Cryptographic
software engineering,
part 1

Daniel J. Bernstein

This is easy, right?

1. Take general principles
of software engineering.

2. Apply principles to crypto.

Let's try some examples . ..

1972 Parnas “On the criteria
to be used in decomposing
systems into modules”:

“We propose instead that
one begins with a list of
difficult design decisions or

design decisions which are

likely to change. Each module

Is then designed to hide such

a decision from the others.”

e.g. If number of cipher rounds
Is properly modularized as
#define ROUNDS 20

then 1t Is easy to change.



raphic
engineering,

. Bernstein

asy, right?

general principles
'tware engineering.

/ principles to crypto.

'some examples . ..

1972 Parnas “On the criteria
to be used in decomposing

systems into modules”:

“We propose instead that

one begins with a list of

design decisions which

likely to change. Each

Is then designed to hic

difficult design decisions or

are
module
e such

a decision from the ot

ners.’

e.g. If number of cipher rounds

Is properly modularized as

#define ROUNDS 20

then 1t Is easy to change.

Another

of softw:
Make th

and the



g,

Inciples
Ineering.

S tO Crypto.

mples ...

1972 Parnas “On the criteria
to be used in decomposing
systems into modules”:

“We propose instead that
one begins with a list of
difficult design decisions or

design decisions which are

likely to change. Each module

Is then designed to hide such

a decision from the others.”

e.g. If number of cipher rounds
Is properly modularized as
#define ROUNDS 20

then 1t Is easy to change.

Another general p
of software engine
Make the right thi
and the wrong thi



1972 Parnas “On the criteria
to be used in decomposing

systems into modules”:

“We propose instead that

one begins with a list of

design decisions which

likely to change. Each

Is then designed to hic

difficult design decisions or

are
module
e such

a decision from the ot

ners.’

e.g. If number of cipher rounds

Is properly modularized as

#define ROUNDS 20

then 1t Is easy to change.

Another general principle

of software engineering:
Make the right thing simple
and the wrong thing comple



1972 Parnas “On the criteria
to be used in decomposing
systems into modules”:

“We propose instead that
one begins with a list of
difficult design decisions or

design decisions which are

likely to change. Each module

Is then designed to hide such

a decision from the others.”

e.g. If number of cipher rounds
Is properly modularized as
#define ROUNDS 20

then 1t Is easy to change.

Another general principle

of software engineering:

Make the right thing simple
and the wrong thing complex.



1972 Parnas “On the criteria Another general principle
to be used in decomposing of software engineering:
systems into modules’: Make the right thing simple

. h hi lex.
“We propose instead that and the wrong thing complex

one begins with a list of e.g. Make it difficult to
difficult design decisions or ignore invalid authenticators.

design decisions which are

likely to change. Each module

Is then designed to hide such

a decision from the others.”

e.g. If number of cipher rounds
Is properly modularized as
#define ROUNDS 20

then 1t Is easy to change.




1972 Parnas “On the criteria
to be used in decomposing
systems into modules”:

“We propose instead that
one begins with a list of
difficult design decisions or

design decisions which are

likely to change. Each module

Is then designed to hide such

a decision from the others.”

e.g. If number of cipher rounds
Is properly modularized as
#define ROUNDS 20

then 1t Is easy to change.

Another general principle

of software engineering:

Make the right thing simple
and the wrong thing complex.

e.g. Make it difficult to
ignore invalid authenticators.

Do not design APls like this:
“The sample code used In

this manual omits the checking
of status values for clarity, but
when using cryptlib you should
check return values, particularly
for critical functions ..."



rnas 'On the criteria
ed in decomposing
iInto modules’:

pose Instead that
ns with a list of
design decisions or
ecisions which are

change. Each module
lesigned to hide such

n from the others.”

imber of cipher rounds
ly modularized as
ROUNDS 20

s easy to change.

Another general principle

of software engineering:

Make the right thing simple
and the wrong thing complex.

e.g. Make it difficult to
ignore invalid authenticators.

Do not design APIs like this:
“The sample code used In

this manual omits the checking
of status values for clarity, but
when using cryptlib you should
check return values, particularly
for critical functions ..."

Not so ¢

1970s:
compare
against
one chal
stopping

o AAAAA
e FAAAA
e FRAAA



the criteria
mposing
1les” :

ad that
list of
“ISIoNs or
hich are

-ach module
> hide such

e others.”

“ipher rounds
rized as

0

“hange.

Another general principle

of software engineering:

Make the right thing simple
and the wrong thing complex.

e.g. Make it difficult to
ignore invalid authenticators.

Do not design APls like this:
“The sample code used In

this manual omits the checking
of status values for clarity, but
when using cryptlib you should
check return values, particularly
for critical functions ..."

Not so easy: Timi

1970s: TENEX or
compares user-sup
against secret pas:
one character at a
stopping at first d

o AAAAAA vs. FRII
o FAAAAA vs. FRII
o FRAAAA vs. FRII



1le

ds

Another general principle

of software engineering:

Make the right thing simple
and the wrong thing complex.

e.g. Make it difficult to
ignore invalid authenticators.

Do not design APls like this:
“The sample code used In

this manual omits the checking
of status values for clarity, but
when using cryptlib you should
check return values, particularly
for critical functions ..."

Not so easy: Timing attack:

1970s: TENEX operating sy
compares user-supplied strin
against secret password

one character at a time,
stopping at first difference:

o AAAAAA vs. FRIEND: stop .
o FAAAAA vs. FRIEND: stop .
e FRAAAA vs. FRIEND: stop



Another general principle

of software engineering:

Make the right thing simple
and the wrong thing complex.

e.g. Make it difficult to
ignore invalid authenticators.

Do not design APls like this:
“The sample code used In

this manual omits the checking
of status values for clarity, but
when using cryptlib you should
check return values, particularly
for critical functions ..."

Not so easy: Timing attacks

1970s: TENEX operating system
compares user-supplied string
against secret password

one character at a time,
stopping at first difference:

e AAAAAA vs. FRIEND: stop at 1.
e FAAAAA vs. FRIEND: stop at 2.
e FRAAAA vs. FRIEND: stop at 3.



Another general principle

of software engineering:

Make the right thing simple
and the wrong thing complex.

e.g. Make it difficult to
ignore invalid authenticators.

Do not design APls like this:
“The sample code used In

this manual omits the checking
of status values for clarity, but
when using cryptlib you should
check return values, particularly
for critical functions ..."

Not so easy: Timing attacks

1970s: TENEX operating system
compares user-supplied string
against secret password

one character at a time,
stopping at first difference:

e AAAAAA vs. FRIEND: stop at 1.
e FAAAAA vs. FRIEND: stop at 2.
e FRAAAA vs. FRIEND: stop at 3.

Attacker sees comparison time,
deduces position of difference.
A few hundred tries

reveal secret password.



general principle

are engineering:

e right thing simple
wrong thing complex.

e 1t difficult to
wwvalid authenticators.

lesign APls like this:
mple code used In

\wual omits the checking
5 values for clarity, but
ing cryptlib you should
turn values, particularly
al functions ..."

Not so easy: Timing attacks

1970s: TENEX operating system
compares user-supplied string
against secret password

one character at a time,
stopping at first difference:

e AAAAAA vs. FRIEND: stop at 1.
e FAAAAA vs. FRIEND: stop at 2.
e FRAAAA vs. FRIEND: stop at 3.

Attacker sees comparison time,
deduces position of difference.
A few hundred tries

reveal secret password.

How typ
16-byte

for (
if

retur;



3 4
rinciple Not so easy: Timing attacks How typical softw:
Ing: . 16-b thentic:
ermg 1970s: TENEX operating system b-byte authentic
ng simple . . for (i = 0;1i <
compares user-supplied string
ng complex. . if (x[i] !=
against secret password
. return 1;
ilt to one character at a time,
ienticators. stopping at first difference:
s like this: e AAAAAA vs. FRIEND: stop at 1.
used In e FAAAAA vs. FRIEND: stop at 2.
the checking e FRAAAA vs. FRIEND: stop at 3.
r clarity, but . .
LC o yr’] uld Attacker sees comparison time,
you S olu | deduces position of difference.
> par”c’lcu arty A few hundred tries
s reveal secret password.




ing

uld
arly

Not so easy: Timing attacks

1970s: TENEX operating system
compares user-supplied string
against secret password

one character at a time,
stopping at first difference:

e AAAAAA vs. FRIEND: stop at 1.
e FAAAAA vs. FRIEND: stop at 2.
e FRAAAA vs. FRIEND: stop at 3.

Attacker sees comparison time,
deduces position of difference.
A few hundred tries

reveal secret password.

How typical software checks

16-byte authenticator:

for (i = 0;1 < 16;++1i)

if (x[il]

return 1;

1= y[i]) ret



Not so easy: Timing attacks

1970s: TENEX operating system
compares user-supplied string
against secret password

one character at a time,
stopping at first difference:

e AAAAAA vs. FRIEND: stop at 1.
e FAAAAA vs. FRIEND: stop at 2.
e FRAAAA vs. FRIEND: stop at 3.

Attacker sees comparison time,
deduces position of difference.
A few hundred tries

reveal secret password.

How typical software checks

16-byte authenticator:

for (i = 0;1 < 16;++1i)

if (x[il

return 1;

= y[i]) return O;



Not so easy: Timing attacks

1970s: TENEX operating system
compares user-supplied string
against secret password

one character at a time,
stopping at first difference:

e AAAAAA vs. FRIEND: stop at 1.
e FAAAAA vs. FRIEND: stop at 2.
e FRAAAA vs. FRIEND: stop at 3.

Attacker sees comparison time,
deduces position of difference.
A few hundred tries

reveal secret password.

How typical software checks
16-byte authenticator:
for (i = 0;1 < 16;++1i)
if (x[i] '= yl[i]) return O;

return 1;

Fix, eliminating information flow
from secrets to timings:
diff = 0O;
for (1 = 0;1 < 16;++1i)
diff |= x[i] =~ yl[i];
return 1 & ((diff-1) >> 8);
Notice that the language

makes the wrong thing simple
and the right thing complex.



asy: Timing attacks

[ ENEX operating system
s user-supplied string
secret password

acter at a time,

- at first difference:

A vs. FRIEND: stop at 1.
A vs. FRIEND: stop at 2.
A vs. FRIEND: stop at 3.

- sees comparison time,
position of difference.
indred tries

cret password.

How typical software checks
16-byte authenticator:
for (i = 0;1 < 16;++1i)
if (x[i] '= y[i]) return O;

return 1;

Fix, eliminating information flow
from secrets to timings:
diff = O;
for (1 = 0;1 < 16;++1)
diff |= x[i] = yl[i];
return 1 & ((diff-1) >> 8);

Notice that the language
makes the wrong thing simple
and the right thing complex.

Languag
“right” |

So mist:



ng attacks

erating system
plied string
sword

time,
ifference:

"ND: stop at 1.
“ND: stop at 2.
“ND: stop at 3.

parison time,
f difference.
S

vord.

How typical software checks
16-byte authenticator:
for (i = 0;1i < 16;++1i)
if (x[i] '= yl[i]) return O;

return 1;

Fix, eliminating information flow
from secrets to timings:
diff = 0O;
for (1 = 0;1 < 16;++1i)
diff |= x[i] =~ yl[i];
return 1 & ((diff-1) >> 8);

Notice that the language
makes the wrong thing simple
and the right thing complex.

Language designet
“right” Is too wea

So mistakes contir



1\J ]

stem

at 1.
at 2.
at 3.

Nne,

How typical software checks
16-byte authenticator:
for (i = 0;1i < 16;++1i)
if (x[i] '= y[i]) return O;

return 1;

Fix, eliminating information flow
from secrets to timings:
diff = O;
for (1 = 0;1 < 16;++1)
diff |= x[i] = yl[i];
return 1 & ((diff-1) >> 8);

Notice that the language
makes the wrong thing simple
and the right thing complex.

Language designer's notion
“right” Is too weak for secu

So mistakes continue to hag



How typical software checks
16-byte authenticator:
for (i = 0;1i < 16;++1i)
if (x[i] '= yl[i]) return O;

return 1;

Fix, eliminating information flow
from secrets to timings:
diff = 0O;
for (1 = 0;1 < 16;++1i)
diff |= x[i] =~ yl[i];
return 1 & ((diff-1) >> 8);

Notice that the language
makes the wrong thing simple
and the right thing complex.

Language designer’'s notion of
“right” Is too weak for security.

So mistakes continue to happen.



How typical software checks
16-byte authenticator:
for (i = 0;1i < 16;++1i)
if (x[i] '= yl[i]) return O;

return 1;

Fix, eliminating information flow
from secrets to timings:
diff = 0O;
for (1 = 0;1 < 16;++1i)
diff |= x[i] =~ yl[i];
return 1 & ((diff-1) >> 8);

Notice that the language
makes the wrong thing simple
and the right thing complex.

Language designer’'s notion of
“right” Is too weak for security.

So mistakes continue to happen.

One of many examples,
part of the reference software for

CAESAR candidate CLOC:

/* compare the tag */
int 1;
for(i = 0;i < CRYPTO_ABYTES;i++)
if (tagli]l !'= c[(¥mlen) + i]){
return RETURN_TAG_NO_MATCH;

}
return RETURN_SUCCESS;



ical software checks
authenticator:

i = 0;1i < 16;++1)

(x[i] '= yl[i]) return O;

n 1;

inating information flow
rets to timings:

= 0:

i = 0;1 < 16;++1i)

f |= x[i] = y[il;

n 1 & ((diff-1) >> 8);

hat the language
1e wrong thing simple
right thing complex.

Language designer’'s notion of
“right” Is too weak for security.

So mistakes continue to happen.

One of many examples,
part of the reference software for

CAESAR candidate CLOC:

/* compare the tag */
int 1;
for(i = 0;i < CRYPTO_ABYTES;i++)
if(tagli]l !'= cl[(¥mlen) + i]){
return RETURN_TAG_NO_MATCH;

}
return RETURN_SUCCESS;

Do timir

Objectic



are checks
1TOr:
16;++1)
y[i]) return O;

formation flow

Nings:

16;++1)

© oylil;
iff-1) >> 8);
nguage

thing simple
> complex.

Language designer’'s notion of
“right” Is too weak for security.

So mistakes continue to happen.

One of many examples,
part of the reference software for

CAESAR candidate CLOC:

/* compare the tag */
int 1;
for(i = 0;i < CRYPTO_ABYTES;i++)
if (tagli]l !'= c[(¥mlen) + i]){
return RETURN_TAG_NO_MATCH;

}
return RETURN_SUCCESS;

Do timing attacks

Objection: “Timir



urn 0;

flow

Language designer’'s notion of
“right” Is too weak for security.

So mistakes continue to happen.

One of many examples,
part of the reference software for

CAESAR candidate CLOC:

/* compare the tag */
int 1;
for(i = 0;i < CRYPTO_ABYTES;i++)
if(tagli]l !'= cl[(¥mlen) + i]){
return RETURN_TAG_NO_MATCH;

}
return RETURN_SUCCESS;

Do timing attacks really wol

Objection: “Timings are noi



Language designer’'s notion of
“right” Is too weak for security.

So mistakes continue to happen.

One of many examples,
part of the reference software for

CAESAR candidate CLOC:

/* compare the tag */
int 1;
for(i = 0;i < CRYPTO_ABYTES;i++)
if (tagli]l !'= c[(¥mlen) + i]){
return RETURN_TAG_NO_MATCH;

}
return RETURN_SUCCESS;

Do timing attacks really work?

Objection: “Timings are noisy!”



Language designer’'s notion of
“right” Is too weak for security.

So mistakes continue to happen.

One of many examples,
part of the reference software for

CAESAR candidate CLOC:

/* compare the tag */
int 1;
for(i = 0;i < CRYPTO_ABYTES;i++)
if (tagli]l !'= c[(¥mlen) + i]){
return RETURN_TAG_NO_MATCH;

}
return RETURN_SUCCESS;

Do timing attacks really work?

Objection: “Timings are noisy!”

Answer 7£1:

Does noise stop all attacks?
To guarantee security, defender
must block all information flow.



Language designer’'s notion of
“right” Is too weak for security.

So mistakes continue to happen.

