
1

Public-key cryptography

Daniel J. Bernstein

Tanja Lange

Part II:

Factorization

15 August 2017

Sage scripts for some algorithms,

joint work with Heninger:

facthacks.cr.yp.to

2

Q sieve

Sieving small integers i > 0

using primes 2; 3; 5; 7:

1
2 2
3 3
4 2 2
5 5
6 2 3
7 7
8 2 2 2
9 3 3

10 2 5
11
12 2 2 3
13
14 2 7
15 3 5
16 2 2 2 2
17
18 2 3 3
19
20 2 2 5

etc.

1

Public-key cryptography

Daniel J. Bernstein

Tanja Lange

Part II:

Factorization

15 August 2017

Sage scripts for some algorithms,

joint work with Heninger:

facthacks.cr.yp.to

2

Q sieve

Sieving i and 611 + i for small i

using primes 2; 3; 5; 7:

1
2 2
3 3
4 2 2
5 5
6 2 3
7 7
8 2 2 2
9 3 3

10 2 5
11
12 2 2 3
13
14 2 7
15 3 5
16 2 2 2 2
17
18 2 3 3
19
20 2 2 5

612 2 2 3 3
613
614 2
615 3 5
616 2 2 2 7
617
618 2 3
619
620 2 2 5
621 3 3 3
622 2
623 7
624 2 2 2 2 3
625 5 5 5 5
626 2
627 3
628 2 2
629
630 2 3 3 5 7
631

etc.

1

Public-key cryptography

Daniel J. Bernstein

Tanja Lange

Part II:

Factorization

15 August 2017

Sage scripts for some algorithms,

joint work with Heninger:

facthacks.cr.yp.to

2

Q sieve

Sieving i and 611 + i for small i

using primes 2; 3; 5; 7:

1
2 2
3 3
4 2 2
5 5
6 2 3
7 7
8 2 2 2
9 3 3

10 2 5
11
12 2 2 3
13
14 2 7
15 3 5
16 2 2 2 2
17
18 2 3 3
19
20 2 2 5

612 2 2 3 3
613
614 2
615 3 5
616 2 2 2 7
617
618 2 3
619
620 2 2 5
621 3 3 3
622 2
623 7
624 2 2 2 2 3
625 5 5 5 5
626 2
627 3
628 2 2
629
630 2 3 3 5 7
631

etc.

3

Have complete factorization of

the “congruences” i(611 + i)

for some i’s.

14 · 625 = 21305471.

64 · 675 = 26335270.

75 · 686 = 21315273.

14 · 64 · 75 · 625 · 675 · 686

= 28345874 = (24325472)2.

gcd
˘

611; 14 · 64 · 75− 24325472
¯

= 47.

611 = 47 · 13.

1

Public-key cryptography

Daniel J. Bernstein

Tanja Lange

Part II:

Factorization

15 August 2017

Sage scripts for some algorithms,

joint work with Heninger:

facthacks.cr.yp.to

2

Q sieve

Sieving i and 611 + i for small i

using primes 2; 3; 5; 7:

1
2 2
3 3
4 2 2
5 5
6 2 3
7 7
8 2 2 2
9 3 3

10 2 5
11
12 2 2 3
13
14 2 7
15 3 5
16 2 2 2 2
17
18 2 3 3
19
20 2 2 5

612 2 2 3 3
613
614 2
615 3 5
616 2 2 2 7
617
618 2 3
619
620 2 2 5
621 3 3 3
622 2
623 7
624 2 2 2 2 3
625 5 5 5 5
626 2
627 3
628 2 2
629
630 2 3 3 5 7
631

etc.

3

Have complete factorization of

the “congruences” i(611 + i)

for some i’s.

14 · 625 = 21305471.

64 · 675 = 26335270.

75 · 686 = 21315273.

14 · 64 · 75 · 625 · 675 · 686

= 28345874 = (24325472)2.

gcd
˘

611; 14 · 64 · 75− 24325472
¯

= 47.

611 = 47 · 13.

1

Public-key cryptography

Daniel J. Bernstein

Tanja Lange

Part II:

Factorization

15 August 2017

Sage scripts for some algorithms,

joint work with Heninger:

facthacks.cr.yp.to

2

Q sieve

Sieving i and 611 + i for small i

using primes 2; 3; 5; 7:

1
2 2
3 3
4 2 2
5 5
6 2 3
7 7
8 2 2 2
9 3 3

10 2 5
11
12 2 2 3
13
14 2 7
15 3 5
16 2 2 2 2
17
18 2 3 3
19
20 2 2 5

612 2 2 3 3
613
614 2
615 3 5
616 2 2 2 7
617
618 2 3
619
620 2 2 5
621 3 3 3
622 2
623 7
624 2 2 2 2 3
625 5 5 5 5
626 2
627 3
628 2 2
629
630 2 3 3 5 7
631

etc.

3

Have complete factorization of

the “congruences” i(611 + i)

for some i’s.

14 · 625 = 21305471.

64 · 675 = 26335270.

75 · 686 = 21315273.

14 · 64 · 75 · 625 · 675 · 686

= 28345874 = (24325472)2.

gcd
˘

611; 14 · 64 · 75− 24325472
¯

= 47.

611 = 47 · 13.

2

Q sieve

Sieving i and 611 + i for small i

using primes 2; 3; 5; 7:

1
2 2
3 3
4 2 2
5 5
6 2 3
7 7
8 2 2 2
9 3 3

10 2 5
11
12 2 2 3
13
14 2 7
15 3 5
16 2 2 2 2
17
18 2 3 3
19
20 2 2 5

612 2 2 3 3
613
614 2
615 3 5
616 2 2 2 7
617
618 2 3
619
620 2 2 5
621 3 3 3
622 2
623 7
624 2 2 2 2 3
625 5 5 5 5
626 2
627 3
628 2 2
629
630 2 3 3 5 7
631

etc.

3

Have complete factorization of

the “congruences” i(611 + i)

for some i’s.

14 · 625 = 21305471.

64 · 675 = 26335270.

75 · 686 = 21315273.

14 · 64 · 75 · 625 · 675 · 686

= 28345874 = (24325472)2.

gcd
˘

611; 14 · 64 · 75− 24325472
¯

= 47.

611 = 47 · 13.

2

Q sieve

Sieving i and 611 + i for small i

using primes 2; 3; 5; 7:

1
2 2
3 3
4 2 2
5 5
6 2 3
7 7
8 2 2 2
9 3 3

10 2 5
11
12 2 2 3
13
14 2 7
15 3 5
16 2 2 2 2
17
18 2 3 3
19
20 2 2 5

612 2 2 3 3
613
614 2
615 3 5
616 2 2 2 7
617
618 2 3
619
620 2 2 5
621 3 3 3
622 2
623 7
624 2 2 2 2 3
625 5 5 5 5
626 2
627 3
628 2 2
629
630 2 3 3 5 7
631

etc.

3

Have complete factorization of

the “congruences” i(611 + i)

for some i’s.

14 · 625 = 21305471.

64 · 675 = 26335270.

75 · 686 = 21315273.

14 · 64 · 75 · 625 · 675 · 686

= 28345874 = (24325472)2.

gcd
˘

611; 14 · 64 · 75− 24325472
¯

= 47.

611 = 47 · 13.

4

Why did this find a factor of 611?

Was it just blind luck:

gcd{611; random} = 47?

2

Q sieve

Sieving i and 611 + i for small i

using primes 2; 3; 5; 7:

1
2 2
3 3
4 2 2
5 5
6 2 3
7 7
8 2 2 2
9 3 3

10 2 5
11
12 2 2 3
13
14 2 7
15 3 5
16 2 2 2 2
17
18 2 3 3
19
20 2 2 5

612 2 2 3 3
613
614 2
615 3 5
616 2 2 2 7
617
618 2 3
619
620 2 2 5
621 3 3 3
622 2
623 7
624 2 2 2 2 3
625 5 5 5 5
626 2
627 3
628 2 2
629
630 2 3 3 5 7
631

etc.

3

Have complete factorization of

the “congruences” i(611 + i)

for some i’s.

14 · 625 = 21305471.

64 · 675 = 26335270.

75 · 686 = 21315273.

14 · 64 · 75 · 625 · 675 · 686

= 28345874 = (24325472)2.

gcd
˘

611; 14 · 64 · 75− 24325472
¯

= 47.

611 = 47 · 13.

4

Why did this find a factor of 611?

Was it just blind luck:

gcd{611; random} = 47?

2

Q sieve

Sieving i and 611 + i for small i

using primes 2; 3; 5; 7:

1
2 2
3 3
4 2 2
5 5
6 2 3
7 7
8 2 2 2
9 3 3

10 2 5
11
12 2 2 3
13
14 2 7
15 3 5
16 2 2 2 2
17
18 2 3 3
19
20 2 2 5

612 2 2 3 3
613
614 2
615 3 5
616 2 2 2 7
617
618 2 3
619
620 2 2 5
621 3 3 3
622 2
623 7
624 2 2 2 2 3
625 5 5 5 5
626 2
627 3
628 2 2
629
630 2 3 3 5 7
631

etc.

3

Have complete factorization of

the “congruences” i(611 + i)

for some i’s.

14 · 625 = 21305471.

64 · 675 = 26335270.

75 · 686 = 21315273.

14 · 64 · 75 · 625 · 675 · 686

= 28345874 = (24325472)2.

gcd
˘

611; 14 · 64 · 75− 24325472
¯

= 47.

611 = 47 · 13.

4

Why did this find a factor of 611?

Was it just blind luck:

gcd{611; random} = 47?

3

Have complete factorization of

the “congruences” i(611 + i)

for some i’s.

14 · 625 = 21305471.

64 · 675 = 26335270.

75 · 686 = 21315273.

14 · 64 · 75 · 625 · 675 · 686

= 28345874 = (24325472)2.

gcd
˘

611; 14 · 64 · 75− 24325472
¯

= 47.

611 = 47 · 13.

4

Why did this find a factor of 611?

Was it just blind luck:

gcd{611; random} = 47?

3

Have complete factorization of

the “congruences” i(611 + i)

for some i’s.

14 · 625 = 21305471.

64 · 675 = 26335270.

75 · 686 = 21315273.

14 · 64 · 75 · 625 · 675 · 686

= 28345874 = (24325472)2.

gcd
˘

611; 14 · 64 · 75− 24325472
¯

= 47.

611 = 47 · 13.

4

Why did this find a factor of 611?

Was it just blind luck:

gcd{611; random} = 47?

No.

By construction 611 divides s2−t2

where s = 14 · 64 · 75

and t = 24325472.

So each prime > 7 dividing 611

divides either s− t or s+ t.

Not terribly surprising

(but not guaranteed in advance!)

that one prime divided s− t
and the other divided s+ t.

3

Have complete factorization of

the “congruences” i(611 + i)

for some i’s.

14 · 625 = 21305471.

64 · 675 = 26335270.

75 · 686 = 21315273.

14 · 64 · 75 · 625 · 675 · 686

= 28345874 = (24325472)2.

gcd
˘

611; 14 · 64 · 75− 24325472
¯

= 47.

611 = 47 · 13.

4

Why did this find a factor of 611?

Was it just blind luck:

gcd{611; random} = 47?

No.

By construction 611 divides s2−t2

where s = 14 · 64 · 75

and t = 24325472.

