
1

Small cryptographic bytecode

D. J. Bernstein

elaborating on an idea from

Adam Langley

2

“Line search”:

trying to find minimum of

function f defined on x-line.

e.g. “Bisection”, trying to find

minimum in interval [x0; x1]:

Replace interval with either

[x0; (x0+x1)=2] or [(x0+x1)=2; x1];

try to make sensible choice.

Iterate many times.



1

Small cryptographic bytecode

D. J. Bernstein

elaborating on an idea from

Adam Langley

2

“Line search”:

trying to find minimum of

function f defined on x-line.

e.g. “Bisection”, trying to find

minimum in interval [x0; x1]:

Replace interval with either

[x0; (x0+x1)=2] or [(x0+x1)=2; x1];

try to make sensible choice.

Iterate many times.

Can try to reduce #iterations

using smarter models of f :

see, e.g., “secant method”.



1

Small cryptographic bytecode

D. J. Bernstein

elaborating on an idea from

Adam Langley

2

“Line search”:

trying to find minimum of

function f defined on x-line.

e.g. “Bisection”, trying to find

minimum in interval [x0; x1]:

Replace interval with either

[x0; (x0+x1)=2] or [(x0+x1)=2; x1];

try to make sensible choice.

Iterate many times.

Can try to reduce #iterations

using smarter models of f :

see, e.g., “secant method”.

Harder when f varies more.



1

Small cryptographic bytecode

D. J. Bernstein

elaborating on an idea from

Adam Langley

2

“Line search”:

trying to find minimum of

function f defined on x-line.

e.g. “Bisection”, trying to find

minimum in interval [x0; x1]:

Replace interval with either

[x0; (x0+x1)=2] or [(x0+x1)=2; x1];

try to make sensible choice.

Iterate many times.

Can try to reduce #iterations

using smarter models of f :

see, e.g., “secant method”.

Harder when f varies more.

3

How to find minimum of function

f defined on (x; y)-plane?

“Gradient descent”:

Starting from (x0; y0),

try to figure out direction

where f decreases fastest.



1

Small cryptographic bytecode

D. J. Bernstein

elaborating on an idea from

Adam Langley

2

“Line search”:

trying to find minimum of

function f defined on x-line.

e.g. “Bisection”, trying to find

minimum in interval [x0; x1]:

Replace interval with either

[x0; (x0+x1)=2] or [(x0+x1)=2; x1];

try to make sensible choice.

Iterate many times.

Can try to reduce #iterations

using smarter models of f :

see, e.g., “secant method”.

Harder when f varies more.

3

How to find minimum of function

f defined on (x; y)-plane?

“Gradient descent”:

Starting from (x0; y0),

try to figure out direction

where f decreases fastest.



1

Small cryptographic bytecode

D. J. Bernstein

elaborating on an idea from

Adam Langley

2

“Line search”:

trying to find minimum of

function f defined on x-line.

e.g. “Bisection”, trying to find

minimum in interval [x0; x1]:

Replace interval with either

[x0; (x0+x1)=2] or [(x0+x1)=2; x1];

try to make sensible choice.

Iterate many times.

Can try to reduce #iterations

using smarter models of f :

see, e.g., “secant method”.

Harder when f varies more.

3

How to find minimum of function

f defined on (x; y)-plane?

“Gradient descent”:

Starting from (x0; y0),

try to figure out direction

where f decreases fastest.



2

“Line search”:

trying to find minimum of

function f defined on x-line.

e.g. “Bisection”, trying to find

minimum in interval [x0; x1]:

Replace interval with either

[x0; (x0+x1)=2] or [(x0+x1)=2; x1];

try to make sensible choice.

Iterate many times.

Can try to reduce #iterations

using smarter models of f :

see, e.g., “secant method”.

Harder when f varies more.

3

How to find minimum of function

f defined on (x; y)-plane?

“Gradient descent”:

Starting from (x0; y0),

try to figure out direction

where f decreases fastest.



2

“Line search”:

trying to find minimum of

function f defined on x-line.

e.g. “Bisection”, trying to find

minimum in interval [x0; x1]:

Replace interval with either

[x0; (x0+x1)=2] or [(x0+x1)=2; x1];

try to make sensible choice.

Iterate many times.

Can try to reduce #iterations

using smarter models of f :

see, e.g., “secant method”.

Harder when f varies more.

3

How to find minimum of function

f defined on (x; y)-plane?

“Gradient descent”:

Starting from (x0; y0),

try to figure out direction

where f decreases fastest.

Could do line search to find

minimum in that direction.

Then find a new direction.



2

“Line search”:

trying to find minimum of

function f defined on x-line.

e.g. “Bisection”, trying to find

minimum in interval [x0; x1]:

Replace interval with either

[x0; (x0+x1)=2] or [(x0+x1)=2; x1];

try to make sensible choice.

Iterate many times.

Can try to reduce #iterations

using smarter models of f :

see, e.g., “secant method”.

Harder when f varies more.

3

How to find minimum of function

f defined on (x; y)-plane?

“Gradient descent”:

Starting from (x0; y0),

try to figure out direction

where f decreases fastest.

Could do line search to find

minimum in that direction.

Then find a new direction.

Better: Step down that direction.

Then find a new direction.



2

“Line search”:

trying to find minimum of

function f defined on x-line.

e.g. “Bisection”, trying to find

minimum in interval [x0; x1]:

Replace interval with either

[x0; (x0+x1)=2] or [(x0+x1)=2; x1];

try to make sensible choice.

Iterate many times.

Can try to reduce #iterations

using smarter models of f :

see, e.g., “secant method”.

Harder when f varies more.

3

How to find minimum of function

f defined on (x; y)-plane?

“Gradient descent”:

Starting from (x0; y0),

try to figure out direction

where f decreases fastest.

Could do line search to find

minimum in that direction.

Then find a new direction.

Better: Step down that direction.

Then find a new direction.

Silly: Line search in x direction;

line search in y direction; repeat.



2

“Line search”:

trying to find minimum of

function f defined on x-line.

e.g. “Bisection”, trying to find

minimum in interval [x0; x1]:

Replace interval with either

[x0; (x0+x1)=2] or [(x0+x1)=2; x1];

try to make sensible choice.

Iterate many times.

Can try to reduce #iterations

using smarter models of f :

see, e.g., “secant method”.

Harder when f varies more.

3

How to find minimum of function

f defined on (x; y)-plane?

“Gradient descent”:

Starting from (x0; y0),

try to figure out direction

where f decreases fastest.

Could do line search to find

minimum in that direction.

Then find a new direction.

Better: Step down that direction.

Then find a new direction.

Silly: Line search in x direction;

line search in y direction; repeat.

4

Keccak optimization

Goal: Fastest C code for Keccak

on a Cortex-M4 CPU core.

You start with simple C code

implementing Keccak.



2

“Line search”:

trying to find minimum of

function f defined on x-line.

e.g. “Bisection”, trying to find

minimum in interval [x0; x1]:

Replace interval with either

[x0; (x0+x1)=2] or [(x0+x1)=2; x1];

try to make sensible choice.

Iterate many times.

Can try to reduce #iterations

using smarter models of f :

see, e.g., “secant method”.

Harder when f varies more.

3

How to find minimum of function

f defined on (x; y)-plane?

“Gradient descent”:

Starting from (x0; y0),

try to figure out direction

where f decreases fastest.

Could do line search to find

minimum in that direction.

Then find a new direction.

Better: Step down that direction.

Then find a new direction.

Silly: Line search in x direction;

line search in y direction; repeat.

4

Keccak optimization

Goal: Fastest C code for Keccak

on a Cortex-M4 CPU core.

You start with simple C code

implementing Keccak.



2

“Line search”:

trying to find minimum of

function f defined on x-line.

e.g. “Bisection”, trying to find

minimum in interval [x0; x1]:

Replace interval with either

[x0; (x0+x1)=2] or [(x0+x1)=2; x1];

try to make sensible choice.

Iterate many times.

Can try to reduce #iterations

using smarter models of f :

see, e.g., “secant method”.

Harder when f varies more.

3

How to find minimum of function

f defined on (x; y)-plane?

“Gradient descent”:

Starting from (x0; y0),

try to figure out direction

where f decreases fastest.

Could do line search to find

minimum in that direction.

Then find a new direction.

Better: Step down that direction.

Then find a new direction.

Silly: Line search in x direction;

line search in y direction; repeat.

4

Keccak optimization

Goal: Fastest C code for Keccak

on a Cortex-M4 CPU core.

You start with simple C code

implementing Keccak.



3

How to find minimum of function

f defined on (x; y)-plane?

“Gradient descent”:

Starting from (x0; y0),

try to figure out direction

where f decreases fastest.

Could do line search to find

minimum in that direction.

Then find a new direction.

Better: Step down that direction.

Then find a new direction.

Silly: Line search in x direction;

line search in y direction; repeat.