One of many examples,
part of the reference software for

CAESAR candidate CLOC:

/* compare the tag */
int 1;
for(i = 0;i < CRYPTO_ABYTES;i++)
if (tagli]l !'= c[(¥mlen) + i]){
return RETURN_TAG_NO_MATCH;

}
return RETURN_SUCCESS;

Do timing attacks really work?

Objection: “Timings are noisy!”

Answer 7£1:

Does noise stop all attacks?
To guarantee security, defender
must block all information flow.

Answer #2: Attacker uses
statistics to eliminate noise.



Language designer’'s notion of
“right” Is too weak for security.

So mistakes continue to happen.

One of many examples,
part of the reference software for

CAESAR candidate CLOC:

/* compare the tag */
int 1;
for(i = 0;i < CRYPTO_ABYTES;i++)
if (tagli]l !'= c[(¥mlen) + i]){
return RETURN_TAG_NO_MATCH;

}
return RETURN_SUCCESS;

Do timing attacks really work?

Objection: “Timings are noisy!”

Answer 7£1:

Does noise stop all attacks?
To guarantee security, defender
must block all information flow.

Answer #2: Attacker uses
statistics to eliminate noise.

Answer #3, what the

1970s attackers actually did:
Cross page boundary,
inducing page faults,

to amplify timing signal.



e designer’'s notion of
s too weak for security.

1kes continue to happen.

nany examples,
he reference software for

R candidate CLOC:

are the tag */

0;i < CRYPTO_ABYTES;i++)

o[i] !'= cl[(*mlen) + i])A
airn RETURN_TAG_NO_MATCH;

RETURN_SUCCESS

Do timing attacks really work?

Objection: “Timings are noisy!”

Answer 7£1:
Does noise stop all attacks?
To guarantee security, defender

must block all information flow.

Answer #2: Attacker uses
statistics to eliminate noise.

Answer #3, what the

1970s attackers actually did:
Cross page boundary,
inducing page faults,

to amplify timing signal.

Defende

Some of

1996 Kc
attacks

Briefly r
Kocher
Schneier
secret at
affect ti

2002 Pa
Suzaki—!

timing a



's notion of
k for security.

'ue to happen.

1ples,
ce software for

e CLOC:

ag */

YPTO_ABYTES;i++)
[(*mlen) + i]){
N_TAG_NO_MATCH;

CCESS;

Do timing attacks really work?

Objection: “Timings are noisy!”

Answer 7£1:
Does noise stop all attacks?
To guarantee security, defender

must block all information flow.

Answer #2: Attacker uses
statistics to eliminate noise.

Answer #3, what the

1970s attackers actually did:
Cross page boundary,
inducing page faults,

to amplify timing signal.

Defenders don't le

Some of the litera

1996 Kocher poin
attacks on cryptog

Briefly mentioned
Kocher and by 19
Schneier—-Wagner-
secret array indice
affect timing via c

2002 Page, 2003
Suzaki—Shigeri—M;
timing attacks on



of
rity.

pen.

e for

ES;i++)
+ i]){
MATCH;

Do timing attacks really work?

Objection: “Timings are noisy!”

Answer 7£1:
Does noise stop all attacks?
To guarantee security, defender

must block all information flow.

Answer #2: Attacker uses
statistics to eliminate noise.

Answer #3, what the

1970s attackers actually did:
Cross page boundary,
inducing page faults,

to amplify timing signal.

Defenders don't learn

Some of the literature:

1996 Kocher pointed out tir
attacks on cryptographic ke

Briefly mentioned by
Kocher and by 1998 Kelsey-
Schneier—Wagner—Hall:
secret array indices can
affect timing via cache miss

2002 Page, 2003 Tsunoo—S:
Suzaki—Shigeri—-Miyauchi:
timing attacks on DES.



Do timing attacks really work?

Objection: “Timings are noisy!”

Answer 7£1:
Does noise stop all attacks?
To guarantee security, defender

must block all information flow.

Answer #2: Attacker uses
statistics to eliminate noise.

Answer #3, what the

1970s attackers actually did:
Cross page boundary,
inducing page faults,

to amplify timing signal.

Defenders don't learn

Some of the literature:

1996 Kocher pointed out timing
attacks on cryptographic key bits.

Briefly mentioned by

Kocher and by 1998 Kelsey—
Schneier—-Wagner—Hall:

secret array indices can

affect timing via cache misses.

2002 Page, 2003 Tsunoo—Saito—
Suzaki—Shigeri—-Miyauchi:
timing attacks on DES.



g attacks really work?

n: “Timings are noisy!”

1
ise stop all attacks?
antee security, defender

yck all information flow.

#2: Attacker uses
5 to eliminate noise.

3, what the
tackers actually did:
ge boundary,

- page faults,

fy timing signal.

Defenders don't learn

Some of the literature:

1996 Kocher pointed out timing
attacks on cryptographic key bits.

Briefly mentioned by

Kocher and by 1998 Kelsey—
Schneier—Wagner—Hall:

secret array indices can

affect timing via cache misses.

2002 Page, 2003 Tsunoo—Saito—
Suzaki—Shigeri—-Miyauchi:
timing attacks on DES.

“Guaran
load ent



really work?

\gs are noisy!”

| attacks?
rity, defender

yrmation flow.

ker uses
ate noise.

the
tually did:

ary,
ts,

signal.

Defenders don't learn

Some of the literature:

1996 Kocher pointed out timing
attacks on cryptographic key bits.

Briefly mentioned by

Kocher and by 1998 Kelsey—
Schneier—-Wagner—Hall:

secret array indices can

affect timing via cache misses.

2002 Page, 2003 Tsunoo—Saito—
Suzaki—Shigeri—-Miyauchi:
timing attacks on DES.

“Guaranteed’ cou
load entire table 1



der

low.

Defenders don't learn

Some of the literature:

1996 Kocher pointed out timing

attacks on cryptographic key bits.

Briefly mentioned by

Kocher and by 1998 Kelsey—
Schneier—Wagner—Hall:

secret array indices can

affect timing via cache misses.

2002 Page, 2003 Tsunoo—Saito—
Suzaki—Shigeri—-Miyauchi:
timing attacks on DES.

“Guaranteed’ countermeasu
load entire table into cache.



Defenders don't learn

Some of the literature:

1996 Kocher pointed out timing
attacks on cryptographic key bits.

Briefly mentioned by

Kocher and by 1998 Kelsey—
Schneier—-Wagner—Hall:

secret array indices can

affect timing via cache misses.

2002 Page, 2003 Tsunoo—Saito—
Suzaki—Shigeri—-Miyauchi:
timing attacks on DES.

“Guaranteed’ countermeasure:
load entire table into cache.



Defenders don't learn

Some of the literature:

1996 Kocher pointed out timing
attacks on cryptographic key bits.

Briefly mentioned by

Kocher and by 1998 Kelsey—
Schneier—-Wagner—Hall:

secret array indices can

affect timing via cache misses.

2002 Page, 2003 Tsunoo—Saito—
Suzaki—Shigeri—-Miyauchi:
timing attacks on DES.

“Guaranteed’ countermeasure:
load entire table into cache.

2004.11/2005.04 Bernstein:
Timing attacks on AES.
Countermeasure isn't safe:

e.g., secret array indices can affect
timing via cache-bank collisions.
What is safe: kill all data flow
from secrets to array indices.



Defenders don't learn

Some of the literature:

1996 Kocher pointed out timing

attacks on cryptographic key bits.

Briefly mentioned by

Kocher and by 1998 Kelsey—
Schneier—-Wagner—Hall:

secret array indices can

affect timing via cache misses.

2002 Page, 2003 Tsunoo—Saito—
Suzaki—Shigeri—-Miyauchi:
timing attacks on DES.

“Guaranteed’ countermeasure:
load entire table into cache.

2004.11/2005.04 Bernstein:
Timing attacks on AES.
Countermeasure isn't safe:

e.g., secret array indices can affect
timing via cache-bank collisions.
What is safe: kill all data flow
from secrets to array indices.

2005 Tromer—Osvik—Shamir:
65ms to steal Linux AES key
used for hard-disk encryption.



rs don't learn “Guaranteed” countermeasure: Intel rec

| . load entire table into cache. OpenSS
the literature: P

| - 2004.11/2005.04 Bernstein: countert
cher pointed out timing from kn

Timing attacks on AES.

on cryptographic key bits. o
Countermeasure isn't safe;

nentioned by e.g., secret array indices can affect
and by 1998 Kelsey— timing via cache-bank collisions.
—Wagner—Hall: What is safe: kill all data flow
ray indices can from secrets to array indices.

ming via cache misses. | |
2005 Tromer—Osvik—Shamir:

ge, 2003 Tsunoo—Saito- 65ms to steal Linux AES key

>higeri—-Miyauchi: used for hard-disk encryption.
ttacks on DES.




clil

ture:

fed out timing

rraphic key bits.

by

)8 Kelsey—
-Hall:

S can

ache misses.

[ sunoo—Saito—
yauchi:
DES.

“Guaranteed’ countermeasure:
load entire table into cache.

2004.11/2005.04 Bernstein:
Timing attacks on AES.
Countermeasure isn't safe:

e.g., secret array indices can affect
timing via cache-bank collisions.
What is safe: kill all data flow
from secrets to array indices.

2005 Tromer—Osvik—Shamir:
65ms to steal Linux AES key
used for hard-disk encryption.

Intel recommends,
OpenSSL integrat:
countermeasure: ¢
from known lines



ning

v bits.

) ItO—

“Guaranteed’ countermeasure:
load entire table into cache.

2004.11/2005.04 Bernstein:
Timing attacks on AES.
Countermeasure isn't safe:

e.g., secret array indices can affect
timing via cache-bank collisions.
What /s safe: kill all data flow
from secrets to array indices.

2005 Tromer—Osvik—Shamir:
65ms to steal Linux AES key
used for hard-disk encryption.

Intel recommends, and
OpenSSL integrates, cheape
countermeasure: always loac
from known /ines of cache.



“Guaranteed’ countermeasure:
load entire table into cache.

2004.11/2005.04 Bernstein:
Timing attacks on AES.
Countermeasure isn't safe:

e.g., secret array indices can affect
timing via cache-bank collisions.
What is safe: kill all data flow
from secrets to array indices.

2005 Tromer—Osvik—Shamir:
65ms to steal Linux AES key
used for hard-disk encryption.

Intel recommends, and
OpenSSL integrates, cheaper
countermeasure: always loading
from known /ines of cache.

10



“Guaranteed’ countermeasure:
load entire table into cache.

2004.11/2005.04 Bernstein:
Timing attacks on AES.
Countermeasure isn't safe:

e.g., secret array indices can affect
timing via cache-bank collisions.
What is safe: kill all data flow
from secrets to array indices.

2005 Tromer—Osvik—Shamir:
65ms to steal Linux AES key
used for hard-disk encryption.

10
Intel recommends, and

OpenSSL integrates, cheaper
countermeasure: always loading
from known /ines of cache.

2013 Bernstein—Schwabe

“A word of warning":

This countermeasure isn't safe.
Variable-time lab experiment.
Same issues described in 2004.



“Guaranteed’ countermeasure:
load entire table into cache.

2004.11/2005.04 Bernstein:
Timing attacks on AES.
Countermeasure isn't safe:

e.g., secret array indices can affect
timing via cache-bank collisions.
What is safe: kill all data flow
from secrets to array indices.

2005 Tromer—Osvik—Shamir:
65ms to steal Linux AES key
used for hard-disk encryption.

10
Intel recommends, and

OpenSSL integrates, cheaper
countermeasure: always loading
from known /ines of cache.

2013 Bernstein—Schwabe

“A word of warning":

This countermeasure isn't safe.
Variable-time lab experiment.
Same issues described in 2004.

2016 Yarom—Genkin—Heninger
“CacheBleed"” steals RSA secret
key via timings of OpenSSL.



teed” countermeasure:
ire table into cache.

/2005.04 Bernstein:
yttacks on AES.

measure isn't safe;

ret array indices can affect
la cache-bank collisions.
safe: kill all data flow
rets to array indices.

omer—0Osvik—Shamir:
steal Linux AES key
hard-disk encryption.

Intel recommends, and
OpenSSL integrates, cheaper
countermeasure: always loading
from known lines of cache.

2013 Bernstein—Schwabe

“A word of warning":

This countermeasure isn't safe.
Variable-time lab experiment.
Same issues described in 2004.

2016 Yarom—Genkin—Heninger
“CacheBleed"” steals RSA secret
key via timings of OpenSSL.

10

2008 RF
Layer Se
Version

small tir
perform:
extent o
fragmen
be large
due to t
existing
of the ti



ntermeasure:
1to cache.

3ernstein:

AES.
n't safe:
ndices can affect
ank collisions.
all data flow
ay Indices.

k—Shamir:
Ix AES key
encryption.

Intel recommends, and
OpenSSL integrates, cheaper
countermeasure: always loading
from known /ines of cache.

2013 Bernstein—Schwabe

“A word of warning":

This countermeasure isn't safe.
Variable-time lab experiment.
Same issues described in 2004.

2016 Yarom—Genkin—Heninger
“CacheBleed” steals RSA secret
key via timings of OpenSSL.

10

2008 RFC 5246
Layer Security (TL
Version 1.2": “Th
small timing chani
performance depel
extent on the size
fragment, but it is
be large enough tc
due to the large b
existing MACs anc
of the timing sign:



re.

affect
ons.

OW

Intel recommends, and
OpenSSL integrates, cheaper
countermeasure: always loading
from known /ines of cache.

2013 Bernstein—Schwabe

“A word of warning":

This countermeasure isn't safe.
Variable-time lab experiment.
Same issues described in 2004.

2016 Yarom—Genkin—Heninger
“CacheBleed” steals RSA secret
key via timings of OpenSSL.

10

2008 RFC 5246 “The Trans
Layer Security (TLS) Protoc
Version 1.2": "This leaves &
small timing channel, since |
performance depends to son
extent on the size of the daf
fragment, but it is not belie:
be large enough to be explo
due to the large block size ¢
existing MACs and the smal
of the timing signal.”



Intel recommends, and
OpenSSL integrates, cheaper
countermeasure: always loading
from known /ines of cache.

2013 Bernstein—Schwabe

“A word of warning":

This countermeasure isn't safe.
Variable-time lab experiment.
Same issues described in 2004.

2016 Yarom—Genkin—Heninger
“CacheBleed"” steals RSA secret
key via timings of OpenSSL.

10

2008 RFC 5246 “The Transport
Layer Security (TLS) Protocol,
Version 1.2": “This leaves a
small timing channel, since MAC
performance depends to some
extent on the size of the data
fragment, but it is not believed to

be large enough to be exploitable,
due to the large block size of
existing MACs and the small size
of the timing signal.”

11



Intel recommends, and
OpenSSL integrates, cheaper
countermeasure: always loading
from known /ines of cache.

2013 Bernstein—Schwabe

“A word of warning":

This countermeasure isn't safe.
Variable-time lab experiment.
Same issues described in 2004.

2016 Yarom—Genkin—Heninger
“CacheBleed"” steals RSA secret
key via timings of OpenSSL.

10

2008 RFC 5246 “The Transport
Layer Security (TLS) Protocol,

Version 1.2":
small timing channel, since MAC

“This leaves a

performance depends to some
extent on the size of the data
fragment, but it is not believed to

be large enough to be exploitable,
due to the large block size of
existing MACs and the small size
of the timing signal.”

2013 AlFardan—Paterson “Lucky
Thirteen: breaking the TLS and

DTLS record protocols”: exploit

these timings; steal plaintext.

11



ommends, and

L integrates, cheaper
neasure: always loading
own lines of cache.

rnstein—Schwabe
of warning":
Intermeasure isn't safe.

-time lab experiment.
sues described in 2004.

rom—Genkin—Heninger
3leed” steals RSA secret
imings of OpenSSL.

10

2008 RFC 5246 “The Transport
Layer Security (TLS) Protocol,

Version 1.2":
small timing channel, since MAC

“This leaves a

performance depends to some
extent on the size of the data
fragment, but it is not believed to

be large enough to be exploitable,
due to the large block size of
existing MACs and the small size
of the timing signal.”

