker is given public key

A = 3a/d, ciphertext C = Ab + c.

Can attacker find c?

Search (V”V)2W choices of b.
If c = C — Ab is small: done!

(Can this find two different
messages c? Unlikely. This would

also stop legitimate decryption.)

Or search 3" choices of d.

If a = dA/3 is small, use (a, d) to
decrypt. Slightly slower but can
be reused for many ciphertexts.

41

Equivalent keys

Secret key (a, d) is equivalel
secret key (xa, xd),
secret key (x%a, x°d), etc.



Brute-force search

Attacker is given public key
A = 3a/d, ciphertext C = Ab + c.
Can attacker find c¢?

Search (V':/)ZW choices of b.
If c = C — Ab is small: done!

(Can this find two different
messages c? Unlikely. This would

also stop legitimate decryption.)

Or search 3" choices of d.

If a = dA/3 is small, use (a, d) to
decrypt. Slightly slower but can
be reused for many ciphertexts.

41

Equivalent keys

Secret key (a, d) is equivalent to
secret key (xa, xd),
secret key (x°a, x°d), etc.

42



Brute-force search

Attacker is given public key
A = 3a/d, ciphertext C = Ab + c.
Can attacker find c¢?

Search (V':/)ZW choices of b.
If c = C — Ab is small: done!

(Can this find two different
messages c? Unlikely. This would

also stop legitimate decryption.)

Or search 3" choices of d.

If a = dA/3 is small, use (a, d) to
decrypt. Slightly slower but can
be reused for many ciphertexts.

41

Equivalent keys

Secret key (a, d) is equivalent to
secret key (xa, xd),
secret key (x°a, x°d), etc.

Search only about 3”/n choices.

42



41 42

Brute-force search Equivalent keys

Attacker is given public key Secret key (a, d) is equivalent to
A = 3a/d, ciphertext C = Ab + c. secret key (xa, xd),

Can attacker find c¢? secret key (x°a, x°d), etc.
Search (7)2% choices of b. Search only about 3”/n choices.

If c = C — Ab is small: done! n— 701 w — 467:

(Can this find two different (\;’/)2‘/‘/ ~ 21100.09;
messages c¢? Unlikely. This would 31 21111.06.
also stop legitimate decryption.) 37/n ~ 2110161

Or search 3" choices of d.

If a = dA/3 is small, use (a, d) to
decrypt. Slightly slower but can
be reused for many ciphertexts.




41

Brute-force search Equivalent keys

Attacker is given public key Secret key (a, d) is equivalent to
A = 3a/d, ciphertext C = Ab + c. secret key (xa, xd),

Can attacker find c¢? secret key (x°a, x°d), etc.
Search (7)2% choices of b. Search only about 3”/n choices.

If c = C — Ab is small: done! n— 701 w — 467:

(Can this find two different (7)2w ~ 21106.09,
3N 91111.06.

messages c¢? Unlikely. This would
also stop legitimate decryption.) 37/n ~ 2110161

Or search 3" choices of d. Exercise: Find more equivalences!
If a = dA/3 is small, use (a, d) to
decrypt. Slightly slower but can
be reused for many ciphertexts.




Brute-force search

Attacker is given public key

A = 3a/d, ciphertext C = Ab + c.

Can attacker find c?

Search (V':/)ZW choices of b.
If c = C — Ab is small: done!

(Can this find two different
messages c? Unlikely. This would

also stop legitimate decryption.)

Or search 3" choices of d.

If a = dA/3 is small, use (a, d) to
decrypt. Slightly slower but can
be reused for many ciphertexts.

41

42
Equivalent keys

Secret key (a, d) is equivalent to
secret key (xa, xd),
secret key (x°a, x°d), etc.

Search only about 3”/n choices.

n= 701, w =467:
(an)2W ~ 21106.09;
3N~y 21111.06.

3”/[7 ~ 21101.61
Exercise: Find more equivalences!

But if w is chosen smaller then
(V”V)ZW search will be faster.



rce search

~1s given public key

d, ciphertext C = Ab + c.

icker find c?

'V”V)2W choices of b.

" Abis small: done!

s find two different
s ¢? Unlikely. This would
) legitimate decryption.)

h 3" choices of d.

A/3 is small, use (a, d) to
Slightly slower but can

d for many ciphertexts.

41

42
Equivalent keys

Secret key (a, d) is equivalent to
secret key (xa, xd),
secret key (x%a, x°d), etc.

Search only about 3"/n choices.

n=701, w=467:
(an)2w ~ 21106.09;
3N~y 21111.06.

3n/n ~ 21101.61
Exercise: Find more equivalences!

But if w is chosen smaller then
(VZ)ZW search will be faster.

Collision

Write d
di = bo
dr = rer



yublic key

ext C = Ab + c.

c?

ices of b.

mall: donel

different

ely. This would
e decryption.)

es of d.

all, use (a, d) to
lower but can

y ciphertexts.

41

42
Equivalent keys

Secret key (a, d) is equivalent to
secret key (xa, xd),
secret key (x°a, x°d), etc.

Search only about 3”/n choices.

n=701 w =467:
(an)2W ~ 21106.09;
3N~y 21111.06.

3”/[7 ~ 21101.61
Exercise: Find more equivalences!