4

Keccak optimization

Goal: Fastest C code for Keccak

on a Cortex-M4 CPU core.

You start with simple C code

implementing Keccak.



3

How to find minimum of function

f defined on (x; y)-plane?

“Gradient descent”:

Starting from (x0; y0),

try to figure out direction

where f decreases fastest.

Could do line search to find

minimum in that direction.

Then find a new direction.

Better: Step down that direction.

Then find a new direction.

Silly: Line search in x direction;

line search in y direction; repeat.

4

Keccak optimization

Goal: Fastest C code for Keccak

on a Cortex-M4 CPU core.

You start with simple C code

implementing Keccak.

You compile it; see how fast it is;

modify it to try to make it faster;

repeat; eventually stop trying.



3

How to find minimum of function

f defined on (x; y)-plane?

“Gradient descent”:

Starting from (x0; y0),

try to figure out direction

where f decreases fastest.

Could do line search to find

minimum in that direction.

Then find a new direction.

Better: Step down that direction.

Then find a new direction.

Silly: Line search in x direction;

line search in y direction; repeat.

4

Keccak optimization

Goal: Fastest C code for Keccak

on a Cortex-M4 CPU core.

You start with simple C code

implementing Keccak.

You compile it; see how fast it is;

modify it to try to make it faster;

repeat; eventually stop trying.

You publish your fastest code.

Maybe lots of people use it,

and care about its speed.



3

How to find minimum of function

f defined on (x; y)-plane?

“Gradient descent”:

Starting from (x0; y0),

try to figure out direction

where f decreases fastest.

Could do line search to find

minimum in that direction.

Then find a new direction.

Better: Step down that direction.

Then find a new direction.

Silly: Line search in x direction;

line search in y direction; repeat.

4

Keccak optimization

Goal: Fastest C code for Keccak

on a Cortex-M4 CPU core.

You start with simple C code

implementing Keccak.

You compile it; see how fast it is;

modify it to try to make it faster;

repeat; eventually stop trying.

You publish your fastest code.

Maybe lots of people use it,

and care about its speed.

5

Compiler writer learns about

your Keccak Cortex-M4 C code.



3

How to find minimum of function

f defined on (x; y)-plane?

“Gradient descent”:

Starting from (x0; y0),

try to figure out direction

where f decreases fastest.

Could do line search to find

minimum in that direction.

Then find a new direction.

Better: Step down that direction.

Then find a new direction.

Silly: Line search in x direction;

line search in y direction; repeat.

4

Keccak optimization

Goal: Fastest C code for Keccak

on a Cortex-M4 CPU core.

You start with simple C code

implementing Keccak.

You compile it; see how fast it is;

modify it to try to make it faster;

repeat; eventually stop trying.

You publish your fastest code.

Maybe lots of people use it,

and care about its speed.

5

Compiler writer learns about

your Keccak Cortex-M4 C code.



3

How to find minimum of function

f defined on (x; y)-plane?

“Gradient descent”:

Starting from (x0; y0),

try to figure out direction

where f decreases fastest.

Could do line search to find

minimum in that direction.

Then find a new direction.

Better: Step down that direction.

Then find a new direction.

Silly: Line search in x direction;

line search in y direction; repeat.

4

Keccak optimization

Goal: Fastest C code for Keccak

on a Cortex-M4 CPU core.

You start with simple C code

implementing Keccak.

You compile it; see how fast it is;

modify it to try to make it faster;

repeat; eventually stop trying.

You publish your fastest code.

Maybe lots of people use it,

and care about its speed.

5

Compiler writer learns about

your Keccak Cortex-M4 C code.



4

Keccak optimization

Goal: Fastest C code for Keccak

on a Cortex-M4 CPU core.

You start with simple C code

implementing Keccak.

You compile it; see how fast it is;

modify it to try to make it faster;

repeat; eventually stop trying.

You publish your fastest code.

Maybe lots of people use it,

and care about its speed.

5

Compiler writer learns about

your Keccak Cortex-M4 C code.



4

Keccak optimization

Goal: Fastest C code for Keccak

on a Cortex-M4 CPU core.

You start with simple C code

implementing Keccak.

You compile it; see how fast it is;

modify it to try to make it faster;

repeat; eventually stop trying.

You publish your fastest code.

Maybe lots of people use it,

and care about its speed.

5

Compiler writer learns about

your Keccak Cortex-M4 C code.

Compiles it; sees how fast it is.

Modifies compiler to try to

make the compiled code faster.

Repeats; eventually stops trying.



4

Keccak optimization

Goal: Fastest C code for Keccak

on a Cortex-M4 CPU core.

You start with simple C code

implementing Keccak.

You compile it; see how fast it is;

modify it to try to make it faster;

repeat; eventually stop trying.

You publish your fastest code.

Maybe lots of people use it,

and care about its speed.

5

Compiler writer learns about

your Keccak Cortex-M4 C code.

Compiles it; sees how fast it is.

Modifies compiler to try to

make the compiled code faster.

Repeats; eventually stops trying.

Publishes a new compiler version.



4

Keccak optimization

Goal: Fastest C code for Keccak

on a Cortex-M4 CPU core.

You start with simple C code

implementing Keccak.

You compile it; see how fast it is;

modify it to try to make it faster;

repeat; eventually stop trying.

You publish your fastest code.

Maybe lots of people use it,

and care about its speed.

5

Compiler writer learns about

your Keccak Cortex-M4 C code.

Compiles it; sees how fast it is.

Modifies compiler to try to

make the compiled code faster.

Repeats; eventually stops trying.

Publishes a new compiler version.

Later: Maybe you try the new

compiler. Whole process repeats.



4

Keccak optimization

Goal: Fastest C code for Keccak

on a Cortex-M4 CPU core.

You start with simple C code

implementing Keccak.

You compile it; see how fast it is;

modify it to try to make it faster;

repeat; eventually stop trying.

You publish your fastest code.

Maybe lots of people use it,

and care about its speed.

5

Compiler writer learns about

your Keccak Cortex-M4 C code.

Compiles it; sees how fast it is.

Modifies compiler to try to

make the compiled code faster.

Repeats; eventually stops trying.

Publishes a new compiler version.

Later: Maybe you try the new

compiler. Whole process repeats.

You treat compiler as constant.

Compiler treats code as constant.



4

Keccak optimization

Goal: Fastest C code for Keccak

on a Cortex-M4 CPU core.

You start with simple C code

implementing Keccak.

You compile it; see how fast it is;

modify it to try to make it faster;

repeat; eventually stop trying.

You publish your fastest code.

Maybe lots of people use it,

and care about its speed.

5

Compiler writer learns about

your Keccak Cortex-M4 C code.

Compiles it; sees how fast it is.

Modifies compiler to try to

make the compiled code faster.

Repeats; eventually stops trying.

Publishes a new compiler version.

Later: Maybe you try the new

compiler. Whole process repeats.

You treat compiler as constant.

Compiler treats code as constant.

6

Define f (x; y) as time taken by

code x with compiler y .



4

Keccak optimization

Goal: Fastest C code for Keccak

on a Cortex-M4 CPU core.

You start with simple C code

implementing Keccak.

You compile it; see how fast it is;

modify it to try to make it faster;

repeat; eventually stop trying.

You publish your fastest code.

Maybe lots of people use it,

and care about its speed.

5

Compiler writer learns about

your Keccak Cortex-M4 C code.

Compiles it; sees how fast it is.

Modifies compiler to try to

make the compiled code faster.

Repeats; eventually stops trying.

Publishes a new compiler version.

Later: Maybe you try the new

compiler. Whole process repeats.

You treat compiler as constant.

Compiler treats code as constant.

6

Define f (x; y) as time taken by

code x with compiler y .



4

Keccak optimization

Goal: Fastest C code for Keccak

on a Cortex-M4 CPU core.

You start with simple C code

implementing Keccak.

You compile it; see how fast it is;

modify it to try to make it faster;

repeat; eventually stop trying.

You publish your fastest code.

Maybe lots of people use it,

and care about its speed.

5

Compiler writer learns about

your Keccak Cortex-M4 C code.

Compiles it; sees how fast it is.

Modifies compiler to try to

make the compiled code faster.

Repeats; eventually stops trying.

Publishes a new compiler version.

Later: Maybe you try the new

compiler. Whole process repeats.

You treat compiler as constant.

Compiler treats code as constant.

6

Define f (x; y) as time taken by

code x with compiler y .



5

Compiler writer learns about

your Keccak Cortex-M4 C code.

Compiles it; sees how fast it is.

Modifies compiler to try to

make the compiled code faster.

Repeats; eventually stops trying.

Publishes a new compiler version.

Later: Maybe you try the new

compiler. Whole process repeats.

You treat compiler as constant.

Compiler treats code as constant.

6

Define f (x; y) as time taken by

code x with compiler y .



5

Compiler writer learns about

your Keccak Cortex-M4 C code.