2013 AlFardan—Paterson “Lucky
Thirteen: breaking the TLS and

DTLS record protocols”: exploit

these timings; steal plaintext.

11

How to

If possib
to contr

Look for
identifyi
“Divisiol
when th
complet:
cycles re
values o

Measure
trusting



and
es, cheaper
lways loading
of cache.

"hwabe

g
Ire i1sn't safe.
axperiment.

bed in 2004.

in—Heninger
1Is RSA secret
OpenSSL.

10

2008 RFC 5246 “The Transport
Layer Security (TLS) Protocol,

Version 1.2":
small timing channel, since MAC

“This leaves a

performance depends to some
extent on the size of the data
fragment, but it is not believed to

be large enough to be exploitable,
due to the large block size of
existing MACs and the small size
of the timing signal.”

2013 AlFardan—Paterson “Lucky
Thirteen: breaking the TLS and

DTLS record protocols”: exploit

these timings; steal plaintext.

11

How to write cons

If possible, write c
to control instruct

Look for documen
identifying variabil
“Division operatio
when the divide o)
completes, with tk
cycles required de
values of the inpus

Measure cycles rat
trusting CPU docl



ling

fe.

)4

er
cret

10

2008 RFC 5246 “The Transport
Layer Security (TLS) Protocol,
Version 1.2": “This leaves a
small timing channel, since MAC
performance depends to some
extent on the size of the data
fragment, but it is not believed to

be large enough to be exploitable,
due to the large block size of
existing MACs and the small size
of the timing signal.”

2013 AlFardan—Paterson “Lucky
Thirteen: breaking the TLS and

DTLS record protocols”: exploit

these timings; steal plaintext.

11

How to write constant-time

If possible, write code in asr
to control instruction selecti

Look for documentation
identifying variability: e.g.,
“Division operations terminz:
when the divide operation
completes, with the number
cycles required dependent ol
values of the input operands

Measure cycles rather than
trusting CPU documentatiol



2008 RFC 5246 “The Transport
Layer Security (TLS) Protocol,
Version 1.2": “This leaves a
small timing channel, since MAC
performance depends to some
extent on the size of the data
fragment, but it is not believed to

be large enough to be exploitable,
due to the large block size of
existing MACs and the small size
of the timing signal.”

2013 AlFardan—Paterson “Lucky
Thirteen: breaking the TLS and

DTLS record protocols”: exploit

these timings; steal plaintext.

11

How to write constant-time code

If possible, write code in asm
to control instruction selection.

Look for documentation
identitying variability: e.g.,
“Division operations terminate
when the divide operation
completes, with the number of
cycles required dependent on the
values of the input operands.”

Measure cycles rather than
trusting CPU documentation.

12



C 5246 “The Transport
curity (TLS) Protocol,
1.2": “This leaves a

ning channel, since MAC
ance depends to some

n the size of the data

t, but 1t 1s not believed to

enough to be exploitable,
he large block size of
MACs and the small size

ming signal.”

-ardan—Paterson “Lucky
: breaking the TLS and
cord protocols™: exploit

nings; steal plaintext.

11

How to write constant-time code

If possible, write code in asm
to control instruction selection.

Look for documentation
identifying variability: e.g.,
“Division operations terminate
when the divide operation
completes, with the number of
cycles required dependent on the
values of the input operands.”

Measure cycles rather than
trusting CPU documentation.

12

Cut off :
secrets t

Cut off :
secrets t

Cut off :
secrets t

Prefer Ic

Prefer v

Watch c

variable-
Cortex-N\



[ he Transport
S) Protocaol,

Is leaves a

1el, since MAC
1ds to some

of the data

' not believed to

) be exploitable,
lock size of
] the small size

18

terson “Lucky
r the TLS and

bcols™ : exploit

| plaintext.

11

How to write constant-time code

If possible, write code in asm
to control instruction selection.

Look for documentation
identitying variability: e.g.,
“Division operations terminate
when the divide operation
completes, with the number of
cycles required dependent on the
values of the input operands.”

Measure cycles rather than
trusting CPU documentation.

12

Cut off all data flc
secrets to branch

Cut off all data flc
secrets to array in

Cut off all data flc
secrets to shift/ro

Prefer logic instru

Prefer vector instr

Watch out for CP

variable-time mult
Cortex-M3 and m«



ololgs
ol

MAC
e

a

ved to

table,
f

| size

ucky
and
ploit

11

How to write constant-time code

If possible, write code in asm
to control instruction selection.

Look for documentation
identifying variability: e.g.,
“Division operations terminate
when the divide operation
completes, with the number of
cycles required dependent on the
values of the input operands.”

Measure cycles rather than
trusting CPU documentation.

12

Cut off all data flow from
secrets to branch conditions

Cut off all data flow from
secrets to array indices.

Cut off all data flow from
secrets to shift/rotate distar

Prefer logic instructions.

Prefer vector instructions.

Watch out for CPUs with

variable-time multipliers: e.g
Cortex-M3 and most Powerl



How to write constant-time code

If possible, write code in asm
to control instruction selection.

Look for documentation
identitying variability: e.g.,
“Division operations terminate
when the divide operation
completes, with the number of
cycles required dependent on the
values of the input operands.”

Measure cycles rather than
trusting CPU documentation.

12

13
Cut off all data flow from

secrets to branch conditions.

Cut off all data flow from
secrets to array indices.

Cut off all data flow from
secrets to shift/rotate distances.

Prefer logic instructions.

Prefer vector instructions.

Watch out for CPUs with

variable-time multipliers: e.g.,
Cortex-M3 and most PowerPCs.



write constant-time code

le, write code Iin asm
ol Instruction selection.

~documentation

ng variability: e.g.,

1 operations terminate

e divide operation

o5 with the number of
quired dependent on the
f the input operands.”

cycles rather than
CPU documentation.

12

Cut off all data flow from
secrets to branch conditions.

Cut off all data flow from
secrets to array indices.

Cut off all data flow from

secrets to shift/rotate distances.

Prefer logic instructions.

Prefer vector instructions.

Watch out for CPUs with
variable-time multipliers: e.g.,

Cortex-M3 and most PowerPC(Cs.

13

Suppose
const-tir

Suppose
has “se:

Easy for
that sec
by const

Proofs ¢
(uninitia
ctgrind,



tant-time code

ode In asm
lon selection.

tation

ity: e.g.,

ns terminate
beration

e number of
bendent on the
t operands.”

‘her than
Imentation.

12

Cut off all data flow from
secrets to branch conditions.

Cut off all data flow from
secrets to array indices.

Cut off all data flow from

secrets to shift/rotate distances.

Prefer logic instructions.

Prefer vector instructions.

Watch out for CPUs with
variable-time multipliers: e.g.,

Cortex-M3 and most PowerPC(Cs.

13

Suppose we know
const-time machir

Suppose programr
has “secret’ typ

Easy for compiler
that secret types
by const-time inst

Proofs of concept:
(uninitialized data
ctgrind, ct-verif, F



code

1te

of
1 the

12

Cut off all data flow from
secrets to branch conditions.

Cut off all data flow from
secrets to array indices.

Cut off all data flow from

secrets to shift/rotate distances.

Prefer logic instructions.

Prefer vector instructions.

Watch out for CPUs with

variable-time multipliers: e.g.,

Cortex-M3 and most PowerPCs.

13

Suppose we know (some)
const-time machine instruct

Suppose programming langt
has “secret” types.

Easy for compiler to guarani
that secret types are used
by const-time instructions.

Proofs of concept: Valgrind

(uninitialized data as secre
ctgrind, ct-verif, Flow Tracke



Cut off all data flow from
secrets to branch conditions.

Cut off all data flow from
secrets to array indices.

Cut off all data flow from

secrets to shift/rotate distances.

Prefer logic instructions.

Prefer vector instructions.

Watch out for CPUs with
variable-time multipliers: e.g.,

Cortex-M3 and most PowerPC(Cs.

13

14
Suppose we know (some)

const-time machine instructions.

Suppose programming language
has “secret” types.

Easy for compiler to guarantee
that secret types are used only
by const-time instructions.

Proofs of concept: Valgrind
(uninitialized data as secret),
ctgrind, ct-verif, Flow Tracker.



Cut off all data flow from
secrets to branch conditions.

Cut off all data flow from
secrets to array indices.

Cut off all data flow from

secrets to shift/rotate distances.

Prefer logic instructions.

Prefer vector instructions.

Watch out for CPUs with
variable-time multipliers: e.g.,

Cortex-M3 and most PowerPC(Cs.

13

14
Suppose we know (some)

const-time machine instructions.

Suppose programming language
has “secret” types.

Easy for compiler to guarantee
that secret types are used only
by const-time instructions.

Proofs of concept: Valgrind
(uninitialized data as secret),
ctgrind, ct-verif, Flow Tracker.

How can we implement, e.g.,
sorting of a secret array?



11l data flow from
o branch conditions.

1l data flow from
0 array Iindices.

1|l data flow from

o shift /rotate distances.

gic Instructions.

actor Instructions.

ut for CPUs with

time multipliers: e.g.,

A3 and most PowerPC(Cs.

13

Suppose we know (some)
const-time machine instructions.

Suppose programming language
has “secret” types.

Easy for compiler to guarantee
that secret types are used only
by const-time instructions.

Proofs of concept: Valgrind

(uninitialized data as secret),
ctgrind, ct-verif, Flow Tracker.

How can we implement, e.g.,

sorting of a secret array?

14

Eliminat

Let's try
Assume



w from

~onditions.

w from

dices.

w from

tate distances.

ctions.
uctions.

Us with
ipliers: e.g.,

st PowerPC(Cs.

13

Suppose we know (some)
const-time machine instructions.

Suppose programming language
has “secret” types.

Easy for compiler to guarantee
that secret types are used only
by const-time instructions.

Proofs of concept: Valgrind
(uninitialized data as secret),
ctgrind, ct-verif, Flow Tracker.

How can we implement, e.g.,
sorting of a secret array?

14

Eliminating branck

Let's try sorting 2
Assume int32 Is .



1CES.

13

Suppose we know (some)
const-time machine instructions.

Suppose programming language
has “secret” types.

Easy for compiler to guarantee
that secret types are used only
by const-time instructions.

Proofs of concept: Valgrind

(uninitialized data as secret),
ctgrind, ct-verif, Flow Tracker.

How can we implement, e.g.,

sorting of a secret array?

14

Eliminating branches

Let's try sorting 2 integers.
Assume int32 Is secret.



Suppose we know (some)
const-time machine instructions.

Suppose programming language
has “secret” types.

Easy for compiler to guarantee
that secret types are used only
by const-time instructions.

Proofs of concept: Valgrind
(uninitialized data as secret),
ctgrind, ct-verif, Flow Tracker.

How can we implement, e.g.,

sorting of a secret array?

14

Eliminating branches

Let's try sorting 2 integers.
Assume int32 Is secret.

15



Suppose we know (some)
const-time machine instructions.

Suppose programming language
has “secret” types.

Easy for compiler to guarantee
that secret types are used only
by const-time instructions.

Proofs of concept: Valgrind
(uninitialized data as secret),
ctgrind, ct-verif, Flow Tracker.

How can we implement, e.g.,
sorting of a secret array?

14

Eliminating branches

Let's try sorting 2 integers.

Assume int32 Is secret.

void sort2(int32 *x)
{ int32 x0
int32 x1

if (x1
0.
1.

X

X

<

= x[0];

= x[1];

15



Suppose we know (some)
const-time machine instructions.

Suppose programming language
has “secret” types.

Easy for compiler to guarantee
that secret types are used only
by const-time instructions.

Proofs of concept: Valgrind
(uninitialized data as secret),
ctgrind, ct-verif, Flow Tracker.

How can we implement, e.g.,
sorting of a secret array?

14

Eliminating branches

Let's try sorting 2 integers.
Assume int32 Is secret.

void sort2(int32 *x)
{ int32 x0 = x[0];
int32 x1 = x[1];
if (x1 < x0) {

x[0] = x1;

x[1] = x0;

¥

Unacceptable: not constant-time.

15



“we know (some)
ne machine instructions.

“programming language
cret’ types.

compiler to guarantee
ret types are used only
-time Instructions.

f concept: Valgrind

ized data as secret),
ct-verif, Flow Tracker.

' we Implement, e.g.,

f a secret array?

14

Eliminating branches

Let's try sorting 2 integers.

Assume int32 Is secret.

void sort2(int32 *x)
{ int32 x0
int32 x1

if (x1
x[0_
x[1

¥

Unacceptable: not constant-time.

<

= x[0];

= x[1];
x0) {
x1;

x0 ;

15

volid so:
{ int32
int32
if (x




(some)
e |nstructions.

ning language
es.

to guarantee
, are used only
ructions.

Valgrind
as secret),

low Tracker.

ment, e.g.,
't array?

14

Eliminating branches

Let's try sorting 2 integers.
Assume int32 Is secret.

void sort2(int32 *x)
{ int32 x0 = x[0]:

)

int32 x1 = x[1
if (x1 < x0) {

xL0] = x1;

1] = x0;

)

X

¥

Unacceptable: not constant-time.

15

void sort2(int32
{ int32 x0 = x[O
int32 x1 = x[1
if (x1 < x0) {

x[0] = x1;

x[1] = x0;
+ else {

x[0] = x0;

x[1] = x1;
+



14 15
Eliminating branches void sort2(int32 *x)

ons. , . . { int32 x0 = x[0];
Let's try sorting 2 integers. _
int32 x1 = x[1];

lage Assume int32 Is secret.
if (x1 < x0) {
void sort2(int32 *x) x[0] = x1;
ee { int32 x0 = x[0]; x[1] = x0;
only int32 x1 = x[1]; + else {
if (x1 < x0) { x[0] = x0;
x[0] = x1; x[1] = x1;
£), x[1] = x0; }
} +

¥

Unacceptable: not constant-time.




Eliminating branches

Let's try sorting 2 integers.
Assume int32 Is secret.

void sort2(int32 *x)
{ int32 x0 = x[0]:

)

int32 x1 = x[1
if (x1 < x0) {

xL0] = x1;

1] = x0;

)

X

¥

Unacceptable: not constant-time.

15

void sort2(int32 *x)
{ int32 x0 = x[0];
= x[1]:

int32 x1

if (x1

<

x0) {

x1;

x0 ;

x0;

x1;

16



Eliminating branches

Let's try sorting 2 integers.
Assume int32 Is secret.

void sort2(int32 *x)

{ int32 x0 = x[0];
int32 x1 = x[1];
if (x1 < x0) {

x[0] = x1;

x[1] = x0;

¥

Unacceptable: not constant-time.

15

void sort2(int32 *x)

{ int32 x0 = x[0];
int32 x1 = x[1];
if (x1 < x0) {

x[0] = x1;

x[1] = x0;
+ else {

x[0] = x0;

x[1] = x1;
+

¥

Safe compiler won't allow this.

Branch timing leaks secrets.

16



Ing branches

sorting 2 integers.

int32 Is secret.

rt2(int32 *x)

x0
x1
1 <

table: not constant-time.

= x[0];

1];

15

void sort2(int32 *x)

{ int32 x0 = x[0];
int32 x1 = x[1];
if (x1 < x0) {

x[0] = x1;
x[1] = x0;
+ else {
x[0] = x0;
x[1] = x1;
+
+

Safe compiler won't allow this.

Branch timing leaks secrets.

16

vold so:
{ int32
1int32




1€S

Integers.

secret.

XX )

)

)

- constant-time.

15

void sort2(int32 *x)

{ int32 x0 = x[0];
int32 x1 = x[1];
if (x1 < x0) {

x[0] = x1;
x[1] = x0;
+ else {
x[0] = x0;
x[1] = x1;

¥

Safe compiler won't allow this.
Branch timing leaks secrets.

16

void sort2(int32
{ int32 x0 = x[O
int32 x1 = x[1
int32 ¢ = (x1
0] = (¢ 7 x1
1] = (¢ ? x0

X

X




“time.

15

void sort2(int32 *x)

{ int32 x0 = x[0];
int32 x1 = x[1];
if (x1 < x0) {

x[0] = x1;
x[1] = x0;
+ else {
x[0] = x0;
x[1] = x1;

Iy

Safe compiler won't allow this.

Branch timing leaks secrets.