But if w is chosen smaller then
(V”V)ZW search will be faster.

Collision attacks

Write d as di + d

d1
do

bottom |n/2
remaining te



b + .

would
on.)

,d) to
can
XTS.

41

42
Equivalent keys

Secret key (a, d) is equivalent to
secret key (xa, xd),
secret key (x%a, x°d), etc.

Search only about 3"/n choices.

n=701, w =467:
(an)2w ~ 21106.09;
3N~y 21111.06.

3n/n ~ 21101.61
Exercise: Find more equivalences!

But if w is chosen smaller then
(VZ)ZW search will be faster.

Collision attacks

Write d as di + d> where

di
do

bottom |[n/2| terms o
remaining terms of d.



Equivalent keys

Secret key (a, d) is equivalent to
secret key (xa, xd),
secret key (x°a, x°d), etc.

Search only about 3”/n choices.

n=701 w =467:
(an)2W ~ 21106.09;
3N~y 21111.06.

3”/[7 ~ 21101.61
Exercise: Find more equivalences!

But if w is chosen smaller then
(V”V)ZW search will be faster.

42

Collision attacks

Write d as di + do where
di = bottom [n/2] terms of d,
dr = remaining terms of d.

43



Equivalent keys

Secret key (a, d) is equivalent to
secret key (xa, xd),
secret key (x°a, x°d), etc.

Search only about 3”/n choices.

n=701 w =467:

n\oaw ~_ n1106.09.
(W)2 2 ’
3N~y 21111.06.

3”/[7 ~ 21101.61_

Exercise: Find more equivalences!

But if w is chosen smaller then
(V”V)ZW search will be faster.

42

43
Collision attacks

Write d as di + do where
di = bottom [n/2] terms of d,
dr = remaining terms of d.

a=(A/3)d = (A/3)d1 + (A/3)d
so a— (A/3)d» = (A/3)d;.



Equivalent keys

Secret key (a, d) is equivalent to
secret key (xa, xd),
secret key (x°a, x°d), etc.

Search only about 3”/n choices.

n=701 w =467:

n\oaw ~_ n1106.09.
(W)2 2 !
3N~y 21111.06.

3”/[7 ~ 21101.61_

Exercise: Find more equivalences!

But if w is chosen smaller then
(V”V)ZW search will be faster.

42

43
Collision attacks

Write d as di + do where
di = bottom [n/2] terms of d,
dr = remaining terms of d.

a=(A/3)d = (A/3)dL + (A/3)d>
so a— (A/3)d» = (A/3)d;.
Eliminate a: almost certainly
H(—(A/3)d2) = H((A/3)d1) for
H(f) — ([fo < O] ..... [fk—l < O])



Equivalent keys

Secret key (a, d) is equivalent to
secret key (xa, xd),
secret key (x°a, x°d), etc.

Search only about 3”/n choices.

n=701 w =467:

n\oaw ~_ n1106.09.
(W)2 2 !
3N~y 21111.06.

3”/[7 ~ 21101.61_

Exercise: Find more equivalences!

But if w is chosen smaller then
(V”V)ZW search will be faster.

42

43
Collision attacks

Write d as di + do where
di = bottom [n/2] terms of d,
dr = remaining terms of d.

a=(A/3)d = (A/3)dL + (A/3)d>
so a— (A/3)d» = (A/3)d;.
Eliminate a: almost certainly
H(—(A/3)d2) = H((A/3)d1) for
H(f) — ([fo < O] ..... [fk—l < O])

H(—(A/3)d2).
H((A/3)d1).
Search for collisions.

Enumerate a

Enumerate a

Only about 37/2 computations:
but beware cost of memory.



nt keys

ey (a, d) is equivalent to
y (xa, xd),
y (x%a, x°d), etc.

nly about 3”/n choices.

w = 467:

n\oaw ~_ n1106.09.
(W)2 R 2 ’
3N~y 21111.06.

3n/n ~ 21101.61-

. Find more equivalences!

1s chosen smaller then
earch will be faster.

42

Collision attacks

Write d as di + do where
di = bottom [n/2] terms of d,
d> = remaining terms of d.

a=(A/3)d = (A/3)d1 + (A/3)d

soa— (A/3)dr = (A/3)d.
Eliminate a: almost certainly
H(—(A/3)d2) = H((A/3)dy) for

H(f) — ([fo < O] ..... [fk—l < 0])

Enumerate all H(—(A/3)db).
Enumerate all H((A/3)d1).
Search for collisions.

Only about 31/2 computations:
but beware cost of memory.

43

| attices




s equivalent to

).

d), etc.

3"/n choices.

/7/)2W ~ 21106.09;
3N~y 21111.06;

3”/[7 ~ 21101.61_

re equivalences!

smaller then
be faster.

42

43
Collision attacks

Write d as dy + do where
di = bottom [n/2] terms of d,
dr» = remaining terms of d.

a=(A/3)d = (A/3)dL + (A/3)d>
so a— (A/3)d» = (A/3)d;.
Eliminate a: almost certainly
H(—(A/3)d2) = H((A/3)d1) for
H(f) — ([fo < O] ..... [fk—l < O])

Enumerate all H(—(A/3)db).
Enumerate all H((A/3)d1).
Search for collisions.

Only about 37/2 computations:
but beware cost of memory.

| attices




Nt to

CESs.