Compiles it; sees how fast it is.

Modifies compiler to try to

make the compiled code faster.

Repeats; eventually stops trying.

Publishes a new compiler version.

Later: Maybe you try the new

compiler. Whole process repeats.

You treat compiler as constant.

Compiler treats code as constant.

6

Define f (x; y) as time taken by

code x with compiler y .

x0: initial code.

y0: initial compiler.



5

Compiler writer learns about

your Keccak Cortex-M4 C code.

Compiles it; sees how fast it is.

Modifies compiler to try to

make the compiled code faster.

Repeats; eventually stops trying.

Publishes a new compiler version.

Later: Maybe you try the new

compiler. Whole process repeats.

You treat compiler as constant.

Compiler treats code as constant.

6

Define f (x; y) as time taken by

code x with compiler y .

x0: initial code.

y0: initial compiler.

You try to minimize f (x; y0).

x1: new code from this

line search in x direction.



5

Compiler writer learns about

your Keccak Cortex-M4 C code.

Compiles it; sees how fast it is.

Modifies compiler to try to

make the compiled code faster.

Repeats; eventually stops trying.

Publishes a new compiler version.

Later: Maybe you try the new

compiler. Whole process repeats.

You treat compiler as constant.

Compiler treats code as constant.

6

Define f (x; y) as time taken by

code x with compiler y .

x0: initial code.

y0: initial compiler.

You try to minimize f (x; y0).

x1: new code from this

line search in x direction.

Compiler writer: f (x1; y).

y1: new compiler from this

line search in y direction.



5

Compiler writer learns about

your Keccak Cortex-M4 C code.

Compiles it; sees how fast it is.

Modifies compiler to try to

make the compiled code faster.

Repeats; eventually stops trying.

Publishes a new compiler version.

Later: Maybe you try the new

compiler. Whole process repeats.

You treat compiler as constant.

Compiler treats code as constant.

6

Define f (x; y) as time taken by

code x with compiler y .

x0: initial code.

y0: initial compiler.

You try to minimize f (x; y0).

x1: new code from this

line search in x direction.

Compiler writer: f (x1; y).

y1: new compiler from this

line search in y direction.

This whole approach is silly.



5

Compiler writer learns about

your Keccak Cortex-M4 C code.

Compiles it; sees how fast it is.

Modifies compiler to try to

make the compiled code faster.

Repeats; eventually stops trying.

Publishes a new compiler version.

Later: Maybe you try the new

compiler. Whole process repeats.

You treat compiler as constant.

Compiler treats code as constant.

6

Define f (x; y) as time taken by

code x with compiler y .

x0: initial code.

y0: initial compiler.

You try to minimize f (x; y0).

x1: new code from this

line search in x direction.

Compiler writer: f (x1; y).

y1: new compiler from this

line search in y direction.

This whole approach is silly.

7

min{f (x; y)} is the time taken by

fastest Keccak Cortex-M4 asm.



5

Compiler writer learns about

your Keccak Cortex-M4 C code.

Compiles it; sees how fast it is.

Modifies compiler to try to

make the compiled code faster.

Repeats; eventually stops trying.

Publishes a new compiler version.

Later: Maybe you try the new

compiler. Whole process repeats.

You treat compiler as constant.

Compiler treats code as constant.

6

Define f (x; y) as time taken by

code x with compiler y .

x0: initial code.

y0: initial compiler.

You try to minimize f (x; y0).

x1: new code from this

line search in x direction.

Compiler writer: f (x1; y).

y1: new compiler from this

line search in y direction.

This whole approach is silly.

7

min{f (x; y)} is the time taken by

fastest Keccak Cortex-M4 asm.



5

Compiler writer learns about

your Keccak Cortex-M4 C code.

Compiles it; sees how fast it is.

Modifies compiler to try to

make the compiled code faster.

Repeats; eventually stops trying.

Publishes a new compiler version.

Later: Maybe you try the new

compiler. Whole process repeats.

You treat compiler as constant.

Compiler treats code as constant.

6

Define f (x; y) as time taken by

code x with compiler y .

x0: initial code.

y0: initial compiler.

You try to minimize f (x; y0).

x1: new code from this

line search in x direction.

Compiler writer: f (x1; y).

y1: new compiler from this

line search in y direction.

This whole approach is silly.

7

min{f (x; y)} is the time taken by

fastest Keccak Cortex-M4 asm.



6

Define f (x; y) as time taken by

code x with compiler y .

x0: initial code.

y0: initial compiler.

You try to minimize f (x; y0).

x1: new code from this

line search in x direction.

Compiler writer: f (x1; y).

y1: new compiler from this

line search in y direction.

This whole approach is silly.

7

min{f (x; y)} is the time taken by

fastest Keccak Cortex-M4 asm.



6

Define f (x; y) as time taken by

code x with compiler y .

x0: initial code.

y0: initial compiler.

You try to minimize f (x; y0).

x1: new code from this

line search in x direction.

Compiler writer: f (x1; y).

y1: new compiler from this

line search in y direction.

This whole approach is silly.

7

min{f (x; y)} is the time taken by

fastest Keccak Cortex-M4 asm.

Slowly bouncing between

x-line searches, y -line searches is

a silly way to approach this min.



6

Define f (x; y) as time taken by

code x with compiler y .

x0: initial code.

y0: initial compiler.

You try to minimize f (x; y0).

x1: new code from this

line search in x direction.

Compiler writer: f (x1; y).

y1: new compiler from this

line search in y direction.

This whole approach is silly.

7

min{f (x; y)} is the time taken by

fastest Keccak Cortex-M4 asm.

Slowly bouncing between

x-line searches, y -line searches is

a silly way to approach this min.

Clearly min can be achieved by

many different pairs (x; y).

Which pair is easiest to find?



6

Define f (x; y) as time taken by

code x with compiler y .

x0: initial code.

y0: initial compiler.

You try to minimize f (x; y0).

x1: new code from this

line search in x direction.

Compiler writer: f (x1; y).

y1: new compiler from this

line search in y direction.

This whole approach is silly.

7

min{f (x; y)} is the time taken by

fastest Keccak Cortex-M4 asm.

Slowly bouncing between

x-line searches, y -line searches is

a silly way to approach this min.

Clearly min can be achieved by

many different pairs (x; y).

Which pair is easiest to find?

Generalize from C to other

languages: which language

makes min easiest to find?

Why did goal say “C code”?

End user doesn’t need C.



6

Define f (x; y) as time taken by

code x with compiler y .

x0: initial code.

y0: initial compiler.

You try to minimize f (x; y0).

x1: new code from this

line search in x direction.

Compiler writer: f (x1; y).

y1: new compiler from this

line search in y direction.

This whole approach is silly.

7

min{f (x; y)} is the time taken by

fastest Keccak Cortex-M4 asm.

Slowly bouncing between

x-line searches, y -line searches is

a silly way to approach this min.

Clearly min can be achieved by

many different pairs (x; y).

Which pair is easiest to find?

Generalize from C to other

languages: which language

makes min easiest to find?

Why did goal say “C code”?

End user doesn’t need C.

8

Does end user need Cortex-M4?



6

Define f (x; y) as time taken by

code x with compiler y .

x0: initial code.

y0: initial compiler.

You try to minimize f (x; y0).

x1: new code from this

line search in x direction.

Compiler writer: f (x1; y).

y1: new compiler from this

line search in y direction.

This whole approach is silly.

7

min{f (x; y)} is the time taken by

fastest Keccak Cortex-M4 asm.

Slowly bouncing between

x-line searches, y -line searches is

a silly way to approach this min.

Clearly min can be achieved by

many different pairs (x; y).

Which pair is easiest to find?

Generalize from C to other

languages: which language

makes min easiest to find?

Why did goal say “C code”?

End user doesn’t need C.

8

Does end user need Cortex-M4?



6

Define f (x; y) as time taken by

code x with compiler y .

x0: initial code.

y0: initial compiler.

You try to minimize f (x; y0).

x1: new code from this

line search in x direction.

Compiler writer: f (x1; y).

y1: new compiler from this

line search in y direction.

This whole approach is silly.

7

min{f (x; y)} is the time taken by

fastest Keccak Cortex-M4 asm.

Slowly bouncing between

x-line searches, y -line searches is

a silly way to approach this min.

Clearly min can be achieved by

many different pairs (x; y).

Which pair is easiest to find?

Generalize from C to other

languages: which language

makes min easiest to find?

Why did goal say “C code”?

End user doesn’t need C.

8

Does end user need Cortex-M4?



7

min{f (x; y)} is the time taken by

fastest Keccak Cortex-M4 asm.

Slowly bouncing between

x-line searches, y -line searches is

a silly way to approach this min.

Clearly min can be achieved by

many different pairs (x; y).

Which pair is easiest to find?

Generalize from C to other

languages: which language

makes min easiest to find?

Why did goal say “C code”?

End user doesn’t need C.