16

void sort2(int32 *x)
{ int32 x0 = x[0];
int32 x1 = x[1];
int32 ¢ = (x1 < x0);
x[0] = (¢ 7 x1 : x0);

x[1] = (¢ ? x0 : x1);




void sort2(int32 *x)

{ int32 x0 = x[0];
int32 x1 = x[1];
if (x1 < x0) {

x[0] = x1;
x[1] = x0;
+ else {
x[0] = x0;
x[1] = x1;

¥

Safe compiler won't allow this.
Branch timing leaks secrets.

16

void sort2(int32 *x)
{ int32 x0 = x[0];
int32 x1 = x[1];
int32 ¢ = (x1 < x0);
0] = (¢ ? x1 : x0);
1] = (¢ 7 x0 : x1);

X

X

17



16

void sort2(int32 *x) void sort2(int32 *x)
{ int32 x0 = x[0]; { int32 x0 = x[0];
int32 x1 = x[1]; int32 x1 = x[1];
if (x1 < x0) { int32 ¢ = (x1 < x0);
x[0] = x1; x[0] = (¢ ? x1 : x0);
x[1] = xO0; x[1] = (¢ ? x0 : x1);
} else { I
X:O: = x0; Syntax is different but “7:”"
) L] = =x1; Is a branch by definition:
1 if (x1 < x0) x[0] = x1;

else x[0] = x0;
if (x1 < x0) x[1] = x0;
else x[1] = x1;

Safe compiler won't allow this.
Branch timing leaks secrets.




rt2(int32 *x)

x0 = x[0];
x1 = x[1];
1 < x0) {

x1;

x0;

(Db = ¢
|l

x0;

x1;

npiler won't allow this.

timing leaks secrets.

16

void sort2(int32 *x)
{ int32 x0 = x[0];
int32 x1 = x[1];
int32 ¢ = (x1 < x0);
x[0] = (¢ ? x1 : x0);
x[1] = (¢ ? x0 : x1);

¥

Syntax is different but “7:"
is a branch by definition:

if (x1 < x0) x[0] = x1;
else x[0] = x0;
if (x1 < x0) x[1] = xO0;
else x[1] = x1;

17

volid so:
{ int32
int32
int32

x[c] -

x[1 -



't allow this.

KS secrets.

16

void sort2(int32 *x)
{ int32 x0 = x[0];
int32 x1 = x[1];
int32 ¢ = (x1 < x0);
x[0] = (c 7 x1 : x0);
x[1] = (¢ ? x0 : x1);

}

Syntax is different but “?:"
Is a branch by definition:

if (x1 < x0) x[0] = x1;
else x[0] = x0;
if (x1 < x0) x[1] = x0;
else x[1] = x1;

17

void sort2(int32

{ int32 x0 = x[O
int32 x1 = x[1
int32 ¢ = (x1

x[c] = x0;

x[1 - c] = x1;



11S.

16

void sort2(int32 *x)

{ int32 x0 = x[0];
int32 x1 = x[1];
int32 ¢ = (x1 < x0);
x[0] = (¢ 7 x1 : x0);

x[1] = (¢ ? x0 : x1);

¥

Syntax is different but “7:"
is a branch by definition:

if (x1 < x0) x[0] = x1;
else x[0] = x0;
if (x1 < x0) x[1] = x0;
else x[1] = x1;

17

void sort2(int32 *x)
{ int32 x0 = x[0];
int32 x1 = x[1];
int32 ¢ = (x1 < x0);

x[c] = x0;

x[1 - c] = x1;



17

void sort2(int32 *x) void sort2(int32 *x)

{ int32 x0 = x[0]; { int32 x0 = x[0];
int32 x1 = x[1]; int32 x1 = x[1];
int32 ¢ = (x1 < x0); int32 ¢ = (x1 < x0);
x[0] = (¢ ? x1 : x0); x[c] = x0;

x[1] = (¢ ? x0 : x1); x[1 - c] = x1;
¥ ¥

Syntax is different but “?:"
Is a branch by definition:

if (x1 < x0) x[0] = x1;
else x[0] = x0;
if (x1 < x0) x[1] = x0;
else x[1] = x1;




17 18

void sort2(int32 *x) void sort2(int32 *x)
{ int32 x0 = x[0]; { int32 x0 = x[0];
int32 x1 = x[1]; int32 x1 = x[1];
int32 ¢ = (x1 < x0); int32 ¢ = (x1 < x0);
x[0] = (¢ ? x1 : x0); x[c] = x0;
x[1] = (¢ ? x0 : x1); x[1 - c] = x1;
+ I
Syntax is different but “7:" Safe compiler won't allow this:
is a branch by definition: won't allow secret data

, to be used as an array index.
if (x1 < x0) x[0] = x1;

else x[0] = x0; Cache timing is not constant:
if (x1 < x0) x[1] = x0; see earlier attack examples.
else x[1] = x1;




17 18

rt2(int32 *x) void sort2(int32 *x) void so:

x0 = x[0]; { int32 x0 = x[0]; { int32

x1 = x[1]; int32 x1 = x[1]; int32

c = (x1 < x0); int32 ¢ = (x1 < x0); int32

= (¢ 7 x1 : x0); x[c] = x0; C *=

= (¢ ? x0 : x1); x[1 - c] = x1; x [O_
+ x[1.

s different but “7:" Safe compiler won't allow this: ’

ich by definition: won't allow secret data

to be used as an array index.
1 < x0) x[0] = x1;

x[0] = x0; Cache timing is not constant:
1 < x0) x[1] = x0; see earlier attack examples.
x[1] = x1;




< x0);
. x0) ;
. x1);

but “7:"
nition:

[0] = x1;

[1] = xO0;

17

18
void sort2(int32 *x)

{ int32 x0 = x[0];
int32 x1 = x[1];
int32 ¢ = (x1 < x0);

x[c] = x0;

x[1 - c] = x1;

}

Safe compiler won't allow this:
won't allow secret data
to be used as an array Index.

Cache timing is not constant:
see earlier attack examples.

void sort2(int32

{ int32 x0 = x[O
int32 x1 = x[1

(x1

int32 c

IOI
[

x0 + c;

1] = x1 - c;



17

void sort2(int32 *x)

{ int32 x0 = x[0];
int32 x1 = x[1];

int32 ¢ = (x1 < x0);

X

X

¥

Safe compiler won't allow this:

c] = x0;

1 - c] = x1;

won't allow secret data

to be used as an array index.

Cache timing is not constant:

SEe

earlier attack examples.

18

void sort2(int32 *x)
{ int32 x0 = x[0];
int32 x1 = x[1];
int32 ¢ = (x1 < x0);

c *= x1 - x0;

x[0] = x0 + c;
1

x[1] = x1 - c;



void sort2(int32 *x)
{ int32 x0 = x[0];
int32 x1 = x[1];
int32 ¢ = (x1 < x0);

x[c] = x0;

x[1 - c] = x1;

}

Safe compiler won't allow this:
won't allow secret data
to be used as an array index.

Cache timing is not constant:
see earlier attack examples.

18

void sort2(int32 *x)
{ int32 x0 = x[0];
int32 x1 = x[1];
int32 ¢ = (x1 < x0);

c *= x1 - x0;
x[0] = x0 + c;
1

X

= x1 - c;

19



void sort2(int32 *x)
{ int32 x0 = x[0];
int32 x1 = x[1];
int32 ¢ = (x1 < x0);

x[c] = x0;

x[1 - c] = x1;

}

Safe compiler won't allow this:

won't allow secret data
to be used as an array index.

Cache timing is not constant:
see earlier attack examples.

18

void sort2(int32 *x)
{ int32 x0 = x[0];

int32 x1 = x[1];
(x1 < x0);

int32 c

IOI
[

x0 + c;

1] = x1 - c;

}

Does safe compiler allow
multiplication of secrets?

Recall that multiplication
takes variable time on, e.g.,

Cortex-M3 and most PowerPCs.

19



rt2(int32 *x)

x0 = x[0];

x1 = x[1];

c = (x1 < x0);
= x0;

cl] = x1;

npiler won't allow this:

low secret data
ed as an array Index.

ming IS not constant:
er attack examples.

18

void sort2(int32 *x)
{ int32 x0 = x[0];
int32 x1 = x[1];
int32 ¢ = (x1 < x0);

c *= x1 - x0;

x[0] = x0 + c;
1

= x1 - c;

¥

Does safe compiler allow
multiplication of secrets?

Recall that multiplication
takes variable time on, e.g.,

Cortex-M3 and most PowerPCs.

19

Will war
for fast |
but let’s
for this

vold so:
{ int32
int32
int32




't allow this:

t data
rray index.

)t constant:
examples.

18

void sort2(int32 *x)
{ int32 x0 = x[0];
int32 x1 = x[1];
int32 ¢ = (x1 < x0);

c *= x1 - x0;

x[0] = x0 + c;
1

= x1 - c;

}

Does safe compiler allow
multiplication of secrets?

Recall that multiplication
takes variable time on, e.g.,

Cortex-M3 and most PowerPCs.

19

Will want to hand
for fast prime-field
but let's dodge th
for this sorting co

void sort2(int32
{ int32 x0 = x[O
int32 x1 = x[1

int32 ¢ = -(x1
c &= x1 = x0;

x[0] = x0 ~ c;
x[1] = x1 ~ c;




11S:

18

void sort2(int32 *x)
{ int32 x0 = x[0];
int32 x1 = x[1];
int32 ¢ = (x1 < x0);

c *= x1 - x0;

x[0] = x0 + c;
1

= x1 - c;

¥

Does safe compiler allow
multiplication of secrets?

Recall that multiplication
takes variable time on, e.g.,

Cortex-M3 and most PowerPCs.

19

Will want to handle this isst

for fast prime-fie
but let's dodge t

d ECC etc.

ne Issue

for this sorting code:

void sort2(int32 *x)

{ int32 x0 = x
int32 x1 = x

0];
1]1;

int32 ¢ = -(x1 < x0);

c &= x1 -~ x0;
x[0] = x0 ~ c;
x[1] = x1 ~ c;




19

void sort2(int32 *x) Will want to handle this issue

{ int32 x0 = x[0]; for fast prime-field ECC etc.,
int32 x1 = x[1]; but let's dodge the Issue
int32 ¢ = (x1 < x0); for this sorting code:

c = x1 - x0; , ,
void sort2(int32 *x)

x[0] = x0 + c; , .
] { int32 x0 = x[0];
xl1l] = x1 - c; . o
int32 x1 = x[|1];
+ int32 ¢ = -(x1 < x0);
Does safe compiler allow c &= x1 ~ xO0;
multiplication of secrets? x[0] = x0 ~ c;

”~

x[1] = x1 C;

Recall that multiplication
takes variable time on, e.g.,
Cortex-M3 and most PowerPC(s.




rt2(int32 *x)
x0 = x[0];
x1 = x[1];
c = (x1 < x0);

x1 - x0;

= x0 + c;

= x1 - c;

‘e compiler allow
ation of secrets?

1at multiplication
riable time on, e.g.,

A3 and most PowerPC(Cs.

19

Will want to handle this issue
for fast prime-field ECC etc.,
but let's dodge the issue

for this sorting code:

void sort2(int32 *x)
{ int32 x0 = x[0];
int32 x1 = x[1];
int32 ¢ = -(x1 < x0);

c &= x1 =~ x0;
x[0] = x0 ~ c;
x[1] = x1 ~ c;

20

1. Possi
(also for
C stand:
int32 a
“undefir
Real CP
but C cc



r allow
ecrets?

lication
> on, e.g.,

st PowerPCCs.

19

Will want to handle this issue
for fast prime-field ECC etc.,
but let's dodge the Issue

for this sorting code:

void sort2(int32 *x)
{ int32 x0 = x[0];
int32 x1 = x[1];
int32 ¢ = -(x1 < x0);

c &= x1 =~ x0;

x[0] = x0 ~ c¢;

x[1] = x1 ~ c;
¥

20

1. Possible correc
(also for previous
C standard does n
int32 as twos-cor
“undefined” beha
Real CPU uses tw
but C compiler ca



2 (Cs.

19

Will want to handle this issue

for fast prime-fie
but let's dodge t

d ECC etc.,

ne Issue

for this sorting code:

void sort2(int32 *x)

{ int32 x0 = x
1int32 x1 = x

0];
1]1;

int32 ¢ = -(x1 < x0);

c &= x1 -~ x0;
x[0] = x0 ~ c;
x[1] = x1 ~ c;

20

1. Possible correctness prob
(also for previous code):

C standard does not define
int32 as twos-complement;
“undefined” behavior on ove
Real CPU uses twos-comple
but C compiler can screw tf



Will want to handle this issue

for fast prime-fie
but let's dodge t

d ECC etc.,

ne Issue

for this sorting code:

void sort2(int32 *x)

{ int32 x0 = x
1int32 x1 = x

0];
1]1;

int32 ¢ = -(x1 < x0);

c &= x1 =~ x0;
x[0] = x0 ~ c¢;
x[1] = x1 ~ c;

20

1. Possible correctness problems
(also for previous code):

C standard does not define
int32 as twos-complement; says

“undefined” behavior on overflow.

Real CPU uses twos-complement

but C compiler can screw this up.

21



Will want to handle this issue

for fast prime-fie
but let's dodge t

d ECC etc.,

ne Issue

for this sorting code:

void sort2(int32 *x)

{ int32 x0 = x
1int32 x1 = x

0];
1]1;

int32 ¢ = -(x1 < x0);

c &= x1 =~ x0;
x[0] = x0 ~ c¢;
x[1] = x1 ~ c;

20

1. Possible correctness problems
(also for previous code):

C standard does not define
int32 as twos-complement; says

“undefined” behavior on overflow.

Real CPU uses twos-complement

but C compiler can screw this up.

Fix: use gcc —fwrapv.

21



Will want to handle this issue

for fast prime-fie
but let's dodge t

d ECC etc.,

ne Issue

for this sorting code:

void sort2(int32 *x)

{ int32 x0 = x
1int32 x1 = x

0];
1]1;

int32 ¢ = -(x1 < x0);

c &= x1 =~ x0;
x[0] = x0 ~ c¢;
x[1] = x1 ~ c;

20

1. Possible correctness problems
(also for previous code):

C standard does not define
int32 as twos-complement; says

“undefined” behavior on overflow.

Real CPU uses twos-complement

but C compiler can screw this up.

Fix: use gcc —fwrapv.

2. Does safe compiler allow
“x1 < x0" for secrets?
What do we do if it doesn't?

21



Will want to handle this issue
for fast prime-field ECC etc.,
but let's dodge the Issue

for this sorting code:

void sort2(int32 *x)
{ int32 x0 = x[0];
int32 x1 = x[1];
int32 ¢ = -(x1 < x0);

c &= x1 - x0;
x[0] = x0 ~ c¢;
x[1] = x1 ~ c;

20

1. Possible correctness problems

(also for previous code):

C standard does not define

int32 as twos-complement; says

“undefined” behavior on overflow.
Real CPU uses twos-complement

but C compiler can screw this up.

Fix: use gcc —fwrapv.

2. Does safe compiler allow
“x1 < x0" for secrets?
What do we do if it doesn't?

C compilers sometimes use

constant-time instructions for this.

21



it to handle this issue

prime-fie
dodge t

d ECC etc.,

ne Issue

sorting code:

rt2(int32 *x)

x0 = x

xl = x

0];
1]1;

c = -(x1 < x0);

x1 = x0;

”~

= x0 C;

”~

= x1 C;

20

1. Possible correctness problems
(also for previous code):

C standard does not define

int32 as twos-complement; says
“undefined” behavior on overflow.
Real CPU uses twos-complement
but C compiler can screw this up.

Fix: use gcc —fwrapv.

2. Does safe compiler allow
“x1 < x0" for secrets?
What do we do if it doesn’'t?

C compilers sometimes use
constant-time instructions for this.

21

Constan

int32 1

{ retur:

Returns



e this iIssue
ECC etc.,

o |Ssue
Je:

XX )

< )

< )

< x0);

20

1. Possible correctness problems
(also for previous code):

C standard does not define
int32 as twos-complement; says
“undefined” behavior on overflow.
Real CPU uses twos-complement
but C compiler can screw this up.

Fix: use gcc —fwrapv.