So each prime > 7 dividing 611

divides either s− t or s+ t.

Not terribly surprising

(but not guaranteed in advance!)

that one prime divided s− t
and the other divided s+ t.

5

Why did the first three

completely factored congruences

have square product?

Was it just blind luck?

3

Have complete factorization of

the “congruences” i(611 + i)

for some i’s.

14 · 625 = 21305471.

64 · 675 = 26335270.

75 · 686 = 21315273.

14 · 64 · 75 · 625 · 675 · 686

= 28345874 = (24325472)2.

gcd
˘

611; 14 · 64 · 75− 24325472
¯

= 47.

611 = 47 · 13.

4

Why did this find a factor of 611?

Was it just blind luck:

gcd{611; random} = 47?

No.

By construction 611 divides s2−t2

where s = 14 · 64 · 75

and t = 24325472.

So each prime > 7 dividing 611

divides either s− t or s+ t.

Not terribly surprising

(but not guaranteed in advance!)

that one prime divided s− t
and the other divided s+ t.

5

Why did the first three

completely factored congruences

have square product?

Was it just blind luck?

3

Have complete factorization of

the “congruences” i(611 + i)

for some i’s.

14 · 625 = 21305471.

64 · 675 = 26335270.

75 · 686 = 21315273.

14 · 64 · 75 · 625 · 675 · 686

= 28345874 = (24325472)2.

gcd
˘

611; 14 · 64 · 75− 24325472
¯

= 47.

611 = 47 · 13.

4

Why did this find a factor of 611?

Was it just blind luck:

gcd{611; random} = 47?

No.

By construction 611 divides s2−t2

where s = 14 · 64 · 75

and t = 24325472.

So each prime > 7 dividing 611

divides either s− t or s+ t.

Not terribly surprising

(but not guaranteed in advance!)

that one prime divided s− t
and the other divided s+ t.

5

Why did the first three

completely factored congruences

have square product?

Was it just blind luck?

4

Why did this find a factor of 611?

Was it just blind luck:

gcd{611; random} = 47?

No.

By construction 611 divides s2−t2

where s = 14 · 64 · 75

and t = 24325472.

So each prime > 7 dividing 611

divides either s− t or s+ t.

Not terribly surprising

(but not guaranteed in advance!)

that one prime divided s− t
and the other divided s+ t.

5

Why did the first three

completely factored congruences

have square product?

Was it just blind luck?

4

Why did this find a factor of 611?

Was it just blind luck:

gcd{611; random} = 47?

No.

By construction 611 divides s2−t2

where s = 14 · 64 · 75

and t = 24325472.

So each prime > 7 dividing 611

divides either s− t or s+ t.

Not terribly surprising

(but not guaranteed in advance!)

that one prime divided s− t
and the other divided s+ t.

5

Why did the first three

completely factored congruences

have square product?

Was it just blind luck?

Yes. The exponent vectors

(1; 0; 4; 1); (6; 3; 2; 0); (1; 1; 2; 3)

happened to have sum 0 mod 2.

4

Why did this find a factor of 611?

Was it just blind luck:

gcd{611; random} = 47?

No.

By construction 611 divides s2−t2

where s = 14 · 64 · 75

and t = 24325472.

So each prime > 7 dividing 611

divides either s− t or s+ t.

Not terribly surprising

(but not guaranteed in advance!)

that one prime divided s− t
and the other divided s+ t.

5

Why did the first three

completely factored congruences

have square product?

Was it just blind luck?

Yes. The exponent vectors

(1; 0; 4; 1); (6; 3; 2; 0); (1; 1; 2; 3)

happened to have sum 0 mod 2.

But we didn’t need this luck!

Given long sequence of vectors,

easily find nonempty subsequence

with sum 0 mod 2.

4

Why did this find a factor of 611?

Was it just blind luck:

gcd{611; random} = 47?

No.

By construction 611 divides s2−t2

where s = 14 · 64 · 75

and t = 24325472.

So each prime > 7 dividing 611

divides either s− t or s+ t.

Not terribly surprising

(but not guaranteed in advance!)

that one prime divided s− t
and the other divided s+ t.

5

Why did the first three

completely factored congruences

have square product?

Was it just blind luck?

Yes. The exponent vectors

(1; 0; 4; 1); (6; 3; 2; 0); (1; 1; 2; 3)

happened to have sum 0 mod 2.

But we didn’t need this luck!

Given long sequence of vectors,

easily find nonempty subsequence

with sum 0 mod 2.

6

This is linear algebra over F2.

Guaranteed to find subsequence

if number of vectors

exceeds length of each vector.

e.g. for n = 671:

1(n+ 1) = 25315071;

4(n+ 4) = 22335270;

15(n+ 15) = 21315173;

49(n+ 49) = 24325172;

64(n+ 64) = 26315172.

F2-kernel of exponent matrix is

gen by (0 1 0 1 1) and (1 0 1 1 0);

e.g., 1(n+ 1)15(n+ 15)49(n+ 49)

is a square.

4

Why did this find a factor of 611?

Was it just blind luck:

gcd{611; random} = 47?

No.

By construction 611 divides s2−t2

where s = 14 · 64 · 75

and t = 24325472.

So each prime > 7 dividing 611

divides either s− t or s+ t.

Not terribly surprising

(but not guaranteed in advance!)

that one prime divided s− t
and the other divided s+ t.

5

Why did the first three

completely factored congruences

have square product?

Was it just blind luck?

Yes. The exponent vectors

(1; 0; 4; 1); (6; 3; 2; 0); (1; 1; 2; 3)

happened to have sum 0 mod 2.

But we didn’t need this luck!

Given long sequence of vectors,

easily find nonempty subsequence

with sum 0 mod 2.

6

This is linear algebra over F2.

Guaranteed to find subsequence

if number of vectors

exceeds length of each vector.

e.g. for n = 671:

1(n+ 1) = 25315071;

4(n+ 4) = 22335270;

15(n+ 15) = 21315173;

49(n+ 49) = 24325172;

64(n+ 64) = 26315172.

F2-kernel of exponent matrix is

gen by (0 1 0 1 1) and (1 0 1 1 0);

e.g., 1(n+ 1)15(n+ 15)49(n+ 49)

is a square.

4

Why did this find a factor of 611?

Was it just blind luck:

gcd{611; random} = 47?

No.

By construction 611 divides s2−t2

where s = 14 · 64 · 75

and t = 24325472.

So each prime > 7 dividing 611

divides either s− t or s+ t.

Not terribly surprising

(but not guaranteed in advance!)

that one prime divided s− t
and the other divided s+ t.

5

Why did the first three

completely factored congruences

have square product?

Was it just blind luck?

Yes. The exponent vectors

(1; 0; 4; 1); (6; 3; 2; 0); (1; 1; 2; 3)

happened to have sum 0 mod 2.

But we didn’t need this luck!

Given long sequence of vectors,

easily find nonempty subsequence

with sum 0 mod 2.

6

This is linear algebra over F2.

Guaranteed to find subsequence

if number of vectors

exceeds length of each vector.

e.g. for n = 671:

1(n+ 1) = 25315071;

4(n+ 4) = 22335270;

15(n+ 15) = 21315173;

49(n+ 49) = 24325172;

64(n+ 64) = 26315172.

F2-kernel of exponent matrix is

gen by (0 1 0 1 1) and (1 0 1 1 0);

e.g., 1(n+ 1)15(n+ 15)49(n+ 49)

is a square.

5

Why did the first three

completely factored congruences

have square product?

Was it just blind luck?

Yes. The exponent vectors

(1; 0; 4; 1); (6; 3; 2; 0); (1; 1; 2; 3)

happened to have sum 0 mod 2.

But we didn’t need this luck!

Given long sequence of vectors,

easily find nonempty subsequence

with sum 0 mod 2.

6

This is linear algebra over F2.

Guaranteed to find subsequence

if number of vectors

exceeds length of each vector.

e.g. for n = 671:

1(n+ 1) = 25315071;

4(n+ 4) = 22335270;

15(n+ 15) = 21315173;

49(n+ 49) = 24325172;

64(n+ 64) = 26315172.

F2-kernel of exponent matrix is

gen by (0 1 0 1 1) and (1 0 1 1 0);

e.g., 1(n+ 1)15(n+ 15)49(n+ 49)

is a square.

5

Why did the first three

completely factored congruences

have square product?

Was it just blind luck?

Yes. The exponent vectors

(1; 0; 4; 1); (6; 3; 2; 0); (1; 1; 2; 3)

happened to have sum 0 mod 2.

But we didn’t need this luck!

Given long sequence of vectors,

easily find nonempty subsequence

with sum 0 mod 2.

6

This is linear algebra over F2.

Guaranteed to find subsequence

if number of vectors

exceeds length of each vector.

e.g. for n = 671:

1(n+ 1) = 25315071;

4(n+ 4) = 22335270;

15(n+ 15) = 21315173;

49(n+ 49) = 24325172;

64(n+ 64) = 26315172.

F2-kernel of exponent matrix is

gen by (0 1 0 1 1) and (1 0 1 1 0);

e.g., 1(n+ 1)15(n+ 15)49(n+ 49)

is a square.

7

Plausible conjecture: Q sieve can

separate the odd prime divisors

of any n, not just 611.

Given n and parameter y:

Try to completely factor i(n+ i)

for i ∈
˘

1; 2; 3; : : : ; y2
¯

into products of primes ≤y.

Look for nonempty set I of i’s

with i(n+ i) completely factored

and with
Q
i∈I
i(n+ i) square.

Compute gcd{n; s− t} where

s =
Q
i∈I
i and t =

rQ
i∈I
i(n+ i).

5

Why did the first three

completely factored congruences

have square product?

Was it just blind luck?

Yes. The exponent vectors

(1; 0; 4; 1); (6; 3; 2; 0); (1; 1; 2; 3)

happened to have sum 0 mod 2.

But we didn’t need this luck!

Given long sequence of vectors,

easily find nonempty subsequence

with sum 0 mod 2.

6

This is linear algebra over F2.

Guaranteed to find subsequence

if number of vectors

exceeds length of each vector.

e.g. for n = 671:

1(n+ 1) = 25315071;

4(n+ 4) = 22335270;

15(n+ 15) = 21315173;

49(n+ 49) = 24325172;

64(n+ 64) = 26315172.

F2-kernel of exponent matrix is

gen by (0 1 0 1 1) and (1 0 1 1 0);

e.g., 1(n+ 1)15(n+ 15)49(n+ 49)

is a square.

7

Plausible conjecture: Q sieve can

separate the odd prime divisors

of any n, not just 611.

Given n and parameter y:

Try to completely factor i(n+ i)

for i ∈
˘

1; 2; 3; : : : ; y2
¯

into products of primes ≤y.

Look for nonempty set I of i’s

with i(n+ i) completely factored

and with
Q
i∈I
i(n+ i) square.

Compute gcd{n; s− t} where

s =
Q
i∈I
i and t =

rQ
i∈I
i(n+ i).

5

Why did the first three

completely factored congruences

have square product?

Was it just blind luck?

Yes. The exponent vectors

(1; 0; 4; 1); (6; 3; 2; 0); (1; 1; 2; 3)

happened to have sum 0 mod 2.

But we didn’t need this luck!

Given long sequence of vectors,

easily find nonempty subsequence

with sum 0 mod 2.

