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Can compute 2232792500 __ 1

using 41 ring operations.
(Side note: 41 is not minimal.)

Ring operation: 0, 1, +,

This computation: 1; 2 =1 4 1;

22 =12.2;23=22.2; 20 =23.23;
212 _ 96.96. 913 _ 912.5. 926. 527. 554,
255; 2110; 2111; 2222; 2444; 2888; 21776;
23552. 57104. »14208. 523416. 528417
256834,1 91 13é68 .2227:%36 .2454672 .290,9344 .
290934%. 218186,90. 2181é691. 236’37382. |
23637381,%. 27274766. 2727476%. 21454951,%4.
21454953%. 2290990%0. 258198i40. |
2116396286; 223279256,50; 2232792;360 1
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using 41 ring operations.
(Side note: 41 is not minimal.)

Ring operation: 0, 1, +,

This computation: 1; 2 =1+ 1;

22 =12.2;23=22.2; 20 =23.23;
212 _ 26_26; 213 _ 212_2; 226; 227; 254;
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can compute — 1 modn

using 41 operations in Z/n.
Notation: amodb=a — b|a/b|.

e.g. n =38b597231219: ...
220 mod n = 134217728;
254 mod n = 1342177282 mod n
— 935663516;
29 mod n = 1871327032
2110 mod n = 18713270322 mod n
— 1458876811; . ..:
232792560 _1 mod n = 5626089344

Easy extra computation (Euclid):
gcd{5626089344, n} = 991.
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Given positive integer n,
can compute 2232792560 _ 1 mod

using 41 operations in Z/n.
Notation: amodb=a — b|a/b|.

e.g. n =38b597231219: ...
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— 935663516;
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Easy extra computation (Euclid):
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This p — 1 method (1974 Pollard)
quickly factored n = 8597231219.
Main work: 27 squarings mod n.

Could instead have checked
n's divisibility by 2, 3,5, .. ..
The 167th trial division
would have found divisor 991.

Not clear which method Is better.
Dividing by small p

is faster than squaring mod n.
The p— 1 method finds

only 70 of the primes <1000;
trial division finds all 168 primes.
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This p — 1 method (1974 Pollard)
quickly factored n = 85972312109.
Main work: 27 squarings mod n.

Could instead have checked
n's divisibility by 2, 3,5, .. ..
The 167th trial division
would have found divisor 991.

Not clear which method is better.
Dividing by small p

is faster than squaring mod n.
The p—1 method finds

only 70 of the primes <1000:;
trial division finds all 168 primes.

34

Scale up to larger exponent
s=1cm{1,2,3,4,..., 100}
using 136 squarings mod n

find 2317 of the primes <1C

Is a squaring mod n
faster than 17 trial divisions

Or s =1cm{1,2,3,4,..., 10
using 1438 squarings mod n
find 180121 of the primes <

Is a squaring mod n
faster than 125 trial division

Extra benefit:
no need to store the primes.



This p — 1 method (1974 Pollard)
quickly factored n = 8597231219.
Main work: 27 squarings mod n.

Could instead have checked
n's divisibility by 2, 3,5, .. ..
The 167th trial division
would have found divisor 991.

Not clear which method is better.
Dividing by small p

is faster than squaring mod n.
The p— 1 method finds

only 70 of the primes <1000;
trial division finds all 168 primes.
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Scale up to larger exponent
s =1cm{1,2,3,4,..., 100}:
using 136 squarings mod n
find 2317 of the primes <10°.

Is a squaring mod n
faster than 17 trial divisions?

Ors=1Icm{1,2,3,4,..., 1000}:

using 1438 squarings mod n

find 180121 of the primes <10

Is a squaring mod n
faster than 125 trial divisions?

Extra benefit:
no need to store the primes.

35
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Scale up to larger exponent
s =1cm{1,2,3,4,..., 100}:
using 136 squarings mod n
find 2317 of the primes <10°.

Is a squaring mod n
faster than 17 trial divisions?

Ors=1Icm{1,2,3,4,..., 1000}:

using 1438 squarings mod n

find 180121 of the primes <10

Is a squaring mod n
faster than 125 trial divisions?

Extra benefit:
no need to store the primes.
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Scale up to larger exponent
s=1cm{1,2,3,4,..., 100}
using 136 squarings mod n
find 2317 of the primes <10°.

Is a squaring mod n
faster than 17 trial divisions?

Ors=1cm{1,2,3,4,..., 1000}:

using 1438 squarings mod n

find 180121 of the primes <10".

Is a squaring mod n
faster than 125 trial divisions?

Extra benefit:
no need to store the primes.
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Scale up to larger exponent
s =1cm{1,2,3,4,..., 100}:
using 136 squarings mod n
find 2317 of the primes <10°.

Is a squaring mod n
faster than 17 trial divisions?

Ors=1Icm{1,2,3,4,..., 1000}:

using 1438 squarings mod n

find 180121 of the primes <10

Is a squaring mod n
faster than 125 trial divisions?

Extra benefit:
no need to store the primes.
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