2. Does safe compiler allow
“x1 < x0" for secrets?
What do we do if it doesn’t?

C compilers sometimes use
constant-time instructions for this.

21

Constant-time cor

int32 1snegative

{ return x >> 31

Returns -1 if x <



1€

20

1. Possible correctness problems
(also for previous code):

C standard does not define

int32 as twos-complement; says
“undefined” behavior on overflow.
Real CPU uses twos-complement
but C compiler can screw this up.

Fix: use gcc —fwrapv.

2. Does safe compiler allow
“x1 < x0" for secrets?
What do we do if it doesn’'t?

C compilers sometimes use
constant-time instructions for this.

21

Constant-time comparisons

int32 isnegative(int32 x)

{ return x >> 31; }

Returns -1 if x < 0, otherwi



1. Possible correctness problems
(also for previous code):

C standard does not define
int32 as twos-complement; says
“undefined” behavior on overflow.
Real CPU uses twos-complement
but C compiler can screw this up.

Fix: use gcc —fwrapv.

2. Does safe compiler allow
“x1 < x0" for secrets?
What do we do if it doesn't?

C compilers sometimes use
constant-time instructions for this.

21

Constant-time comparisons

int32 isnegative(int32 x)

{ return x >> 31; }

Returns -1 if x < 0, otherwise 0.

22



1. Possible correctness problems
(also for previous code):

C standard does not define
int32 as twos-complement; says
“undefined” behavior on overflow.
Real CPU uses twos-complement
but C compiler can screw this up.

Fix: use gcc —fwrapv.

2. Does safe compiler allow
“x1 < x0" for secrets?
What do we do if it doesn't?

C compilers sometimes use

constant-time instructions for this.

21

22
Constant-time comparisons

int32 isnegative(int32 x)

{ return x >> 31; }
Returns -1 if x < 0, otherwise 0.

Why this works: the bits

(b31, b3, - . ., b2, b1, bp)
represent the integer by + 2by +

Aby + - - + 230b30 — 231b31.

“1-bit signed right shift":
(b31, b31, ..., b3, b2, b1).

“31-bit signed right shift":
(b31, b31, - .., b31, b31, b31).



ble correctness problems
“previous code):

ird does not define

s twos-complement; says

ed” behavior on overflow.

U uses twos-complement
ompiler can screw this up.

gcc —fwrapv.

safe compiler allow
0" for secrets?
)y we do iIf 1t doesn’t?

lers sometimes use

-time instructions for this.

21

Constant-time comparisons

int32 isnegative(int32 x)

{ return x >> 31; }
Returns -1 if x < 0, otherwise 0.

Why this works: the bits

(b31, b3, - . ., b2, b1, bp)
represent the integer by + 2by +

Aby + - - + 230b30 — 231[)31.

“1-bit signed right shift":
(b31, b31, ..., b3, b2, by).

“31-bit signed right shift":
(b31, b31, - . ., b31, b31, b31).

22

1int32 1.

{ retun:



‘ness problems
code):

ot define
nplement; says

ior on overflow.

os-complement
n screw this up.

apV.

yiler allow
ets?
It doesn't?

‘Imes use

ructions for this.

21

22
Constant-time comparisons

int32 isnegative(int32 x)

{ return x >> 31; }
Returns -1 if x < 0, otherwise 0.

Why this works: the bits

(b31, b3, - . ., b2, b1, bp)
represent the integer by + 2b; +

Aby + - - + 230b30 — 231b31.

“1-bit signed right shift":
(b31, b31, ..., b3, b2, b1).

“31-bit signed right shift":
(b31, b31, - .., b31, b31, b31).

int32 ispositive

{ return isnegat



lems

says

rflow.

ment

IS Up.

or this.

21

22
Constant-time comparisons

int32 isnegative(int32 x)

{ return x >> 31; }
Returns -1 if x < 0, otherwise 0.

Why this works: the bits

(b31, b3, - . ., b2, b1, bp)
represent the integer by + 2by +

Aby + - - - + 230b30 — 231[)31.

“1-bit signed right shift":
(b31, b31, ..., b3, b2, by).

“31-bit signed right shift":
(b31, b31, - . ., b31, b31, b31).

int32 ispositive(int32 x)

{ return isnegative(-x);



Constant-time comparisons

int32 isnegative(int32 x)

{ return x >> 31; }
Returns -1 if x < 0, otherwise 0.

Why this works: the bits

(b31, b3, - . ., b2, b1, bp)
represent the integer by + 2by +

Aby + - - + 230b30 — 231b31.

“1-bit signed right shift":
(b31, b31, ..., b3, b2, b1).

“31-bit signed right shift":
(b31, b31, - .., b31, b31, b31).

22

int32 ispositive(int32 x)

{ return isnegative(-x); }

23



Constant-time comparisons

int32 isnegative(int32 x)

{ return x >> 31; }
Returns -1 if x < 0, otherwise 0.

Why this works: the bits

(b31, b3, - . ., b2, b1, bp)
represent the integer by + 2by +

Aby + - - + 230b30 — 231b31.

“1-bit signed right shift":
(b31, b31, ..., b3, b2, b1).

“31-bit signed right shift":
(b31, b31, - .., b31, b31, b31).

22

int32 ispositive(int32 x)

{ return isnegative(-x); }

This code is incorrect!
Fails for input —231,
because “-x" produces —231.

23



Constant-time comparisons

int32 isnegative(int32 x)

{ return x >> 31; }
Returns -1 if x < 0, otherwise 0.

Why this works: the bits

(b31, b3, - . ., b2, b1, bp)
represent the integer by + 2by +

Aby + - - + 230b30 — 231b31.

“1-bit signed right shift":
(b31, b31, ..., b3, b2, b1).

“31-bit signed right shift":
(b31, b31, - .., b31, b31, b31).

22

int32 ispositive(int32 x)

{ return isnegative(-x); }

This code is incorrect!
Fails for input —231,
because “-x" produces —231.

Can catch this bug by testing:

int64d x; 1nt32 c;
for (x = INT32_MIN;
x <= INT32_MAX;++x) {
c = ispositive(x);

assert(c == -(x > 0));

23



t-time comparisons

snegative (int32 x)

n x >> 31; }
-1 if x < 0, otherwise 0.

s works: the bits

, ..., bo, b1, by)

t the integer by + 2b1 +
-+ 230[)30 — 231[)31.

gned right shift”:
,..., b3, b, by).

signed right shift”:
..., b31, b31, b31).

22

int32 ispositive(int32 x)

{ return isnegative(-x); }

This code is incorrect!
Fails for input —231,
because “-x" produces —231.

Can catch this bug by testing:

int64d x; 1int32 c;
for (x = INT32_MIN;
x <= INT32_MAX;++x) {
c = ispositive(x);

assert(c == -(x > 0));

23

Side not

1int32 1.
{ if (x

retur:



nparisons

(int32 x)
; F

0, otherwise 0.

he bits

1, bo)

rer bg + 2b; +
) — 231b31.

- shift’:

», b1).

1t shift’:
b31, b31).

22

int32 ispositive(int32 x)

{ return isnegative(-x); }

This code is incorrect!
Fails for input —231,
because “-x" produces —231.

Can catch this bug by testing:

int64d x; 1nt32 c;
for (x = INT32_MIN;
x <= INT32_MAX;++x) {
c = ispositive(x);

assert(c == -(x > 0));

23

Side note illustrati

int32 ispositive
{if (x == -x) T

return isnegat



se 0.

22

int32 ispositive(int32 x)

{ return isnegative(-x); }

This code is incorrect!
Fails for input —231,
because “-x" produces —231.

Can catch this bug by testing:

int64d x; int32 c;
for (x = INT32_MIN;
x <= INT32_MAX;++x) {
c = ispositive(x);

assert(c == -(x > 0));

23

Side note illustrating -fwra;

int32 ispositive(int32 x)
{ if (x == -x) return O;

return isnegative(-x);



int32 ispositive(int32 x)

{ return isnegative(-x); }

This code is incorrect!

Fails for input —231,

because “-x" produces —231.

Can catch this bug by testing:

int64d x; 1nt32 c;
for (x = INT32_MIN;
x <= INT32_MAX;++x) {
c = ispositive(x);

assert(c == -(x > 0));

23

Side note illustrating -fwrapv:

int32 ispositive(int32 x)
{ if (x == -x) return O;

return isnegative(-x); }

24



int32 ispositive(int32 x)

{ return isnegative(-x); }

This code is incorrect!

Fails for input —231,

because “-x" produces —231.

Can catch this bug by testing:

int64d x; 1nt32 c;
for (x = INT32_MIN;
x <= INT32_MAX;++x) {
c = ispositive(x);

assert(c == -(x > 0));

23

24
Side note illustrating -fwrapv:

int32 ispositive(int32 x)
{ if (x == -x) return O;

return isnegative(-x); }

Not constant-time.



int32 ispositive(int32 x)

{ return isnegative(-x); }

This code is incorrect!
Fails for input —231,
because “-x" produces —231.

Can catch this bug by testing:

int64d x; 1nt32 c;
for (x = INT32_MIN;
x <= INT32_MAX;++x) {
c = ispositive(x);

assert(c == -(x > 0));

23

Side note illustrating -fwrapv:

int32 ispositive(int32 x)
{ if (x == -x) return O;

return isnegative(-x); }
Not constant-time.

Even worse: without —fwrapv,
current gcc can remove the
== -x test, breaking this code.

24



int32 ispositive(int32 x)

{ return isnegative(-x); }

This code is incorrect!
Fails for input —231,
because “-x" produces —231.

Can catch this bug by testing:

int64d x; 1nt32 c;
for (x = INT32_MIN;
x <= INT32_MAX;++x) {
c = ispositive(x);

assert(c == -(x > 0));

23

Side note illustrating -fwrapv:

int32 ispositive(int32 x)
{ if (x == -x) return O;

return isnegative(-x); }
Not constant-time.

Even worse: without —fwrapv,
current gcc can remove the
== -x test, breaking this code.

Incompetent gcc engineering;:
source of many security holes.
Incompetent language standard.

24



spositive(int32 x)

n isnegative(-x);

le Is Incorrect!
input —231,
“—-x" produces — 231

“h this bug by testing:

; 1nt32 c;

= INT32_MIN;

<= INT32_MAX;++x) {
spositive(x);

t(c == -(x > 0));

23

Side note illustrating -fwrapv:

int32 ispositive(int32 x)

{ if (x == -x) return O;

return isnegative(-x); }
Not constant-time.

Even worse: without —-fwrapv,

current gcc can remove the

x == —-x test, breaking this code.

Incompetent gcc engineering:
source of many security holes.

Incompetent language standard.

24

1int32 1.

{ retun:

1S3



(int32 x)

ive(-x); }

ect!
31

Juces —231.

>y by testing:

IN;
MAX;++x) {
(x);

x > 0));

23

Side note illustrating -fwrapv:

int32 ispositive(int32 x)
{ if (x == -x) return O;

return isnegative(-x); }
Not constant-time.

Even worse: without —fwrapv,

current gcc can remove the
== -x test, breaking this code.

Incompetent gcc engineering;:
source of many security holes.
Incompetent language standard.

24

int32 isnonzero(
{ return isnegat

|| isnegative(



23

Side note illustrating -fwrapv:

int32 ispositive(int32 x)
{ if (x == -x) return O;

return isnegative(-x); }
Not constant-time.

Even worse: without —-fwrapv,
current gcc can remove the
x == —-x test, breaking this code.

Incompetent gcc engineering:
source of many security holes.
Incompetent language standard.

24

int32 isnonzero(int32 x)
{ return isnegative(x)

|| isnegative(-x); }



Side note illustrating -fwrapv:

int32 ispositive(int32 x)
{ if (x == -x) return O;

return isnegative(-x); }
Not constant-time.

Even worse: without —-fwrapv,

current gcc can remove the
== -x test, breaking this code.

Incompetent gcc engineering;:
source of many security holes.
Incompetent language standard.

24

int32 isnonzero(int32 x)
{ return isnegative(x)

|| isnegative(-x); }

25



Side note illustrating -fwrapv:

int32 ispositive(int32 x)
{ if (x == -x) return O;

return isnegative(-x); }
Not constant-time.

Even worse: without —-fwrapv,

current gcc can remove the
== -x test, breaking this code.

Incompetent gcc engineering;:
source of many security holes.
Incompetent language standard.

24

int32 isnonzero(int32 x)
{ return isnegative(x)

|| isnegative(-x); }

Not constant-time.
Second part is evaluated
only if first part is zero.

25



Side note illustrating -fwrapv:

int32 ispositive(int32 x)
{ if (x == -x) return O;

return isnegative(-x); }
Not constant-time.

Even worse: without —-fwrapv,
current gcc can remove the

== -x test, breaking this code.

Incompetent gcc engineering;:
source of many security holes.
Incompetent language standard.

24

25
int32 isnonzero(int32 x)

{ return isnegative(x)

|| isnegative(-x); }

Not constant-time.
Second part is evaluated
only if first part is zero.

int32 isnonzero(int32 x)
{ return isnegative(x)

| isnegative(-x); }

Constant-time logic instructions.
Safe compiler will allow this.



e Illustrating —fwrapv:

spositive(int32 x)
== -x) return O;

n isnegative(-x); }
stant-time.

rse: without —-fwrapv,
occ can remove the

test, breaking this code.

tent gcc engineering:
f many security holes.
tent language standard.

24

int32 isnonzero(int32 x)
{ return isnegative(x)

|| isnegative(-x); }

Not constant-time.
Second part is evaluated
only if first part is zero.

int32 isnonzero(int32 x)
{ return isnegative(x)

| isnegative(-x); }

Constant-time logic instructions.
Safe compiler will allow this.

25

1int32 1.

{ retun:



ng —fwrapv:

(int32 x)
eturn O;

ive(-x); }

ut —fwrapv,

xmove the

king this code.

engineering:
curity holes.
lage standard.

24

int32 isnonzero(int32 x)
{ return isnegative(x)

|| isnegative(-x); }

Not constant-time.
Second part is evaluated
only if first part is zero.

int32 isnonzero(int32 x)
{ return isnegative(x)

| isnegative(-x); }

Constant-time logic instructions.
Safe compiler will allow this.

25

int32 issmaller(

{ return isnegat



DV

OV,

-ode.

S
ard.

24

int32 isnonzero(int32 x)
{ return isnegative(x)

|| isnegative(-x); }

Not constant-time.
Second part is evaluated
only if first part is zero.

int32 isnonzero(int32 x)
{ return isnegative(x)

| isnegative(-x); }

Constant-time logic instructions.
Safe compiler will allow this.

25

int32 issmaller(int32 x,1i

{ return isnegative(x - y



int32 isnonzero(int32 x)
{ return isnegative(x)

|| isnegative(-x); }

Not constant-time.
Second part is evaluated
only if first part is zero.

int32 isnonzero(int32 x)
{ return isnegative(x)

| isnegative(-x); }

Constant-time logic instructions.
Safe compiler will allow this.

25

int32 issmaller(int32 x,int32 y)

{ return isnegative(x - y); }

26



int32 isnonzero(int32 x)
{ return isnegative(x)

|| isnegative(-x); }

Not constant-time.
Second part is evaluated
only if first part is zero.

int32 isnonzero(int32 x)
{ return isnegative(x)

| isnegative(-x); }

Constant-time logic instructions.
Safe compiler will allow this.

25

int32 issmaller(int32 x,int32 y)

{ return isnegative(x - y); }

This code is incorrect!
Generalization of ispositive.

Wrong for inputs (0, —231).

26



int32 isnonzero(int32 x)
{ return isnegative(x)

|| isnegative(-x); }

Not constant-time.
Second part is evaluated
only if first part is zero.

int32 isnonzero(int32 x)
{ return isnegative(x)

| isnegative(-x); }

Constant-time logic instructions.

Safe compiler will allow this.

25

26
int32 issmaller(int32 x,int32 y)

{ return isnegative(x - y); }

This code is incorrect!
Generalization of ispositive.

Wrong for inputs (0, —231).