1106.09.
1111.06.
1101.61

nces!

nen

42

43
Collision attacks

Write d as di + do where
di = bottom [n/2] terms of d,
dr» = remaining terms of d.

a=(A/3)d = (A/3)d1 + (A/3)d>
soa— (A/3)dr = (A/3)d.
Eliminate a: almost certainly
H(—(A/3)d2) = H((A/3)d1) for
H(f) = ([fo < O] ..... [fk—l < 0])

Enumerate all H(—(A/3)db).
Enumerate all H((A/3)d;).
Search for collisions.

Only about 31/2 computations:
but beware cost of memory.

| attices




Collision attacks

Write d as di + do where
di = bottom [n/2] terms of d,
dr = remaining terms of d.

a=(A/3)d = (A/3)dL + (A/3)d>
soa— (A/3)d» = (A/3)d;.
Eliminate a: almost certainly
H(—(A/3)d2) = H((A/3)d1) for
H(f) — ([fo < O] ..... [fk—l < O])

Enumerate all H(—(A/3)db).
Enumerate all H((A/3)d;).
Search for collisions.

Only about 37/2 computations:
but beware cost of memory.

43

| attices

44



Collision attacks

Write d as dy + do where
di = bottom [n/2| terms of d,
d>» = remaining terms of d.

a=(A/3)d = (A/3)dL + (A/3)d>
soa— (A/3)d» = (A/3)d;.
Eliminate a: almost certainly
H(—(A/3)d2) = H((A/3)d1) for
H(f) — ([fo < O], C [fk—l 1 O])

Enumerate all H(—(A/3)db).
Enumerate all H((A/3)d;).
Search for collisions.

Only about 37/2 computations:
but beware cost of memory.

43

| attices

This 1s a lettuce:

44



Collision attacks

Write d as dy + do where
di = bottom [n/2| terms of d,
)

a=(A/3)d = (A/3)dL + (A/3)d>
soa— (A/3)d» = (A/3)d;.
Eliminate a: almost certainly
H(—(A/3)d2) = H((A/3)d1) for
H(f) — ([fo < O], C [fk—l 1 O])

Enumerate all H(—(A/3)db).
Enumerate all H((A/3)d;).
Search for collisions.

remaining terms of d.

Only about 37/2 computations:
but beware cost of memory.

43

| attices

This 1s a lettuce:

44



_attacks

as di + d»r where
ttom [n/2| terms of d,
naining terms of d.

3)d = (A/3)d1 + (A/3)d)
A/3)dr = (A/3)d;.

e a: almost certainly
3)dy) = H((A/3)d1) for
[f()<0],...,[fk_1 <O] .

ite all H(—(A/3)db).
ite all H((A/3)dy).
or collisions.

sut 37/2 computations;

are cost of memory.

43

| attices

This 1s a lettuce:

“/:\‘\f‘ ﬂ:“\:

<
®

44

| attices,

Assume
are R-lir



D where
| terms of d,
rms of d.

3)d1 + (A/3)d>
(A/3)d;.

st certainly
1((A/3)dy) for
S [fk—l < O])

(A/3)db).
A/3)dy).

omputations;
f memory.

43

| attices

This 1s a lettuce:

44

L attices, mathems

Assume that by, b
are R-linearly inde
l.e., Rby + ...+ F
{rib1 + ...+ ryby
Is a k-dimensional



F d,

\/3)d>

for

ns,

43

| attices

This 1s a lettuce:

44

Lattices, mathematically

Assume that by, by, ..., by ¢
are R-linearly independent,
l.e., Rby + ...+ Rby =
{riby +...4+rebg:r,...,
Is a k-dimensional vector sp



| attices

This 1s a lettuce:

44

45
Lattices, mathematically

Assume that by, by, ..., b, € R"
are R-linearly independent,

l.e., Rby + ...+ Rby =

{rib1 +...4+rebk:r,...,rx € R}
Is a k-dimensional vector space.



| attices

This 1s a lettuce:

44

Lattices, mathematically

Assume that by, by, ..., b, € R"
are R-linearly independent,

l.e., Rby + ...+ Rby =

{rib1 +...4+rebk:r,...,rx € R}
Is a k-dimensional vector space.

Zby + ...+ 2Zb, =
{rib1+...+rby:r,...,rx € Z}
Is a rank-k length-n lattice.

45



| attices

This 1s a lettuce:

44

Lattices, mathematically

Assume that by, by, ..., b, € R"
are R-linearly independent,

l.e., Rby + ...+ Rby =

{rib1 +...4+rebk:r,...,rx € R}
Is a k-dimensional vector space.

Zby + ...+ 2Zb, =
{rib1+...+rby:r,...,rx € Z}
Is a rank-k length-n lattice.

b1, ..., by
Is a basis of this lattice.

45



44 45

Lattices, mathematically Short ve
 lettuce: Assume that by, by, ..., by € R” Given b;
are R-linearly independent, what Is :
i.e., Rby + ...+ Rb, = in Zby 4

{rib1 +...4+rebg:r,...,rx € R}
Is a k-dimensional vector space.

Zby + ...+ 2Zb; =
{rnb1+...+rby:r,...,r, € Z}
Is a rank-k length-n lattice.

bi,..., by
Is a basis of this lattice.