6

This is linear algebra over F2.

Guaranteed to find subsequence

if number of vectors

exceeds length of each vector.

e.g. for n = 671:

1(n+ 1) = 25315071;

4(n+ 4) = 22335270;

15(n+ 15) = 21315173;

49(n+ 49) = 24325172;

64(n+ 64) = 26315172.

F2-kernel of exponent matrix is

gen by (0 1 0 1 1) and (1 0 1 1 0);

e.g., 1(n+ 1)15(n+ 15)49(n+ 49)

is a square.

7

Plausible conjecture: Q sieve can

separate the odd prime divisors

of any n, not just 611.

Given n and parameter y:

Try to completely factor i(n+ i)

for i ∈
˘

1; 2; 3; : : : ; y2
¯

into products of primes ≤y.

Look for nonempty set I of i’s

with i(n+ i) completely factored

and with
Q
i∈I
i(n+ i) square.

Compute gcd{n; s− t} where

s =
Q
i∈I
i and t =

rQ
i∈I
i(n+ i).

6

This is linear algebra over F2.

Guaranteed to find subsequence

if number of vectors

exceeds length of each vector.

e.g. for n = 671:

1(n+ 1) = 25315071;

4(n+ 4) = 22335270;

15(n+ 15) = 21315173;

49(n+ 49) = 24325172;

64(n+ 64) = 26315172.

F2-kernel of exponent matrix is

gen by (0 1 0 1 1) and (1 0 1 1 0);

e.g., 1(n+ 1)15(n+ 15)49(n+ 49)

is a square.

7

Plausible conjecture: Q sieve can

separate the odd prime divisors

of any n, not just 611.

Given n and parameter y:

Try to completely factor i(n+ i)

for i ∈
˘

1; 2; 3; : : : ; y2
¯

into products of primes ≤y.

Look for nonempty set I of i’s

with i(n+ i) completely factored

and with
Q
i∈I
i(n+ i) square.

Compute gcd{n; s− t} where

s =
Q
i∈I
i and t =

rQ
i∈I
i(n+ i).

6

This is linear algebra over F2.

Guaranteed to find subsequence

if number of vectors

exceeds length of each vector.

e.g. for n = 671:

1(n+ 1) = 25315071;

4(n+ 4) = 22335270;

15(n+ 15) = 21315173;

49(n+ 49) = 24325172;

64(n+ 64) = 26315172.

F2-kernel of exponent matrix is

gen by (0 1 0 1 1) and (1 0 1 1 0);

e.g., 1(n+ 1)15(n+ 15)49(n+ 49)

is a square.

7

Plausible conjecture: Q sieve can

separate the odd prime divisors

of any n, not just 611.

Given n and parameter y:

Try to completely factor i(n+ i)

for i ∈
˘

1; 2; 3; : : : ; y2
¯

into products of primes ≤y.

Look for nonempty set I of i’s

with i(n+ i) completely factored

and with
Q
i∈I
i(n+ i) square.

Compute gcd{n; s− t} where

s =
Q
i∈I
i and t =

rQ
i∈I
i(n+ i).

8

How large does y have to be

for this to find a square?

Uniform random integer in [1; n]

has n1=u-smoothness chance

roughly u−u.

Plausible conjecture:

Q sieve succeeds

with y = bn1=uc
for all n ≥ u(1+o(1))u2

;

here o(1) is as u→∞.

6

This is linear algebra over F2.

Guaranteed to find subsequence

if number of vectors

exceeds length of each vector.

e.g. for n = 671:

1(n+ 1) = 25315071;

4(n+ 4) = 22335270;

15(n+ 15) = 21315173;

49(n+ 49) = 24325172;

64(n+ 64) = 26315172.

F2-kernel of exponent matrix is

gen by (0 1 0 1 1) and (1 0 1 1 0);

e.g., 1(n+ 1)15(n+ 15)49(n+ 49)

is a square.

7

Plausible conjecture: Q sieve can

separate the odd prime divisors

of any n, not just 611.

Given n and parameter y:

Try to completely factor i(n+ i)

for i ∈
˘

1; 2; 3; : : : ; y2
¯

into products of primes ≤y.

Look for nonempty set I of i’s

with i(n+ i) completely factored

and with
Q
i∈I
i(n+ i) square.

Compute gcd{n; s− t} where

s =
Q
i∈I
i and t =

rQ
i∈I
i(n+ i).

8

How large does y have to be

for this to find a square?

Uniform random integer in [1; n]

has n1=u-smoothness chance

roughly u−u.

Plausible conjecture:

Q sieve succeeds

with y = bn1=uc
for all n ≥ u(1+o(1))u2

;

here o(1) is as u→∞.

6

This is linear algebra over F2.

Guaranteed to find subsequence

if number of vectors

exceeds length of each vector.

e.g. for n = 671:

1(n+ 1) = 25315071;

4(n+ 4) = 22335270;

15(n+ 15) = 21315173;

49(n+ 49) = 24325172;

64(n+ 64) = 26315172.

F2-kernel of exponent matrix is

gen by (0 1 0 1 1) and (1 0 1 1 0);

e.g., 1(n+ 1)15(n+ 15)49(n+ 49)

is a square.

7

Plausible conjecture: Q sieve can

separate the odd prime divisors

of any n, not just 611.

Given n and parameter y:

Try to completely factor i(n+ i)

for i ∈
˘

1; 2; 3; : : : ; y2
¯

into products of primes ≤y.

Look for nonempty set I of i’s

with i(n+ i) completely factored

and with
Q
i∈I
i(n+ i) square.

Compute gcd{n; s− t} where

s =
Q
i∈I
i and t =

rQ
i∈I
i(n+ i).

8

How large does y have to be

for this to find a square?

Uniform random integer in [1; n]

has n1=u-smoothness chance

roughly u−u.

Plausible conjecture:

Q sieve succeeds

with y = bn1=uc
for all n ≥ u(1+o(1))u2

;

here o(1) is as u→∞.

7

Plausible conjecture: Q sieve can

separate the odd prime divisors

of any n, not just 611.

Given n and parameter y:

Try to completely factor i(n+ i)

for i ∈
˘

1; 2; 3; : : : ; y2
¯

into products of primes ≤y.

Look for nonempty set I of i’s

with i(n+ i) completely factored

and with
Q
i∈I
i(n+ i) square.

Compute gcd{n; s− t} where

s =
Q
i∈I
i and t =

rQ
i∈I
i(n+ i).

8

How large does y have to be

for this to find a square?

Uniform random integer in [1; n]

has n1=u-smoothness chance

roughly u−u.

Plausible conjecture:

Q sieve succeeds

with y = bn1=uc
for all n ≥ u(1+o(1))u2

;

here o(1) is as u→∞.

7

Plausible conjecture: Q sieve can

separate the odd prime divisors

of any n, not just 611.

Given n and parameter y:

Try to completely factor i(n+ i)

for i ∈
˘

1; 2; 3; : : : ; y2
¯

into products of primes ≤y.

Look for nonempty set I of i’s

with i(n+ i) completely factored

and with
Q
i∈I
i(n+ i) square.

Compute gcd{n; s− t} where

s =
Q
i∈I
i and t =

rQ
i∈I
i(n+ i).

8

How large does y have to be

for this to find a square?

Uniform random integer in [1; n]

has n1=u-smoothness chance

roughly u−u.

Plausible conjecture:

Q sieve succeeds

with y = bn1=uc
for all n ≥ u(1+o(1))u2

;

here o(1) is as u→∞.

9

More generally, if y ∈
exp

q`
1
2c + o(1)

´
logn log logn,

conjectured y-smoothness chance

is 1=yc+o(1).

Find enough smooth congruences

by changing the range of i’s:

replace y2 with yc+1+o(1) =

exp

r“
(c+1)2+o(1)

2c

”
logn log logn.

Increasing c past 1

increases number of i’s but

reduces linear-algebra cost.

So linear algebra never dominates

when y is chosen properly.

7

Plausible conjecture: Q sieve can

separate the odd prime divisors

of any n, not just 611.

Given n and parameter y:

Try to completely factor i(n+ i)

for i ∈
˘

1; 2; 3; : : : ; y2
¯

into products of primes ≤y.

Look for nonempty set I of i’s

with i(n+ i) completely factored

and with
Q
i∈I
i(n+ i) square.

Compute gcd{n; s− t} where

s =
Q
i∈I
i and t =

rQ
i∈I
i(n+ i).

8

How large does y have to be

for this to find a square?

Uniform random integer in [1; n]

has n1=u-smoothness chance

roughly u−u.

Plausible conjecture:

Q sieve succeeds

with y = bn1=uc
for all n ≥ u(1+o(1))u2

;

here o(1) is as u→∞.

9

More generally, if y ∈
exp

q`
1
2c + o(1)

´
logn log logn,

conjectured y-smoothness chance

is 1=yc+o(1).

Find enough smooth congruences

by changing the range of i’s:

replace y2 with yc+1+o(1) =

exp

r“
(c+1)2+o(1)

2c

”
logn log logn.

Increasing c past 1

increases number of i’s but

reduces linear-algebra cost.

So linear algebra never dominates

when y is chosen properly.

7

Plausible conjecture: Q sieve can

separate the odd prime divisors

of any n, not just 611.

Given n and parameter y:

Try to completely factor i(n+ i)

for i ∈
˘

1; 2; 3; : : : ; y2
¯

into products of primes ≤y.

Look for nonempty set I of i’s

with i(n+ i) completely factored

and with
Q
i∈I
i(n+ i) square.

Compute gcd{n; s− t} where

s =
Q
i∈I
i and t =

rQ
i∈I
i(n+ i).

8

How large does y have to be

for this to find a square?

Uniform random integer in [1; n]

has n1=u-smoothness chance

roughly u−u.

Plausible conjecture:

Q sieve succeeds

with y = bn1=uc
for all n ≥ u(1+o(1))u2

;

here o(1) is as u→∞.

9

More generally, if y ∈
exp

q`
1
2c + o(1)

´
logn log logn,

conjectured y-smoothness chance

is 1=yc+o(1).

Find enough smooth congruences

by changing the range of i’s:

replace y2 with yc+1+o(1) =

exp

r“
(c+1)2+o(1)

2c

”
logn log logn.

Increasing c past 1

increases number of i’s but

reduces linear-algebra cost.

So linear algebra never dominates

when y is chosen properly.

8

How large does y have to be

for this to find a square?

Uniform random integer in [1; n]

has n1=u-smoothness chance

roughly u−u.

Plausible conjecture:

Q sieve succeeds

with y = bn1=uc
for all n ≥ u(1+o(1))u2

;

here o(1) is as u→∞.

9

More generally, if y ∈
exp

q`
1
2c + o(1)

´
logn log logn,

conjectured y-smoothness chance

is 1=yc+o(1).

Find enough smooth congruences

by changing the range of i’s:

replace y2 with yc+1+o(1) =

exp

r“
(c+1)2+o(1)

2c

”
logn log logn.

Increasing c past 1

increases number of i’s but

reduces linear-algebra cost.

So linear algebra never dominates

when y is chosen properly.

8

How large does y have to be

for this to find a square?

Uniform random integer in [1; n]

has n1=u-smoothness chance

roughly u−u.

Plausible conjecture:

Q sieve succeeds

with y = bn1=uc
for all n ≥ u(1+o(1))u2

;

here o(1) is as u→∞.