Wrong for many more inputs.
Caught quickly by random tests:

for (j = 0;j < 10000000;++73) {
x += random(); y += random() ;
c = issmaller(x,y);

assert(c == -(x < y));



snonzero(int32 x)
n isnegative(x)

negative(-x); }

stant-time.
part Is evaluated
rst part Is zero.

snonzero(int32 x)
n isnegative(x)

egative(-x); }

t-time logic instructions.

npiler will allow this.

25

26
int32 issmaller(int32 x,int32 y)

{ return isnegative(x - y); }

This code is incorrect!

Generalization of ispositive.
Wrong for inputs (0, —231).

Wrong for many more inputs.
Caught quickly by random tests:

for (j = 0;3j < 10000000;++7) {
x += random(); y += random();
c = issmaller(x,y);

assert(c == -(x < y));

1nt32 1.
{ int32
1int32

cC =

retur;



25 26

int32 x) int32 issmaller(int32 x,int32 y) int32 issmaller(
ive (x) { return isnegative(x - y); } { int32 xy = x °
—x); } int32 ¢ = x -

This code Is incorrect!
L , o c "=xy & (c ~
Generalization of ispositive.

luated Wrong for inputs (0, —231). ) return isnegat
£Er0. Wrong for many more inputs.

int32 x) Caught quickly by random tests:

ive (x)

for (j = 0;j < 10000000;++j) {

%)t x += random(); y += random();
iC Instructions. c = issmaller(x,y);
allow this. assert(c == —-(x < y));




25 20
int32 issmaller(int32 x,int32 y) int32 issmaller(int32 x,1i

{ return isnegative(x - y); } { int32 xy = x ~ v;
. .. int32 ¢ = x - v;
This code is incorrect! /

L , . c "=xy & (c ~ x);
Generalization of ispositive. y

Wrong for inputs (0, —231).

return isnegative(c);

Wrong for many more inputs.
Caught quickly by random tests:

for (j = 0;3j < 10000000;++7) {
x += random(); y += random();
lons. c = issmaller(x,y);

assert(c == -(x < y));




26 27
int32 issmaller(int32 x,int32 y) int32 issmaller(int32 x,int32 y)
{ return isnegative(x - y); } { int32 xy = x ~ vy;
. .. int32 ¢ = x - v;
This code is incorrect! 4

L , . c "=xy & (c ~ x);
Generalization of ispositive. J

Wrong for inputs (0, —231).

return isnegative(c);

Wrong for many more inputs.
Caught quickly by random tests:

for (j = 0;j < 10000000;++73) {
x += random(); y += random() ;
c = issmaller(x,y);

assert(c == -(x < y));




int32 issmaller(int32 x,int32 y)

{ return isnegative(x - y); }

This code is incorrect!
Generalization of ispositive.

Wrong for inputs (0, —231).

Wrong for many more inputs.
Caught quickly by random tests:

for (j = 0;j < 10000000;++73) {
x += random(); y += random() ;
c = issmaller(x,y);

assert(c == -(x < y));

26

int32 issmaller(int32 x,int32 y)
{ int32 xy = x ~ y;

int32 ¢ = x - ¥y;

c "=xy & (c ~ x);

return isnegative(c);

¥

Some verification strategies:

e [hink this through.

e Write a proof.

e Formally verifty proof.

e Automate proof construction.
e [est many random inputs.

e A bit painful: test all inputs.
e [aster: test int16 version.

27



ssmaller (int32 x,int32 y)

1 isnegative(x - y); }

le I1s incorrect!

zation of ispositive.
or inputs (0, —231).

OrF many more inputs.
quickly by random tests:

= 0;3j < 10000000;++j) {
random(); y += random() ;
ssmaller(x,y);

t(c == -(x < y));

26

int32 issmaller(int32 x,int32 y)
{ int32 xy = x ~ vy;

int32 ¢ = X - y;

c "=xy & (¢ ~ x);

return isnegative(c);

}

Some verification strategies:

e [hink this through.

e Write a proof.

e Formally verify proof.

e Automate proof construction.
e [est many random inputs.

e A bit painful: test all inputs.
e [aster: test int16 version.

27

volid mi:
{ int32
int32
int32
int32



int32 x,int32 y)
ive(x - y); }

ect!
lspositive.

0, —231).

1ore Inputs.
random tests:

0000000;++7) {
y += random() ;
X,¥);

X < y));

26

int32 issmaller(int32 x,int32 y)
{ int32 xy = x ~ y;

X = V;

xy & (¢ ~ x);

int32 c =
c ~ =
return isnegative(c);

¥

Some verification strategies:

e [hink this through.

e Write a proof.

e Formally verify proof.

e Automate proof construction.
e [est many random inputs.

e A bit painful: test all inputs.
e [aster: test int16 version.

21

void minmax(int3

{

¥

int32 a = *Xx;

int32 b = xy;

int32 ab = b ~
int32 ¢ = b -

c "= ab & (c ~
c >>= 31;

c &= ab;

X = a =~ C;

*y = b 7 c;

void sort2(int32

{ minmax(x,x + 1



nt32 y)
) ¥

VeE.

ests:

+3) Ao
dom() ;

26

int32 issmaller(int32 x,int32 y)
{ int32 xy = x ~ vy;

int32 ¢ = X - y;

c "=xy & (¢ ~ x);

return isnegative(c);

¥

Some verification strategies:

e [hink this through.

e Write a proof.

e Formally verify proof.

e Automate proof construction.
e [est many random inputs.

e A bit painful: test all inputs.
e [aster: test int16 version.

27

void minmax(int32 *x,int3
{ int32 a = *x;

int32 b = x*y;

int32 ab = b © a;

int32 ¢ = b - a;

c "= ab & (c ~ b);

c >>= 31;

c &= ab;

Iy

void sort2(int32 *x)

{ minmax(x,x + 1); }



int32 issmaller(int32 x,int32 y)
{ int32 xy = x ~ y;

X = V;

xy & (¢ ~ x);

int32 c =
c ~ =
return isnegative(c);

¥

Some verification strategies:

e [hink this through.

e Write a proof.

e Formally verity proof.

e Automate proof construction.
e [est many random inputs.

e A bit painful: test all inputs.
e [aster: test int16 version.

21

void minmax(int32 *x,int32 *y)
{ int32 a = *x;
int32 b = *y;
int32 ab = b ~
int32 ¢ = b - a;
c "= ab & (c ~ b);

a,

c >>= 31;

c &= ab;

X = a =~ C;

*y = b 7 c;
by

void sort2(int32 *x)

{ minmax(x,x + 1); }

23



ssmaller (int32 x,int32 y)
Xy = x 7 Y;

C =X — V;

xy & (¢ ~ x);

n isnegative(c) ;

rification strategies:
this through.

a proof.

lly verity proof.

1ate proof construction.
1any random Inputs.
vainful: test all inputs.
. test int16 version.

27

void minmax(int32 *x,int32 *y)
{ int32 a = *x;

int32 b = *y;

int32 ab = b 7 a;

int32 ¢ = b - a;

c "= ab & (c ~ b);

c >>= 31;

c &= ab;

*Xx = a = c;

*y = b © c;

Iy

void sort2(int32 *x)

{ minmax(x,x + 1); }

28

int32 1.
{ int32
cC "=
retur:

¥

volid so:
{ long .
for (
for

m.

Iy

Safe cor
if array |



int32 x,int32 y)
Y

Y

X) ;

ive(c);

strategies:
gh.

roof.
construction.
om Inputs.

st all inputs.
16 version.

21

void minmax(int32 *x,int32 *y)
{ int32 a = *x;

int32 b = *y;

int32 ab = b 7 a;

int32 ¢ = b - a;

c "= ab & (c ~ b);

c >>= 31;

c &= ab;

*Xx = a = c;

*y = b ~ c;

¥

void sort2(int32 *x)

{ minmax(x,x + 1); }

23

int32 ispositive

{ int32 ¢ = -x;

”

cC =X & c;

return isnegat

}

void sort(int32
{ long long i,j;
for (j = 0;j <
for (i = j -
minmax(x +

¥

Safe compiler will
if array length n s



27
nt32 y)

on.

1S.

void minmax(int32 *x,int32 *y)
{ int32 a = *x;

int32 b = *y;

int32 ab = b 7 a;

int32 ¢ = b - a;

c "= ab & (c ~ b);

c >>= 31;

c &= ab;

*Xx = a = c;

*y = b © c;

Iy

void sort2(int32 *x)

{ minmax(x,x + 1); }

28

int32 ispositive(int32 x)
{ int32 c = -x;

c =x & c;

return isnegative(c);

¥

void sort(int32 *x,long 1
{ long long i,j;
for (j = 0;j < n;++j)
for (i = j - 1;i >=C
minmax(x + i,x + 1

Iy

Safe compiler will allow this
if array length n is not secr



void minmax(int32 *x,int32 *y)
{ int32 a = *x;

int32 b = *y;

int32 ab = b 7 a;

int32 ¢ = b - a;

c "= ab & (c ~ b);

c >>= 31;

c &= ab;

*Xx = a = c;

*y = b ~ c;

¥

void sort2(int32 *x)

{ minmax(x,x + 1); }

23

int32 ispositive(int32 x)
{ int32 ¢ = -x;

c =x & c;

return isnegative(c);

}

void sort(int32 *x,long long n)
{ long long i,j;
for (j = 0;j < n;++j)
for (i = j - 1;i >= 0;--1)
minmax(x + i,x + 1 + 1);

¥

Safe compiler will allow this
if array length n is not secret.

29



nmax (int32 *x,int32 *y)

a = *X;

b = *y;

ab = b 7 a;
c =b - a;
ab & (¢ ~ b);
31;

ab;

3~ C;

b~ C;

rt2(int32 *x)
<(x,x + 1); }

28

29
int32 ispositive(int32 x)
{ int32 c = -x;
c =x & c;
return isnegative(c);

¥

void sort(int32 *x,long long n)
{ long long i,j;
for (j = 0;j < n;++j)
for (i = j - 1;i >= 0;--1)
minmax(x + i,x + 1 + 1);

Iy

Safe compiler will allow this
if array length n is not secret.

Software

Almost
much sl



2 *x,int32 *y)

23

29
int32 ispositive(int32 x)
{ int32 c = -x;
c =x & c;
return isnegative(c);

¥

void sort(int32 *x,long long n)
{ long long i,j;
for (j = 0;j < n;++j)
for (i = j - 1;i >= 0;--1)
minmax(x + i,x + 1 + 1);

¥

Safe compiler will allow this
if array length n is not secret.

Software optimiza

Almost all softwar
much slower than



29
int32 ispositive(int32 x)
{ int32 c = -x;
c =x & c;
return isnegative(c);

¥

void sort(int32 *x,long long n)
{ long long i,j;
for (j = 0;j < n;++j)
for (i = j - 1;i >= 0;--1)
minmax(x + i,x + 1 + 1);

¥

Safe compiler will allow this
if array length n is not secret.

Software optimization

Almost all software is
much slower than it could b



int32 ispositive(int32 x)
{ int32 c = -x;

c =x & c;

return isnegative(c);

¥

void sort(int32 *x,long long n)
{ long long i,j;
for (j = 0;j < n;++j)
for (i = j - 1;i >= 0;--1)
minmax(x + i,x + 1 + 1);

¥

Safe compiler will allow this
if array length n is not secret.

29

Software optimization

Almost all software is
much slower than it could be.

30



int32 ispositive(int32 x)

{ int32 c = -x;

”

c =x & c;

return isnegative(c);

¥

void sort(int32 *x,long long n)
{ long long i,j;
for (j = 0;j < n;++j)
for (i = j - 1;i >= 0;--1)
minmax(x + i,x + 1 + 1);

¥

Safe compiler will allow this
if array length n is not secret.

29

Software optimization

Almost all software is
much slower than it could be.

|s software applied to much data?
Usually not. Usually the
wasted CPU time is negligible.

30



int32 ispositive(int32 x)

{ int32 c = -x;

”

cC =X & c;

return isnegative(c);

¥

void sort(int32 *x,long long n)
{ long long i,j;
for (j = 0;j < n;++j)
for (i = j - 1;i >= 0;--1)
minmax(x + i,x + 1 + 1);

¥

Safe compiler will allow this
if array length n is not secret.

29

30
Software optimization

Almost all software is
much slower than it could be.

|s software applied to much data?
Usually not. Usually the
wasted CPU time is negligible.

But crypto software should be
applied to all communication.

Crypto that's too slow =
fewer users = fewer cryptanalysts

= less attractive for everybody.



spositive(int32 x)
C = —-X;
X & C;

n isnegative(c) ;

rt (int32 *x,long long n)

long 1,7;

j = 0;] < mn;++])
(i=3-1;i > 0;--1)

inmax(x + i,x + 1 + 1);

npiler will allow this
ength n Is not secret.

29

Software optimization

Almost all software is
much slower than it could be.

|s software applied to much data?
Usually not. Usually the
wasted CPU time is negligible.

But crypto software should be
applied to all communication.

Crypto that's too slow =
fewer users = fewer cryptanalysts

= less attractive for everybody.

30

Typical :
Xisac

You hav
referenc

You war
software
as efficie

You hav
(Can ref

You me:

impleme



(int32 x)

ive(c);

*x,long long n)

n;++j)
1;14 >= 0;--1)

i, x + 1+ 1);

allow this

- NOt secret.

29

Software optimization

Almost all software is
much slower than it could be.

|s software applied to much data?
Usually not. Usually the
wasted CPU time is negligible.

But crypto software should be
applied to all communication.

Crypto that's too slow =
fewer users = fewer cryptanalysts

= less attractive for everybody.

30

Typical situation:
X Is a cryptograpl

You have written .
reference impleme

You want (const-t
software that com
as efficiently as pc

You have chosen
(Can repeat for ot

You measure perfc
implementation. |



ong n)

et.

29

Software optimization

Almost all software is
much slower than it could be.

|s software applied to much data?
Usually not. Usually the
wasted CPU time is negligible.

But crypto software should be
applied to all communication.

Crypto that's too slow =
fewer users = fewer cryptanalysts

= less attractive for everybody.

30

Typical situation:
X Is a cryptographic system

You have written a (const-ti
reference implementation of

You want (const-time)
software that computes X
as efficiently as possible.

You have chosen a target Cl
(Can repeat for other CPUs

You measure performance o
implementation. Now what"



30 31
Software optimization Typical situation:

Almost all software is X Is a cryptographic system.

much slower than it could be. . .
You have written a (const-time)

|s software applied to much data? reference implementation of X.

Usually not. Usually the

R o You want (const-time)
wasted CPU time is negligible.

software that computes X
But crypto software should be as efficiently as possible.

applied to all communication.
PP You have chosen a target CPU.

Crypto that's too slow = (Can repeat for other CPUs.)

fewer users = fewer cryptanalysts
yP y You measure performance of the

— |less attractive for everybody. . .
ypody implementation. Now what?




 optimization

11l software is
wer than 1t could be.

ire applied to much data?
not. Usually the
_PU time is negligible.

yto software should be
o all communication.

hat's too slow =
ers = fewer cryptanalysts

ttractive for everybody.

30

Typical situation:
X Is a cryptographic system.

You have written a (const-time)
reference implementation of X.

You want (const-time)
software that computes X
as efficiently as possible.

You have chosen a target CPU.
(Can repeat for other CPUs.)

You measure performance of the
implementation. Now what?

31

A simpli

Target (

MICroco
one AR

Referenc

int sum
int
int 1
for (
res:

retur:



tion

e IS
it could be.

| to much data?
lly the
Is negligible.

re should be

munication.

slow =
er cryptanalysts

‘or everybody.

30

Typical situation:
X Is a cryptographic system.

You have written a (const-time)
reference implementation of X.

You want (const-time)
software that computes X
as efficiently as possible.

You have chosen a target CPU.
(Can repeat for other CPUs.)

You measure performance of the
implementation. Now what?

31

A simplified exam|

Target CPU: TI L
microcontroller co
one ARM Cortex-|

Reference impleme

int sum(int *x)
{
int result = 0O
int 1;
for (1 = 0;1 <
result += x|[

return result;



1d

OC

ysts

30

Typical situation:
X Is a cryptographic system.

You have written a (const-time)
reference implementation of X.

You want (const-time)
software that computes X
as efficiently as possible.

You have chosen a target CPU.
(Can repeat for other CPUs.)

You measure performance of the
implementation. Now what?

