Small cryptographic bytecode “Line search™:

D J Bernstein trying to find minimum of

function f defined on x-line.
elaborating on an idea from o | |
e.g. "Bisection”, trying to find

minimum in interval [xg, x1]:
Replace interval with either
[x0, (x0+x1)/2] or [(xo+x1)/2, x1];
try to make sensible choice.

Adam Langley

lterate many times.

Small cryptographic bytecode “Line search™:

D J Bernstein trying to find minimum of

function f defined on x-line.

elaborating on an idea from o | |
e.g. "Bisection”, trying to find

Adam Langle
= minimum in interval [xg, x1]:
Replace interval with either

[x0, (x0+x1)/2] or [(xo+x1)/2, x1];
try to make sensible choice.

lterate many times.

Can try to reduce #iterations
using smarter models of f:
see, e.g., 'secant method".

Small cryptographic bytecode

D. J. Bernstein

elaborating on an idea from
Adam Langley

“Line search’:
trying to find minimum of
function f defined on x-line.

e.g. "Bisection”, trying to find
minimum in interval [xg, x1]:
Replace interval with either
X0, (x0+x1)/2] or [(x0+x1)/2, x1];
try to make sensible choice.
lterate many times.

Can try to reduce #iterations
using smarter models of f:
see, e.g., 'secant method".

Harder when f varies more.

yptographic bytecode
rnstein

ing on an idea from
angley

“Line search’:
trying to find minimum of
function f defined on x-line.

e.g. "Bisection”, trying to find
minimum in interval [xg, x1]:
Replace interval with either

[0, (x0+x1)/2] or [(x0+x1)/2, x1];
try to make sensible choice.
lterate many times.

Can try to reduce #iterations
using smarter models of f:
see, e.g., 'secant method".

Harder when f varies more.

How to
f defines

“Gradiel
Starting
try to fi
where f

Ic bytecode

idea from

“Line search’:
trying to find minimum of
function f defined on x-line.

e.g. "Bisection”, trying to find
minimum in interval [xg, x1]:
Replace interval with either

X0, (x0+x1)/2] or [(x0+x1)/2, x1];
try to make sensible choice.

lterate many times.

Can try to reduce #iterations
using smarter models of f:
see, e.g., 'secant method".

Harder when f varies more.

How to find minin
f defined on (x, y

“Gradient descent
Starting from (xp,
try to figure out d
where f decreases

e

“Line search’:
trying to find minimum of
function f defined on x-line.

e.g. "Bisection”, trying to find
minimum in interval [xg, x1]:
Replace interval with either

[0, (x0+x1)/2] or [(x0+x1)/2, x1];
try to make sensible choice.
lterate many times.

Can try to reduce #iterations
using smarter models of f:
see, e.g., 'secant method".

Harder when f varies more.

How to find minimum of fur

f defined on (x, y)-plane?

“Gradient descent’:
Starting from (xg, vo),

try to figure out direction
where f decreases fastest.

“Line search’:
trying to find minimum of
function f defined on x-line.

e.g. "Bisection”, trying to find
minimum in interval [xg, x1]:

Replace interval with either

[x0, (xo+x1)/2] or [(xo+x1)/2, x1];

try to make sensible choice.
lterate many times.

Can try to reduce #iterations
using smarter models of f:
see, e.g., 'secant method".

Harder when f varies more.

How to find minimum of function
f defined on (x, y)-plane?

“Gradient descent’ :
Starting from (xg, vo),

try to figure out direction
where f decreases fastest.

“Line search’:
trying to find minimum of
function f defined on x-line.

e.g. "Bisection”, trying to find
minimum in interval [xg, x1]:

Replace interval with either

[x0, (xo+x1)/2] or [(xo+x1)/2, x1];

try to make sensible choice.
lterate many times.

Can try to reduce #iterations
using smarter models of f:
see, e.g., 'secant method".

Harder when f varies more.

How to find minimum of function
f defined on (x, y)-plane?

“Gradient descent’ :
Starting from (xg, vo),

try to figure out direction
where f decreases fastest.

Could do line search to find
minimum in that direction.

Then find a new direction.

“Line search’:
trying to find minimum of
function f defined on x-line.

e.g. "Bisection”, trying to find
minimum in interval [xg, x1]:

Replace interval with either

[x0, (xo+x1)/2] or [(xo+x1)/2, x1];

try to make sensible choice.
lterate many times.

Can try to reduce #iterations
using smarter models of f:
see, e.g., 'secant method".

Harder when f varies more.

How to find minimum of function

f defined on (x, y)-plane?

“Gradient descent’ :
Starting from (xg, vo),

try to figure out direction
where f decreases fastest.

Could do line search to find
minimum in that direction.

Then find a new direction.

Better: Step down that direction.
Then find a new direction.

“Line search’:
trying to find minimum of
function f defined on x-line.

e.g. "Bisection”, trying to find
minimum in interval [xg, x1]:

Replace interval with either

[x0, (xo+x1)/2] or [(xo+x1)/2, x1];

try to make sensible choice.
lterate many times.

Can try to reduce #iterations
using smarter models of f:
see, e.g., 'secant method".

Harder when f varies more.

How to find minimum of function

f defined on (x, y)-plane?

“Gradient descent’ :
Starting from (xg, vo),

try to figure out direction
where f decreases fastest.

Could do line search to find
minimum in that direction.

Then find a new direction.

Better: Step down that direction.
Then find a new direction.

Silly: Line search in x direction;
line search In y direction; repeat.

arch’ :
y find minimum of

f defined on x-line.

section’”, trying to find

n in interval [xg, x1]:
interval with either
-x1)/2] or [(xo+x1)/2, x1];
ake sensible choice.

nany times.

to reduce #iterations
1arter models of f:
- “secant method".

vhen f varies more.

How to find minimum of function
f defined on (x, y)-plane?

“Gradient descent’:
Starting from (xg, vo),

try to figure out direction
where f decreases fastest.

Could do line search to find
minimum 1n that direction.

Then find a new direction.

Better: Step down that direction.
Then find a new direction.

Silly: Line search in x direction;
line search In y direction; repeat.

Keccak

Goal: F:
on a Col

You star
impleme

mum of

on x-line.

rying to find

al [xg, x1]:

ith either
[(x0+x1)/2, x1];
le choice.

S.

+#iterations
lels of f:

method’ .

‘les more.

How to find minimum of function
f defined on (x, y)-plane?

“Gradient descent’ :
Starting from (xg, yo),

try to figure out direction
where f decreases fastest.

Could do line search to find
minimum in that direction.
Then find a new direction.

Better: Step down that direction.

Then find a new direction.

Silly: Line search in x direction;
line search In y direction; repeat.

Keccak optimizati

Goal: Fastest C c
on a Cortex-M4 C

You start with sirr
iImplementing Kec

/2, x1];

1S

How to find minimum of function
f defined on (x, y)-plane?

“Gradient descent’:
Starting from (xg, yo),

try to figure out direction
where f decreases fastest.

Could do line search to find
minimum 1n that direction.
Then find a new direction.

Better: Step down that direction.

Then find a new direction.

Silly: Line search in x direction;
line search In y direction; repeat.

Keccak optimization

Goal: Fastest C code for Ke
on a Cortex-M4 CPU core.

You start with simple C cod
implementing Keccak.

How to find minimum of function
f defined on (x, y)-plane?

“Gradient descent’ :
Starting from (xg, yo),

try to figure out direction
where f decreases fastest.

Could do line search to find
minimum in that direction.
Then find a new direction.