9

More generally, if y ∈
exp

q`
1
2c + o(1)

´
logn log logn,

conjectured y-smoothness chance

is 1=yc+o(1).

Find enough smooth congruences

by changing the range of i’s:

replace y2 with yc+1+o(1) =

exp

r“
(c+1)2+o(1)

2c

”
logn log logn.

Increasing c past 1

increases number of i’s but

reduces linear-algebra cost.

So linear algebra never dominates

when y is chosen properly.

10

Improving smoothness chances

Smoothness chance of i(n+ i)

degrades as i grows.

Smaller for i ≈ y2 than for i ≈ y.

Crude analysis: i(n+ i) grows.

≈ yn if i ≈ y;

≈ y2n if i ≈ y2.

More careful analysis:

n+ i doesn’t degrade, but

i is always smooth for i ≤ y,

only 30% chance for i ≈ y2.

Can we select congruences

to avoid this degradation?

8

How large does y have to be

for this to find a square?

Uniform random integer in [1; n]

has n1=u-smoothness chance

roughly u−u.

Plausible conjecture:

Q sieve succeeds

with y = bn1=uc
for all n ≥ u(1+o(1))u2

;

here o(1) is as u→∞.

9

More generally, if y ∈
exp

q`
1
2c + o(1)

´
logn log logn,

conjectured y-smoothness chance

is 1=yc+o(1).

Find enough smooth congruences

by changing the range of i’s:

replace y2 with yc+1+o(1) =

exp

r“
(c+1)2+o(1)

2c

”
logn log logn.

Increasing c past 1

increases number of i’s but

reduces linear-algebra cost.

So linear algebra never dominates

when y is chosen properly.

10

Improving smoothness chances

Smoothness chance of i(n+ i)

degrades as i grows.

Smaller for i ≈ y2 than for i ≈ y.

Crude analysis: i(n+ i) grows.

≈ yn if i ≈ y;

≈ y2n if i ≈ y2.

More careful analysis:

n+ i doesn’t degrade, but

i is always smooth for i ≤ y,

only 30% chance for i ≈ y2.

Can we select congruences

to avoid this degradation?

8

How large does y have to be

for this to find a square?

Uniform random integer in [1; n]

has n1=u-smoothness chance

roughly u−u.

Plausible conjecture:

Q sieve succeeds

with y = bn1=uc
for all n ≥ u(1+o(1))u2

;

here o(1) is as u→∞.

9

More generally, if y ∈
exp

q`
1
2c + o(1)

´
logn log logn,

conjectured y-smoothness chance

is 1=yc+o(1).

Find enough smooth congruences

by changing the range of i’s:

replace y2 with yc+1+o(1) =

exp

r“
(c+1)2+o(1)

2c

”
logn log logn.

Increasing c past 1

increases number of i’s but

reduces linear-algebra cost.

So linear algebra never dominates

when y is chosen properly.

10

Improving smoothness chances

Smoothness chance of i(n+ i)

degrades as i grows.

Smaller for i ≈ y2 than for i ≈ y.

Crude analysis: i(n+ i) grows.

≈ yn if i ≈ y;

≈ y2n if i ≈ y2.

More careful analysis:

n+ i doesn’t degrade, but

i is always smooth for i ≤ y,

only 30% chance for i ≈ y2.

Can we select congruences

to avoid this degradation?

9

More generally, if y ∈
exp

q`
1
2c + o(1)

´
logn log logn,

conjectured y-smoothness chance

is 1=yc+o(1).

Find enough smooth congruences

by changing the range of i’s:

replace y2 with yc+1+o(1) =

exp

r“
(c+1)2+o(1)

2c

”
logn log logn.

Increasing c past 1

increases number of i’s but

reduces linear-algebra cost.

So linear algebra never dominates

when y is chosen properly.

10

Improving smoothness chances

Smoothness chance of i(n+ i)

degrades as i grows.

Smaller for i ≈ y2 than for i ≈ y.

Crude analysis: i(n+ i) grows.

≈ yn if i ≈ y;

≈ y2n if i ≈ y2.

More careful analysis:

n+ i doesn’t degrade, but

i is always smooth for i ≤ y,

only 30% chance for i ≈ y2.

Can we select congruences

to avoid this degradation?

9

More generally, if y ∈
exp

q`
1
2c + o(1)

´
logn log logn,

conjectured y-smoothness chance

is 1=yc+o(1).

Find enough smooth congruences

by changing the range of i’s:

replace y2 with yc+1+o(1) =

exp

r“
(c+1)2+o(1)

2c

”
logn log logn.

Increasing c past 1

increases number of i’s but

reduces linear-algebra cost.

So linear algebra never dominates

when y is chosen properly.

10

Improving smoothness chances

Smoothness chance of i(n+ i)

degrades as i grows.

Smaller for i ≈ y2 than for i ≈ y.

Crude analysis: i(n+ i) grows.

≈ yn if i ≈ y;

≈ y2n if i ≈ y2.

More careful analysis:

n+ i doesn’t degrade, but

i is always smooth for i ≤ y,

only 30% chance for i ≈ y2.

Can we select congruences

to avoid this degradation?

11

Choose q, square of large prime.

Choose a “q-sublattice” of i’s:

arithmetic progression of i’s

where q divides each i(n+ i).

e.g. progression q − (nmod q),

2q − (nmod q), 3q − (nmod q),

etc.

Check smoothness of

generalized congruence i(n+ i)=q

for i’s in this sublattice.

e.g. check whether i; (n+i)=q are

smooth for i = q − (nmod q) etc.

Try many large q’s.

Rare for i’s to overlap.

9

More generally, if y ∈
exp

q`
1
2c + o(1)

´
logn log logn,

conjectured y-smoothness chance

is 1=yc+o(1).

Find enough smooth congruences

by changing the range of i’s:

replace y2 with yc+1+o(1) =

exp

r“
(c+1)2+o(1)

2c

”
logn log logn.

Increasing c past 1

increases number of i’s but

reduces linear-algebra cost.

So linear algebra never dominates

when y is chosen properly.

10

Improving smoothness chances

Smoothness chance of i(n+ i)

degrades as i grows.

Smaller for i ≈ y2 than for i ≈ y.

Crude analysis: i(n+ i) grows.

≈ yn if i ≈ y;

≈ y2n if i ≈ y2.

More careful analysis:

n+ i doesn’t degrade, but

i is always smooth for i ≤ y,

only 30% chance for i ≈ y2.

Can we select congruences

to avoid this degradation?

11

Choose q, square of large prime.

Choose a “q-sublattice” of i’s:

arithmetic progression of i’s

where q divides each i(n+ i).

e.g. progression q − (nmod q),

2q − (nmod q), 3q − (nmod q),

etc.

Check smoothness of

generalized congruence i(n+ i)=q

for i’s in this sublattice.

e.g. check whether i; (n+i)=q are

smooth for i = q − (nmod q) etc.

Try many large q’s.

Rare for i’s to overlap.

9

More generally, if y ∈
exp

q`
1
2c + o(1)

´
logn log logn,

conjectured y-smoothness chance

is 1=yc+o(1).

Find enough smooth congruences

by changing the range of i’s:

replace y2 with yc+1+o(1) =

exp

r“
(c+1)2+o(1)

2c

”
logn log logn.

Increasing c past 1

increases number of i’s but

reduces linear-algebra cost.

So linear algebra never dominates

when y is chosen properly.

10

Improving smoothness chances

Smoothness chance of i(n+ i)

degrades as i grows.

Smaller for i ≈ y2 than for i ≈ y.

Crude analysis: i(n+ i) grows.

≈ yn if i ≈ y;

≈ y2n if i ≈ y2.

More careful analysis:

n+ i doesn’t degrade, but

i is always smooth for i ≤ y,

only 30% chance for i ≈ y2.

Can we select congruences

to avoid this degradation?

11

Choose q, square of large prime.

Choose a “q-sublattice” of i’s:

arithmetic progression of i’s

where q divides each i(n+ i).

e.g. progression q − (nmod q),

2q − (nmod q), 3q − (nmod q),

etc.

Check smoothness of

generalized congruence i(n+ i)=q

for i’s in this sublattice.

e.g. check whether i; (n+i)=q are

smooth for i = q − (nmod q) etc.

Try many large q’s.

Rare for i’s to overlap.

10

Improving smoothness chances

Smoothness chance of i(n+ i)

degrades as i grows.

Smaller for i ≈ y2 than for i ≈ y.

Crude analysis: i(n+ i) grows.

≈ yn if i ≈ y;

≈ y2n if i ≈ y2.

More careful analysis:

n+ i doesn’t degrade, but

i is always smooth for i ≤ y,

only 30% chance for i ≈ y2.

Can we select congruences

to avoid this degradation?

11

Choose q, square of large prime.

Choose a “q-sublattice” of i’s:

arithmetic progression of i’s

where q divides each i(n+ i).

e.g. progression q − (nmod q),

2q − (nmod q), 3q − (nmod q),

etc.

Check smoothness of

generalized congruence i(n+ i)=q

for i’s in this sublattice.

e.g. check whether i; (n+i)=q are

smooth for i = q − (nmod q) etc.

Try many large q’s.

Rare for i’s to overlap.

10

Improving smoothness chances

Smoothness chance of i(n+ i)

degrades as i grows.

Smaller for i ≈ y2 than for i ≈ y.

Crude analysis: i(n+ i) grows.

≈ yn if i ≈ y;

≈ y2n if i ≈ y2.

More careful analysis:

n+ i doesn’t degrade, but

i is always smooth for i ≤ y,

only 30% chance for i ≈ y2.

Can we select congruences

to avoid this degradation?

11

Choose q, square of large prime.

Choose a “q-sublattice” of i’s:

arithmetic progression of i’s

where q divides each i(n+ i).

e.g. progression q − (nmod q),

2q − (nmod q), 3q − (nmod q),

etc.

Check smoothness of

generalized congruence i(n+ i)=q

for i’s in this sublattice.

e.g. check whether i; (n+i)=q are

smooth for i = q − (nmod q) etc.

Try many large q’s.

Rare for i’s to overlap.

12

e.g. n = 314159265358979323:

Original Q sieve:

i n+ i

1 314159265358979324

2 314159265358979325

3 314159265358979326

Use 9972-sublattice,

i ∈ 802458 + 994009Z:

i (n+ i)=9972

802458 316052737309

1796467 316052737310

2790476 316052737311

10

Improving smoothness chances

Smoothness chance of i(n+ i)

degrades as i grows.

Smaller for i ≈ y2 than for i ≈ y.

Crude analysis: i(n+ i) grows.

≈ yn if i ≈ y;

≈ y2n if i ≈ y2.

More careful analysis:

n+ i doesn’t degrade, but

i is always smooth for i ≤ y,

only 30% chance for i ≈ y2.

Can we select congruences

to avoid this degradation?

11

Choose q, square of large prime.

Choose a “q-sublattice” of i’s:

arithmetic progression of i’s

where q divides each i(n+ i).

e.g. progression q − (nmod q),

2q − (nmod q), 3q − (nmod q),

etc.

Check smoothness of

generalized congruence i(n+ i)=q

for i’s in this sublattice.

e.g. check whether i; (n+i)=q are

smooth for i = q − (nmod q) etc.

