Cryptographic
software engineering,
part 1

Daniel J. Bernstein

This is easy, right?

1. Take general principles
of software engineering.

2. Apply principles to crypto.

Let's try some examples . ..

1972 Parnas “On the criteria
to be used in decomposing
systems into modules”:

“We propose instead that
one begins with a list of
difficult design decisions or

design decisions which are

likely to change. Each module

Is then designed to hide such

a decision from the others.”

e.g. If number of cipher rounds
Is properly modularized as
#define ROUNDS 20

then 1t Is easy to change.
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How typical software checks
16-byte authenticator:
for (i = 0;1 < 16;++1i)
if (x[i] '= yl[i]) return O;

return 1;

Fix, eliminating information flow
from secrets to timings:
diff = 0O;
for (1 = 0;1 < 16;++1i)
diff |= x[i] =~ yl[i];
return 1 & ((diff-1) >> 8);
Notice that the language

makes the wrong thing simple
and the right thing complex.
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Wrong for many more inputs.
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Some verification strategies:
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e Write a proof.
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e [est many random inputs.

e A bit painful: test all inputs.
e [aster: test int16 version.
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A simplified example

Target CPU: TI LM4F120H!
microcontroller containing
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as efficiently as possible.

You have chosen a target CPU.
(Can repeat for other CPUs.)

You measure performance of the
implementation. Now what?

31

32
A simplified example

Target CPU: TI LM4F120H5QR
microcontroller containing
one ARM Cortex-M4F core.

Reference implementation:

int sum(int *x)
{
int result = O;
int 1;
for (i = 0;i < 1000;++i)
result += x[i];

return result;
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Target CPU: TI LM4F120H5QR
microcontroller containing
one ARM Cortex-M4F core.

Reference implementation:

int sum(int *x)
{
int result = O;
int 1;
for (i = 0;i < 1000;++i)
result += x[i];

return result;
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Counting cycles:

static volatile
xconst DWT_CYC
= (void *) OxE
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int result = sum
int aftersum = *
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A simplified example

Target CPU: TI LM4F120H5QR
microcontroller containing
one ARM Cortex-M4F core.

Reference implementation:

int sum(int *x)
{
int result = O;
int 1;
for (i = 0;i < 1000;++i)
result += x[i];

return result;
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Counting cycles:

static volatile unsigned
xconst DWT_CYCCNT
= (void *) 0xE0001004;

int beforesum = *DWT_CYCC
int result = sum(x);

int aftersum = *xDWT_CYCCN
UARTprintf ("sum %d %d\n",

result,aftersum-befores

Output shows 8012 cycles.
Change 1000 to 500: 4012.
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Counting cycles: “Okay, 8 cycles per addition

. , , , Um, are microcontrollers
QR static volatile unsigned int

xconst DWT_CYCCNT
= (void *) 0xE0001004;

really this slow at addition?’

int beforesum = *DWI_CYCCNT;
int result = sum(x);

int aftersum = *xDWT_CYCCNT;
UARTprintf ("sum %d %d\n",

) result,aftersum-beforesum) ;

Output shows 8012 cycles.
Change 1000 to 500: 4012.
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UARTprintf ("sum %d %d\n",

result,aftersum-beforesum) ;

Output shows 8012 cycles.
Change 1000 to 500: 4012.
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“Okay, 8 cycles per addition.
Um, are microcontrollers

really this slow at addition?”

Bad practice:

Apply random “optimizations”
(and tweak compiler options)

until you get bored.
Keep the fastest results.
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Um, are microcontrollers
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Find “ARM Cortex-M4 Processor

Technical Reference Manual”.
Rely on Wikipedia comment that
MA4F = M4 + tloating-point unit.
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Find “ARM Cortex-M4 Processor

Technical Reference Manual”.
Rely on Wikipedia comment that
MA4F = M4 + tloating-point unit.