44 45

Lattices, mathematically Short vectors in la
Assume that by, by, ..., b € R" Given by, by, ..., |
are R-linearly independent, what Is shortest ve
l.e., Rby + ...+ Rby = in Zby + ...+ Zb

{rib1 +...4+rgbi:r,...,rx € R}
Is a k-dimensional vector space.

Zby + ...+ 2Zb, =
{rib1+...+rby:r,....,rx € Z}
Is a rank-k length-n lattice.

b1, ..., b
Is a basis of this lattice.




44

Lattices, mathematically

L b

b1, ..., by
Is a basis of this lattice.

Assume that by, by, ..., by € R”
are R-linearly independent,

l.e., Rby + ...+ Rby =

{rib1 +...4+reby:r,...,rx € R}
Is a k-dimensional vector space.

Zb, —

{rnbi+...+rby:r,...,rx € Z}
Is a rank-k length-n lattice.

45

Short vectors in lattices

Given b1, by, ..., bk cZ"
what is shortest vector
in Zby + ...+ 4Zb; "



Lattices, mathematically

Assume that by, by, ..., b, € R"
are R-linearly independent,

l.e., Rby + ...+ Rby =

{rib1 +...4+rgbi:r,...,rx € R}
Is a k-dimensional vector space.

Zby + ...+ 2Zby =
{rnb1+...+rby:r,...,rx € Z}
Is a rank-k length-n lattice.

b1, ..., by
Is a basis of this lattice.

45

Short vectors in lattices

Given b1, by, ..., bk cZ"
what iIs shortest vector
in Zby + ...+ 4b,?

46



Lattices, mathematically

Assume that by, by, ..., b, € R"
are R-linearly independent,

l.e., Rby + ...+ Rby =

{rib1 +...4+rgbi:r,...,rx € R}
Is a k-dimensional vector space.

Zby + ...+ 2Zby =
{rnb1+...+rby:r,...,rx € Z}
Is a rank-k length-n lattice.

b1, ..., by
Is a basis of this lattice.

45

Short vectors in lattices

Given b1, by, ..., bk cZ"
what iIs shortest vector
in Zby + ...+ 4b,?

0.

46



Lattices, mathematically

Assume that by, by, ..., b, € R"
are R-linearly independent,

l.e., Rby + ...+ Rby =

{rib1 +...4+rgbi:r,...,rx € R}
Is a k-dimensional vector space.

L b

Zb, —

{rnb1+...+rby:r,...,rx € Z}
Is a rank-k length-n lattice.

by, ... by

Is a basis of this lattice.

45

Short vectors in lattices

Given b1, by, ..., bk cZ"
what iIs shortest vector
in Zby + ...+ 4b,?

0.

What i1s shortest nonzero vector?

46



Lattices, mathematically

Assume that by, by, ..., b, € R"
are R-linearly independent,

l.e., Rby + ...+ Rby =

{rib1 +...4+rgbi:r,...,rx € R}
Is a k-dimensional vector space.

Zby + ...+ 2Zby =
{rnb1+...+rby:r,...,rx € Z}
Is a rank-k length-n lattice.

b1, ..., by
Is a basis of this lattice.

45

46
Short vectors in lattices

Given b1, by, ..., bk cZ"
what iIs shortest vector
in Zby + ...+ 4b,?

0.
What i1s shortest nonzero vector?

LLL algorithm runs in poly time,

computes a vector whose length

is at most 2"/2 times

length of shortest nonzero vector.



Lattices, mathematically

Assume that by, by, ..., b, € R"
are R-linearly independent,

l.e., Rby + ...+ Rby =

{rib1 +...4+rgbi:r,...,rx € R}
Is a k-dimensional vector space.
Lby + ...+ Zby =
{rnb1+...+rby:r,...,rx € Z}

Is a rank-k length-n lattice.

b1, ..., by
Is a basis of this lattice.

45

46
Short vectors in lattices

Given b1, by, ..., bk cZ"
what iIs shortest vector
in Zby + ...+ 4b,?

0.
What i1s shortest nonzero vector?

LLL algorithm runs in poly time,
computes a vector whose length
is at most 2"/2 times

length of shortest nonzero vector.

Fancier algorithms (e.g., BKZ)
compute shorter vectors
at surprisingly high speed.



~mathematically

that bl,bz,...,bk c R”
iearly independent,

+ ...+ Rby =

.+ b, ..., rk €R}
mensional vector space.

+Zb, =
.+ by r1,...,rk€Z}
-k length-n lattice.

Dk
s of this lattice.

45

Short vectors in lattices

Given b1, by, ..., bk cZ"
what is shortest vector
in Zby + ...+ 4Zb; "

0.
What i1s shortest nonzero vector?

LLL algorithm runs in poly time,
computes a vector whose length
is at most 2"/2 times

length of shortest nonzero vector.

Fancier algorithms (e.g., BKZ)
compute shorter vectors
at surprisingly high speed.

46

Lattice \

Given pt
Comput



tically

:I’1,...,I’k€R}
vector space.

., Fe € Z}
-n lattice.

r11

attice.

45

Short vectors in lattices

Given b1, by, ..., bk cZ"
what iIs shortest vector
in Zby + ...+ 4Zb;?