Better: Step down that direction.
Then find a new direction.

Silly: Line search in x direction;
line search In y direction; repeat.

Keccak optimization

Goal: Fastest C code for Keccak
on a Cortex-M4 CPU core.

You start with simple C code
implementing Keccak.

How to find minimum of function
f defined on (x, y)-plane?

“Gradient descent’ :
Starting from (xg, yo),

try to figure out direction
where f decreases fastest.

Could do line search to find
minimum in that direction.
Then find a new direction.

Better: Step down that direction.
Then find a new direction.

Silly: Line search in x direction;
line search In y direction; repeat.

Keccak optimization

Goal: Fastest C code for Keccak
on a Cortex-M4 CPU core.

You start with simple C code
implementing Keccak.

You compile it; see how fast it is;
modify it to try to make it faster;
repeat; eventually stop trying.

How to find minimum of function
f defined on (x, y)-plane?

“Gradient descent’ :
Starting from (xg, yo),

try to figure out direction
where f decreases fastest.

Could do line search to find
minimum in that direction.
Then find a new direction.

Better: Step down that direction.

Then find a new direction.

Silly: Line search in x direction;
line search In y direction; repeat.

Keccak optimization

Goal: Fastest C code for Keccak
on a Cortex-M4 CPU core.

You start with simple C code
implementing Keccak.

You compile it; see how fast it is;
modify it to try to make it faster;
repeat; eventually stop trying.

You publish your fastest code.

Maybe lots of people use it,
and care about Its speed.

find minimum of function

d on (x, y)-plane?

1t descent’:

from (X(),yo),
yure out direction
decreases fastest.

> line search to find
n in that direction.
d a new direction.

Step down that direction.

d a new direction.

ne search in x direction:
ch in y direction; repeat.

Keccak optimization

Goal: Fastest C code for Keccak
on a Cortex-M4 CPU core.

You start with simple C code
implementing Keccak.

You compile it; see how fast it is;
modify it to try to make it faster;
repeat; eventually stop trying.

You publish your fastest code.

Maybe lots of people use it,
and care about its speed.

Compile
your Ke

1um of function

)-plane?

Y0),
Irection

fastest.

ch to find
lirection.
irection.

' that direction.

irection.

in x direction;
rection; repeat.

Keccak optimization

Goal: Fastest C code for Keccak
on a Cortex-M4 CPU core.

You start with simple C code
implementing Keccak.

You compile it; see how fast it is;
modify it to try to make it faster;
repeat; eventually stop trying.

You publish your fastest code.

Maybe lots of people use it,
and care about Its speed.

Compiler writer le.
your Keccak Corte

1ction

ction.

on;
peat.

Keccak optimization

Goal: Fastest C code for Keccak
on a Cortex-M4 CPU core.

You start with simple C code

implementing Keccak.

You compile it; see how fast it is;
modify it to try to make it faster;
repeat; eventually stop trying.

You publish your fastest code.

Maybe lots of people use it,
and care about its speed.

Compiler writer learns abours
your Keccak Cortex-M4 C ¢

Keccak optimization

Goal: Fastest C code for Keccak
on a Cortex-M4 CPU core.

You start with simple C code

implementing Keccak.

You compile it; see how fast it is;
modify it to try to make it faster;
repeat; eventually stop trying.

You publish your fastest code.

Maybe lots of people use it,
and care about Its speed.

Compiler writer learns about
your Keccak Cortex-M4 C code.

Keccak optimization

Goal: Fastest C code for Keccak
on a Cortex-M4 CPU core.

You start with simple C code
implementing Keccak.

You compile it; see how fast it is;
modify it to try to make it faster;
repeat; eventually stop trying.

You publish your fastest code.

Maybe lots of people use it,
and care about Its speed.

Compiler writer learns about
your Keccak Cortex-M4 C code.

Compiles it; sees how fast it is.
Modifies compiler to try to

make the compiled code faster.
Repeats; eventually stops trying.

Keccak optimization

Goal: Fastest C code for Keccak
on a Cortex-M4 CPU core.

You start with simple C code
implementing Keccak.

You compile it; see how fast it is;
modify it to try to make it faster;
repeat; eventually stop trying.

You publish your fastest code.

Maybe lots of people use it,
and care about Its speed.

Compiler writer learns about
your Keccak Cortex-M4 C code.

Compiles it; sees how fast it is.
Modifies compiler to try to
make the compiled code faster.
Repeats; eventually stops trying.

Publishes a new compiler version.

Keccak optimization

Goal: Fastest C code for Keccak
on a Cortex-M4 CPU core.

You start with simple C code
implementing Keccak.

You compile it; see how fast it is;
modify it to try to make it faster;
repeat; eventually stop trying.

You publish your fastest code.

Maybe lots of people use it,
and care about Its speed.

Compiler writer learns about
your Keccak Cortex-M4 C code.

Compiles it; sees how fast it is.
Modifies compiler to try to
make the compiled code faster.
Repeats; eventually stops trying.

Publishes a new compiler version.

Later: Maybe you try the new
compiler. Whole process repeats.

Keccak optimization

Goal: Fastest C code for Keccak
on a Cortex-M4 CPU core.

You start with simple C code
implementing Keccak.

You compile it; see how fast it is;
modify it to try to make it faster;
repeat; eventually stop trying.

You publish your fastest code.

Maybe lots of people use it,
and care about Its speed.

Compiler writer learns about
your Keccak Cortex-M4 C code.

Compiles it; sees how fast it is.
Modifies compiler to try to
make the compiled code faster.
Repeats; eventually stops trying.

Publishes a new compiler version.

Later: Maybe you try the new
compiler. Whole process repeats.

You treat compiler as constant.
Compiler treats code as constant.

optimization

istest C code for Keccak
tex-M4 CPU core.

t with simple C code
nting Keccak.

ipile it; see how fast it is;
t to try to make it faster;
ventually stop trying.

lish your fastest code.

ots of people use it,
about its speed.

Compiler writer learns about
your Keccak Cortex-M4 C code.

Compiles it; sees how fast it is.
Modifies compiler to try to
make the compiled code faster.
Repeats; eventually stops trying.

Publishes a new compiler version.

Later: Maybe you try the new

compiler. Whole process repeats.

You treat compiler as constant.

Compiler treats code as constant.

Define f
code x \

oll

yde for Keccak
PU core.

ple C code
cak.

= how fast it Is:
' make it faster:
stop trying.

astest code.

ple use It,
speed.

Compiler writer learns about
your Keccak Cortex-M4 C code.

Compiles it; sees how fast it is.
Modifies compiler to try to
make the compiled code faster.
Repeats; eventually stops trying.

Publishes a new compiler version.

Later: Maybe you try the new

compiler. Whole process repeats.

You treat compiler as constant.

Compiler treats code as constant.

Define f(x, y) as 1
code x with comp

ccak

It Is;
aster:

Compiler writer learns about
your Keccak Cortex-M4 C code.

Compiles it; sees how fast it is.
Modifies compiler to try to
make the compiled code faster.
Repeats; eventually stops trying.

Publishes a new compiler version.

Later: Maybe you try the new

compiler. Whole process repeats.

You treat compiler as constant.

Compiler treats code as constant.

Define f(x, y) as time taker
code x with compiler y.

Compiler writer learns about
your Keccak Cortex-M4 C code.

Compiles it; sees how fast it is.
Modifies compiler to try to
make the compiled code faster.
Repeats; eventually stops trying.

Publishes a new compiler version.

Later: Maybe you try the new
compiler. Whole process repeats.