8

Does end user need Cortex-M4?



7

min{f (x; y)} is the time taken by

fastest Keccak Cortex-M4 asm.

Slowly bouncing between

x-line searches, y -line searches is

a silly way to approach this min.

Clearly min can be achieved by

many different pairs (x; y).

Which pair is easiest to find?

Generalize from C to other

languages: which language

makes min easiest to find?

Why did goal say “C code”?

End user doesn’t need C.

8

Does end user need Cortex-M4?

CPU designer learns about your

Keccak Cortex-M4 asm.



7

min{f (x; y)} is the time taken by

fastest Keccak Cortex-M4 asm.

Slowly bouncing between

x-line searches, y -line searches is

a silly way to approach this min.

Clearly min can be achieved by

many different pairs (x; y).

Which pair is easiest to find?

Generalize from C to other

languages: which language

makes min easiest to find?

Why did goal say “C code”?

End user doesn’t need C.

8

Does end user need Cortex-M4?

CPU designer learns about your

Keccak Cortex-M4 asm.

Modifies the CPU design to

try to make this code faster.

Repeats; eventually stops trying.



7

min{f (x; y)} is the time taken by

fastest Keccak Cortex-M4 asm.

Slowly bouncing between

x-line searches, y -line searches is

a silly way to approach this min.

Clearly min can be achieved by

many different pairs (x; y).

Which pair is easiest to find?

Generalize from C to other

languages: which language

makes min easiest to find?

Why did goal say “C code”?

End user doesn’t need C.

8

Does end user need Cortex-M4?

CPU designer learns about your

Keccak Cortex-M4 asm.

Modifies the CPU design to

try to make this code faster.

Repeats; eventually stops trying.

Years later, sells a new CPU.

You reoptimize for this CPU.



7

min{f (x; y)} is the time taken by

fastest Keccak Cortex-M4 asm.

Slowly bouncing between

x-line searches, y -line searches is

a silly way to approach this min.

Clearly min can be achieved by

many different pairs (x; y).

Which pair is easiest to find?

Generalize from C to other

languages: which language

makes min easiest to find?

Why did goal say “C code”?

End user doesn’t need C.

8

Does end user need Cortex-M4?

CPU designer learns about your

Keccak Cortex-M4 asm.

Modifies the CPU design to

try to make this code faster.

Repeats; eventually stops trying.

Years later, sells a new CPU.

You reoptimize for this CPU.

Sometimes CPUs try extending

or replacing instruction set, but

this is poorly coordinated with

programmers, compiler writers.



7

min{f (x; y)} is the time taken by

fastest Keccak Cortex-M4 asm.

Slowly bouncing between

x-line searches, y -line searches is

a silly way to approach this min.

Clearly min can be achieved by

many different pairs (x; y).

Which pair is easiest to find?

Generalize from C to other

languages: which language

makes min easiest to find?

Why did goal say “C code”?

End user doesn’t need C.

8

Does end user need Cortex-M4?

CPU designer learns about your

Keccak Cortex-M4 asm.

Modifies the CPU design to

try to make this code faster.

Repeats; eventually stops trying.

Years later, sells a new CPU.

You reoptimize for this CPU.

Sometimes CPUs try extending

or replacing instruction set, but

this is poorly coordinated with

programmers, compiler writers.

9

Generalize f (x; y) definition:

f (x; y) is time taken by

code x on platform y .

If compiler y on code x produces

asm y(x) for Cortex-M4:

f (x; y) = f (y(x);Cortex-M4).



7

min{f (x; y)} is the time taken by

fastest Keccak Cortex-M4 asm.

Slowly bouncing between

x-line searches, y -line searches is

a silly way to approach this min.

Clearly min can be achieved by

many different pairs (x; y).

Which pair is easiest to find?

Generalize from C to other

languages: which language

makes min easiest to find?

Why did goal say “C code”?

End user doesn’t need C.

8

Does end user need Cortex-M4?

CPU designer learns about your

Keccak Cortex-M4 asm.

Modifies the CPU design to

try to make this code faster.

Repeats; eventually stops trying.

Years later, sells a new CPU.

You reoptimize for this CPU.

Sometimes CPUs try extending

or replacing instruction set, but

this is poorly coordinated with

programmers, compiler writers.

9

Generalize f (x; y) definition:

f (x; y) is time taken by

code x on platform y .

If compiler y on code x produces

asm y(x) for Cortex-M4:

f (x; y) = f (y(x);Cortex-M4).



7

min{f (x; y)} is the time taken by

fastest Keccak Cortex-M4 asm.

Slowly bouncing between

x-line searches, y -line searches is

a silly way to approach this min.

Clearly min can be achieved by

many different pairs (x; y).

Which pair is easiest to find?

Generalize from C to other

languages: which language

makes min easiest to find?

Why did goal say “C code”?

End user doesn’t need C.

8

Does end user need Cortex-M4?

CPU designer learns about your

Keccak Cortex-M4 asm.

Modifies the CPU design to

try to make this code faster.

Repeats; eventually stops trying.

Years later, sells a new CPU.

You reoptimize for this CPU.

Sometimes CPUs try extending

or replacing instruction set, but

this is poorly coordinated with

programmers, compiler writers.

9

Generalize f (x; y) definition:

f (x; y) is time taken by

code x on platform y .

If compiler y on code x produces

asm y(x) for Cortex-M4:

f (x; y) = f (y(x);Cortex-M4).



8

Does end user need Cortex-M4?

CPU designer learns about your

Keccak Cortex-M4 asm.

Modifies the CPU design to

try to make this code faster.

Repeats; eventually stops trying.

Years later, sells a new CPU.

You reoptimize for this CPU.

Sometimes CPUs try extending

or replacing instruction set, but

this is poorly coordinated with

programmers, compiler writers.

9

Generalize f (x; y) definition:

f (x; y) is time taken by

code x on platform y .

If compiler y on code x produces

asm y(x) for Cortex-M4:

f (x; y) = f (y(x);Cortex-M4).



8

Does end user need Cortex-M4?

CPU designer learns about your

Keccak Cortex-M4 asm.

Modifies the CPU design to

try to make this code faster.

Repeats; eventually stops trying.

Years later, sells a new CPU.

You reoptimize for this CPU.

Sometimes CPUs try extending

or replacing instruction set, but

this is poorly coordinated with

programmers, compiler writers.

9

Generalize f (x; y) definition:

f (x; y) is time taken by

code x on platform y .

If compiler y on code x produces

asm y(x) for Cortex-M4:

f (x; y) = f (y(x);Cortex-M4).

Without the CPU changing:

Minimize f (a;Cortex-M4).

Search for (x; y) with y(x) = a.



8

Does end user need Cortex-M4?

CPU designer learns about your

Keccak Cortex-M4 asm.

Modifies the CPU design to

try to make this code faster.

Repeats; eventually stops trying.

Years later, sells a new CPU.

You reoptimize for this CPU.

Sometimes CPUs try extending

or replacing instruction set, but

this is poorly coordinated with

programmers, compiler writers.

9

Generalize f (x; y) definition:

f (x; y) is time taken by

code x on platform y .

If compiler y on code x produces

asm y(x) for Cortex-M4:

f (x; y) = f (y(x);Cortex-M4).

Without the CPU changing:

Minimize f (a;Cortex-M4).

Search for (x; y) with y(x) = a.

Typical CPU designer:

View a as a constant;

try to minimize f (a; y).

Silly optimization approach.



8

Does end user need Cortex-M4?

CPU designer learns about your

Keccak Cortex-M4 asm.

Modifies the CPU design to

try to make this code faster.

Repeats; eventually stops trying.

Years later, sells a new CPU.

You reoptimize for this CPU.

Sometimes CPUs try extending

or replacing instruction set, but

this is poorly coordinated with

programmers, compiler writers.

9

Generalize f (x; y) definition:

f (x; y) is time taken by

code x on platform y .

If compiler y on code x produces

asm y(x) for Cortex-M4:

f (x; y) = f (y(x);Cortex-M4).

Without the CPU changing:

Minimize f (a;Cortex-M4).

Search for (x; y) with y(x) = a.

Typical CPU designer:

View a as a constant;

try to minimize f (a; y).

Silly optimization approach.

10

“I know the minimum!

I’ve developed the fastest circuit

that computes Keccak.

This circuit is my CPU.”



8

Does end user need Cortex-M4?

CPU designer learns about your

Keccak Cortex-M4 asm.

Modifies the CPU design to

try to make this code faster.

Repeats; eventually stops trying.

Years later, sells a new CPU.

You reoptimize for this CPU.

Sometimes CPUs try extending

or replacing instruction set, but

this is poorly coordinated with

programmers, compiler writers.

9

Generalize f (x; y) definition:

f (x; y) is time taken by

code x on platform y .

If compiler y on code x produces

asm y(x) for Cortex-M4:

f (x; y) = f (y(x);Cortex-M4).