0.
What i1s shortest nonzero vector?

LLL algorithm runs in poly time,
computes a vector whose length
is at most 2"/2 times

length of shortest nonzero vector.

Fancier algorithms (e.g., BKZ)
compute shorter vectors
at surprisingly high speed.

46

Lattice view of N

Given public key #
Compute A/3 = a



:R”

Ml © R}
dCE.

FkEZ}

45

Short vectors in lattices

Given b1, by, ..., bk cZ"
what is shortest vector
in Zby + ...+ Zb; "

0.
What i1s shortest nonzero vector?

LLL algorithm runs in poly time,
computes a vector whose length
is at most 2"/2 times

length of shortest nonzero vector.

Fancier algorithms (e.g., BKZ)
compute shorter vectors
at surprisingly high speed.

46

Lattice view of NTRU

Given public key A = 3a/d.
Compute A/3 = a/d.



Short vectors in lattices

Given by, by, ..., by € Z"
what iIs shortest vector
in Zby + ...+ 4Zb;?

0.
What i1s shortest nonzero vector?

LLL algorithm runs in poly time,
computes a vector whose length
is at most 2"/2 times

length of shortest nonzero vector.

Fancier algorithms (e.g., BKZ)
compute shorter vectors
at surprisingly high speed.

46

Lattice view of NTRU

Given public key A = 3a/d.
Compute A/3 = a/d.

47



Short vectors in lattices

Given by, by, ..., by € Z"
what iIs shortest vector
in Zby + ...+ 4Zb;?

0.
What i1s shortest nonzero vector?

LLL algorithm runs in poly time,
computes a vector whose length
is at most 2"/2 times

length of shortest nonzero vector.

Fancier algorithms (e.g., BKZ)
compute shorter vectors
at surprisingly high speed.

46

Lattice view of NTRU

Given public key A = 3a/d.
Compute A/3 = a/d.

d Is obtained from

1. x, ... x™1

by a few additions, subtractions.

47



Short vectors in lattices

Given by, by, ..., by € Z"
what iIs shortest vector
in Zby + ...+ 4Zb;?

0.
What i1s shortest nonzero vector?

LLL algorithm runs in poly time,
computes a vector whose length
is at most 2"/2 times

length of shortest nonzero vector.

Fancier algorithms (e.g., BKZ)
compute shorter vectors
at surprisingly high speed.

46

Lattice view of NTRU

Given public key A = 3a/d.
Compute A/3 = a/d.

d 1s obtained from

1. x, ... x™1

by a few additions, subtractions.

d(A/3) is obtained from
A/3,xA/3, ... x""1A/3

by a few additions, subtractions.

47



Short vectors in lattices

Given by, by, ..., by € Z"
what iIs shortest vector
in Zby + ...+ 4Zb;?

0.
What i1s shortest nonzero vector?

LLL algorithm runs in poly time,
computes a vector whose length
is at most 2"/2 times

length of shortest nonzero vector.

Fancier algorithms (e.g., BKZ)
compute shorter vectors
at surprisingly high speed.

46

47
Lattice view of NTRU

Given public key A = 3a/d.
Compute A/3 = a/d.

d Is obtained from

1. x, ... x™1

by a few additions, subtractions.

d(A/3) is obtained from
A/3,xA/3, ... x""1A/3
by a few additions, subtractions.

a i1s obtained from
1

g,ax,gx?, ..., gx" 1
A/3,xA/3,... . x"1A/3

by a few additions, subtractions.



ctors In lattices

shortest vector
- ...+ Zby?

shortest nonzero vector?

orithm runs in poly time,
s a vector whose length
st 2/2 times

f shortest nonzero vector.

algorithms (e.g., BKZ)
» shorter vectors
singly high speed.

46

Lattice view of NTRU

Given public key A = 3a/d.
Compute A/3 = a/d.

d 1s obtained from

1, x, ..., x11

by a few additions, subtractions.

d(A/3) is obtained from
A/3,xA/3, ..., x""1A/3

by a few additions, subtractions.

a i1s obtained from

by a few additions, subtractions.

47




ttices

onzero vector?

s in poly time,
~“whose length
nes

nonzero vector.

(e.g., BKZ)
ectors
1 speed.

46

Lattice view of NTRU

Given public key A = 3a/d.
Compute A/3 = a/d.

d 1s obtained from

1, x, ..., x11

by a few additions, subtractions.

d(A/3) is obtained from
A/3,xA/3, ..., x""1A/3

by a few additions, subtractions.

a i1s obtained from

by a few additions, subtractions.

47

(a, d) is obtained

(g.0),
(gx,0),

(4x"1,0)
(A/3,1),
(xA/3, x),

(X”_IA/3, Xn—l)
by a few additions



ctor?

me,
1gth

ector.

46

Lattice view of NTRU

Given public key A = 3a/d.
Compute A/3 = a/d.

d 1s obtained from

1, x, ..., x11

by a few additions, subtractions.

d(A/3) is obtained from
A/3,xA/3, ..., x""1A/3

by a few additions, subtractions.

a i1s obtained from

by a few additions, subtractions.