31

A simplified example

Target CPU: TI LM4F120H!
microcontroller containing
one ARM Cortex-M4F core.

Reference implementation:

int sum(int *x)
{
int result = 0;
int 1;
for (i = 0;i < 1000;++i
result += x[i];

return result;



Typical situation:
X Is a cryptographic system.

You have written a (const-time)
reference implementation of X.

You want (const-time)
software that computes X
as efficiently as possible.

You have chosen a target CPU.
(Can repeat for other CPUs.)

You measure performance of the
implementation. Now what?

31

32
A simplified example

Target CPU: TI LM4F120H5QR
microcontroller containing
one ARM Cortex-M4F core.

Reference implementation:

int sum(int *x)
{
int result = O;
int 1;
for (i = 0;i < 1000;++i)
result += x[i];

return result;



situation:
ryptographic system.

e written a (const-time)
> implementation of X.

t (const-time)
that computes X
ntly as possible.

e chosen a target CPU.
yeat for other CPUs.)

sure performance of the
ntation. Now what?

31

A simplified example

Target CPU: TI LM4F120H5QR
microcontroller containing
one ARM Cortex-M4F core.

Reference implementation:

int sum(int *x)
{
int result = O;
int 1;
for (i = 0;i < 1000;++i)
result += x[i];

return result;

32

Countin;

static -
xcons:

= (vo.

int bef
int res:
int aft
UARTpri:

resul:

Output
Change



1IC system.

3 (const-time)
ntation of X.

ime)
putes X
ssible.

) target CPU.
her CPUs.)

yrmance of the
Now what?

31

A simplified example

Target CPU: TI LM4F120H5QR
microcontroller containing
one ARM Cortex-M4F core.

Reference implementation:

int sum(int *x)
{
int result = O;
int 1;
for (i = 0;i < 1000;++i)
result += x[i];

return result;

32

Counting cycles:

static volatile
xconst DWT_CYC
= (void *) OxE

int beforesum =
int result = sum
int aftersum = *
UARTprintf ("sum

result,aftersu

Output shows 801
Change 1000 to 5



me)

°U.

f the

31

A simplified example

Target CPU: TI LM4F120H5QR
microcontroller containing
one ARM Cortex-M4F core.

Reference implementation:

int sum(int *x)
{
int result = O;
int 1;
for (i = 0;i < 1000;++i)
result += x[i];

return result;

32

Counting cycles:

static volatile unsigned
xconst DWT_CYCCNT
= (void *) 0xE0001004;

int beforesum = *DWT_CYCC
int result = sum(x);

int aftersum = *xDWT_CYCCN
UARTprintf ("sum %d %d\n",

result,aftersum-befores

Output shows 8012 cycles.
Change 1000 to 500: 4012.



A simplified example

Target CPU: TI LM4F120H5QR
microcontroller containing
one ARM Cortex-M4F core.

Reference implementation:

int sum(int *x)
{
int result = O;
int 1;
for (i = 0;i < 1000;++i)
result += x[i];

return result;

32

Counting cycles:

static volatile unsigned 1int
xconst DWT_CYCCNT
= (void *) 0xE0001004;

int beforesum = *DWIT_CYCCNT;
int result = sum(x);

int aftersum = *DWT_CYCCNT;
UARTprintf ("sum %d %d\n",

result,aftersum-beforesum) ;

Output shows 8012 cycles.
Change 1000 to 500: 4012.

33



fled example

PU: TI LM4F120H5QR
ntroller containing
VI Cortex-M4F core.

e Implementation:

(int *x)

osult = 0;
i = 0;1 < 1000;++1)
11t += x[i];

n result;

32

Counting cycles:

static volatile unsigned 1int
xconst DWT_CYCCNT
= (void *) 0xE0001004;

int beforesum = *DWI_CYCCNT;
int result = sum(x);

int aftersum = *xDWT_CYCCNT;
UARTprintf ("sum %d %d\n",

result,aftersum-beforesum) ;

Output shows 8012 cycles.
Change 1000 to 500: 4012.

33

“Okay, ¢
Um, are
really th



ole

M4F120H5QR
ntaining
VI4F core.

ntation:

1000 ;++1)
il;

32

Counting cycles:

static volatile unsigned 1int
xconst DWT_CYCCNT
= (void *) 0xE0001004;

int beforesum = *DWIT_CYCCNT;
int result = sum(x);

int aftersum = *DWT_CYCCNT;
UARTprintf ("sum %d %d\n",

result,aftersum-beforesum) ;

Output shows 8012 cycles.
Change 1000 to 500: 4012.

33

“Okay, 8 cycles pe
Um, are microcon
really this slow at



32 33
Counting cycles: “Okay, 8 cycles per addition

. , , , Um, are microcontrollers
QR static volatile unsigned int

xconst DWT_CYCCNT
= (void *) 0xE0001004;

really this slow at addition?’

int beforesum = *DWI_CYCCNT;
int result = sum(x);

int aftersum = *xDWT_CYCCNT;
UARTprintf ("sum %d %d\n",

) result,aftersum-beforesum) ;

Output shows 8012 cycles.
Change 1000 to 500: 4012.




Counting cycles:

static volatile unsigned 1int
xconst DWT_CYCCNT
= (void *) 0xE0001004;

int beforesum = *DWIT_CYCCNT;
int result = sum(x);

int aftersum = *DWT_CYCCNT;
UARTprintf ("sum %d %d\n",

result,aftersum-beforesum) ;

Output shows 8012 cycles.
Change 1000 to 500: 4012.

33

“Okay, 8 cycles per addition.
Um, are microcontrollers

really this slow at addition?”

34



Counting cycles:

static volatile unsigned 1int

xconst DWT_CYCCNT
= (void *) 0xE0001004;

int beforesum = *DWIT_CYCCNT;
int result = sum(x);

int aftersum = *DWT_CYCCNT;
UARTprintf ("sum %d %d\n",

result,aftersum-beforesum) ;

Output shows 8012 cycles.
Change 1000 to 500: 4012.

33

“Okay, 8 cycles per addition.
Um, are microcontrollers

really this slow at addition?”

Bad practice:

Apply random “optimizations”
(and tweak compiler options)

until you get bored.
Keep the fastest results.

34



Counting cycles:

static volatile unsigned 1int
xconst DWT_CYCCNT
= (void *) 0xE0001004;

int beforesum = *DWIT_CYCCNT;
int result = sum(x);

int aftersum = *DWT_CYCCNT;
UARTprintf ("sum %d %d\n",

result,aftersum-beforesum) ;

Output shows 8012 cycles.
Change 1000 to 500: 4012.

33

“Okay, 8 cycles per addition.
Um, are microcontrollers

really this slow at addition?”

Bad practice:
Apply random “optimizations”
(and tweak compiler options)

until you get bored.
Keep the fastest results.

Good practice:

Figure out lower bound for
cycles spent on arithmetic etc.
Understand gap between

lower bound and observed time.

34



r cycles:

volatile unsigned int
t DWIT_CYCCNT
id *) 0xE0001004;

oresum = *xDWT_CYCCNT;
11t = sum(x);

orsum = *DWIT_CYCCNT;
ntf ("sum %d %d\n",

t ,aftersum-beforesum) ;

shows 8012 cycles.
1000 to 500: 4012.

33

“Okay, 8 cycles per addition.
Um, are microcontrollers

really this slow at addition?”

Bad practice:
Apply random “optimizations”
(and tweak compiler options)

until you get bored.
Keep the fastest results.

Good practice:

Figure out lower bound for
cycles spent on arithmetic etc.
Understand gap between

lower bound and observed time.

34

Find “A
Technic:

Rely on
MAF = |



33 34

“Okay, 8 cycles per addition. Find “ARM Corte
unsigned int Um, are-microcontrol .er.s Technical I-?e.fere.m
oNT really this slow at addition?” Rely on Wikipedia
0001004 ; Bad practice: MAF = M4 + floar

Apply random “optimizations”

(and tweak compiler options)

*DWT_CYCCNT; until you get bored.
(x); Keep the fastest results.
DWT_CYCCNT;

Good practice:
%d hd\n",

Figure out lower bound for
m-beforesum) ;

cycles spent on arithmetic etc.
2 cycles. Understand gap between
00: 4012. lower bound and observed time.




33 34
“Okay, 8 cycles per addition. Find “ARM Cortex-M4 Proc

Um, are microcontrollers Technical Reference Manual
really this slow at addition?” Rely on Wikipedia comment
M4F = M4 + tloating-point

int

Bad practice:
Apply random “optimizations”
(and tweak compiler options)

NT ; until you get bored.
Keep the fastest results.

Good practice:

Figure out lower bound for
um) cycles spent on arithmetic etc.
Understand gap between

lower bound and observed time.




“Okay, 8 cycles per addition.
Um, are microcontrollers

really this slow at addition?”

Bad practice:
Apply random “optimizations”
(and tweak compiler options)

until you get bored.
Keep the fastest results.

Good practice:

Figure out lower bound for
cycles spent on arithmetic etc.
Understand gap between

lower bound and observed time.

34

35
Find “ARM Cortex-M4 Processor

Technical Reference Manual”.
Rely on Wikipedia comment that
MA4F = M4 + tloating-point unit.



“Okay, 8 cycles per addition.

Um, are microcontrol

ers

really this slow at addition?”

Bad practice:

Apply random “optimizations”

(and tweak compiler options)

until you get bored.

Keep the fastest results.

Good practice:

Figure out lower bound for

cycles spent on arithmetic etc.

Understand gap between

lower bound and observed time.

34

35
Find “ARM Cortex-M4 Processor

Technical Reference Manual”.
Rely on Wikipedia comment that
MA4F = M4 + tloating-point unit.

Manual says that Cortex-M4

“Implements the ARMv7E-M
architecture profile” .



“Okay, 8 cycles per addition.

Um,

are microcontrollers

really this slow at addition?”

Bad

App
(anc

unti

practice:

y random “optimizations”
tweak compiler options)
you get bored.

Keep the fastest results.

Good practice:

Figure out lower bound for

cycles spent on arithmetic etc.

Understand gap between

lower bound and observed time.

34

35
Find “ARM Cortex-M4 Processor

Technical Reference Manual”.
Rely on Wikipedia comment that
MA4F = M4 + tloating-point unit.

Manual says that Cortex-M4
“Implements the ARMv7E-M

architecture profile” .

Points to the "ARMv7-M

Architecture Reference Manual’,

which defines instructions:
e.g., 'ADD" for 32-bit addition.

First manual says that
ADD takes just 1 cycle.



3 cycles per addition.
microcontrollers

Is slow at addition?”

ctice:

ndom “optimizations”
2ak compiler options)
| get bored.

> fastest results.

actice:

ut lower bound for

yent on arithmetic etc.
and gap between

und and observed time.

34

Find "ARM Cortex-M4 Processor
Technical Reference Manual™.

Rely on Wikipedia comment that
MA4F = M4 4 tloating-point unit.

Manual says that Cortex-M4
“Implements the ARMv/7E-M

architecture profile” .

Points to the "ARMv7-M
Architecture Reference Manual’,

which defines instructions:
e.g., 'ADD" for 32-bit addition.

First manual says that
ADD takes just 1 cycle.

35

Inputs a
“Integer
has 16 1
special-f
and “prec



r addition.
trollers

addition?”

timizations”
er options)

1.
osults.

ound for
thmetic etc.
atween

bserved time.

34

Find "ARM Cortex-M4 Processor
Technical Reference Manual™.

Rely on Wikipedia comment that
MA4F = M4 + tloating-point unit.

Manual says that Cortex-M4
“Implements the ARMv7E-M

architecture profile” .

Points to the "ARMv7-M

Architecture Reference Manual’,

which defines instructions:
e.g., 'ADD" for 32-bit addition.

First manual says that
ADD takes just 1 cycle.

35

Inputs and output
“Integer registers”
has 16 integer reg
special-purpose ‘s
and “program cou



1S

LC.

me.

34

Find "ARM Cortex-M4 Processor
Technical Reference Manual™.

Rely on Wikipedia comment that
MA4F = M4 4 tloating-point unit.

Manual says that Cortex-M4
“Implements the ARMv/7E-M

architecture profile” .

Points to the "ARMv7-M
Architecture Reference Manual’,

which defines instructions:
e.g., 'ADD" for 32-bit addition.

First manual says that
ADD takes just 1 cycle.

35

Inputs and output of ADD =
“Integer registers’. ARMvT-
has 16 integer registers, incl
special-purpose “stack point
and “program counter’ .



Find "ARM Cortex-M4 Processor
Technical Reference Manual™.

Rely on Wikipedia comment that
MA4F = M4 4 tloating-point unit.

Manual says that Cortex-M4
“Implements the ARMv7E-M

architecture profile” .

Points to the "ARMv7-M
Architecture Reference Manual’,

which defines instructions:
e.g., 'ADD" for 32-bit addition.

First manual says that
ADD takes just 1 cycle.

35

36
Inputs and output of ADD are

“Integer registers’. ARMv7-M
has 16 integer registers, including
special-purpose ‘stack pointer”
and “program counter .



Find "ARM Cortex-M4 Processor
Technical Reference Manual™.

Rely on Wikipedia comment that
MA4F = M4 4 tloating-point unit.

Manual says that Cortex-M4
“Implements the ARMv7E-M

architecture profile” .

Points to the "ARMv7-M
Architecture Reference Manual’,

which defines instructions:
e.g., 'ADD" for 32-bit addition.

First manual says that
ADD takes just 1 cycle.

35

36
Inputs and output of ADD are

“Integer registers’. ARMv7-M
has 16 integer registers, including
special-purpose ‘stack pointer”
and “program counter .

Each element of x array needs to
be “loaded” into a register.



Find "ARM Cortex-M4 Processor
Technical Reference Manual™.

Rely on Wikipedia comment that
MA4F = M4 4 tloating-point unit.

Manual says that Cortex-M4
“Implements the ARMv7E-M

architecture profile” .

Points to the "ARMv7-M
Architecture Reference Manual’,

which defines instructions:
e.g., 'ADD" for 32-bit addition.

First manual says that
ADD takes just 1 cycle.

35

36
Inputs and output of ADD are

ARMv7-M
has 16 integer registers, including

“Integer registers’ .

special-purpose ‘stack pointer”
and “program counter .

Each element of x array needs to
be “loaded” into a register.

Basic load instruction: LDR.
Manual says 2 cycles but adds
a note about “pipelining”.
Then more explanation: if next
instruction is also LDR (with
address not based on first LDR)
then 1t saves 1 cycle.



RM Cortex-M4 Processor
| Reference Manual”.

Wikipedia comment that
M4 4 tloating-point unit.

says that Cortex-M4
ents the ARMv/7/E-M

ure profile” .

0 the "ARMv7-M

ture Reference Manual”,

>fines instructions:
DD" for 32-bit addition.

nual says that
es Jjust 1 cycle.

35

Inputs and output of ADD are
ARMv7-M
has 16 integer registers, including

“Integer registers’ .

special-purpose “stack pointer”
and “program counter’ .

Each element of x array needs to
be “loaded” into a register.

Basic load instruction: LDR.
Manual says 2 cycles but adds
a note about “pipelining”.
Then more explanation: if next
instruction is also LDR (with
address not based on first LDR)
then 1t saves 1 cycle.

36

n CONSEC
takes on
(“more |
pipelinec

Can ach
In other
but nott

Lower b
2n+1 c
including

Why ob:
non-con:
costs of



x-M4 Processor
e Manual”.

comment that
Ing-point unit.

Cortex-M4
\RMv7E-M

1
a

Mv7-M
ence Manual”,

‘uctions:
2-bit addition.

that
cycle.

35

Inputs and output of ADD are
ARMv7-M
has 16 integer registers, including

“Integer registers’ .

special-purpose ‘stack pointer”
and “program counter .

Each element of x array needs to
be “loaded” into a register.

Basic load instruction: LDR.
Manual says 2 cycles but adds
a note about “pipelining”.
Then more explanation: if next
instruction is also LDR (with
address not based on first LDR)
then 1t saves 1 cycle.

36

n consecutive LDF
takes only n+1 ¢
(“more multiple L
pipelined together

Can achieve this s
in other ways (LD
but nothing seems

Lower bound for r
2n + 1 cycles,
including n cycles

Why observed tim
non-consecutive L
costs of manipulat



_.E€SSOr

that

unit.

ual’,

1on.