Try many large q’s.

Rare for i’s to overlap.

12

e.g. n = 314159265358979323:

Original Q sieve:

i n+ i

1 314159265358979324

2 314159265358979325

3 314159265358979326

Use 9972-sublattice,

i ∈ 802458 + 994009Z:

i (n+ i)=9972

802458 316052737309

1796467 316052737310

2790476 316052737311

10

Improving smoothness chances

Smoothness chance of i(n+ i)

degrades as i grows.

Smaller for i ≈ y2 than for i ≈ y.

Crude analysis: i(n+ i) grows.

≈ yn if i ≈ y;

≈ y2n if i ≈ y2.

More careful analysis:

n+ i doesn’t degrade, but

i is always smooth for i ≤ y,

only 30% chance for i ≈ y2.

Can we select congruences

to avoid this degradation?

11

Choose q, square of large prime.

Choose a “q-sublattice” of i’s:

arithmetic progression of i’s

where q divides each i(n+ i).

e.g. progression q − (nmod q),

2q − (nmod q), 3q − (nmod q),

etc.

Check smoothness of

generalized congruence i(n+ i)=q

for i’s in this sublattice.

e.g. check whether i; (n+i)=q are

smooth for i = q − (nmod q) etc.

Try many large q’s.

Rare for i’s to overlap.

12

e.g. n = 314159265358979323:

Original Q sieve:

i n+ i

1 314159265358979324

2 314159265358979325

3 314159265358979326

Use 9972-sublattice,

i ∈ 802458 + 994009Z:

i (n+ i)=9972

802458 316052737309

1796467 316052737310

2790476 316052737311

11

Choose q, square of large prime.

Choose a “q-sublattice” of i’s:

arithmetic progression of i’s

where q divides each i(n+ i).

e.g. progression q − (nmod q),

2q − (nmod q), 3q − (nmod q),

etc.

Check smoothness of

generalized congruence i(n+ i)=q

for i’s in this sublattice.

e.g. check whether i; (n+i)=q are

smooth for i = q − (nmod q) etc.

Try many large q’s.

Rare for i’s to overlap.

12

e.g. n = 314159265358979323:

Original Q sieve:

i n+ i

1 314159265358979324

2 314159265358979325

3 314159265358979326

Use 9972-sublattice,

i ∈ 802458 + 994009Z:

i (n+ i)=9972

802458 316052737309

1796467 316052737310

2790476 316052737311

11

Choose q, square of large prime.

Choose a “q-sublattice” of i’s:

arithmetic progression of i’s

where q divides each i(n+ i).

e.g. progression q − (nmod q),

2q − (nmod q), 3q − (nmod q),

etc.

Check smoothness of

generalized congruence i(n+ i)=q

for i’s in this sublattice.

e.g. check whether i; (n+i)=q are

smooth for i = q − (nmod q) etc.

Try many large q’s.

Rare for i’s to overlap.

12

e.g. n = 314159265358979323:

Original Q sieve:

i n+ i

1 314159265358979324

2 314159265358979325

3 314159265358979326

Use 9972-sublattice,

i ∈ 802458 + 994009Z:

i (n+ i)=9972

802458 316052737309

1796467 316052737310

2790476 316052737311

13

Crude analysis: Sublattices

eliminate the growth problem.

Have practically unlimited supply

of generalized congruences

(q−(nmod q))
n+q−(nmod q)

q
between 0 and n.

More careful analysis: Sublattices

are even better than that!

For q ≈ n1=2 have

i ≈ (n+ i)=q ≈ n1=2 ≈ yu=2

so smoothness chance is roughly

(u=2)−u=2(u=2)−u=2 = 2u=uu,

2u times larger than before.

11

Choose q, square of large prime.

Choose a “q-sublattice” of i’s:

arithmetic progression of i’s

where q divides each i(n+ i).

e.g. progression q − (nmod q),

2q − (nmod q), 3q − (nmod q),

etc.

Check smoothness of

generalized congruence i(n+ i)=q

for i’s in this sublattice.

e.g. check whether i; (n+i)=q are

smooth for i = q − (nmod q) etc.

Try many large q’s.

Rare for i’s to overlap.

12

e.g. n = 314159265358979323:

Original Q sieve:

i n+ i

1 314159265358979324

2 314159265358979325

3 314159265358979326

Use 9972-sublattice,

i ∈ 802458 + 994009Z:

i (n+ i)=9972

802458 316052737309

1796467 316052737310

2790476 316052737311

13

Crude analysis: Sublattices

eliminate the growth problem.

Have practically unlimited supply

of generalized congruences

(q−(nmod q))
n+q−(nmod q)

q
between 0 and n.

More careful analysis: Sublattices

are even better than that!

For q ≈ n1=2 have

i ≈ (n+ i)=q ≈ n1=2 ≈ yu=2

so smoothness chance is roughly

(u=2)−u=2(u=2)−u=2 = 2u=uu,

2u times larger than before.

11

Choose q, square of large prime.

Choose a “q-sublattice” of i’s:

arithmetic progression of i’s

where q divides each i(n+ i).

e.g. progression q − (nmod q),

2q − (nmod q), 3q − (nmod q),

etc.

Check smoothness of

generalized congruence i(n+ i)=q

for i’s in this sublattice.

e.g. check whether i; (n+i)=q are

smooth for i = q − (nmod q) etc.

Try many large q’s.

Rare for i’s to overlap.

12

e.g. n = 314159265358979323:

Original Q sieve:

i n+ i

1 314159265358979324

2 314159265358979325

3 314159265358979326

Use 9972-sublattice,

i ∈ 802458 + 994009Z:

i (n+ i)=9972

802458 316052737309

1796467 316052737310

2790476 316052737311

13

Crude analysis: Sublattices

eliminate the growth problem.

Have practically unlimited supply

of generalized congruences

(q−(nmod q))
n+q−(nmod q)

q
between 0 and n.

More careful analysis: Sublattices

are even better than that!

For q ≈ n1=2 have

i ≈ (n+ i)=q ≈ n1=2 ≈ yu=2

so smoothness chance is roughly

(u=2)−u=2(u=2)−u=2 = 2u=uu,

2u times larger than before.

12

e.g. n = 314159265358979323:

Original Q sieve:

i n+ i

1 314159265358979324

2 314159265358979325

3 314159265358979326

Use 9972-sublattice,

i ∈ 802458 + 994009Z:

i (n+ i)=9972

802458 316052737309

1796467 316052737310

2790476 316052737311

13

Crude analysis: Sublattices

eliminate the growth problem.

Have practically unlimited supply

of generalized congruences

(q−(nmod q))
n+q−(nmod q)

q
between 0 and n.

More careful analysis: Sublattices

are even better than that!

For q ≈ n1=2 have

i ≈ (n+ i)=q ≈ n1=2 ≈ yu=2

so smoothness chance is roughly

(u=2)−u=2(u=2)−u=2 = 2u=uu,

2u times larger than before.

12

e.g. n = 314159265358979323:

Original Q sieve:

i n+ i

1 314159265358979324

2 314159265358979325

3 314159265358979326

Use 9972-sublattice,

i ∈ 802458 + 994009Z:

i (n+ i)=9972

802458 316052737309

1796467 316052737310

2790476 316052737311

13

Crude analysis: Sublattices

eliminate the growth problem.

Have practically unlimited supply

of generalized congruences

(q−(nmod q))
n+q−(nmod q)

q
between 0 and n.

More careful analysis: Sublattices

are even better than that!

For q ≈ n1=2 have

i ≈ (n+ i)=q ≈ n1=2 ≈ yu=2

so smoothness chance is roughly

(u=2)−u=2(u=2)−u=2 = 2u=uu,

2u times larger than before.

14

Even larger improvements

from changing polynomial i(n+i).

“Quadratic sieve” (QS) uses

i2 − n with i ≈
√
n;

have i2 − n ≈ n1=2+o(1),

much smaller than n.

12

e.g. n = 314159265358979323:

Original Q sieve:

i n+ i

1 314159265358979324

2 314159265358979325

3 314159265358979326

Use 9972-sublattice,

i ∈ 802458 + 994009Z:

i (n+ i)=9972

802458 316052737309

1796467 316052737310

2790476 316052737311

13

Crude analysis: Sublattices

eliminate the growth problem.

Have practically unlimited supply

of generalized congruences

(q−(nmod q))
n+q−(nmod q)

q
between 0 and n.

More careful analysis: Sublattices

are even better than that!

For q ≈ n1=2 have

i ≈ (n+ i)=q ≈ n1=2 ≈ yu=2

so smoothness chance is roughly

(u=2)−u=2(u=2)−u=2 = 2u=uu,

2u times larger than before.

14

Even larger improvements

from changing polynomial i(n+i).

“Quadratic sieve” (QS) uses

i2 − n with i ≈
√
n;

have i2 − n ≈ n1=2+o(1),

much smaller than n.

12

e.g. n = 314159265358979323:

Original Q sieve:

i n+ i

1 314159265358979324

2 314159265358979325

3 314159265358979326

Use 9972-sublattice,

i ∈ 802458 + 994009Z:

i (n+ i)=9972

802458 316052737309

1796467 316052737310

2790476 316052737311

13

Crude analysis: Sublattices

eliminate the growth problem.

Have practically unlimited supply

of generalized congruences

(q−(nmod q))
n+q−(nmod q)

q
between 0 and n.

More careful analysis: Sublattices

are even better than that!

For q ≈ n1=2 have

i ≈ (n+ i)=q ≈ n1=2 ≈ yu=2

so smoothness chance is roughly

(u=2)−u=2(u=2)−u=2 = 2u=uu,

2u times larger than before.

14

Even larger improvements

from changing polynomial i(n+i).

“Quadratic sieve” (QS) uses

i2 − n with i ≈
√
n;

have i2 − n ≈ n1=2+o(1),

much smaller than n.

13

Crude analysis: Sublattices

eliminate the growth problem.

Have practically unlimited supply

of generalized congruences

(q−(nmod q))
n+q−(nmod q)

q
between 0 and n.

More careful analysis: Sublattices

are even better than that!

For q ≈ n1=2 have

i ≈ (n+ i)=q ≈ n1=2 ≈ yu=2

so smoothness chance is roughly

(u=2)−u=2(u=2)−u=2 = 2u=uu,

2u times larger than before.

14

Even larger improvements

from changing polynomial i(n+i).

“Quadratic sieve” (QS) uses

i2 − n with i ≈
√
n;

have i2 − n ≈ n1=2+o(1),

much smaller than n.

13

Crude analysis: Sublattices

eliminate the growth problem.

Have practically unlimited supply

of generalized congruences

(q−(nmod q))
n+q−(nmod q)

q
between 0 and n.

More careful analysis: Sublattices

are even better than that!

For q ≈ n1=2 have

i ≈ (n+ i)=q ≈ n1=2 ≈ yu=2

so smoothness chance is roughly

(u=2)−u=2(u=2)−u=2 = 2u=uu,

2u times larger than before.

14

Even larger improvements

from changing polynomial i(n+i).

“Quadratic sieve” (QS) uses

i2 − n with i ≈
√
n;

have i2 − n ≈ n1=2+o(1),

much smaller than n.

“MPQS” improves o(1)

using sublattices: (i2 − n)=q.

But still ≈ n1=2.

13

Crude analysis: Sublattices

eliminate the growth problem.