Without the CPU changing:

Minimize f (a;Cortex-M4).

Search for (x; y) with y(x) = a.

Typical CPU designer:

View a as a constant;

try to minimize f (a; y).

Silly optimization approach.

10

“I know the minimum!

I’ve developed the fastest circuit

that computes Keccak.

This circuit is my CPU.”



8

Does end user need Cortex-M4?

CPU designer learns about your

Keccak Cortex-M4 asm.

Modifies the CPU design to

try to make this code faster.

Repeats; eventually stops trying.

Years later, sells a new CPU.

You reoptimize for this CPU.

Sometimes CPUs try extending

or replacing instruction set, but

this is poorly coordinated with

programmers, compiler writers.

9

Generalize f (x; y) definition:

f (x; y) is time taken by

code x on platform y .

If compiler y on code x produces

asm y(x) for Cortex-M4:

f (x; y) = f (y(x);Cortex-M4).

Without the CPU changing:

Minimize f (a;Cortex-M4).

Search for (x; y) with y(x) = a.

Typical CPU designer:

View a as a constant;

try to minimize f (a; y).

Silly optimization approach.

10

“I know the minimum!

I’ve developed the fastest circuit

that computes Keccak.

This circuit is my CPU.”



9

Generalize f (x; y) definition:

f (x; y) is time taken by

code x on platform y .

If compiler y on code x produces

asm y(x) for Cortex-M4:

f (x; y) = f (y(x);Cortex-M4).

Without the CPU changing:

Minimize f (a;Cortex-M4).

Search for (x; y) with y(x) = a.

Typical CPU designer:

View a as a constant;

try to minimize f (a; y).

Silly optimization approach.

10

“I know the minimum!

I’ve developed the fastest circuit

that computes Keccak.

This circuit is my CPU.”



9

Generalize f (x; y) definition:

f (x; y) is time taken by

code x on platform y .

If compiler y on code x produces

asm y(x) for Cortex-M4:

f (x; y) = f (y(x);Cortex-M4).

Without the CPU changing:

Minimize f (a;Cortex-M4).

Search for (x; y) with y(x) = a.

Typical CPU designer:

View a as a constant;

try to minimize f (a; y).

Silly optimization approach.

10

“I know the minimum!

I’ve developed the fastest circuit

that computes Keccak.

This circuit is my CPU.”

Wait a minute: “CPU” concept

is more restrictive than “chip”.

Perspective of CPU designer:

This chip can do anything!

People want this chip to support

SHA-1, SHA-2, SHA-3, SHAmir;

all sorts of block ciphers;

public-key cryptosystems;

non-cryptographic computations.



9

Generalize f (x; y) definition:

f (x; y) is time taken by

code x on platform y .

If compiler y on code x produces

asm y(x) for Cortex-M4:

f (x; y) = f (y(x);Cortex-M4).

Without the CPU changing:

Minimize f (a;Cortex-M4).

Search for (x; y) with y(x) = a.

Typical CPU designer:

View a as a constant;

try to minimize f (a; y).

Silly optimization approach.

10

“I know the minimum!

I’ve developed the fastest circuit

that computes Keccak.

This circuit is my CPU.”

Wait a minute: “CPU” concept

is more restrictive than “chip”.

Perspective of CPU designer:

This chip can do anything!

People want this chip to support

SHA-1, SHA-2, SHA-3, SHAmir;

all sorts of block ciphers;

public-key cryptosystems;

non-cryptographic computations.

11

Adding fast Keccak circuit

(“Keccak coprocessor”) to CPU

adds area to CPU.

Adding fast coprocessors

for desired mix of operations

adds even more area to CPU.



9

Generalize f (x; y) definition:

f (x; y) is time taken by

code x on platform y .

If compiler y on code x produces

asm y(x) for Cortex-M4:

f (x; y) = f (y(x);Cortex-M4).

Without the CPU changing:

Minimize f (a;Cortex-M4).

Search for (x; y) with y(x) = a.

Typical CPU designer:

View a as a constant;

try to minimize f (a; y).

Silly optimization approach.

10

“I know the minimum!

I’ve developed the fastest circuit

that computes Keccak.

This circuit is my CPU.”

Wait a minute: “CPU” concept

is more restrictive than “chip”.

Perspective of CPU designer:

This chip can do anything!

People want this chip to support

SHA-1, SHA-2, SHA-3, SHAmir;

all sorts of block ciphers;

public-key cryptosystems;

non-cryptographic computations.

11

Adding fast Keccak circuit

(“Keccak coprocessor”) to CPU

adds area to CPU.

Adding fast coprocessors

for desired mix of operations

adds even more area to CPU.



9

Generalize f (x; y) definition:

f (x; y) is time taken by

code x on platform y .

If compiler y on code x produces

asm y(x) for Cortex-M4:

f (x; y) = f (y(x);Cortex-M4).

Without the CPU changing:

Minimize f (a;Cortex-M4).

Search for (x; y) with y(x) = a.

Typical CPU designer:

View a as a constant;

try to minimize f (a; y).

Silly optimization approach.

10

“I know the minimum!

I’ve developed the fastest circuit

that computes Keccak.

This circuit is my CPU.”

Wait a minute: “CPU” concept

is more restrictive than “chip”.

Perspective of CPU designer:

This chip can do anything!

People want this chip to support

SHA-1, SHA-2, SHA-3, SHAmir;

all sorts of block ciphers;

public-key cryptosystems;

non-cryptographic computations.

11

Adding fast Keccak circuit

(“Keccak coprocessor”) to CPU

adds area to CPU.

Adding fast coprocessors

for desired mix of operations

adds even more area to CPU.



10

“I know the minimum!

I’ve developed the fastest circuit

that computes Keccak.

This circuit is my CPU.”

Wait a minute: “CPU” concept

is more restrictive than “chip”.

Perspective of CPU designer:

This chip can do anything!

People want this chip to support

SHA-1, SHA-2, SHA-3, SHAmir;

all sorts of block ciphers;

public-key cryptosystems;

non-cryptographic computations.

11

Adding fast Keccak circuit

(“Keccak coprocessor”) to CPU

adds area to CPU.

Adding fast coprocessors

for desired mix of operations

adds even more area to CPU.



10

“I know the minimum!

I’ve developed the fastest circuit

that computes Keccak.

This circuit is my CPU.”

Wait a minute: “CPU” concept

is more restrictive than “chip”.

Perspective of CPU designer:

This chip can do anything!

People want this chip to support

SHA-1, SHA-2, SHA-3, SHAmir;

all sorts of block ciphers;

public-key cryptosystems;

non-cryptographic computations.

11

Adding fast Keccak circuit

(“Keccak coprocessor”) to CPU

adds area to CPU.

Adding fast coprocessors

for desired mix of operations

adds even more area to CPU.

For same CPU area,

obtain much better throughput

by building many copies

of original CPU core

without these coprocessors.



10

“I know the minimum!

I’ve developed the fastest circuit

that computes Keccak.

This circuit is my CPU.”

Wait a minute: “CPU” concept

is more restrictive than “chip”.

Perspective of CPU designer:

This chip can do anything!

People want this chip to support

SHA-1, SHA-2, SHA-3, SHAmir;

all sorts of block ciphers;

public-key cryptosystems;

non-cryptographic computations.

11

Adding fast Keccak circuit

(“Keccak coprocessor”) to CPU

adds area to CPU.

Adding fast coprocessors

for desired mix of operations

adds even more area to CPU.

For same CPU area,

obtain much better throughput

by building many copies

of original CPU core

without these coprocessors.

Fast Keccak chip is special case.

Doesn’t reflect general case.



10

“I know the minimum!

I’ve developed the fastest circuit

that computes Keccak.

This circuit is my CPU.”

Wait a minute: “CPU” concept

is more restrictive than “chip”.

Perspective of CPU designer:

This chip can do anything!

People want this chip to support

SHA-1, SHA-2, SHA-3, SHAmir;

all sorts of block ciphers;

public-key cryptosystems;

non-cryptographic computations.

11

Adding fast Keccak circuit

(“Keccak coprocessor”) to CPU

adds area to CPU.

Adding fast coprocessors

for desired mix of operations

adds even more area to CPU.

For same CPU area,

obtain much better throughput

by building many copies

of original CPU core

without these coprocessors.

Fast Keccak chip is special case.

Doesn’t reflect general case.

12

CPU designer’s metric:

What is best performance

for a specified mix of operations

within a particular CPU area?



10

“I know the minimum!

I’ve developed the fastest circuit

that computes Keccak.

This circuit is my CPU.”

Wait a minute: “CPU” concept

is more restrictive than “chip”.

Perspective of CPU designer:

This chip can do anything!

People want this chip to support

SHA-1, SHA-2, SHA-3, SHAmir;

all sorts of block ciphers;

public-key cryptosystems;

non-cryptographic computations.