You treat compiler as constant.
Compiler treats code as constant.

Define f(x, y) as time taken by
code x with compiler y.

Compiler writer learns about Define f(x, y) as time taken by
your Keccak Cortex-M4 C code. code x with compiler y.

Compiles it; sees how fast it is. xp: initial code.
Modifies compiler to try to o .

| yo: Initial compiler.
make the compiled code faster.

Repeats; eventually stops trying.
Publishes a new compiler version.

Later: Maybe you try the new
compiler. Whole process repeats.

You treat compiler as constant.
Compiler treats code as constant.

Compiler writer learns about Define f(x, y) as time taken by
your Keccak Cortex-M4 C code. code x with compiler y.

Compiles it; sees how fast it is. xp: initial code.
Modifies compiler to try to o .

| yo: Initial compiler.
make the compiled code faster.

Repeats; eventually stops trying. You try to minimize f(x, yp):

x1: new code from this

Publishes a new compiler version. . . L
line search in x direction.

Later: Maybe you try the new
compiler. Whole process repeats.

You treat compiler as constant.
Compiler treats code as constant.

Compiler writer learns about
your Keccak Cortex-M4 C code.

Compiles it; sees how fast it is.
Modifies compiler to try to
make the compiled code faster.
Repeats; eventually stops trying.

Publishes a new compiler version.

Later: Maybe you try the new

compiler. Whole process repeats.

You treat compiler as constant.

Compiler treats code as constant.

Define f(x, y) as time taken by
code x with compiler y.

xp: Initial code.
yo: Initial compiler.

You try to minimize f(x, yp).
x1: new code from this

line search in x direction.

Compiler writer: f(xy,y).
y1: new compiler from this
line search in y direction.

Compiler writer learns about
your Keccak Cortex-M4 C code.

Compiles it; sees how fast it is.
Modifies compiler to try to
make the compiled code faster.
Repeats; eventually stops trying.

Publishes a new compiler version.

Later: Maybe you try the new

compiler. Whole process repeats.

You treat compiler as constant.

Compiler treats code as constant.

Define f(x, y) as time taken by

code x with compiler y.
xp: Initial code.
yo: Initial compiler.

You try to minimize f(x, yp).
x1: new code from this
line search in x direction.

Compiler writer: f(xy,y).
y1: new compiler from this
line search in y direction.

This whole approach is silly.

r writer learns about
~cak Cortex-M4 C code.

s 1t; sees how fast it is.

. compiler to try to

e compiled code faster.
eventually stops trying.

s a new compiler version.

laybe you try the new

. Whole process repeats.

t compliler as constant.

r treats code as constant.

Define f(x, y) as time taken by
code x with compiler y.

xp: Initial code.
yo: Initial compiler.

You try to minimize f(x, yp).
x1: new code from this
line search in x direction.

Compiler writer: f(xg,y).
y1: new compiler from this
line search in y direction.

This whole approach is silly.

mind{ f(x
fastest F

arns about
x-M4 C code.

ow fast it is.
to try to

] code faster.
y stops trying.

ompliler version.

try the new

)FOCesS repeats.

ras constant.

de as constant.

Define f(x, y) as time taken by
code x with compiler y.

xp: Initial code.
yo: Initial compiler.

You try to minimize f(x, yp).
x1: new code from this
line search in x direction.

Compiler writer: f(xg,y).
y1: new compiler from this
line search in y direction.

This whole approach is silly.

min{f(x, y)} is th
fastest Keccak Co

ode.

IS.

ter.
/ing.

rsion.

=W

yeats.

1INTt.

stant.

Define f(x, y) as time taken by

code x with compiler y.
xp: Initial code.

yo: Initial compiler.

You try to minimize f(x, yp).

x1: new code from this
line search in x direction.

Compiler writer: f(xg,y).
y1: new compiler from this
line search in y direction.

This whole approach is silly.

min{f(x, y)} is the time tak
fastest Keccak Cortex-M4 a:

Define f(x, y) as time taken by
code x with compiler y.

xp: Initial code.
yo: Initial compiler.

You try to minimize f(x, yp).
x1: new code from this
line search in x direction.

Compiler writer: f(xy,y).
y1: new compiler from this
line search in y direction.

This whole approach is silly.

min{f(x, y)} is the time taken by
fastest Keccak Cortex-M4 asm.

Define f(x, y) as time taken by
code x with compiler y.

xp: Initial code.
yo: Initial compiler.

You try to minimize f(x, yp).
x1: new code from this
line search in x direction.

Compiler writer: f(xy,y).
y1: new compiler from this
line search in y direction.

This whole approach is silly.

min{f(x, y)} is the time taken by
fastest Keccak Cortex-M4 asm.

Slowly bouncing between
x-line searches, y-line searches is
a silly way to approach this min.

Define f(x, y) as time taken by
code x with compiler y.

xp: Initial code.
yo: Initial compiler.

You try to minimize f(x, yp).
x1: new code from this
line search in x direction.

Compiler writer: f(xy,y).
y1: new compiler from this
line search in y direction.

This whole approach is silly.

min{f(x, y)} is the time taken by
fastest Keccak Cortex-M4 asm.

Slowly bouncing between
x-line searches, y-line searches is
a silly way to approach this min.

Clearly min can be achieved by
many different pairs (x, y).
Which pair is easiest to find?

Define f(x, y) as time taken by min{f(x, y)} is the time taken by
code x with compiler y. fastest Keccak Cortex-M4 asm.
Xp: Initial code. Slowly bouncing between

nitial compiler x-line searches, y-line searches is
yo: Initi ler.

a silly way to approach this min.

You try to minimize f(x, yp).

xi: new code from this Clearly min can be achieved by

line search in x direction. many different pairs (x, y),

Which pair is easiest to find?

Compiler writer: f(xy,y).

. . Generalize from C to other
y1: new compiler from this

. . . . languages: which language
line search in y direction. &HdE | | g. &
makes min easiest to find?

This whole approach is silly. Why did goal say “C code”?
End user doesn't need C.

(x,y) as time taken by
vith compiler y.

1| code.
1l compiller.

to minimize f(x, yp).
code from this
ch in x direction.

r writer: f(xg,y).
compiler from this
ch in y direction.

ole approach is silly.

min{f(x, y)} is the time taken by
fastest Keccak Cortex-M4 asm.

Slowly bouncing between
x-line searches, y-line searches is
a silly way to approach this min.

Clearly min can be achieved by
many different pairs (x, y).
Which pair is easiest to find?

Generalize from C to other
languages: which language
makes min easiest to find?
Why did goal say “C code”?
End user doesn’'t need C.

Does en

ime taken by min{f(x, y)} is the time taken by Does end user nee
ler y. fastest Keccak Cortex-M4 asm.

Slowly bouncing between

r x-line searches, y-line searches is

a silly way to approach this min.

ze (X, yo).
1 thi(s) Clearly min can be achieved by
ection many different pairs (x, y).

| Which pair is easiest to find?
(x1, V). |
ff’om)fc)his Generalize from C to other
ection. languages: which language

makes min easiest to find?
ch is silly. Why did goal say “C code”?
End user doesn’'t need C.

by

min{f(x, y)} is the time taken by
fastest Keccak Cortex-M4 asm.

Slowly bouncing between
x-line searches, y-line searches is
a silly way to approach this min.

Clearly min can be achieved by
many different pairs (x, y).
Which pair is easiest to find?

Generalize from C to other
languages: which language
makes min easiest to find?
Why did goal say “C code”?
End user doesn’'t need C.