Have practically unlimited supply

of generalized congruences

(q−(nmod q))
n+q−(nmod q)

q
between 0 and n.

More careful analysis: Sublattices

are even better than that!

For q ≈ n1=2 have

i ≈ (n+ i)=q ≈ n1=2 ≈ yu=2

so smoothness chance is roughly

(u=2)−u=2(u=2)−u=2 = 2u=uu,

2u times larger than before.

14

Even larger improvements

from changing polynomial i(n+i).

“Quadratic sieve” (QS) uses

i2 − n with i ≈
√
n;

have i2 − n ≈ n1=2+o(1),

much smaller than n.

“MPQS” improves o(1)

using sublattices: (i2 − n)=q.

But still ≈ n1=2.

“Number-field sieve” (NFS)

achieves no(1).

13

Crude analysis: Sublattices

eliminate the growth problem.

Have practically unlimited supply

of generalized congruences

(q−(nmod q))
n+q−(nmod q)

q
between 0 and n.

More careful analysis: Sublattices

are even better than that!

For q ≈ n1=2 have

i ≈ (n+ i)=q ≈ n1=2 ≈ yu=2

so smoothness chance is roughly

(u=2)−u=2(u=2)−u=2 = 2u=uu,

2u times larger than before.

14

Even larger improvements

from changing polynomial i(n+i).

“Quadratic sieve” (QS) uses

i2 − n with i ≈
√
n;

have i2 − n ≈ n1=2+o(1),

much smaller than n.

“MPQS” improves o(1)

using sublattices: (i2 − n)=q.

But still ≈ n1=2.

“Number-field sieve” (NFS)

achieves no(1).

15

Generalizing beyond Q

The Q sieve is a special case of

the number-field sieve.

Recall how the Q sieve

factors 611:

Form a square

as product of i(i+ 611j)

for several pairs (i; j):

14(625) · 64(675) · 75(686)

= 44100002.

gcd{611; 14 · 64 · 75− 4410000}
= 47.

13

Crude analysis: Sublattices

eliminate the growth problem.

Have practically unlimited supply

of generalized congruences

(q−(nmod q))
n+q−(nmod q)

q
between 0 and n.

More careful analysis: Sublattices

are even better than that!

For q ≈ n1=2 have

i ≈ (n+ i)=q ≈ n1=2 ≈ yu=2

so smoothness chance is roughly

(u=2)−u=2(u=2)−u=2 = 2u=uu,

2u times larger than before.

14

Even larger improvements

from changing polynomial i(n+i).

“Quadratic sieve” (QS) uses

i2 − n with i ≈
√
n;

have i2 − n ≈ n1=2+o(1),

much smaller than n.

“MPQS” improves o(1)

using sublattices: (i2 − n)=q.

But still ≈ n1=2.

“Number-field sieve” (NFS)

achieves no(1).

15

Generalizing beyond Q

The Q sieve is a special case of

the number-field sieve.

Recall how the Q sieve

factors 611:

Form a square

as product of i(i+ 611j)

for several pairs (i; j):

14(625) · 64(675) · 75(686)

= 44100002.

gcd{611; 14 · 64 · 75− 4410000}
= 47.

13

Crude analysis: Sublattices

eliminate the growth problem.

Have practically unlimited supply

of generalized congruences

(q−(nmod q))
n+q−(nmod q)

q
between 0 and n.

More careful analysis: Sublattices

are even better than that!

For q ≈ n1=2 have

i ≈ (n+ i)=q ≈ n1=2 ≈ yu=2

so smoothness chance is roughly

(u=2)−u=2(u=2)−u=2 = 2u=uu,

2u times larger than before.

14

Even larger improvements

from changing polynomial i(n+i).

“Quadratic sieve” (QS) uses

i2 − n with i ≈
√
n;

have i2 − n ≈ n1=2+o(1),

much smaller than n.

“MPQS” improves o(1)

using sublattices: (i2 − n)=q.

But still ≈ n1=2.

“Number-field sieve” (NFS)

achieves no(1).

15

Generalizing beyond Q

The Q sieve is a special case of

the number-field sieve.

Recall how the Q sieve

factors 611:

Form a square

as product of i(i+ 611j)

for several pairs (i; j):

14(625) · 64(675) · 75(686)

= 44100002.

gcd{611; 14 · 64 · 75− 4410000}
= 47.

14

Even larger improvements

from changing polynomial i(n+i).

“Quadratic sieve” (QS) uses

i2 − n with i ≈
√
n;

have i2 − n ≈ n1=2+o(1),

much smaller than n.

“MPQS” improves o(1)

using sublattices: (i2 − n)=q.

But still ≈ n1=2.

“Number-field sieve” (NFS)

achieves no(1).

15

Generalizing beyond Q

The Q sieve is a special case of

the number-field sieve.

Recall how the Q sieve

factors 611:

Form a square

as product of i(i+ 611j)

for several pairs (i; j):

14(625) · 64(675) · 75(686)

= 44100002.

gcd{611; 14 · 64 · 75− 4410000}
= 47.

14

Even larger improvements

from changing polynomial i(n+i).

“Quadratic sieve” (QS) uses

i2 − n with i ≈
√
n;

have i2 − n ≈ n1=2+o(1),

much smaller than n.

“MPQS” improves o(1)

using sublattices: (i2 − n)=q.

But still ≈ n1=2.

“Number-field sieve” (NFS)

achieves no(1).

15

Generalizing beyond Q

The Q sieve is a special case of

the number-field sieve.

Recall how the Q sieve

factors 611:

Form a square

as product of i(i+ 611j)

for several pairs (i; j):

14(625) · 64(675) · 75(686)

= 44100002.

gcd{611; 14 · 64 · 75− 4410000}
= 47.

16

The Q(
√

14) sieve

factors 611 as follows:

Form a square

as product of (i+ 25j)(i+
√

14j)

for several pairs (i; j):

(−11 + 3 · 25)(−11 + 3
√

14)

· (3 + 25)(3 +
√

14)

= (112− 16
√

14)2.

Compute

s = (−11 + 3 · 25) · (3 + 25),

t = 112− 16 · 25,

gcd{611; s− t} = 13.

14

Even larger improvements

from changing polynomial i(n+i).

“Quadratic sieve” (QS) uses

i2 − n with i ≈
√
n;

have i2 − n ≈ n1=2+o(1),

much smaller than n.

“MPQS” improves o(1)

using sublattices: (i2 − n)=q.

But still ≈ n1=2.

“Number-field sieve” (NFS)

achieves no(1).

15

Generalizing beyond Q

The Q sieve is a special case of

the number-field sieve.

Recall how the Q sieve

factors 611:

Form a square

as product of i(i+ 611j)

for several pairs (i; j):

14(625) · 64(675) · 75(686)

= 44100002.

gcd{611; 14 · 64 · 75− 4410000}
= 47.

16

The Q(
√

14) sieve

factors 611 as follows:

Form a square

as product of (i+ 25j)(i+
√

14j)

for several pairs (i; j):

(−11 + 3 · 25)(−11 + 3
√

14)

· (3 + 25)(3 +
√

14)

= (112− 16
√

14)2.

Compute

s = (−11 + 3 · 25) · (3 + 25),

t = 112− 16 · 25,

gcd{611; s− t} = 13.

14

Even larger improvements

from changing polynomial i(n+i).

“Quadratic sieve” (QS) uses

i2 − n with i ≈
√
n;

have i2 − n ≈ n1=2+o(1),

much smaller than n.

“MPQS” improves o(1)

using sublattices: (i2 − n)=q.

But still ≈ n1=2.

“Number-field sieve” (NFS)

achieves no(1).

15

Generalizing beyond Q

The Q sieve is a special case of

the number-field sieve.

Recall how the Q sieve

factors 611:

Form a square

as product of i(i+ 611j)

for several pairs (i; j):

14(625) · 64(675) · 75(686)

= 44100002.

gcd{611; 14 · 64 · 75− 4410000}
= 47.

16

The Q(
√

14) sieve

factors 611 as follows:

Form a square

as product of (i+ 25j)(i+
√

14j)

for several pairs (i; j):

(−11 + 3 · 25)(−11 + 3
√

14)

· (3 + 25)(3 +
√

14)

= (112− 16
√

14)2.

Compute

s = (−11 + 3 · 25) · (3 + 25),

t = 112− 16 · 25,

gcd{611; s− t} = 13.

15

Generalizing beyond Q

The Q sieve is a special case of

the number-field sieve.

Recall how the Q sieve

factors 611:

Form a square

as product of i(i+ 611j)

for several pairs (i; j):

14(625) · 64(675) · 75(686)

= 44100002.

gcd{611; 14 · 64 · 75− 4410000}
= 47.

16

The Q(
√

14) sieve

factors 611 as follows:

Form a square

as product of (i+ 25j)(i+
√

14j)

for several pairs (i; j):

(−11 + 3 · 25)(−11 + 3
√

14)

· (3 + 25)(3 +
√

14)

= (112− 16
√

14)2.

Compute

s = (−11 + 3 · 25) · (3 + 25),

t = 112− 16 · 25,

gcd{611; s− t} = 13.

15

Generalizing beyond Q

The Q sieve is a special case of

the number-field sieve.

Recall how the Q sieve

factors 611:

Form a square

as product of i(i+ 611j)

for several pairs (i; j):

14(625) · 64(675) · 75(686)

= 44100002.

gcd{611; 14 · 64 · 75− 4410000}
= 47.

16

The Q(
√

14) sieve

factors 611 as follows:

Form a square

as product of (i+ 25j)(i+
√

14j)

for several pairs (i; j):

(−11 + 3 · 25)(−11 + 3
√

14)

· (3 + 25)(3 +
√

14)

= (112− 16
√

14)2.

Compute

s = (−11 + 3 · 25) · (3 + 25),

t = 112− 16 · 25,

gcd{611; s− t} = 13.

17

Why does this work?

Answer: Have ring morphism

Z[
√

14]→ Z=611,
√

14 7→ 25,

since 252 = 14 in Z=611.

Apply ring morphism to square:

(−11 + 3 · 25)(−11 + 3 · 25)

· (3 + 25)(3 + 25)

= (112− 16 · 25)2 in Z=611.

i.e. s2 = t2 in Z=611.

Unsurprising to find factor.

15

Generalizing beyond Q

The Q sieve is a special case of

the number-field sieve.

Recall how the Q sieve

factors 611:

Form a square

as product of i(i+ 611j)

for several pairs (i; j):

14(625) · 64(675) · 75(686)

= 44100002.

gcd{611; 14 · 64 · 75− 4410000}
= 47.

16

The Q(
√

14) sieve

factors 611 as follows:

Form a square

as product of (i+ 25j)(i+
√

14j)

for several pairs (i; j):

(−11 + 3 · 25)(−11 + 3
√

14)

· (3 + 25)(3 +
√

14)

= (112− 16
√

14)2.

Compute

s = (−11 + 3 · 25) · (3 + 25),

t = 112− 16 · 25,

gcd{611; s− t} = 13.

17

Why does this work?

Answer: Have ring morphism

Z[
√

14]→ Z=611,
√

14 7→ 25,

since 252 = 14 in Z=611.

Apply ring morphism to square:

(−11 + 3 · 25)(−11 + 3 · 25)

· (3 + 25)(3 + 25)

= (112− 16 · 25)2 in Z=611.

i.e. s2 = t2 in Z=611.