11

Adding fast Keccak circuit

(“Keccak coprocessor”) to CPU

adds area to CPU.

Adding fast coprocessors

for desired mix of operations

adds even more area to CPU.

For same CPU area,

obtain much better throughput

by building many copies

of original CPU core

without these coprocessors.

Fast Keccak chip is special case.

Doesn’t reflect general case.

12

CPU designer’s metric:

What is best performance

for a specified mix of operations

within a particular CPU area?



10

“I know the minimum!

I’ve developed the fastest circuit

that computes Keccak.

This circuit is my CPU.”

Wait a minute: “CPU” concept

is more restrictive than “chip”.

Perspective of CPU designer:

This chip can do anything!

People want this chip to support

SHA-1, SHA-2, SHA-3, SHAmir;

all sorts of block ciphers;

public-key cryptosystems;

non-cryptographic computations.

11

Adding fast Keccak circuit

(“Keccak coprocessor”) to CPU

adds area to CPU.

Adding fast coprocessors

for desired mix of operations

adds even more area to CPU.

For same CPU area,

obtain much better throughput

by building many copies

of original CPU core

without these coprocessors.

Fast Keccak chip is special case.

Doesn’t reflect general case.

12

CPU designer’s metric:

What is best performance

for a specified mix of operations

within a particular CPU area?



11

Adding fast Keccak circuit

(“Keccak coprocessor”) to CPU

adds area to CPU.

Adding fast coprocessors

for desired mix of operations

adds even more area to CPU.

For same CPU area,

obtain much better throughput

by building many copies

of original CPU core

without these coprocessors.

Fast Keccak chip is special case.

Doesn’t reflect general case.

12

CPU designer’s metric:

What is best performance

for a specified mix of operations

within a particular CPU area?



11

Adding fast Keccak circuit

(“Keccak coprocessor”) to CPU

adds area to CPU.

Adding fast coprocessors

for desired mix of operations

adds even more area to CPU.

For same CPU area,

obtain much better throughput

by building many copies

of original CPU core

without these coprocessors.

Fast Keccak chip is special case.

Doesn’t reflect general case.

12

CPU designer’s metric:

What is best performance

for a specified mix of operations

within a particular CPU area?

CPU designer is much more likely

to consider incorporating a

small Keccak coprocessor.



11

Adding fast Keccak circuit

(“Keccak coprocessor”) to CPU

adds area to CPU.

Adding fast coprocessors

for desired mix of operations

adds even more area to CPU.

For same CPU area,

obtain much better throughput

by building many copies

of original CPU core

without these coprocessors.

Fast Keccak chip is special case.

Doesn’t reflect general case.

12

CPU designer’s metric:

What is best performance

for a specified mix of operations

within a particular CPU area?

CPU designer is much more likely

to consider incorporating a

small Keccak coprocessor.

“So we should design the

smallest Keccak circuit?”



11

Adding fast Keccak circuit

(“Keccak coprocessor”) to CPU

adds area to CPU.

Adding fast coprocessors

for desired mix of operations

adds even more area to CPU.

For same CPU area,

obtain much better throughput

by building many copies

of original CPU core

without these coprocessors.

Fast Keccak chip is special case.

Doesn’t reflect general case.

12

CPU designer’s metric:

What is best performance

for a specified mix of operations

within a particular CPU area?

CPU designer is much more likely

to consider incorporating a

small Keccak coprocessor.

“So we should design the

smallest Keccak circuit?”

—Maybe, but will this extreme

be faster than using existing CPU

instructions without coprocessor?



11

Adding fast Keccak circuit

(“Keccak coprocessor”) to CPU

adds area to CPU.

Adding fast coprocessors

for desired mix of operations

adds even more area to CPU.

For same CPU area,

obtain much better throughput

by building many copies

of original CPU core

without these coprocessors.

Fast Keccak chip is special case.

Doesn’t reflect general case.

12

CPU designer’s metric:

What is best performance

for a specified mix of operations

within a particular CPU area?

CPU designer is much more likely

to consider incorporating a

small Keccak coprocessor.

“So we should design the

smallest Keccak circuit?”

—Maybe, but will this extreme

be faster than using existing CPU

instructions without coprocessor?

13

Intel typically designs

quite large CPU cores:

32KB L1 data cache,

32KB L1 instruction cache,

several fast multipliers,

many different instructions,

out-of-order unit, etc.

“So it’s small cost for Intel

to add instruction-set extension

for my favorite crypto!”



11

Adding fast Keccak circuit

(“Keccak coprocessor”) to CPU

adds area to CPU.

Adding fast coprocessors

for desired mix of operations

adds even more area to CPU.

For same CPU area,

obtain much better throughput

by building many copies

of original CPU core

without these coprocessors.

Fast Keccak chip is special case.

Doesn’t reflect general case.

12

CPU designer’s metric:

What is best performance

for a specified mix of operations

within a particular CPU area?

CPU designer is much more likely

to consider incorporating a

small Keccak coprocessor.

“So we should design the

smallest Keccak circuit?”

—Maybe, but will this extreme

be faster than using existing CPU

instructions without coprocessor?

13

Intel typically designs

quite large CPU cores:

32KB L1 data cache,

32KB L1 instruction cache,

several fast multipliers,

many different instructions,

out-of-order unit, etc.

“So it’s small cost for Intel

to add instruction-set extension

for my favorite crypto!”



11

Adding fast Keccak circuit

(“Keccak coprocessor”) to CPU

adds area to CPU.

Adding fast coprocessors

for desired mix of operations

adds even more area to CPU.

For same CPU area,

obtain much better throughput

by building many copies

of original CPU core

without these coprocessors.

Fast Keccak chip is special case.

Doesn’t reflect general case.

12

CPU designer’s metric:

What is best performance

for a specified mix of operations

within a particular CPU area?

CPU designer is much more likely

to consider incorporating a

small Keccak coprocessor.

“So we should design the

smallest Keccak circuit?”

—Maybe, but will this extreme

be faster than using existing CPU

instructions without coprocessor?

13

Intel typically designs

quite large CPU cores:

32KB L1 data cache,

32KB L1 instruction cache,

several fast multipliers,

many different instructions,

out-of-order unit, etc.

“So it’s small cost for Intel

to add instruction-set extension

for my favorite crypto!”



12

CPU designer’s metric:

What is best performance

for a specified mix of operations

within a particular CPU area?

CPU designer is much more likely

to consider incorporating a

small Keccak coprocessor.

“So we should design the

smallest Keccak circuit?”

—Maybe, but will this extreme

be faster than using existing CPU

instructions without coprocessor?

13

Intel typically designs

quite large CPU cores:

32KB L1 data cache,

32KB L1 instruction cache,

several fast multipliers,

many different instructions,

out-of-order unit, etc.

“So it’s small cost for Intel

to add instruction-set extension

for my favorite crypto!”



12

CPU designer’s metric:

What is best performance

for a specified mix of operations

within a particular CPU area?

CPU designer is much more likely

to consider incorporating a

small Keccak coprocessor.

“So we should design the

smallest Keccak circuit?”

—Maybe, but will this extreme

be faster than using existing CPU

instructions without coprocessor?

13

Intel typically designs

quite large CPU cores:

32KB L1 data cache,

32KB L1 instruction cache,

several fast multipliers,

many different instructions,

out-of-order unit, etc.

“So it’s small cost for Intel

to add instruction-set extension

for my favorite crypto!”

—Yes, but even smaller benefit

for Intel’s mix of operations.



12

CPU designer’s metric:

What is best performance

for a specified mix of operations

within a particular CPU area?

CPU designer is much more likely

to consider incorporating a

small Keccak coprocessor.

“So we should design the

smallest Keccak circuit?”

—Maybe, but will this extreme

be faster than using existing CPU

instructions without coprocessor?

13

Intel typically designs

quite large CPU cores:

32KB L1 data cache,

32KB L1 instruction cache,

several fast multipliers,

many different instructions,

out-of-order unit, etc.

“So it’s small cost for Intel

to add instruction-set extension

for my favorite crypto!”

—Yes, but even smaller benefit

for Intel’s mix of operations.

14

Intel did add instruction

for 1 round of AES.

How many parallel S-boxes are

in an AES-round coprocessor?

Can be 16: big; fast.

8: smaller but slower.

4: even smaller but slower.

: : : 1: probably not worthwhile

compared to skipping coprocessor

and using other CPU instructions.



12

CPU designer’s metric:

What is best performance

for a specified mix of operations

within a particular CPU area?

CPU designer is much more likely

to consider incorporating a

small Keccak coprocessor.

“So we should design the

smallest Keccak circuit?”

—Maybe, but will this extreme

be faster than using existing CPU

instructions without coprocessor?

13

Intel typically designs

quite large CPU cores:

32KB L1 data cache,

32KB L1 instruction cache,

several fast multipliers,

many different instructions,

out-of-order unit, etc.