Does end user need Cortex-|

min{f(x, y)} is the time taken by
fastest Keccak Cortex-M4 asm.

Slowly bouncing between
x-line searches, y-line searches is
a silly way to approach this min.

Clearly min can be achieved by
many different pairs (x, y).
Which pair is easiest to find?

Generalize from C to other
languages: which language
makes min easiest to find?
Why did goal say “C code”?
End user doesn’'t need C.

Does end user need Cortex-M47?

min{f(x, y)} is the time taken by
fastest Keccak Cortex-M4 asm.

Slowly bouncing between
x-line searches, y-line searches is
a silly way to approach this min.

Clearly min can be achieved by
many different pairs (x, y).
Which pair is easiest to find?

Generalize from C to other
languages: which language
makes min easiest to find?
Why did goal say “C code”?
End user doesn’'t need C.

Does end user need Cortex-M47?

CPU designer learns about your
Keccak Cortex-M4 asm.

min{f(x, y)} is the time taken by
fastest Keccak Cortex-M4 asm.

Slowly bouncing between
x-line searches, y-line searches is
a silly way to approach this min.

Clearly min can be achieved by
many different pairs (x, y).
Which pair is easiest to find?

Generalize from C to other
languages: which language
makes min easiest to find?
Why did goal say “C code”?
End user doesn’'t need C.

Does end user need Cortex-M47?

CPU designer learns about your
Keccak Cortex-M4 asm.

Modifies the CPU design to
try to make this code faster.
Repeats; eventually stops trying.

min{f(x, y)} is the time taken by
fastest Keccak Cortex-M4 asm.

Slowly bouncing between
x-line searches, y-line searches is
a silly way to approach this min.

Clearly min can be achieved by
many different pairs (x, y).
Which pair is easiest to find?

Generalize from C to other
languages: which language
makes min easiest to find?
Why did goal say “C code”?
End user doesn’'t need C.

Does end user need Cortex-M47?

CPU designer learns about your
Keccak Cortex-M4 asm.

Modifies the CPU design to
try to make this code faster.
Repeats; eventually stops trying.

Years later, sells a new CPU.

You reoptimize for this CPU.

min{f(x, y)} is the time taken by
fastest Keccak Cortex-M4 asm.

Slowly bouncing between
x-line searches, y-line searches is
a silly way to approach this min.

Clearly min can be achieved by
many different pairs (x, y).
Which pair is easiest to find?

Generalize from C to other
languages: which language
makes min easiest to find?
Why did goal say “C code”?
End user doesn’'t need C.

Does end user need Cortex-M47?

CPU designer learns about your
Keccak Cortex-M4 asm.

Modifies the CPU design to
try to make this code faster.
Repeats; eventually stops trying.

Years later, sells a new CPU.
You reoptimize for this CPU.

Sometimes CPUs try extending
or replacing instruction set, but
this Is poorly coordinated with

programmers, compiler writers.

,¥)} is the time taken by
(eccak Cortex-M4 asm.

ouncing between
arches, y-line searches is
ay to approach this min.

nin can be achieved by
fferent pairs (x, y).
air is easiest to find?

ze from C to other
s: which language
1in easiest to find?
goal say “C code”?
r doesn't need C.

Does end user need Cortex-M4?

CPU designer learns about your
Keccak Cortex-M4 asm.

Modifies the CPU design to
try to make this code faster.

Repeats; eventually stops trying.

Years later, sells a new CPU.

You reoptimize for this CPU.

Sometimes CPUs try extending
or replacing instruction set, but
this I1s poorly coordinated with

programmers, compiler writers.

Generali

f(x,y) |
code X «

If compi
asm y/(x

f(x,y) -

e time taken by
rtex-M4 asm.

etween
line searches is
oach this min.

> achieved by

rs (x, y).
st to find?

to other
language
to find?
“C code”?
1eed C.

Does end user need Cortex-M47?

CPU designer learns about your
Keccak Cortex-M4 asm.

Modifies the CPU design to
try to make this code faster.

Repeats; eventually stops trying.

Years later, sells a new CPU.

You reoptimize for this CPU.

Sometimes CPUs try extending
or replacing instruction set, but
this 1s poorly coordinated with

programmers, compiler writers.

Generalize f(x, y)
f(x,y) is time tak
code x on platforr

If compiler y on c
asm y(x) for Cort

f(x,y)="f(y(x)

en by

SIM.

1es 1S

min.

Does end user need Cortex-M4?

CPU designer learns about your
Keccak Cortex-M4 asm.

Modifies the CPU design to
try to make this code faster.

Repeats; eventually stops trying.

Years later, sells a new CPU.

You reoptimize for this CPU.

Sometimes CPUs try extending
or replacing instruction set, but
this Is poorly coordinated with

programmers, compiler writers.

Generalize f(x, y) definition
f(x,y) is time taken by
code x on platform vy.

If compiler y on code x proc

asm y(x) for Cortex-M4:
f(x,y) = f(y(x), Cortex-M4

Does end user need Cortex-M47?

CPU designer learns about your
Keccak Cortex-M4 asm.

Modifies the CPU design to
try to make this code faster.

Repeats; eventually stops trying.

Years later, sells a new CPU.

You reoptimize for this CPU.

Sometimes CPUs try extending
or replacing instruction set, but
this 1s poorly coordinated with

programmers, compiler writers.

Generalize f(x, y) definition:
f(x,y) is time taken by
code x on platform vy.

If compiler y on code x produces
asm y(x) for Cortex-M4:
f(x,y) = f(y(x), Cortex-M4).

Does end user need Cortex-M47?

CPU designer learns about your
Keccak Cortex-M4 asm.

Modifies the CPU design to
try to make this code faster.

Repeats; eventually stops trying.

Years later, sells a new CPU.

You reoptimize for this CPU.

Sometimes CPUs try extending
or replacing instruction set, but
this 1s poorly coordinated with

programmers, compiler writers.

Generalize f(x, y) definition:
f(x,y) is time taken by
code x on platform vy.

If compiler y on code x produces
asm y(x) for Cortex-M4:

f(x,y) = f(y(x), Cortex-M4).

Without the CPU changing:
Minimize f(a, Cortex-M4).
Search for (x, y) with y(x) = a.

Does end user need Cortex-M47?

CPU designer learns about your
Keccak Cortex-M4 asm.

Modifies the CPU design to
try to make this code faster.

Repeats; eventually stops trying.

Years later, sells a new CPU.

You reoptimize for this CPU.

Sometimes CPUs try extending
or replacing instruction set, but
this 1s poorly coordinated with

programmers, compiler writers.

Generalize f(x, y) definition:
f(x,y) is time taken by
code x on platform vy.

If compiler y on code x produces

asm y(x) for Cortex-M4:
f(x,y) = f(y(x), Cortex-M4).

Without the CPU changing:
Minimize f(a, Cortex-M4).
Search for (x, y) with y(x) = a.

Typical CPU designer:
View a as a constant;

try to minimize f(a, y).
Silly optimization approach.

d user need Cortex-M47

signer learns about your
Cortex-M4 asm.

. the CPU design to
ake this code faster.

eventually stops trying.

er, sells a new CPU.
timize for this CPU.

1es CPUs try extending
Ing Instruction set, but
oorly coordinated with

mers, compiler writers.

Generalize f(x, y) definition:
f(x,y) is time taken by
code x on platform vy.

If compiler y on code x produces

asm y(x) for Cortex-M4:
f(x,y) = f(y(x), Cortex-M4).