47

(a, d) is obtained from

(g.0),
(gx,0),

(gx"1,0)
(A/3,1),
(xA/3, x),

(X”_lA/B, Xn—l)
by a few additions, subtract



Lattice view of NTRU

Given public key A = 3a/d.
Compute A/3 = a/d.

d Is obtained from

1, x, ..., x11

by a few additions, subtractions.

d(A/3) is obtained from
A/3,xA/3,... x""1A/3
by a few additions, subtractions.

a i1s obtained from

by a few additions, subtractions.

47

(a, d) is obtained from

(g.0),
(gx,0),

(4x"1,0)
(A/3,1),
(xA/3, x),

(X”_IA/3, Xn—l)
by a few additions, subtractions.

43



Lattice view of NTRU

Given public key A = 3a/d.
Compute A/3 = a/d.

d Is obtained from

1, x, ..., x11

by a few additions, subtractions.

d(A/3) is obtained from
A/3,xA/3,... x""1A/3
by a few additions, subtractions.

a i1s obtained from

by a few additions, subtractions.

47

(a, d) is obtained from

(g.0),
(gx,0),

(4x"1,0)
(A/3,1),
(xA/3, x),

(X”_IA/3, Xn—l)
by a few additions, subtractions.

Write A/3 as
Ho + Hix+ ...+ Hn_lxn_l.

43



siew of NTRU

iblic key A =3a/d.
e A/3 =a/d.

yined from

'Xn—l

additions, subtractions.

Is obtained from

additions, subtractions.

ined from
2 ., gxl
/3,...,x""1A/3

additions, subtractions.

47

(a, d) is obtained from

(g.0),
(gx,0),

(gx"1,0)
(A/3,1),
(xA/3, x),

(X”_lA/B, Xn—l)
by a few additions, subtractions.

Write A/3 as
Ho + Hix+ ...+ Hn_lxn_l.

43

(ag, a1, .
IS obtair
(g,0,...
(0,q,...

(0,0,
(Ho, H1,
(Hn—]_r i

(H1, Ho,
by a few



R

\ = 3a/d.
/d.

. subtractions.

. subtractions.

n—1
—1A/3
. subtractions.

47

(a, d) is obtained from

(g.0),
(gx,0),

(4x"1,0)
(A/3,1),
(xA/3, x),

(X”_IA/3, Xn—l)
by a few additions, subtractions.

Write A/3 as
Ho + Hix+ ...+ Hn_lxn_l.

43

(ag, a1, ..., an_1,
Is obtained from

(9,0,...,0,0,0,..
(0,q,...,0,0,0,..
(0,0,..., q,0,0,..

by a few additions



onSs.

onSs.

onSs.

47

(a, d) is obtained from

(g.0),
(gx,0),

qun_110%

(A/3,1),
(xA/3, x),

.(Xn—lA/3’ Xn—l)

by a few additions, subtractions.

Write A/3 as
Ho + Hix+ ...+ Hn_lxn_l.

43

Is obtained from
(9,0,...,0,0,0,...,0),
(0,q,...,0,0,0,...,0),

(Hl,Hz ..... Ho,0,0,...,l)
by a few additions, subtract



(a, d) is obtained from

(g.0),
(gx,0),

(4x"1,0)
(A/3,1),
(xA/3, x),

-(X”_IA/?),X”_l)

by a few additions, subtractions.

Write A/3 as
Ho + Hix+ ...

+ Hp—1x"™

1

43

(ag, a1, ..., an_1,do, d1, ..., dn_1)

Is obtained from

(9,0,...,0,0,0,...,0),
,0,0,0,...,0),

(H]_,H2 ..... H0,0,0,...,I)
by a few additions, subtractions.



obtained from

/3’ 1=
additions, subtractions.

/3 as

X+ ..

)

. T Hn_lxn_l.

43

(ag, a1, ..., an_1,do, d1, ..., dn_1)

is obtained from

(9,0,...,0,0,0,...,0),
,0,0,0,...,0),

(Hl,Hz ..... Ho,0,0,...,l)
by a few additions, subtractions.

(ag, a1, .
IS @ Surg
In lattice

(g,0,...



from

. subtractions.

H,_1x

n—1

43

(ag, a1, ..., an_1, do, d1, ..., dn_1)

Is obtained from

(9,0,...,0,0,0,...,0),
,0,0,0,...,0),

(H]_,H2 ..... H0,0,0,...,I)
by a few additions, subtractions.

IS a surprisingly sh
in lattice generate
(9,0,...,0,0,0,..



onSs.

43

(ag, a1, ..., an_1,do, d1, ..., dn_1)

Is obtained from

(9,0,...,0,0,0,...,0),
,0,0,0,...,0),

(Hl,Hz ..... Ho,0,0,...,l)
by a few additions, subtractions.

Is a surprisingly short vector

in lattice generated by
(q,0,...,0,0,0,...,0) etc.



(ag, a1, ..., an_1, do, d1, ..., dn_1)
Is obtained from
(9,0,...,0,0,0,...,0),
(0,q,...,0,0,0,...,0),

(0,0,..., q,0,0,...,0),

(Ho, H1, ..., H, 1,1,0,...,0),
(Hn,—1, Hp, ..., H, »,0,1,...,0),
(H]_,H2 ..... H0,0,0,...,I)

by a few additions, subtractions.

IS a surprisingly short vector
in lattice generated by

(g,0,...,0,0,0,...,0) etc.