Manual says that Cortex-M4

“Implements the ARMv7E-M
architecture profile” .
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Basic load instruction: LDR.
Manual says 2 cycles but adds
a note about “pipelining”.
Then more explanation: if next
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int sum(int *x)

{

int
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result = O;

xy = x + 1000;
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x7 =71
x8 = 8[
x9 = 9]

result

result
result
result
result
result
result
result
result
result
x0 = 10
x1l = 11

(volatile int

(volatile int

(volatile int
+= x0;
+= x1;
+= x2;
+= x3;
+= x4;
+= x5;
+= X6;
+= X7;
+= x8;
+= x9;

[ (volatile int

[ (volatile int



38

int sum(int *x) x7 = 7T[(volatile int *)x];

{ x8 = 8[(volatile int *)x];

int result = O; x9 = 9[(volatile int *)x];
int *y = x + 1000; result += x0;
int x0,x1,x2,x3,x4, result += x1;
x5,x6,x7,x8,x9; result += x2;

result += x3;

while (x !'= y) { result += x4;
x0 = O[(volatile int *)x]; result += x5;
x1 = 1[(volatile int *)x]; result += x6;
x2 = 2[(volatile int *)x]; result += x7;
x3 = 3[(volatile int *)x]; result += x8;
x4 = 4[(volatile int *)x]; result += x9;
x5 = 5[(volatile int *)x]; x0 = 10[(volatile int *)x];
x6 = 6[(volatile int *)x]; x1 = 11[(volatile int *)x];
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osult = 0O;
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x + 1000;

1= y) {
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Xl =7
x8 = 8
x9

result
result
result
result
result
result
result
result
result

result

x0 = 10[(volatile int *)x]:

x1 = 11[(volatile int *)x]:

‘(volatile int *)x];:

9[(volatile int *)x];

‘(volatile int *)x];:

+= x0;
+= x1;
+= X2;
+= X3;
+= x4;
+= X5;
+= X6;
+= X7 ;
+= X3;
+= x9;
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xl =7
x8 = 8
x9

result
result
result
result
result
result
result
result
result

result

x0 = 10[(volatile int *)x]:

x1 = 11[(volatile int *)x]:

(volatile int *)x];

9[(volatile int *)x];

(volatile int *)x];:

+= x0;
+= x1;
+= X2;
+= xX3;
+= x4;
+= x5;
+= X6;
+= X7 ;
+= X8;
+= x9;

39

x2 = 12
x3 = 13
x4 = 14
xb = 15
X6 = 16
x?7 = 17
x8 = 18
x9 = 19
x += 20;
result
result
result
result
result
result

(vol
(vol
(vol
(vol
(vol
(vol
(vol
(vol

+= x0
+= x1
+= X2
+= X3
+= x4

+= x5



38

Xl =71
x8 = 8
x9

result
result
result
result
result
result
result
result
result

result

x0 = 10[(volatile int *)x]:

x1 = 11[(volatile int *)x]:

‘(volatile int *)x];:

9[(volatile int *)x];

‘(volatile int *)x];:

+= x0;
+= x1;
+= X2;
+= X3;
+= x4;
+= X5;
+= X6;
+= X7 ;
+= X3;
+= x9;

39

(volatile

 (volatile
 (volatile
 (volatile
 (volatile
 (volatile

 (volatile

 (volatile

+= x0;
+= x1;
+= X2,
+= X3;

+= x4;

x2 = 12
x3 = 13
x4 = 14
xb = 15
X6 = 16
x7 = 17
x8 = 18
x9 = 19
x += 20;
result
result
result
result
result
result

+= x5;

int
int
int
int
int
int
int

1nt



xl =7
x8 = 8
x9

result
result
result
result
result
result
result
result
result

result

x0 = 10[(volatile int *)x]:

x1 = 11[(volatile int *)x]:

(volatile int *)x];

9[(volatile int *)x];

((volatile int *)x];:

+= x0;
+= x1;
+= X2;
+= xX3;
+= x4;
+= Xx5;
+= X6;
+= X7 ;
+= X8;
+= x9;

39

(volatile

(volatile
(volatile
(volatile
(volatile
(volatile

(volatile

(volatile

+= x0;
+= x1;
+= X2;
+= X3;

+= x4;

x2 = 12
x3 = 13
x4 = 14
xb = 15
X6 = 16
x7 = 17[
x8 = 18
x9 = 19
x += 20;
result
result
result
result
result
result

+= x5;

int
int
int
int
int
int
int

int

40



= 7
= 3

11t
11t
11t
11t
11t
11t
11t
11t
11t
11t

= 10[(volatile int *)x];

= 11[(volatile int *)x]:

‘(volatile int *)x];:

9[(volatile int *)x];

‘(volatile int *)x];:

+= x0;
+= x1;
+= X2;
+= X3;
+= x4;
+= X5;
+= X6;
+= X7 ;
+= X3;
+= x9;

39

x2 = 12
x3 = 13
x4 = 14
xb = 15
X6 = 16
x7 = 17
x8 = 18
x9 = 19
x += 20;
result
result
result
result
result
result

 (volatile
 (volatile
 (volatile
 (volatile
 (volatile
 (volatile
 (volatile

 (volatile

)
+= x0;
+= x1;
+= x2;
+= x3;
+= x4,
+= xb;

int
int
int
int
int
int
int

int

40

rest

rest

rest

resi

retur:



tile int *)x];

tile int *)x];

tile int *)x];

)
J

)
b

)

)

atile int *)x]:

atile int *)x]:

39

12[(volatile
13[(volatile
14[(volatile
15[ (volatile

16 [(volatile
17 [(volatile
18[(volatile
19[(volatile

X2 =

X3 =

x4 =

X5 =

X6 =

X7 =

X8 =

X9 =

x += 20;
result +=
result +=
result +=
result +=
result +=
result +=

x0 ;
x1;
X2 ;
X3
x4 ;
X5 ;

int
int
int
int
int
int
int

int

40

result += x6
result += x7
result += x8

result += x9

return result;



39

12[(volatile
13[(volatile
14[(volatile
15[ (volatile
16 [(volatile
17 [(volatile
18[(volatile
19[(volatile

X2 =

X3 =

x4 =

X5 =

X6 =

X7 =

X8 =

X9 =

x += 20;
result +=
result +=
result +=
result +=
result +=
result +=

x0;
x1;
X2 ;
X3;
x4 ;
X0 ;

int
int
int
int
int
int
int

int

40

result +=
result +=
result +=

result +=

X6 ;
X7 ;
X3 ;
x9;

return result;



x2 = 12
x3 = 13
x4 = 14
xb = 15
X6 = 16
X7 = 17[
x8 = 18
x9 = 19
x += 20;
result
result
result
result
result
result

(volatile

(volatile
(volatile
(volatile
(volatile
(volatile

(volatile

(volatile
+= x0;
+= x1;
+= X2;
+= x3;
+= x4;

+= x5;

int
int
int
int
int
int
int

int

40

result +=
result +=
result +=

result +=

X6 ;
>
X3 ;
x9;

return result;

41



x2 = 12
x3 = 13
x4 = 14
xb = 15
X6 = 16
X7 = 17[
x8 = 18
x9 = 19
x += 20;
result
result
result
result
result
result

(volatile

(volatile
(volatile
(volatile
(volatile
(volatile

(volatile

(volatile
+= x0;
+= x1;
+= X2,
+= x3;
+= x4;

+= xb;

int
int
int
int
int
int
int

int

40

result +=
result +=
result +=

result +=

X6 ;
X7 ;
X3 ;
x9;

return result;

2526 cycles. Even better in asm.

41



40

x2 = 12[(volatile int *)x]; result += x6;

x3 = 13[(volatile int *)x]; result += x7;

x4 = 14[(volatile int *)x]; result += x8;

x5 = 15[ (volatile int *)x]; result += x9;

x6 = 16[(volatile int *)x]; }

x7 = 17[(volatile int *)x];

x8 = 18[(volatile int *)x]; return result;

x9 = 19[(volatile int *)x]; }

x += 20;

result += x0: 2526 cycles. Even better in asm.
result += xi; Wikipedia: “By the late 1990s for

N .
result X2; even performance sensitive code,

result += x3; optimizing compilers exceeded the

result += x4; performance of human experts.”

result += xb5;




40

x2 = 12[(volatile int *)x]; result += x6;

x3 = 13[(volatile int *)x]; result += x7;

x4 = 14[(volatile int *)x]; result += x8;

x5 = 15[ (volatile int *)x]; result += x9;

x6 = 16[(volatile int *)x]; }

x7 = 17[(volatile int *)x];

x8 = 18[(volatile int *)x]; return result;

x9 = 19[(volatile int *)x]; }

x += 20;

result += x0: 2526 cycles. Even better in asm.
result += xi; Wikipedia: “By the late 1990s for

N .
result X2; even performance sensitive code,

result += x3; optimizing compilers exceeded the

result += x4; performance of human experts.”

result += x5; — [citation needed]