“So it’s small cost for Intel

to add instruction-set extension

for my favorite crypto!”

—Yes, but even smaller benefit

for Intel’s mix of operations.

14

Intel did add instruction

for 1 round of AES.

How many parallel S-boxes are

in an AES-round coprocessor?

Can be 16: big; fast.

8: smaller but slower.

4: even smaller but slower.

: : : 1: probably not worthwhile

compared to skipping coprocessor

and using other CPU instructions.



12

CPU designer’s metric:

What is best performance

for a specified mix of operations

within a particular CPU area?

CPU designer is much more likely

to consider incorporating a

small Keccak coprocessor.

“So we should design the

smallest Keccak circuit?”

—Maybe, but will this extreme

be faster than using existing CPU

instructions without coprocessor?

13

Intel typically designs

quite large CPU cores:

32KB L1 data cache,

32KB L1 instruction cache,

several fast multipliers,

many different instructions,

out-of-order unit, etc.

“So it’s small cost for Intel

to add instruction-set extension

for my favorite crypto!”

—Yes, but even smaller benefit

for Intel’s mix of operations.

14

Intel did add instruction

for 1 round of AES.

How many parallel S-boxes are

in an AES-round coprocessor?

Can be 16: big; fast.

8: smaller but slower.

4: even smaller but slower.

: : : 1: probably not worthwhile

compared to skipping coprocessor

and using other CPU instructions.



13

Intel typically designs

quite large CPU cores:

32KB L1 data cache,

32KB L1 instruction cache,

several fast multipliers,

many different instructions,

out-of-order unit, etc.

“So it’s small cost for Intel

to add instruction-set extension

for my favorite crypto!”

—Yes, but even smaller benefit

for Intel’s mix of operations.

14

Intel did add instruction

for 1 round of AES.

How many parallel S-boxes are

in an AES-round coprocessor?

Can be 16: big; fast.

8: smaller but slower.

4: even smaller but slower.

: : : 1: probably not worthwhile

compared to skipping coprocessor

and using other CPU instructions.



13

Intel typically designs

quite large CPU cores:

32KB L1 data cache,

32KB L1 instruction cache,

several fast multipliers,

many different instructions,

out-of-order unit, etc.

“So it’s small cost for Intel

to add instruction-set extension

for my favorite crypto!”

—Yes, but even smaller benefit

for Intel’s mix of operations.

14

Intel did add instruction

for 1 round of AES.

How many parallel S-boxes are

in an AES-round coprocessor?

Can be 16: big; fast.

8: smaller but slower.

4: even smaller but slower.

: : : 1: probably not worthwhile

compared to skipping coprocessor

and using other CPU instructions.

An instruction for 4 rounds of

SHA-256 is in a few Intel CPUs.



13

Intel typically designs

quite large CPU cores:

32KB L1 data cache,

32KB L1 instruction cache,

several fast multipliers,

many different instructions,

out-of-order unit, etc.

“So it’s small cost for Intel

to add instruction-set extension

for my favorite crypto!”

—Yes, but even smaller benefit

for Intel’s mix of operations.

14

Intel did add instruction

for 1 round of AES.

How many parallel S-boxes are

in an AES-round coprocessor?

Can be 16: big; fast.

8: smaller but slower.

4: even smaller but slower.

: : : 1: probably not worthwhile

compared to skipping coprocessor

and using other CPU instructions.

An instruction for 4 rounds of

SHA-256 is in a few Intel CPUs.

15

Lightweight crypto

Frequent claim in literature,

where X might be

• Keccak;

• any secure hash;

• a secure cipher; : : : :

“Resource-constrained IoT devices

need the smallest circuit for X.”



13

Intel typically designs

quite large CPU cores:

32KB L1 data cache,

32KB L1 instruction cache,

several fast multipliers,

many different instructions,

out-of-order unit, etc.

“So it’s small cost for Intel

to add instruction-set extension

for my favorite crypto!”

—Yes, but even smaller benefit

for Intel’s mix of operations.

14

Intel did add instruction

for 1 round of AES.

How many parallel S-boxes are

in an AES-round coprocessor?

Can be 16: big; fast.

8: smaller but slower.

4: even smaller but slower.

: : : 1: probably not worthwhile

compared to skipping coprocessor

and using other CPU instructions.

An instruction for 4 rounds of

SHA-256 is in a few Intel CPUs.

15

Lightweight crypto

Frequent claim in literature,

where X might be

• Keccak;

• any secure hash;

• a secure cipher; : : : :

“Resource-constrained IoT devices

need the smallest circuit for X.”



13

Intel typically designs

quite large CPU cores:

32KB L1 data cache,

32KB L1 instruction cache,

several fast multipliers,

many different instructions,

out-of-order unit, etc.

“So it’s small cost for Intel

to add instruction-set extension

for my favorite crypto!”

—Yes, but even smaller benefit

for Intel’s mix of operations.

14

Intel did add instruction

for 1 round of AES.

How many parallel S-boxes are

in an AES-round coprocessor?

Can be 16: big; fast.

8: smaller but slower.

4: even smaller but slower.

: : : 1: probably not worthwhile

compared to skipping coprocessor

and using other CPU instructions.

An instruction for 4 rounds of

SHA-256 is in a few Intel CPUs.

15

Lightweight crypto

Frequent claim in literature,

where X might be

• Keccak;

• any secure hash;

• a secure cipher; : : : :

“Resource-constrained IoT devices

need the smallest circuit for X.”



14

Intel did add instruction

for 1 round of AES.

How many parallel S-boxes are

in an AES-round coprocessor?

Can be 16: big; fast.

8: smaller but slower.

4: even smaller but slower.

: : : 1: probably not worthwhile

compared to skipping coprocessor

and using other CPU instructions.

An instruction for 4 rounds of

SHA-256 is in a few Intel CPUs.

15

Lightweight crypto

Frequent claim in literature,

where X might be

• Keccak;

• any secure hash;

• a secure cipher; : : : :

“Resource-constrained IoT devices

need the smallest circuit for X.”



14

Intel did add instruction

for 1 round of AES.

How many parallel S-boxes are

in an AES-round coprocessor?

Can be 16: big; fast.

8: smaller but slower.

4: even smaller but slower.

: : : 1: probably not worthwhile

compared to skipping coprocessor

and using other CPU instructions.

An instruction for 4 rounds of

SHA-256 is in a few Intel CPUs.

15

Lightweight crypto

Frequent claim in literature,

where X might be

• Keccak;

• any secure hash;

• a secure cipher; : : : :

“Resource-constrained IoT devices

need the smallest circuit for X.”

—Even if speed is acceptable,

who will use smallest X circuit?



14

Intel did add instruction

for 1 round of AES.

How many parallel S-boxes are

in an AES-round coprocessor?

Can be 16: big; fast.

8: smaller but slower.

4: even smaller but slower.

: : : 1: probably not worthwhile

compared to skipping coprocessor

and using other CPU instructions.

An instruction for 4 rounds of

SHA-256 is in a few Intel CPUs.

15

Lightweight crypto

Frequent claim in literature,

where X might be

• Keccak;

• any secure hash;

• a secure cipher; : : : :

“Resource-constrained IoT devices

need the smallest circuit for X.”

—Even if speed is acceptable,

who will use smallest X circuit?

Why should minimum area for X

give minimum area for IoT+X?



14

Intel did add instruction

for 1 round of AES.

How many parallel S-boxes are

in an AES-round coprocessor?

Can be 16: big; fast.

8: smaller but slower.

4: even smaller but slower.

: : : 1: probably not worthwhile

compared to skipping coprocessor

and using other CPU instructions.

An instruction for 4 rounds of

SHA-256 is in a few Intel CPUs.

15

Lightweight crypto

Frequent claim in literature,

where X might be

• Keccak;

• any secure hash;

• a secure cipher; : : : :

“Resource-constrained IoT devices

need the smallest circuit for X.”

—Even if speed is acceptable,

who will use smallest X circuit?

Why should minimum area for X

give minimum area for IoT+X?

16

An idea from Adam Langley

Consider a device that receives

public keys from trusted sources;

receives data supposedly signed

under these public keys;

verifies these signatures.

e.g. an SSL client.

Painful historical event:

all clients needed upgrades

to support new hash functions

since old functions were broken.



14

Intel did add instruction

for 1 round of AES.

How many parallel S-boxes are

in an AES-round coprocessor?

Can be 16: big; fast.

8: smaller but slower.

4: even smaller but slower.

: : : 1: probably not worthwhile

compared to skipping coprocessor

and using other CPU instructions.

An instruction for 4 rounds of

SHA-256 is in a few Intel CPUs.

15

Lightweight crypto

Frequent claim in literature,

where X might be

• Keccak;

• any secure hash;

• a secure cipher; : : : :

“Resource-constrained IoT devices

need the smallest circuit for X.”

—Even if speed is acceptable,

who will use smallest X circuit?

Why should minimum area for X

give minimum area for IoT+X?