Unsurprising to find factor.

15

Generalizing beyond Q

The Q sieve is a special case of

the number-field sieve.

Recall how the Q sieve

factors 611:

Form a square

as product of i(i+ 611j)

for several pairs (i; j):

14(625) · 64(675) · 75(686)

= 44100002.

gcd{611; 14 · 64 · 75− 4410000}
= 47.

16

The Q(
√

14) sieve

factors 611 as follows:

Form a square

as product of (i+ 25j)(i+
√

14j)

for several pairs (i; j):

(−11 + 3 · 25)(−11 + 3
√

14)

· (3 + 25)(3 +
√

14)

= (112− 16
√

14)2.

Compute

s = (−11 + 3 · 25) · (3 + 25),

t = 112− 16 · 25,

gcd{611; s− t} = 13.

17

Why does this work?

Answer: Have ring morphism

Z[
√

14]→ Z=611,
√

14 7→ 25,

since 252 = 14 in Z=611.

Apply ring morphism to square:

(−11 + 3 · 25)(−11 + 3 · 25)

· (3 + 25)(3 + 25)

= (112− 16 · 25)2 in Z=611.

i.e. s2 = t2 in Z=611.

Unsurprising to find factor.

16

The Q(
√

14) sieve

factors 611 as follows:

Form a square

as product of (i+ 25j)(i+
√

14j)

for several pairs (i; j):

(−11 + 3 · 25)(−11 + 3
√

14)

· (3 + 25)(3 +
√

14)

= (112− 16
√

14)2.

Compute

s = (−11 + 3 · 25) · (3 + 25),

t = 112− 16 · 25,

gcd{611; s− t} = 13.

17

Why does this work?

Answer: Have ring morphism

Z[
√

14]→ Z=611,
√

14 7→ 25,

since 252 = 14 in Z=611.

Apply ring morphism to square:

(−11 + 3 · 25)(−11 + 3 · 25)

· (3 + 25)(3 + 25)

= (112− 16 · 25)2 in Z=611.

i.e. s2 = t2 in Z=611.

Unsurprising to find factor.

16

The Q(
√

14) sieve

factors 611 as follows:

Form a square

as product of (i+ 25j)(i+
√

14j)

for several pairs (i; j):

(−11 + 3 · 25)(−11 + 3
√

14)

· (3 + 25)(3 +
√

14)

= (112− 16
√

14)2.

Compute

s = (−11 + 3 · 25) · (3 + 25),

t = 112− 16 · 25,

gcd{611; s− t} = 13.

17

Why does this work?

Answer: Have ring morphism

Z[
√

14]→ Z=611,
√

14 7→ 25,

since 252 = 14 in Z=611.

Apply ring morphism to square:

(−11 + 3 · 25)(−11 + 3 · 25)

· (3 + 25)(3 + 25)

= (112− 16 · 25)2 in Z=611.

i.e. s2 = t2 in Z=611.

Unsurprising to find factor.

18

Generalize from (x2 − 14; 25)

to (f;m) with irred f ∈ Z[x],

m ∈ Z, f(m) ∈ nZ.

Write d = deg f ,

f = fdx
d + · · ·+ f1x

1 + f0x
0.

Can take fd = 1 for simplicity,

but larger fd allows

better parameter selection.

Pick ¸ ∈ C, root of f .

Then fd¸ is a root of

monic g = fd−1
d f(x=fd) ∈ Z[x].

Q(¸)←O←Z[fd¸]
fd¸ 7→fdm−−−−−−−→Z=n

16

The Q(
√

14) sieve

factors 611 as follows:

Form a square

as product of (i+ 25j)(i+
√

14j)

for several pairs (i; j):

(−11 + 3 · 25)(−11 + 3
√

14)

· (3 + 25)(3 +
√

14)

= (112− 16
√

14)2.

Compute

s = (−11 + 3 · 25) · (3 + 25),

t = 112− 16 · 25,

gcd{611; s− t} = 13.

17

Why does this work?

Answer: Have ring morphism

Z[
√

14]→ Z=611,
√

14 7→ 25,

since 252 = 14 in Z=611.

Apply ring morphism to square:

(−11 + 3 · 25)(−11 + 3 · 25)

· (3 + 25)(3 + 25)

= (112− 16 · 25)2 in Z=611.

i.e. s2 = t2 in Z=611.

Unsurprising to find factor.

18

Generalize from (x2 − 14; 25)

to (f;m) with irred f ∈ Z[x],

m ∈ Z, f(m) ∈ nZ.

Write d = deg f ,

f = fdx
d + · · ·+ f1x

1 + f0x
0.

Can take fd = 1 for simplicity,

but larger fd allows

better parameter selection.

Pick ¸ ∈ C, root of f .

Then fd¸ is a root of

monic g = fd−1
d f(x=fd) ∈ Z[x].

Q(¸)←O←Z[fd¸]
fd¸ 7→fdm−−−−−−−→Z=n

16

The Q(
√

14) sieve

factors 611 as follows:

Form a square

as product of (i+ 25j)(i+
√

14j)

for several pairs (i; j):

(−11 + 3 · 25)(−11 + 3
√

14)

· (3 + 25)(3 +
√

14)

= (112− 16
√

14)2.

Compute

s = (−11 + 3 · 25) · (3 + 25),

t = 112− 16 · 25,

gcd{611; s− t} = 13.

17

Why does this work?

Answer: Have ring morphism

Z[
√

14]→ Z=611,
√

14 7→ 25,

since 252 = 14 in Z=611.

Apply ring morphism to square:

(−11 + 3 · 25)(−11 + 3 · 25)

· (3 + 25)(3 + 25)

= (112− 16 · 25)2 in Z=611.

i.e. s2 = t2 in Z=611.

Unsurprising to find factor.

18

Generalize from (x2 − 14; 25)

to (f;m) with irred f ∈ Z[x],

m ∈ Z, f(m) ∈ nZ.

Write d = deg f ,

f = fdx
d + · · ·+ f1x

1 + f0x
0.

Can take fd = 1 for simplicity,

but larger fd allows

better parameter selection.

Pick ¸ ∈ C, root of f .

Then fd¸ is a root of

monic g = fd−1
d f(x=fd) ∈ Z[x].

Q(¸)←O←Z[fd¸]
fd¸ 7→fdm−−−−−−−→Z=n

17

Why does this work?

Answer: Have ring morphism

Z[
√

14]→ Z=611,
√

14 7→ 25,

since 252 = 14 in Z=611.

Apply ring morphism to square:

(−11 + 3 · 25)(−11 + 3 · 25)

· (3 + 25)(3 + 25)

= (112− 16 · 25)2 in Z=611.

i.e. s2 = t2 in Z=611.

Unsurprising to find factor.

18

Generalize from (x2 − 14; 25)

to (f;m) with irred f ∈ Z[x],

m ∈ Z, f(m) ∈ nZ.

Write d = deg f ,

f = fdx
d + · · ·+ f1x

1 + f0x
0.

Can take fd = 1 for simplicity,

but larger fd allows

better parameter selection.

Pick ¸ ∈ C, root of f .

Then fd¸ is a root of

monic g = fd−1
d f(x=fd) ∈ Z[x].

Q(¸)←O←Z[fd¸]
fd¸ 7→fdm−−−−−−−→Z=n

17

Why does this work?

Answer: Have ring morphism

Z[
√

14]→ Z=611,
√

14 7→ 25,

since 252 = 14 in Z=611.

Apply ring morphism to square:

(−11 + 3 · 25)(−11 + 3 · 25)

· (3 + 25)(3 + 25)

= (112− 16 · 25)2 in Z=611.

i.e. s2 = t2 in Z=611.

Unsurprising to find factor.

18

Generalize from (x2 − 14; 25)

to (f;m) with irred f ∈ Z[x],

m ∈ Z, f(m) ∈ nZ.

Write d = deg f ,

f = fdx
d + · · ·+ f1x

1 + f0x
0.

Can take fd = 1 for simplicity,

but larger fd allows

better parameter selection.

Pick ¸ ∈ C, root of f .

Then fd¸ is a root of

monic g = fd−1
d f(x=fd) ∈ Z[x].

Q(¸)←O←Z[fd¸]
fd¸ 7→fdm−−−−−−−→Z=n

19

Build square in Q(¸) from

congruences (i− jm)(i− j¸)

with iZ + jZ = Z and j > 0.

Could replace i− jx by

higher-deg irred in Z[x];

quadratics seem fairly small

for some number fields.

But let’s not bother.

Say we have a squareQ
(i;j)∈S(i− jm)(i− j¸)

in Q(¸); now what?

17

Why does this work?

Answer: Have ring morphism

Z[
√

14]→ Z=611,
√

14 7→ 25,

since 252 = 14 in Z=611.

Apply ring morphism to square:

(−11 + 3 · 25)(−11 + 3 · 25)

· (3 + 25)(3 + 25)

= (112− 16 · 25)2 in Z=611.

i.e. s2 = t2 in Z=611.

Unsurprising to find factor.

18

Generalize from (x2 − 14; 25)

to (f;m) with irred f ∈ Z[x],

m ∈ Z, f(m) ∈ nZ.

Write d = deg f ,

f = fdx
d + · · ·+ f1x

1 + f0x
0.

Can take fd = 1 for simplicity,

but larger fd allows

better parameter selection.

Pick ¸ ∈ C, root of f .

Then fd¸ is a root of

monic g = fd−1
d f(x=fd) ∈ Z[x].

Q(¸)←O←Z[fd¸]
fd¸ 7→fdm−−−−−−−→Z=n

19

Build square in Q(¸) from

congruences (i− jm)(i− j¸)

with iZ + jZ = Z and j > 0.

Could replace i− jx by

higher-deg irred in Z[x];

quadratics seem fairly small

for some number fields.

But let’s not bother.

Say we have a squareQ
(i;j)∈S(i− jm)(i− j¸)

in Q(¸); now what?

17

Why does this work?

Answer: Have ring morphism

Z[
√

14]→ Z=611,
√

14 7→ 25,

since 252 = 14 in Z=611.

Apply ring morphism to square:

(−11 + 3 · 25)(−11 + 3 · 25)

· (3 + 25)(3 + 25)

= (112− 16 · 25)2 in Z=611.

i.e. s2 = t2 in Z=611.

Unsurprising to find factor.

18

Generalize from (x2 − 14; 25)

to (f;m) with irred f ∈ Z[x],

m ∈ Z, f(m) ∈ nZ.

Write d = deg f ,

f = fdx
d + · · ·+ f1x

1 + f0x
0.

Can take fd = 1 for simplicity,

but larger fd allows

better parameter selection.

Pick ¸ ∈ C, root of f .

Then fd¸ is a root of

monic g = fd−1
d f(x=fd) ∈ Z[x].

Q(¸)←O←Z[fd¸]
fd¸ 7→fdm−−−−−−−→Z=n

19

Build square in Q(¸) from

congruences (i− jm)(i− j¸)

with iZ + jZ = Z and j > 0.

Could replace i− jx by

higher-deg irred in Z[x];

quadratics seem fairly small

for some number fields.

But let’s not bother.

Say we have a squareQ
(i;j)∈S(i− jm)(i− j¸)

in Q(¸); now what?