35

Inputs and output of ADD are
ARMv7-M
has 16 integer registers, including

“Integer registers’ .

special-purpose “stack pointer”
and “program counter’ .

Each element of x array needs to
be “loaded” into a register.

Basic load instruction: LDR.
Manual says 2 cycles but adds
a note about “pipelining”.
Then more explanation: if next
instruction is also LDR (with
address not based on first LDR)
then 1t saves 1 cycle.

36

n consecutive LDRs

takes only n+ 1 cycles
(“more multiple LDRs can &
pipelined together” ).

Can achieve this speed
in other ways (LDRD, LDM
but nothing seems faster.

Lower bound for nLDR + n
2n + 1 cycles,
including n cycles of arithme

Why observed time is highel
non-consecutive LDRs;
costs of manipulating i.



Inputs and output of ADD are
ARMv7-M
has 16 integer registers, including

“Integer registers’ .

special-purpose ‘stack pointer”
and “program counter .

Each element of x array needs to
be “loaded” into a register.

Basic load instruction: LDR.
Manual says 2 cycles but adds
a note about “pipelining”.
Then more explanation: if next
instruction is also LDR (with
address not based on first LDR)
then 1t saves 1 cycle.

36

n consecutive LDRs

takes only n+ 1 cycles
(“more multiple LDRs can be
pipelined together” ).

Can achieve this speed
in other ways (LDRD, LDM)
but nothing seems faster.

Lower bound for nLDR 4+ n ADD:
2n + 1 cycles,
including n cycles of arithmetic.

Why observed time is higher:
non-consecutive LDRs;
costs of manipulating i.

37



nd output of ADD are
ARMv7-M

teger registers, including

registers’ .

yurpose stack pointer”
gram counter’ .

ment of x array needs to
led” Into a register.

ad instruction: LDR.
says 2 cycles but adds
bout “pipelining”.

ore explanation: if next
on is also LDR (with

not based on first LDR)
aves 1 cycle.

36

n consecutive LDRs

takes only n+ 1 cycles
(“more multiple LDRs can be
pipelined together” ).

Can achieve this speed
in other ways (LDRD, LDM)
but nothing seems faster.

Lower bound for nLDR + n ADD:

2n + 1 cycles,
including n cycles of arithmetic.

Why observed time is higher:
non-consecutive LDRs;
costs of manipulating i.

37

int sum
{
int r
int
int x

X.

while
x0 -
x1 -
X2 -
X3 -
x4 -
X5 -
X6 :



of ADD are

. ARMv7-M
isters, including
tack pointer”
nter” .

“array needs to
) register.

sion: LDR.
les but adds
elining”™ .
ation: iIf next
LDR (with
on first LDR)
le.

36

n consecutive LDRs

takes only n+ 1 cycles
(“more multiple LDRs can be
pipelined together” ).

Can achieve this speed
in other ways (LDRD, LDM)
but nothing seems faster.

Lower bound for nLDR + n ADD:

2n + 1 cycles,
including n cycles of arithmetic.

Why observed time is higher:
non-consecutive LDRs;
costs of manipulating i.

37

int sum(int *x)

{

int
int

int

result = 0

xy = x + 1

x0,x1,x2,x

x5,x6,x7,X

while (x != y)
O[(vola

x0
x1
X2
x3
x4
X5
X6

1[(vola

S O WD

(vola
(vola
(vola
(vola

(vola



36 37

re n consecutive LDRs int sum(int *x)

-M takes only n+ 1 cycles {

uding (“more multiple LDRs can be int result = O;
er" pipelined together” ). int *y = x + 1000;

int x0,x1,x2,x3,x4,

x5,x6,x7,x8,x9;

Can achieve this speed
ds to in other ways (LDRD, LDM)

but nothing seems faster.
while (x != y) {

Lower bound for nLDR 4+ n ADD: x0 = 0[(volatile int
ds 2n + 1 cycles, x1 = 1[(volatile int
including n cycles of arithmetic. x2 = 2[(volatile int

ext . L = 3T - -
Why observed time is higher: x3 = 3l(volatile int

g _ _ - . .
R non-consecutive LDRs; x4 = 4[(volatile int
) costs of manipulating 1. x5 = bl(volatile int
x6 = 6[(volatile int




n consecutive LDRs

takes only n+ 1 cycles
(“more multiple LDRs can be
pipelined together” ).

Can achieve this speed
in other ways (LDRD, LDM)
but nothing seems faster.

Lower bound for nLDR + n ADD:

2n + 1 cycles,
including n cycles of arithmetic.

Why observed time is higher:
non-consecutive LDRs;
costs of manipulating i.

37

int sum(int *x)

{

int result = O;
int *y = x + 1000;
int x0,x1,x2,x3,x4,

x5,x6,x7,x8,x9;

while (x != y) {

x0 = O0[(volatile
x1 = 1[(volatile
x2 = 2[(volatile
x3 = 3[(volatile
x4 = 4[(volatile
x5 = 5[ (volatile
x6 = 6[(volatile

int
int
int
int
int
int

int

38



utive LDRs

ly n+ 1 cycles
nultiple LDRs can be
| together”).

leve this speed
ways (LDRD, LDM)
\ing seems faster.

ound for nLDR + n ADD:

ycles,
r n cycles of arithmetic.

served time Is higher:
secutive LDRs:
manipulating i.

37

int sum(int *x)

{
int
int

int

result = 0O;

xy = x + 1000;

x0,x1,x2,x3,x4,
x5,x6,x7,x8,x9;

while (x != y) {

x0
x1
X2
X3
x4
X5
X6

= 0[(volatile

=1

I
S 01 S W N

(volatile
(volatile
(volatile
(volatile
(volatile

(volatile

int
int
int
int
int
int

int

38

X7 -
X3
X9 :
res
res
res
res
res
res
res
res
res
res
x0 :
x1 :



S
ycles
DRs can be

N

peed
RD, LDM)
. faster.

LDR + nADD:

of arithmetic.

e is higher:
DRs:

ng i.

37

int sum(int *x)

{

int
int

int

whil
x0
x1
X2
x3
x4
X5
X6

result = 0O;

xy = x + 1000;
x0,x1,x2,x3,x4,
x5,x6,x7,x8,x9;

e (x !'=y) {
= 0[(volatile
= 1[(volatile

(volatile

(volatile

 (volatile

(volatile

Il
S O WD

(volatile

int
int
int
int
int
int

int

38

x7 = 7T[(vola
x8 = 8[(vola
x9 = 9[(vola
result += x0
result += x1
result += x2
result += x3
result += x4
result += x5
result += x6
result += x7
result += x8
result += x9

x0 = 10[(vol
x1 = 11[(vol




IS

ADD:

tic.

37

int sum(int *x)

{

int
int

int

result = O;

xy = x + 1000;

x0,x1,x2,x3,x4,
x5,x6,x7,x8,x9;

while (x != y) {

x0
x1
X2
X3
x4
X5
X6

O[(volatile
1[(volatile
(volatile
(volatile

(volatile

(volatile

S 01 S W N

(volatile

int
int
int
int
int
int

int

38

x7 =71
x8 = 8[
x9 = 9]

result

result
result
result
result
result
result
result
result
result
x0 = 10
x1l = 11

(volatile int

(volatile int

(volatile int
+= x0;
+= x1;
+= x2;
+= x3;
+= x4;
+= x5;
+= X6;
+= X7;
+= x8;
+= x9;

[ (volatile int

[ (volatile int



38

int sum(int *x) x7 = 7T[(volatile int *)x];

{ x8 = 8[(volatile int *)x];

int result = O; x9 = 9[(volatile int *)x];
int *y = x + 1000; result += x0;
int x0,x1,x2,x3,x4, result += x1;
x5,x6,x7,x8,x9; result += x2;

result += x3;

while (x !'= y) { result += x4;
x0 = O[(volatile int *)x]; result += x5;
x1 = 1[(volatile int *)x]; result += x6;
x2 = 2[(volatile int *)x]; result += x7;
x3 = 3[(volatile int *)x]; result += x8;
x4 = 4[(volatile int *)x]; result += x9;
x5 = 5[(volatile int *)x]; x0 = 10[(volatile int *)x];
x6 = 6[(volatile int *)x]; x1 = 11[(volatile int *)x];




(int *x)

osult = 0O;

y

0,x1,x2,x3,x4,
H,X6,x7,x8,%x9;

(x

x + 1000;

1= y) {

O[(volatile

1

S 01 S W N

(volatile
(volatile
(volatile
(volatile
(volatile

(volatile

int
int
int
int
int
int

int

38

Xl =7
x8 = 8
x9

result
result
result
result
result
result
result
result
result

result

x0 = 10[(volatile int *)x]:

x1 = 11[(volatile int *)x]:

‘(volatile int *)x];:

9[(volatile int *)x];

‘(volatile int *)x];:

+= x0;
+= x1;
+= X2;
+= X3;
+= x4;
+= X5;
+= X6;
+= X7 ;
+= X3;
+= x9;

39

X2 :
X3
x4 :
X5
X6 :
X7 -
X8 :
X9 :
X +;
res
res
res
res
res

resi



000;

3,x4,
8,x9;

tile
tile
tile
tile
tile
tile
tile

int
int
int
int
int
int

int

38

xl =7
x8 = 8
x9

result
result
result
result
result
result
result
result
result

result

x0 = 10[(volatile int *)x]:

x1 = 11[(volatile int *)x]:

(volatile int *)x];

9[(volatile int *)x];

(volatile int *)x];:

+= x0;
+= x1;
+= X2;
+= xX3;
+= x4;
+= x5;
+= X6;
+= X7 ;
+= X8;
+= x9;

39

x2 = 12
x3 = 13
x4 = 14
xb = 15
X6 = 16
x?7 = 17
x8 = 18
x9 = 19
x += 20;
result
result
result
result
result
result

(vol
(vol
(vol
(vol
(vol
(vol
(vol
(vol

+= x0
+= x1
+= X2
+= X3
+= x4

+= x5



38

Xl =71
x8 = 8
x9

result
result
result
result
result
result
result
result
result

result

x0 = 10[(volatile int *)x]:

x1 = 11[(volatile int *)x]:

‘(volatile int *)x];:

9[(volatile int *)x];

‘(volatile int *)x];:

+= x0;
+= x1;
+= X2;
+= X3;
+= x4;
+= X5;
+= X6;
+= X7 ;
+= X3;
+= x9;

39

(volatile

 (volatile
 (volatile
 (volatile
 (volatile
 (volatile

 (volatile

 (volatile

+= x0;
+= x1;
+= X2,
+= X3;

+= x4;

x2 = 12
x3 = 13
x4 = 14
xb = 15
X6 = 16
x7 = 17
x8 = 18
x9 = 19
x += 20;
result
result
result
result
result
result

+= x5;

int
int
int
int
int
int
int

1nt



xl =7
x8 = 8
x9

result
result
result
result
result
result
result
result
result

result

x0 = 10[(volatile int *)x]:

x1 = 11[(volatile int *)x]:

(volatile int *)x];

9[(volatile int *)x];

((volatile int *)x];:

+= x0;
+= x1;
+= X2;
+= xX3;
+= x4;
+= Xx5;
+= X6;
+= X7 ;
+= X8;
+= x9;

39

(volatile

(volatile
(volatile
(volatile
(volatile
(volatile

(volatile

(volatile

+= x0;
+= x1;
+= X2;
+= X3;

+= x4;

x2 = 12
x3 = 13
x4 = 14
xb = 15
X6 = 16
x7 = 17[
x8 = 18
x9 = 19
x += 20;
result
result
result
result
result
result

+= x5;

int
int
int
int
int
int
int

int

40



= 7
= 3

11t
11t
11t
11t
11t
11t
11t
11t
11t
11t

= 10[(volatile int *)x];

= 11[(volatile int *)x]:

‘(volatile int *)x];:

9[(volatile int *)x];

‘(volatile int *)x];:

+= x0;
+= x1;
+= X2;
+= X3;
+= x4;
+= X5;
+= X6;
+= X7 ;
+= X3;
+= x9;

39

x2 = 12
x3 = 13
x4 = 14
xb = 15
X6 = 16
x7 = 17
x8 = 18
x9 = 19
x += 20;
result
result
result
result
result
result

 (volatile
 (volatile
 (volatile
 (volatile
 (volatile
 (volatile
 (volatile

 (volatile

)
+= x0;
+= x1;
+= x2;
+= x3;
+= x4,
+= xb;

int
int
int
int
int
int
int

int

40

rest

rest

rest

resi

retur:



tile int *)x];

tile int *)x];

tile int *)x];

)
J

)
b

)

)

atile int *)x]:

atile int *)x]:

39

12[(volatile
13[(volatile
14[(volatile
15[ (volatile

16 [(volatile
17 [(volatile
18[(volatile
19[(volatile

X2 =

X3 =

x4 =

X5 =

X6 =

X7 =

X8 =

X9 =

x += 20;
result +=
result +=
result +=
result +=
result +=
result +=

x0 ;
x1;
X2 ;
X3
x4 ;
X5 ;

int
int
int
int
int
int
int

int

40

result += x6
result += x7
result += x8

result += x9

return result;



39

12[(volatile
13[(volatile
14[(volatile
15[ (volatile
16 [(volatile
17 [(volatile
18[(volatile
19[(volatile

X2 =

X3 =

x4 =

X5 =

X6 =

X7 =

X8 =

X9 =

x += 20;
result +=
result +=
result +=
result +=
result +=
result +=

x0;
x1;
X2 ;
X3;
x4 ;
X0 ;

int
int
int
int
int
int
int

int

40

result +=
result +=
result +=

result +=

X6 ;
X7 ;
X3 ;
x9;

return result;



x2 = 12
x3 = 13
x4 = 14
xb = 15
X6 = 16
X7 = 17[
x8 = 18
x9 = 19
x += 20;
result
result
result
result
result
result

(volatile

(volatile
(volatile
(volatile
(volatile
(volatile

(volatile

(volatile
+= x0;
+= x1;
+= X2;
+= x3;
+= x4;

+= x5;

int
int
int
int
int
int
int

int

40

result +=
result +=
result +=

result +=

X6 ;
>
X3 ;
x9;

return result;

41



x2 = 12
x3 = 13
x4 = 14
xb = 15
X6 = 16
X7 = 17[
x8 = 18
x9 = 19
x += 20;
result
result
result
result
result
result

(volatile

(volatile
(volatile
(volatile
(volatile
(volatile

(volatile

(volatile
+= x0;
+= x1;
+= X2,
+= x3;
+= x4;

+= xb;

int
int
int
int
int
int
int

int

40

result +=
result +=
result +=

result +=

X6 ;
X7 ;
X3 ;
x9;

return result;

2526 cycles. Even better in asm.

41



40

x2 = 12[(volatile int *)x]; result += x6;

x3 = 13[(volatile int *)x]; result += x7;

x4 = 14[(volatile int *)x]; result += x8;

x5 = 15[ (volatile int *)x]; result += x9;

x6 = 16[(volatile int *)x]; }

x7 = 17[(volatile int *)x];

x8 = 18[(volatile int *)x]; return result;

x9 = 19[(volatile int *)x]; }

x += 20;

result += x0: 2526 cycles. Even better in asm.
result += xi; Wikipedia: “By the late 1990s for

N .
result X2; even performance sensitive code,

result += x3; optimizing compilers exceeded the

result += x4; performance of human experts.”

result += xb5;




40

x2 = 12[(volatile int *)x]; result += x6;

x3 = 13[(volatile int *)x]; result += x7;

x4 = 14[(volatile int *)x]; result += x8;

x5 = 15[ (volatile int *)x]; result += x9;

x6 = 16[(volatile int *)x]; }

x7 = 17[(volatile int *)x];

x8 = 18[(volatile int *)x]; return result;

x9 = 19[(volatile int *)x]; }

x += 20;

result += x0: 2526 cycles. Even better in asm.
result += xi; Wikipedia: “By the late 1990s for

N .
result X2; even performance sensitive code,

result += x3; optimizing compilers exceeded the

result += x4; performance of human experts.”

result += x5; — [citation needed]