Without the CPU changing:
Minimize f(a, Cortex-M4).
Search for (x, y) with y(x) = a.

Typical CPU designer:
View a as a constant;

try to minimize f(a, y).
Silly optimization approach.

“I know
|'ve deve

that con
This circ

d Cortex-M47

ns about your
L asm.

design to
ode faster.

y stops trying.

new CPU.
- this CPU.

try extending
ction set, but
dinated with

\piler writers.

Generalize f(x, y) definition:
f(x,y) is time taken by
code x on platform vy.

If compiler y on code x produces
asm y(x) for Cortex-M4:

f(x,y) = f(y(x), Cortex-M4).

Without the CPU changing:
Minimize f(a, Cortex-M4).
Search for (x, y) with y(x) = a.

Typical CPU designer:
View a as a constant;

try to minimize f(a, y).
Silly optimization approach.

“| know the minin
|'ve developed the
that computes Ke
This circuit 1s my

Vi47?

/our

/ing.

ing
but
th

rS.

Generalize f(x, y) definition:
f(x,y) is time taken by
code x on platform vy.

If compiler y on code x produces
asm y(x) for Cortex-M4:

f(x,y) = f(y(x), Cortex-M4).

Without the CPU changing:
Minimize f(a, Cortex-M4).
Search for (x, y) with y(x) = a.

Typical CPU designer:
View a as a constant;

try to minimize f(a, y).
Silly optimization approach.

‘| know the minimum|

I've developed the fastest ci
that computes Keccak.

This circuit is my CPU.”

Generalize f(x, y) definition:
f(x,y) is time taken by
code x on platform vy.

If compiler y on code x produces
asm y(x) for Cortex-M4:

f(x,y) = f(y(x), Cortex-M4).

Without the CPU changing:
Minimize f(a, Cortex-M4).
Search for (x, y) with y(x) = a.

Typical CPU designer:
View a as a constant;

try to minimize f(a, y).
Silly optimization approach.

“I know the minimum!

I've developed the fastest circuit
that computes Keccak.

This circuit is my CPU."

10

Generalize f(x, y) definition:
f(x,y) is time taken by
code x on platform vy.

If compiler y on code x produces
asm y(x) for Cortex-M4:

f(x,y) = f(y(x), Cortex-M4).

Without the CPU changing:
Minimize f(a, Cortex-M4).
Search for (x, y) with y(x) = a.

Typical CPU designer:
View a as a constant;

try to minimize f(a, y).
Silly optimization approach.

10
“I know the minimum!

I've developed the fastest circuit
that computes Keccak.
This circuit is my CPU."

Wait a minute: “CPU" concept
IS more restrictive than “chip’.

Perspective of CPU designer:
This chip can do anything!

People want this chip to support
SHA-1, SHA-2, SHA-3, SHAmir;
all sorts of block ciphers;
public-key cryptosystems;

non-cryptographic computations.

ze f(x, y) definition:
s time taken by
n platform y.

ler y on code x produces
) for Cortex-M4:
= f(y(x), Cortex-M4).

the CPU changing:
e f(a, Cortex-M4).
or (x,y) with y(x) = a.

CPU designer:

1S @ constant;
inimize f(a, y).
Imization approach.

“I know the minimum]!

I've developed the fastest circuit

that computes Keccak.

This circuit is

my CPU.”

Wait a minute: “CPU" concept

IS more restrictive than “chip”.

Perspective of CPU designer:

This chip can

do anything!

People want this chip to support
SHA-1, SHA-2, SHA-3, SHAmir;
all sorts of block ciphers;

public-key cry
non-cryptogra

ptosystems;

ohic computations.

10

Adding {
(“Kecca
adds are

Adding 1
for desir
adds eve

definition:
en by
N y.

ode x produces
ex-M4
Cortex-M4).

changing:
ex-M4).
vith y(x) = a.

ner.:

Ant;

a,y).
approach.

“I know the minimum!

I've developed the fastest circuit
that computes Keccak.

This circuit is my CPU."

Wait a minute: “CPU" concept
IS more restrictive than “chip”.

Perspective of CPU designer:
This chip can do anything!

People want this chip to support
SHA-1, SHA-2, SHA-3, SHAmir;
all sorts of block ciphers;
public-key cryptosystems;

non-cryptographic computations.

10

Adding fast Kecca
(“Keccak coproce:

adds area to CPU.

Adding fast copro
for desired mix of
adds even more ar

Juces

“I know the minimum]!

I've developed the fastest circuit

that computes Keccak.

This circuit is

my CPU.”

Wait a minute: “CPU" concept

IS more restrictive than “chip”.

Perspective of CPU designer:

This chip can

do anything!

People want this chip to support
SHA-1, SHA-2, SHA-3, SHAmir;
all sorts of block ciphers;

public-key cry
non-cryptogra

ptosystems;

ohic computations.

10

Adding fast Keccak circuit

(“Keccak coprocessor”) to (
adds area to CPU.

Adding fast coprocessors
for desired mix of operation:
adds even more area to CPL

“I know the minimum!

I've developed the fastest circuit
that computes Keccak.

This circuit is my CPU."

Wait a minute: “CPU" concept
IS more restrictive than “chip”.

Perspective of CPU designer:
This chip can do anything!

People want this chip to support
SHA-1, SHA-2, SHA-3, SHAmir;
all sorts of block ciphers;
public-key cryptosystems;

non-cryptographic computations.

10

11
Adding fast Keccak circuit

(“Keccak coprocessor’) to CPU
adds area to CPU.

Adding fast coprocessors
for desired mix of operations
adds even more area to CPU.

“I know the minimum!

I've developed the fastest circuit
that computes Keccak.

This circuit is my CPU."

Wait a minute: “CPU" concept
IS more restrictive than “chip”.

Perspective of CPU designer:
This chip can do anything!

People want this chip to support
SHA-1, SHA-2, SHA-3, SHAmir;
all sorts of block ciphers;
public-key cryptosystems;

non-cryptographic computations.

10

11
Adding fast Keccak circuit

(“Keccak coprocessor’) to CPU
adds area to CPU.

Adding fast coprocessors
for desired mix of operations
adds even more area to CPU.

For same CPU area,

obtain much better throughput
by building many copies

of original CPU core

without these coprocessors.

“I know the minimum!

I've developed the fastest circuit
that computes Keccak.

This circuit is my CPU."

Wait a minute: “CPU" concept
IS more restrictive than “chip”.

Perspective of CPU designer:
This chip can do anything!

People want this chip to support
SHA-1, SHA-2, SHA-3, SHAmir;
all sorts of block ciphers;
public-key cryptosystems;

non-cryptographic computations.

10

Adding fast Keccak circuit

(“Keccak coprocessor’) to CPU
adds area to CPU.

Adding fast coprocessors
for desired mix of operations
adds even more area to CPU.

For same CPU area,

obtain much better throughput
by building many copies

of original CPU core

without these coprocessors.

Fast Keccak chip is special case.

Doesn’t reflect general case.

11

the minimum!

loped the fastest circuit

1putes Keccak.

“ult Is

my CPU.”

ninute: “CPU" concept

restrictive than “chip”.

Iive of CPU designer:

D can

do anything!

vant this chip to support
SHA-2, SHA-3, SHAmir;
of block ciphers;

2y Cry
togra

ptosystems;

ohic computations.

10

Adding fast Keccak circuit

(“Keccak coprocessor”) to CPU
adds area to CPU.

Adding fast coprocessors
for desired mix of operations
adds even more area to CPU.

For same CPU area,

obtain much better throughput
by building many copies

of original CPU core

without these coprocessors.