(ag, a1, ..., an_1, do, d1, ..., dn_1)

Is obtained from

(9,0,...,0,0,0,...,0),
,0,0,0,...,0),

(H]_,H2 ..... H0,0,0,...,I)
by a few additions, subtractions.

IS a surprisingly short vector
in lattice generated by

(g,0,...,0,0,0,...,0) etc.

Attacker searches for short vector
in this lattice using LLL etc.



(ag, a1, ..., an_1, do, d1, ..., dn_1)

Is obtained from

(9,0,...,0,0,0,...,0),
,0,0,0,...,0),

(H]_,H2 ..... H0,0,0,...,I)
by a few additions, subtractions.

IS a surprisingly short vector
in lattice generated by

(g,0,...,0,0,0,...,0) etc.

Attacker searches for short vector
in this lattice using LLL etc.

1997 Coppersmith—Shamir
balancing: e.g., set up lattice

to contain (10a, d)
if d is chosen 10x larger than a.



(ag, a1, ..., an_1, do, d1, ..., dn_1)

Is obtained from

(9,0,...,0,0,0,...,0),
,0,0,0,...,0),

(H]_,H2 ..... H0,0,0,...,I)
by a few additions, subtractions.

49

IS a surprisingly short vector

in lattice generated by
(g,0,...,0,0,0,...,0) etc.

Attacker searches for short vector
in this lattice using LLL etc.

1997 Coppersmith—Shamir
balancing: e.g., set up lattice

to contain (10a, d)

if d is chosen 10x larger than a.

Exercise: Describe search for
(b, c) as a problem of finding
a vector close to a lattice.



ed from

0,0,0,...,0),
0,0,0,...,0),
'q,0,0,...,0),

..., Hy,0,0,...,1)
additions, subtractions.

49

Is a surprisingly short vector

in lattice generated by
(q,0,...,0,0,0,...,0) etc.

Attacker searches for short vector
in this lattice using LLL etc.

1997 Coppersmith—Shamir
balancing: e.g., set up lattice

to contain (10a, d)

if d is chosen 10x larger than a.

Exercise: Describe search for
(b, c) as a problem of finding
a vector close to a lattice.

Quotien

“Quotiel
Is the st

Alice ge
for smal
l.e., dA



. subtractions.

IS a surprisingly short vector

in lattice generated by
(g,0,..., 0,0,0,..., 0) etc.

Attacker searches for short vector
in this lattice using LLL etc.

1997 Coppersmith—Shamir
balancing: e.g., set up lattice

to contain (10a, d)

if d is chosen 10x larger than a.

Exercise: Describe search for
(b, c) as a problem of finding
a vector close to a lattice.

Quotient NTRU v

“Quotient NTRU"
Is the structure we

Alice generates A
for small random .

l.e.,, dA—3a=0



onSs.

(ag, a1,...,an—1,do,d1,...,dn_1)
Is a surprisingly short vector
in lattice generated by

(q,0,...,0,0,0,...,0) etc.

Attacker searches for short vector
in this lattice using LLL etc.

1997 Coppersmith—Shamir
balancing: e.g., set up lattice

to contain (10a, d)

if d is chosen 10x larger than a.

Exercise: Describe search for
(b, c) as a problem of finding
a vector close to a lattice.

50

Quotient NTRU vs. product

“Quotient NTRU"” (new nar
Is the structure we've seen:

Alice generates A = 3a/d in
for small random a, d:

l.e., dA—3a=01In Ry.



(ag,a1,...,an—1,do,d1,...,dn_1)
IS a surprisingly short vector

in lattice generated by
(g,0,...,0,0,0,...,0) etc.

Attacker searches for short vector
in this lattice using LLL etc.

1997 Coppersmith—Shamir
balancing: e.g., set up lattice

to contain (10a, d)

if d is chosen 10x larger than a.

Exercise: Describe search for
(b, c) as a problem of finding
a vector close to a lattice.

50

51
Quotient NTRU vs. product NTRU

"Quotient NTRU" (new name)
Is the structure we've seen:

Alice generates A = 3a/d in Ry

for small random a, d:
lL.e., dA—3a=01In Ry.



IS a surprisingly short vector
in lattice generated by

(g,0,..., 0,0,0,..., 0) etc.

Attacker searches for short vector
in this lattice using LLL etc.

1997 Coppersmith—Shamir
balancing: e.g., set up lattice

to contain (10a, d)

if d is chosen 10x larger than a.

Exercise: Describe search for
(b, c) as a problem of finding
a vector close to a lattice.

51
Quotient NTRU vs. product NTRU

"Quotient NTRU" (new name)
Is the structure we've seen:

Alice generates A = 3a/d in Ry
for small random a, d:

lL.e., dA—3a=01In Ry.

Bob sends C = Ab+ ¢ in Ry.
Alice computes dC in Ry,

l.e., 3ab+ dc in Ry.



(ag,a1,...,an—1,do,d1,...,dn_1)
IS a surprisingly short vector
in lattice generated by

(g,0,...,0,0,0,...,0) etc.

Attacker searches for short vector
in this lattice using LLL etc.

1997 Coppersmith—Shamir
balancing: e.g., set up lattice

to contain (10a, d)

if d is chosen 10x larger than a.

Exercise: Describe search for
(b, c) as a problem of finding
a vector close to a lattice.