16

An idea from Adam Langley

Consider a device that receives

public keys from trusted sources;

receives data supposedly signed

under these public keys;

verifies these signatures.

e.g. an SSL client.

Painful historical event:

all clients needed upgrades

to support new hash functions

since old functions were broken.



14

Intel did add instruction

for 1 round of AES.

How many parallel S-boxes are

in an AES-round coprocessor?

Can be 16: big; fast.

8: smaller but slower.

4: even smaller but slower.

: : : 1: probably not worthwhile

compared to skipping coprocessor

and using other CPU instructions.

An instruction for 4 rounds of

SHA-256 is in a few Intel CPUs.

15

Lightweight crypto

Frequent claim in literature,

where X might be

• Keccak;

• any secure hash;

• a secure cipher; : : : :

“Resource-constrained IoT devices

need the smallest circuit for X.”

—Even if speed is acceptable,

who will use smallest X circuit?

Why should minimum area for X

give minimum area for IoT+X?

16

An idea from Adam Langley

Consider a device that receives

public keys from trusted sources;

receives data supposedly signed

under these public keys;

verifies these signatures.

e.g. an SSL client.

Painful historical event:

all clients needed upgrades

to support new hash functions

since old functions were broken.



15

Lightweight crypto

Frequent claim in literature,

where X might be

• Keccak;

• any secure hash;

• a secure cipher; : : : :

“Resource-constrained IoT devices

need the smallest circuit for X.”

—Even if speed is acceptable,

who will use smallest X circuit?

Why should minimum area for X

give minimum area for IoT+X?

16

An idea from Adam Langley

Consider a device that receives

public keys from trusted sources;

receives data supposedly signed

under these public keys;

verifies these signatures.

e.g. an SSL client.

Painful historical event:

all clients needed upgrades

to support new hash functions

since old functions were broken.



15

Lightweight crypto

Frequent claim in literature,

where X might be

• Keccak;

• any secure hash;

• a secure cipher; : : : :

“Resource-constrained IoT devices

need the smallest circuit for X.”

—Even if speed is acceptable,

who will use smallest X circuit?

Why should minimum area for X

give minimum area for IoT+X?

16

An idea from Adam Langley

Consider a device that receives

public keys from trusted sources;

receives data supposedly signed

under these public keys;

verifies these signatures.

e.g. an SSL client.

Painful historical event:

all clients needed upgrades

to support new hash functions

since old functions were broken.

17

A public key is a

signature-verification program

in a limited language.

Langley’s idea:

Replace this language with

a full programming language.

Then can upgrade hash function

(or upgrade to post-quantum

signatures!) by changing public

keys, with no changes to clients.



15

Lightweight crypto

Frequent claim in literature,

where X might be

• Keccak;

• any secure hash;

• a secure cipher; : : : :

“Resource-constrained IoT devices

need the smallest circuit for X.”

—Even if speed is acceptable,

who will use smallest X circuit?

Why should minimum area for X

give minimum area for IoT+X?

16

An idea from Adam Langley

Consider a device that receives

public keys from trusted sources;

receives data supposedly signed

under these public keys;

verifies these signatures.

e.g. an SSL client.

Painful historical event:

all clients needed upgrades

to support new hash functions

since old functions were broken.

17

A public key is a

signature-verification program

in a limited language.

Langley’s idea:

Replace this language with

a full programming language.

Then can upgrade hash function

(or upgrade to post-quantum

signatures!) by changing public

keys, with no changes to clients.



15

Lightweight crypto

Frequent claim in literature,

where X might be

• Keccak;

• any secure hash;

• a secure cipher; : : : :

“Resource-constrained IoT devices

need the smallest circuit for X.”

—Even if speed is acceptable,

who will use smallest X circuit?

Why should minimum area for X

give minimum area for IoT+X?

16

An idea from Adam Langley

Consider a device that receives

public keys from trusted sources;

receives data supposedly signed

under these public keys;

verifies these signatures.

e.g. an SSL client.

Painful historical event:

all clients needed upgrades

to support new hash functions

since old functions were broken.

17

A public key is a

signature-verification program

in a limited language.

Langley’s idea:

Replace this language with

a full programming language.

Then can upgrade hash function

(or upgrade to post-quantum

signatures!) by changing public

keys, with no changes to clients.



16

An idea from Adam Langley

Consider a device that receives

public keys from trusted sources;

receives data supposedly signed

under these public keys;

verifies these signatures.

e.g. an SSL client.

Painful historical event:

all clients needed upgrades

to support new hash functions

since old functions were broken.

17

A public key is a

signature-verification program

in a limited language.

Langley’s idea:

Replace this language with

a full programming language.

Then can upgrade hash function

(or upgrade to post-quantum

signatures!) by changing public

keys, with no changes to clients.



16

An idea from Adam Langley

Consider a device that receives

public keys from trusted sources;

receives data supposedly signed

under these public keys;

verifies these signatures.

e.g. an SSL client.

Painful historical event:

all clients needed upgrades

to support new hash functions

since old functions were broken.

17

A public key is a

signature-verification program

in a limited language.

Langley’s idea:

Replace this language with

a full programming language.

Then can upgrade hash function

(or upgrade to post-quantum

signatures!) by changing public

keys, with no changes to clients.

Same for public-key encryption

systems: public key is program.



16

An idea from Adam Langley

Consider a device that receives

public keys from trusted sources;

receives data supposedly signed

under these public keys;

verifies these signatures.

e.g. an SSL client.

Painful historical event:

all clients needed upgrades

to support new hash functions

since old functions were broken.

17

A public key is a

signature-verification program

in a limited language.

Langley’s idea:

Replace this language with

a full programming language.

Then can upgrade hash function

(or upgrade to post-quantum

signatures!) by changing public

keys, with no changes to clients.

Same for public-key encryption

systems: public key is program.

18

Say verification device

is a chip of area A.

How small can public keys be?

Have to consider, e.g.,

size of a SHA-256 program,

size of a Keccak program, etc.



16

An idea from Adam Langley

Consider a device that receives

public keys from trusted sources;

receives data supposedly signed

under these public keys;

verifies these signatures.

e.g. an SSL client.

Painful historical event:

all clients needed upgrades

to support new hash functions

since old functions were broken.

17

A public key is a

signature-verification program

in a limited language.

Langley’s idea:

Replace this language with

a full programming language.

Then can upgrade hash function

(or upgrade to post-quantum

signatures!) by changing public

keys, with no changes to clients.

Same for public-key encryption

systems: public key is program.

18

Say verification device

is a chip of area A.

How small can public keys be?

Have to consider, e.g.,

size of a SHA-256 program,

size of a Keccak program, etc.



16

An idea from Adam Langley

Consider a device that receives

public keys from trusted sources;

receives data supposedly signed

under these public keys;

verifies these signatures.

e.g. an SSL client.

Painful historical event:

all clients needed upgrades

to support new hash functions

since old functions were broken.

17

A public key is a

signature-verification program

in a limited language.

Langley’s idea:

Replace this language with

a full programming language.

Then can upgrade hash function

(or upgrade to post-quantum

signatures!) by changing public

keys, with no changes to clients.

Same for public-key encryption

systems: public key is program.

18

Say verification device

is a chip of area A.

How small can public keys be?

Have to consider, e.g.,

size of a SHA-256 program,

size of a Keccak program, etc.



17

A public key is a

signature-verification program

in a limited language.

Langley’s idea:

Replace this language with

a full programming language.

Then can upgrade hash function

(or upgrade to post-quantum

signatures!) by changing public

keys, with no changes to clients.

Same for public-key encryption

systems: public key is program.

18

Say verification device

is a chip of area A.

How small can public keys be?

Have to consider, e.g.,

size of a SHA-256 program,

size of a Keccak program, etc.



17

A public key is a

signature-verification program

in a limited language.

Langley’s idea:

Replace this language with

a full programming language.

Then can upgrade hash function

(or upgrade to post-quantum

signatures!) by changing public

keys, with no changes to clients.

Same for public-key encryption

systems: public key is program.

18

Say verification device

is a chip of area A.

How small can public keys be?

Have to consider, e.g.,

size of a SHA-256 program,

size of a Keccak program, etc.

Similar question to optimizing

total size of a CPU with

a SHA-256 instruction,

a Keccak instruction, etc.



17

A public key is a

signature-verification program

in a limited language.

Langley’s idea:

Replace this language with

a full programming language.

Then can upgrade hash function

(or upgrade to post-quantum

signatures!) by changing public

keys, with no changes to clients.

Same for public-key encryption

systems: public key is program.

18

Say verification device

is a chip of area A.

How small can public keys be?

Have to consider, e.g.,

size of a SHA-256 program,

size of a Keccak program, etc.

Similar question to optimizing

total size of a CPU with

a SHA-256 instruction,

a Keccak instruction, etc.

Not the usual code-size question.

Change the language!