Fast Keccak chip is special case.

Doesn't reflect general case.

11

CPU de:
What s
for a spe
within a

wum!
fastest circuit

ccak.
CPU."

_PU" concept
than “chip”.

U designer:
inything!

hip to support
1A-3, SHAmir;
Iphers;
ystems;

computations.

10

Adding fast Keccak circuit
(“Keccak coprocessor’) to CPU

adds area to CPU.

Adding fast coprocessors
for desired mix of operations
adds even more area to CPU.

For same CPU area,

obtain much better throughput
by building many copies

of original CPU core

without these coprocessors.

Fast Keccak chip is special case.

Doesn’t reflect general case.

11

CPU designer's m
What is best perfc
for a specified mix
within a particular

rcult

—ept

port

\mir:

1ons.

10

Adding fast Keccak circuit

(“Keccak coprocessor”) to CPU
adds area to CPU.

Adding fast coprocessors
for desired mix of operations
adds even more area to CPU.

For same CPU area,

obtain much better throughput
by building many copies

of original CPU core

without these coprocessors.

Fast Keccak chip is special case.

Doesn't reflect general case.

11

CPU designer’'s metric:
What is best performance
for a specified mix of operat
within a particular CPU are:

Adding fast Keccak circuit

(“Keccak coprocessor’) to CPU
adds area to CPU.

Adding fast coprocessors
for desired mix of operations
adds even more area to CPU.

For same CPU area,

obtain much better throughput
by building many copies

of original CPU core

without these coprocessors.

Fast Keccak chip is special case.
Doesn’t reflect general case.

11

CPU designer’'s metric:

What is best performance

for a specified mix of operations
within a particular CPU area?

12

Adding fast Keccak circuit

(“Keccak coprocessor’) to CPU
adds area to CPU.

Adding fast coprocessors
for desired mix of operations
adds even more area to CPU.

For same CPU area,

obtain much better throughput
by building many copies

of original CPU core

without these coprocessors.

Fast Keccak chip is special case.
Doesn’t reflect general case.

11

CPU designer’'s metric:

What is best performance

for a specified mix of operations

within a particular CPU area?

CPU designer is much more likely

to consider incor
small Keccak co

borating a

DIroOCEeSSor.

12

Adding fast Keccak circuit

(“Keccak coprocessor’) to CPU
adds area to CPU.

Adding fast coprocessors
for desired mix of operations
adds even more area to CPU.

For same CPU area,

obtain much better throughput
by building many copies

of original CPU core

without these coprocessors.

Fast Keccak chip is special case.
Doesn’t reflect general case.

11

CPU designer’'s metric:

What is best performance

for a specified mix of operations

within a particular CPU area?

CPU designer is much more likely

to consider incor
small Keccak co

borating a

DIroOCEeSSor.

“So we should design the

smallest Keccak

circuit?”

12

Adding fast Keccak circuit

(“Keccak coprocessor’) to CPU
adds area to CPU.

Adding fast coprocessors
for desired mix of operations
adds even more area to CPU.

For same CPU area,

obtain much better throughput
by building many copies

of original CPU core

without these coprocessors.

Fast Keccak chip is special case.

Doesn’t reflect general case.

11

12
CPU designer’'s metric:

What is best performance
for a specified mix of operations
within a particular CPU area?

CPU designer is much more likely
to consider incorporating a

small Keccak coprocessor.

“So we should design the
smallest Keccak circuit?”

—Maybe, but will this extreme

be faster than using existing CPU
instructions without coprocessor?

fast Keccak circuit
k coprocessor”) to CPU

a to CPU.

fast coprocessors
ed mix of operations
n more area to CPU.

e CPU area,

wuch better throughput
ng many coplies

al CPU core

these coprocessors.

“cak chip 1s special case.

reflect general case.

11

CPU designer's metric:

What is best performance

for a specified mix of operations
within a particular CPU area?

CPU designer is much more likely
to consider incorporating a

small Keccak coprocessor.

“So we should design the
smallest Keccak circuit?”

—NMaybe, but will this extreme

be faster than using existing CPU
instructions without coprocessor?

12

Intel typ

quite lar
32KB L:

32KB L.
several f
many di
out-of-o

“So it's
to add 1
for my f

k circuit
ssor’”) to CPU

CESSOrS

operations
ea to CPU.

a,
r throughput
coples

re

"‘OCESSOrs.

s speclal case.

veral case.

11

CPU designer’'s metric:

What is best performance

for a specified mix of operations
within a particular CPU area?

CPU designer is much more likely
to consider incorporating a

small Keccak coprocessor.

“So we should design the
smallest Keccak circuit?”

—Maybe, but will this extreme

be faster than using existing CPU
instructions without coprocessor?

12

Intel typically desi
quite large CPU ¢
32KB L1 data cac
32KB L1 instructi
several fast multip
many different ins
out-of-order unit,

“So it's small cost
to add instruction:
for my favorite cry

_PU

\V

put

_dS€.

11

CPU designer’'s metric:

What is best performance

for a specified mix of operations
within a particular CPU area?

CPU designer is much more likely
to consider incorporating a

small Keccak coprocessor.

“So we should design the
smallest Keccak circuit?”

—NMaybe, but will this extreme

be faster than using existing CPU
instructions without coprocessor?

12

Intel typically designs

quite large CPU cores:
32KB L1 data cache,
32KB L1 instruction cache,
several fast multipliers,
many different instructions,
out-of-order unit, etc.

“So it's small cost for Intel
to add instruction-set exten:
for my favorite crypto!”

CPU designer’'s metric:

What is best performance

for a specified mix of operations
within a particular CPU area?

CPU designer is much more likely
to consider incorporating a

small Keccak coprocessor.

“So we should design the
smallest Keccak circuit?”

—Maybe, but will this extreme

be faster than using existing CPU
instructions without coprocessor?

12

13
Intel typically designs

quite large CPU cores:
32KB L1 data cache,
32KB L1 instruction cache,
several fast multipliers,
many different instructions,
out-of-order unit, etc.

“So it's small cost for Intel
to add instruction-set extension

for my favorite crypto!”

CPU designer’'s metric:

What is best performance

for a specified mix of operations
within a particular CPU area?

CPU designer is much more likely
to consider incorporating a

small Keccak coprocessor.

“So we should design the
smallest Keccak circuit?”

—Maybe, but will this extreme

be faster than using existing CPU

instructions without coprocessor?

12

13
Intel typically designs

quite large CPU cores:
32KB L1 data cache,
32KB L1 instruction cache,
several fast multipliers,
many different instructions,
out-of-order unit, etc.

“So it's small cost for Intel
to add instruction-set extension

for my favorite crypto!”

—Yes, but even smaller benefit
for Intel’'s mix of operations.

Signer’'s metric:

best performance

cified mix of operations

particular CPU area?

signer 1S much more likely

ler incor
eccak co

porating a

DFrOCESSOr.

should design the

Keccak

circuit?”

= but will this extreme

r than using existing CPU

ons without coprocessor?

12

Intel typically designs

quite large CPU cores:
32KB L1 data cache,
32KB L1 instruction cache,
several fast multipliers,
many different instructions,
out-of-order unit, etc.

“So it's small cost for Intel
to add instruction-set extension
for my favorite crypto!”

—Yes, but even smaller benefit
for Intel’'s mix of operations.

13

Intel did
for 1 rot

How ma
iIn an AE

Can be
3: small
4: even
o1
compare
and usin

otric:
rmance
- of operations

- CPU area?

wuch more likely
orating a
"OCESSOr.

ign the
ircuit?”

this extreme
1g existing CPU
it coprocessor?