50

51
Quotient NTRU vs. product NTRU

"Quotient NTRU" (new name)
Is the structure we've seen:

Alice generates A = 3a/d in Ry

for small random a, d:
lL.e., dA—3a=01In Ry.

Bob sends C = Ab+ ¢ in Ry.
Alice computes dC in Ry,

l.e., 3ab+ dc in Ry.

Alice reconstructs 3ab + dc in R,
using smallness of a, b, d, c.

Alice computes dc in R3,
deduces ¢, deduces b.



risingly short vector

> generated by
,0,0,0,..., 0) etc.

- searches for short vector
ittice using LLL etc.

ppersmith—Shamir

g: e.g., set up lattice

in (10a, d)

10sen 10x larger than a.

- Describe search for
a problem of finding
close to a lattice.

Quotient NTRU vs. product NTRU

"Quotient NTRU" (new name)
Is the structure we've seen:

Alice generates A = 3a/d in R,

for small random a, d:
l.e., dA—3a=01In Ry.

Bob sends C = Ab+ c in Ry.
Alice computes dC in Ry,

l.e., 3ab+ dc in Ry.

Alice reconstructs 3ab + dc in R,
using smallness of a, b, d, c.

Alice computes dc in R3,
deduces ¢, deduces b.

b1

“Produc
2010 Ly

Everyon
Alice ge
for smal



ort vector

d by
., 0) etc.

for short vector
o |LLL etc.

—Shamir
t up lattice

)

larger than a.

' search for
n of finding
- |lattice.

Quotient NTRU vs. product NTRU

"Quotient NTRU" (new name)
Is the structure we've seen:

Alice generates A = 3a/d in Ry

for small random a, d:
lL.e., dA—3a=01In Ry.

Bob sends C = Ab+ ¢ in Ry.
Alice computes dC in Ry,

l.e., 3ab+ dc in Ry.

Alice reconstructs 3ab + dc in R,
using smallness of a, b, d, c.

Alice computes dc Iin R3,
deduces ¢, deduces b.

51

“"Product NTRU"
2010 Lyubashevsk

Everyone knows rz
Alice generates A
for small random .



/ector

50

Quotient NTRU vs. product NTRU

“"Quotient NTRU" (new name)
Is the structure we've seen:

Alice generates A = 3a/d in R,

for small random a, d:
l.e., dA—3a=01In Ry.

Bob sends C = Ab+ c in Ry.
Alice computes dC in Ry,

l.e., 3ab+ dc in Ry.

Alice reconstructs 3ab + dc in R,
using smallness of a, b, d, c.

Alice computes dc in R3,
deduces ¢, deduces b.

b1

“Product NTRU" (new nan
2010 Lyubashevsky—Peikert-

Everyone knows random G ¢
Alice generates A = aG + d
for small random a, d.



Quotient NTRU vs. product NTRU

"Quotient NTRU" (new name)
Is the structure we've seen:

Alice generates A = 3a/d in Ry
for small random a, d:

lL.e., dA—3a=01In Ry.

Bob sends C = Ab+ ¢ in Ry.
Alice computes dC in Ry,

l.e., 3ab+ dc in Ry.

Alice reconstructs 3ab + dc in R,
using smallness of a, b, d, c.

Alice computes dc in R3,
deduces ¢, deduces b.

51

“Product NTRU” (new name),
2010 Lyubashevsky—Peikert—Regev:

Everyone knows random G € Ry.
Alice generates A = aG + d in Ry
for small random a, d.

52



Quotient NTRU vs. product NTRU

"Quotient NTRU" (new name)
Is the structure we've seen:

Alice generates A = 3a/d in Ry
for small random a, d:

lL.e., dA—3a=01In Ry.

Bob sends C = Ab+ ¢ in Ry.
Alice computes dC in Ry,

l.e., 3ab+ dc in Ry.

Alice reconstructs 3ab + dc in R,
using smallness of a, b, d, c.

Alice computes dc in R3,
deduces ¢, deduces b.

51

“Product NTRU" (new name),

2010 Lyubashevsky—Peikert—Regev:

Everyone knows random G € Ry.
Alice generates A = aG + d in Ry
for small random a, d.

Bob sends B = Gb + e in Ry
Ab

where b, ¢, e are small and

and C = m cin Rq

each coefficient of mis 0 or q/2.

52



Quotient NTRU vs. product NTRU

"Quotient NTRU" (new name)
Is the structure we've seen:

Alice generates A = 3a/d in Ry

for small random a, d:
lL.e., dA—3a=01In Ry.

Bob sends C = Ab+ ¢ in Ry.
Alice computes dC in Ry,

l.e., 3ab+ dc in Ry.

Alice reconstructs 3ab + dc in R,
using smallness of a, b, d, c.

Alice computes dc in R3,
deduces ¢, deduces b.

51

“Product NTRU” (new name),

2010 Lyubashevsky—Peikert—Regev:

Everyone knows random G € Ry.
Alice generates A = aG + d in Ry
for small random a, d.

Bob sends B = Gb + e in Ry
Ab

where b, ¢, e are small and

and C = m cin Rq

each coefficient of mis 0 or q/2.

Alice computes C — aB in Ry,
l.e., m+db+ c —aein Ry.
Alice reconstructs m,

using smallness of d, b, ¢, a, e.

52