12

Intel typically designs

quite large CPU cores:
32KB L1 data cache,
32KB L1 instruction cache,
several fast multipliers,
many different instructions,
out-of-order unit, etc.

“So it's small cost for Intel
to add instruction-set extension
for my favorite crypto!”

—Yes, but even smaller benefit
for Intel's mix of operations.

13

Intel did add instri
for 1 round of AE!

How many paralle
in an AES-round ¢

Can be 16: big; fz
8: smaller but slo
4: even smaller bt

. 1: probably nc
compared to skipg
and using other C

ons

likely

CPU

Ssor?

12

Intel typically designs

quite large CPU cores:
32KB L1 data cache,
32KB L1 instruction cache,
several fast multipliers,
many different instructions,
out-of-order unit, etc.

“So it's small cost for Intel
to add instruction-set extension
for my favorite crypto!”

—Yes, but even smaller benefit
for Intel's mix of operations.

13

Intel did add instruction
for 1 round of AES.

How many parallel S-boxes -
in an AES-round coprocesso

Can be 16: big; fast.

8: smaller but slower.

4: even smaller but slower.
... 1: probably not worthwl
compared to skipping coprot
and using other CPU instruc

Intel typically designs

quite large CPU cores:
32KB L1 data cache,
32KB L1 instruction cache,
several fast multipliers,
many different instructions,
out-of-order unit, etc.

“So it's small cost for Intel
to add instruction-set extension
for my favorite crypto!”

—Yes, but even smaller benefit
for Intel's mix of operations.

13

14
Intel did add instruction

for 1 round of AES.

How many parallel S-boxes are
in an AES-round coprocessor?

Can be 16: big; fast.
3: smaller but slower.
4: even smaller but slower.

. 1. probably not worthwhile
compared to skipping coprocessor
and using other CPU instructions.

Intel typically designs

quite large CPU cores:
32KB L1 data cache,
32KB L1 instruction cache,
several fast multipliers,
many different instructions,
out-of-order unit, etc.

“So it's small cost for Intel
to add instruction-set extension
for my favorite crypto!”

—Yes, but even smaller benefit
for Intel's mix of operations.

13

14
Intel did add instruction

for 1 round of AES.

How many parallel S-boxes are
in an AES-round coprocessor?

Can be 16: big; fast.
3: smaller but slower.
4: even smaller but slower.

. 1. probably not worthwhile
compared to skipping coprocessor
and using other CPU instructions.

An instruction for 4 rounds of
SHA-256 is in a few Intel CPUs.

Ically designs

ge CPU cores:

| data cache,

| instruction cache,
ast multipliers,
fferent instructions,
rder unit, etc.

small cost for Intel
nstruction-set extension
avorite crypto!”

ut even smaller benefit
s mix of operations.

13

Intel did add instruction
for 1 round of AES.

How many parallel S-boxes are
in an AES-round coprocessor?

Can be 16: big; fast.

8: smaller but slower.

4: even smaller but slower.

... 1: probably not worthwhile
compared to skipping coprocessor
and using other CPU instructions.

An instruction for 4 rounds of
SHA-256 is in a few Intel CPUs.

14

Lightwel

Frequen
where X
e Kecca
® any se
® a2 secu
“Resour:
need the

ONS
ores:

he,

on cache,
liers,
tructions,
etc.

for Intel
set extension
pto!l”

naller benefit
perations.

13

Intel did add instruction
for 1 round of AES.

How many parallel S-boxes are
in an AES-round coprocessor?

Can be 16: big; fast.
8: smaller but slower.
4: even smaller but slower.

. 1. probably not worthwhile
compared to skipping coprocessor
and using other CPU instructions.

An instruction for 4 rounds of
SHA-256 is in a few Intel CPUs.

14

Lightweight cryptc

Frequent claim in
where X might be
e Keccak;

e any secure hash
® a secure cipher;
“Resource-constra
need the smallest

510N

efit

13

Intel did add instruction
for 1 round of AES.

How many parallel S-boxes are
in an AES-round coprocessor?

Can be 16: big; fast.

8: smaller but slower.

4: even smaller but slower.

... 1: probably not worthwhile
compared to skipping coprocessor
and using other CPU instructions.

An instruction for 4 rounds of
SHA-256 is in a few Intel CPUs.

14

Lightweight crypto

Frequent claim in literature,
where X might be

e Keccak;

e any secure hash;

® a secure cipher; ...:
“Resource-constrained loT c¢
need the smallest circuit for

Intel did add instruction
for 1 round of AES.

How many parallel S-boxes are
in an AES-round coprocessor?

Can be 16: big; fast.
3: smaller but slower.
4: even smaller but slower.

. 1. probably not worthwhile
compared to skipping coprocessor
and using other CPU instructions.

An instruction for 4 rounds of
SHA-256 is in a few Intel CPUs.

14

Lightweight crypto

Frequent claim in literature,
where X might be

e Keccak;

e any secure hash;

® a secure cipher; ...:
“Resource-constrained loT devices
need the smallest circuit for X.”

15

Intel did add instruction
for 1 round of AES.

How many parallel S-boxes are
in an AES-round coprocessor?

Can be 16: big; fast.
3: smaller but slower.
4: even smaller but slower.
. 1. probably not worthwhile
compared to skipping coprocessor

and using other CPU instructions.

An instruction for 4 rounds of
SHA-256 is in a few Intel CPUs.

14

Lightweight crypto

Frequent claim in literature,
where X might be

e Keccak;

e any secure hash;

® a secure cipher; ...:
“Resource-constrained loT devices
need the smallest circuit for X.”

—Even if speed is acceptable,
who will use smallest X circuit?

15

Intel did add instruction
for 1 round of AES.

How many parallel S-boxes are
in an AES-round coprocessor?

Can be 16: big; fast.
3: smaller but slower.
4: even smaller but slower.
. 1. probably not worthwhile
compared to skipping coprocessor

and using other CPU instructions.

An instruction for 4 rounds of
SHA-256 is in a few Intel CPUs.

14

Lightweight crypto

Frequent claim in literature,
where X might be

e Keccak;

e any secure hash;

® a secure cipher; ...:
“Resource-constrained loT devices
need the smallest circuit for X.”

—Even if speed is acceptable,
who will use smallest X circuit?

Why should minimum area for X
give minimum area for loT4+ X7

15

add instruction
ind of AES.

ny parallel S-boxes are
-S-round coprocessor?

16: big; fast.

er but slower.

smaller but slower.
robably not worthwhile

d to skipping coprocessor

g other CPU instructions.

uction for 4 rounds of
5 1s in a few Intel CPUs.

14

Lightweight crypto

Frequent claim In literature,
where X might be

e Keccak;

e any secure hash;

® a secure cipher; ...:
"Resource-constrained loT devices
need the smallest circuit for X.”

—Even if speed is acceptable,
who will use smallest X circuit?

Why should minimum area for X
give minimum area for loT4+X7?

15

An idea

Considet
public ke
recelves
under th
verifies t

e.g. an ¢

Painful |
all client
to suppc
since olc

uction

=

D.

| S-boxes are
oprocessor’

ST.

ver.

It slower.

ot worthwhile
INg COProcessor

PU instructions.

4 rounds of
w Intel CPUs.

14

15
Lightweight crypto

Frequent claim in literature,
where X might be

e Keccak;

e any secure hash;

® a secure cipher; ...:
“"Resource-constrained loT devices
need the smallest circuit for X.”

—Even if speed is acceptable,
who will use smallest X circuit?

Why should minimum area for X
give minimum area for loT+ X7

An idea from Ada

Consider a device
public keys from t
recelves data supp
under these public
verifies these sign:

e.g. an SSL client.

Painful historical e
all clients needed
to support new ha
since old functions

Are

11le
~essor

tions.

of
2 Us.

14

15
Lightweight crypto

Frequent claim In literature,
where X might be

e Keccak;

e any secure hash;

® a secure cipher; ...:
"Resource-constrained loT devices
need the smallest circuit for X.”

—Even if speed is acceptable,
who will use smallest X circuit?

Why should minimum area for X
give minimum area for loT4+X?7?

An idea from Adam Langley

Consider a device that recer
public keys from trusted sou
receives data supposedly sig
under these public keys;
verifies these signatures.

e.g. an SSL client.

Painful historical event:

all clients needed upgrades
to support new hash functio
since old functions were bro

Lightweight crypto

Frequent claim in literature,
where X might be

e Keccak;

e any secure hash;

® a secure cipher; ...:
“"Resource-constrained loT devices
need the smallest circuit for X.”

—Even if speed is acceptable,
who will use smallest X circuit?

Why should minimum area for X
give minimum area for loT4+ X7

15

16
An idea from Adam Langley

Consider a device that receives
public keys from trusted sources;
receives data supposedly signed
under these public keys;

verifies these signatures.

e.g. an SSL client.

Painful historical event:

all clients needed upgrades

to support new hash functions
since old functions were broken.

ght crypto

t claim in literature,

" might be

K;

cure hash:

re cipher; ...:
ce-constrained loT devices
» smallest circuit for X."

f speed is acceptable,
use smallest X circuit?

yuld minimum area for X
imum area for loT+X?

15

An idea from Adam Langley

Consider a device that receives
public keys from trusted sources;
receives data supposedly signed
under these public keys;

verifies these signatures.

e.g. an SSL client.

Painful historical event:

all clients needed upgrades

to support new hash functions
since old functions were broken.

16

A public
signatur
in a limi
Langley’
Replace

a full pr
Then ca
(or upgr
signatur
keys, wii

)

literature,

ined loT devices
circuit for X."

acceptable,
est X circuit?

\um area for X
3 for loT+X7

15

An idea from Adam Langley

Consider a device that receives
public keys from trusted sources;
receives data supposedly signed
under these public keys;

verifies these signatures.

e.g. an SSL client.

Painful historical event:

all clients needed upgrades

to support new hash functions
since old functions were broken.

16

A public key Is a
signature-verificati
In a limited langu:

Langley’'s idea:
Replace this langu

a full programmin;
Then can upgrade
(or upgrade to po
signatures!) by ch
keys, with no char

levices
X."

€,
uit?

or X
X7

15

An idea from Adam Langley

Consider a device that receives
public keys from trusted sources;
receives data supposedly signed
under these public keys;

verifies these signatures.

e.g. an SSL client.

Painful historical event:

all clients needed upgrades

to support new hash functions
since old functions were broken.

16

A public key Is a
signature-verification progra
in a limited language.

Langley’'s idea:
Replace this language with

a full programming languagse
Then can upgrade hash func
(or upgrade to post-quantur
signatures!) by changing pul
keys, with no changes to cli

An idea from Adam Langley

Consider a device that receives
public keys from trusted sources;
receives data supposedly signed
under these public keys;

verifies these signatures.

e.g. an SSL client.

Painful historical event:

all clients needed upgrades

to support new hash functions
since old functions were broken.

16

A public key Is a
signature-verification program
in a limited language.

Langley’'s idea:
Replace this language with

a full programming language.
Then can upgrade hash function
(or upgrade to post-quantum
signatures!) by changing public
keys, with no changes to clients.

17

16 17
An idea from Adam Langley A public key is a

. . . signature-verification program
Consider a device that receives 5 prog

: In a limited language.
public keys from trusted sources; gUag

receives data supposedly signed Langley's idea:
under these public keys; Replace this language with
verifies these signatures. a full programming language.

e.g. an SSL client. Then can upgrade hash function

(or upgrade to post-quantum
Painful historical event: signatures!) by changing public

all clients needed upgrades keys, with no changes to clients.

to support new hash functions

. . Same for public-key encryption
since old functions were broken. Y YP

systems: public key Is program.

from Adam Langley

- a device that receives
2ys from trusted sources;
data supposedly signed
ese public keys;

hese signatures.

SL client.

vistorical event:

s needed upgrades

rt new hash functions

| functions were broken.

16

A public key Is a
signature-verification program
in a limited language.

Langley’'s idea:
Replace this language with

a full programming language.
Then can upgrade hash function
(or upgrade to post-quantum
signatures!) by changing public
keys, with no changes to clients.

Same for public-key encryption

systems: public key Is program.

17

Say veri
Is a chip
How sm

Have to
size of a
size of a

m Langley

that receives
rusted sources;
osedly signed
keys;

tures.

vent:
upgrades

sh functions
; were broken.

16

A public key Is a
signature-verification program
in a limited language.

Langley’'s idea:
Replace this language with

a full programming language.
Then can upgrade hash function
(or upgrade to post-quantum
signatures!) by changing public
keys, with no changes to clients.

Same for public-key encryption

systems: public key Is program.

17

Say verification de
IS a chip of area A
How small can pu

Have to consider,
size of a SHA-256
size of a Keccak p

/es
rces;
ned

ns

ken.

16

A public key Is a
signature-verification program
in a limited language.

Langley’'s idea:
Replace this language with

a full programming language.
Then can upgrade hash function
(or upgrade to post-quantum
signatures!) by changing public
keys, with no changes to clients.

Same for public-key encryption

systems: public key Is program.

17

Say verification device
is a chip of area A.
How small can public keys &

Have to consider, e.g.,
size of a SHA-256 program,
size of a Keccak program, e

A public key Is a
signature-verification program
in a limited language.

Langley’'s idea:
Replace this language with

a full programming language.
Then can upgrade hash function
(or upgrade to post-quantum
signatures!) by changing public
keys, with no changes to clients.

Same for public-key encryption

systems: public key Is program.

17

Say verification device
Is a chip of area A.
How small can public keys be?

Have to consider, e.g.,
size of a SHA-256 program,
size of a Keccak program, etc.

18

A public key Is a
signature-verification program
in a limited language.

Langley’'s idea:
Replace this language with

a full programming language.
Then can upgrade hash function
(or upgrade to post-quantum
signatures!) by changing public
keys, with no changes to clients.

Same for public-key encryption

systems: public key Is program.

17

18
Say verification device

Is a chip of area A.
How small can public keys be?

Have to consider, e.g.,
size of a SHA-256 program,
size of a Keccak program, etc.

Similar question to optimizing
total size of a CPU with

a SHA-256 instruction,
a Keccak instruction, etc.

A public key Is a

signature-verification program

in a limited language.

Langley’'s idea:

Replace this language with

a full programming language.

Then can upgrade hash function

(or upgrade to post-quantum

signatures!) by changing public

keys, with no changes to clients.

Same for
systems:

oublic-key encryption

oublic key Is program.

17

18
Say verification device

Is a chip of area A.
How small can public keys be?

Have to consider, e.g.,
size of a SHA-256 program,
size of a Keccak program, etc.

Similar question to optimizing
total size of a CPU with

a SHA-256 instruction,
a Keccak instruction, etc.

Not the usual code-size question.
Change the language!