18

Generalize from (x2 − 14; 25)

to (f;m) with irred f ∈ Z[x],

m ∈ Z, f(m) ∈ nZ.

Write d = deg f ,

f = fdx
d + · · ·+ f1x

1 + f0x
0.

Can take fd = 1 for simplicity,

but larger fd allows

better parameter selection.

Pick ¸ ∈ C, root of f .

Then fd¸ is a root of

monic g = fd−1
d f(x=fd) ∈ Z[x].

Q(¸)←O←Z[fd¸]
fd¸ 7→fdm−−−−−−−→Z=n

19

Build square in Q(¸) from

congruences (i− jm)(i− j¸)

with iZ + jZ = Z and j > 0.

Could replace i− jx by

higher-deg irred in Z[x];

quadratics seem fairly small

for some number fields.

But let’s not bother.

Say we have a squareQ
(i;j)∈S(i− jm)(i− j¸)

in Q(¸); now what?

18

Generalize from (x2 − 14; 25)

to (f;m) with irred f ∈ Z[x],

m ∈ Z, f(m) ∈ nZ.

Write d = deg f ,

f = fdx
d + · · ·+ f1x

1 + f0x
0.

Can take fd = 1 for simplicity,

but larger fd allows

better parameter selection.

Pick ¸ ∈ C, root of f .

Then fd¸ is a root of

monic g = fd−1
d f(x=fd) ∈ Z[x].

Q(¸)←O←Z[fd¸]
fd¸ 7→fdm−−−−−−−→Z=n

19

Build square in Q(¸) from

congruences (i− jm)(i− j¸)

with iZ + jZ = Z and j > 0.

Could replace i− jx by

higher-deg irred in Z[x];

quadratics seem fairly small

for some number fields.

But let’s not bother.

Say we have a squareQ
(i;j)∈S(i− jm)(i− j¸)

in Q(¸); now what?

20Q
(i− jm)(i− j¸)f2

d

is a square in O,

ring of integers of Q(¸).

Multiply by g′(fd¸)2,

putting square root into Z[fd¸]:

compute r with r2 = g′(fd¸)2·Q
(i− jm)(i− j¸)f2

d .

Then apply the ring morphism

’ : Z[fd¸]→ Z=n taking

fd¸ to fdm. Compute gcd{n;
’(r)− g′(fdm)

Q
(i− jm)fd}.

In Z=n have ’(r)2 =

g′(fdm)2Q(i− jm)2f2
d .

18

Generalize from (x2 − 14; 25)

to (f;m) with irred f ∈ Z[x],

m ∈ Z, f(m) ∈ nZ.

Write d = deg f ,

f = fdx
d + · · ·+ f1x

1 + f0x
0.

Can take fd = 1 for simplicity,

but larger fd allows

better parameter selection.

Pick ¸ ∈ C, root of f .

Then fd¸ is a root of

monic g = fd−1
d f(x=fd) ∈ Z[x].

Q(¸)←O←Z[fd¸]
fd¸ 7→fdm−−−−−−−→Z=n

19

Build square in Q(¸) from

congruences (i− jm)(i− j¸)

with iZ + jZ = Z and j > 0.

Could replace i− jx by

higher-deg irred in Z[x];

quadratics seem fairly small

for some number fields.

But let’s not bother.

Say we have a squareQ
(i;j)∈S(i− jm)(i− j¸)

in Q(¸); now what?

20Q
(i− jm)(i− j¸)f2

d

is a square in O,

ring of integers of Q(¸).

Multiply by g′(fd¸)2,

putting square root into Z[fd¸]:

compute r with r2 = g′(fd¸)2·Q
(i− jm)(i− j¸)f2

d .

Then apply the ring morphism

’ : Z[fd¸]→ Z=n taking

fd¸ to fdm. Compute gcd{n;
’(r)− g′(fdm)

Q
(i− jm)fd}.

In Z=n have ’(r)2 =

g′(fdm)2Q(i− jm)2f2
d .

18

Generalize from (x2 − 14; 25)

to (f;m) with irred f ∈ Z[x],

m ∈ Z, f(m) ∈ nZ.

Write d = deg f ,

f = fdx
d + · · ·+ f1x

1 + f0x
0.

Can take fd = 1 for simplicity,

but larger fd allows

better parameter selection.

Pick ¸ ∈ C, root of f .

Then fd¸ is a root of

monic g = fd−1
d f(x=fd) ∈ Z[x].

Q(¸)←O←Z[fd¸]
fd¸ 7→fdm−−−−−−−→Z=n

19

Build square in Q(¸) from

congruences (i− jm)(i− j¸)

with iZ + jZ = Z and j > 0.

Could replace i− jx by

higher-deg irred in Z[x];

quadratics seem fairly small

for some number fields.

But let’s not bother.

Say we have a squareQ
(i;j)∈S(i− jm)(i− j¸)

in Q(¸); now what?

20Q
(i− jm)(i− j¸)f2

d

is a square in O,

ring of integers of Q(¸).

Multiply by g′(fd¸)2,

putting square root into Z[fd¸]:

compute r with r2 = g′(fd¸)2·Q
(i− jm)(i− j¸)f2

d .

Then apply the ring morphism

’ : Z[fd¸]→ Z=n taking

fd¸ to fdm. Compute gcd{n;
’(r)− g′(fdm)

Q
(i− jm)fd}.

In Z=n have ’(r)2 =

g′(fdm)2Q(i− jm)2f2
d .

19

Build square in Q(¸) from

congruences (i− jm)(i− j¸)

with iZ + jZ = Z and j > 0.

Could replace i− jx by

higher-deg irred in Z[x];

quadratics seem fairly small

for some number fields.

But let’s not bother.

Say we have a squareQ
(i;j)∈S(i− jm)(i− j¸)

in Q(¸); now what?

20Q
(i− jm)(i− j¸)f2

d

is a square in O,

ring of integers of Q(¸).

Multiply by g′(fd¸)2,

putting square root into Z[fd¸]:

compute r with r2 = g′(fd¸)2·Q
(i− jm)(i− j¸)f2

d .

Then apply the ring morphism

’ : Z[fd¸]→ Z=n taking

fd¸ to fdm. Compute gcd{n;
’(r)− g′(fdm)

Q
(i− jm)fd}.

In Z=n have ’(r)2 =

g′(fdm)2Q(i− jm)2f2
d .

19

Build square in Q(¸) from

congruences (i− jm)(i− j¸)

with iZ + jZ = Z and j > 0.

Could replace i− jx by

higher-deg irred in Z[x];

quadratics seem fairly small

for some number fields.

But let’s not bother.

Say we have a squareQ
(i;j)∈S(i− jm)(i− j¸)

in Q(¸); now what?

20Q
(i− jm)(i− j¸)f2

d

is a square in O,

ring of integers of Q(¸).

Multiply by g′(fd¸)2,

putting square root into Z[fd¸]:

compute r with r2 = g′(fd¸)2·Q
(i− jm)(i− j¸)f2

d .

Then apply the ring morphism

’ : Z[fd¸]→ Z=n taking

fd¸ to fdm. Compute gcd{n;
’(r)− g′(fdm)

Q
(i− jm)fd}.

In Z=n have ’(r)2 =

g′(fdm)2Q(i− jm)2f2
d .

21

How to find square product

of congruences (i− jm)(i− j¸)?

Start with congruences for,

e.g., y2 pairs (i; j).

Look for y-smooth congruences:

y-smooth i− jm and

y-smooth fd norm(i− j¸) =

fdi
d + · · ·+ f0j

d = jdf(i=j).

Here “y-smooth” means

“has no prime divisor > y.”

Find enough smooth congruences.

Perform linear algebra on

exponent vectors mod 2.

19

Build square in Q(¸) from

congruences (i− jm)(i− j¸)

with iZ + jZ = Z and j > 0.

Could replace i− jx by

higher-deg irred in Z[x];

quadratics seem fairly small

for some number fields.

But let’s not bother.

Say we have a squareQ
(i;j)∈S(i− jm)(i− j¸)

in Q(¸); now what?

20Q
(i− jm)(i− j¸)f2

d

is a square in O,

ring of integers of Q(¸).

Multiply by g′(fd¸)2,

putting square root into Z[fd¸]:

compute r with r2 = g′(fd¸)2·Q
(i− jm)(i− j¸)f2

d .

Then apply the ring morphism

’ : Z[fd¸]→ Z=n taking

fd¸ to fdm. Compute gcd{n;
’(r)− g′(fdm)

Q
(i− jm)fd}.

In Z=n have ’(r)2 =

g′(fdm)2Q(i− jm)2f2
d .

21

How to find square product

of congruences (i− jm)(i− j¸)?

Start with congruences for,

e.g., y2 pairs (i; j).

Look for y-smooth congruences:

y-smooth i− jm and

y-smooth fd norm(i− j¸) =

fdi
d + · · ·+ f0j

d = jdf(i=j).

Here “y-smooth” means

“has no prime divisor > y.”

Find enough smooth congruences.

Perform linear algebra on

exponent vectors mod 2.

19

Build square in Q(¸) from

congruences (i− jm)(i− j¸)

with iZ + jZ = Z and j > 0.

Could replace i− jx by

higher-deg irred in Z[x];

quadratics seem fairly small

for some number fields.

But let’s not bother.

Say we have a squareQ
(i;j)∈S(i− jm)(i− j¸)

in Q(¸); now what?

20Q
(i− jm)(i− j¸)f2

d

is a square in O,

ring of integers of Q(¸).

Multiply by g′(fd¸)2,

putting square root into Z[fd¸]:

compute r with r2 = g′(fd¸)2·Q
(i− jm)(i− j¸)f2

d .

Then apply the ring morphism

’ : Z[fd¸]→ Z=n taking

fd¸ to fdm. Compute gcd{n;
’(r)− g′(fdm)

Q
(i− jm)fd}.

In Z=n have ’(r)2 =

g′(fdm)2Q(i− jm)2f2
d .

21

How to find square product

of congruences (i− jm)(i− j¸)?

Start with congruences for,

e.g., y2 pairs (i; j).

Look for y-smooth congruences:

y-smooth i− jm and

y-smooth fd norm(i− j¸) =

fdi
d + · · ·+ f0j

d = jdf(i=j).

Here “y-smooth” means

“has no prime divisor > y.”

Find enough smooth congruences.

Perform linear algebra on

exponent vectors mod 2.

20Q
(i− jm)(i− j¸)f2

d

is a square in O,

ring of integers of Q(¸).

Multiply by g′(fd¸)2,

putting square root into Z[fd¸]:

compute r with r2 = g′(fd¸)2·Q
(i− jm)(i− j¸)f2

d .

Then apply the ring morphism

’ : Z[fd¸]→ Z=n taking

fd¸ to fdm. Compute gcd{n;
’(r)− g′(fdm)

Q
(i− jm)fd}.

In Z=n have ’(r)2 =

g′(fdm)2Q(i− jm)2f2
d .

21

How to find square product

of congruences (i− jm)(i− j¸)?

Start with congruences for,

e.g., y2 pairs (i; j).

Look for y-smooth congruences:

y-smooth i− jm and

y-smooth fd norm(i− j¸) =

fdi
d + · · ·+ f0j

d = jdf(i=j).

Here “y-smooth” means

“has no prime divisor > y.”

Find enough smooth congruences.

Perform linear algebra on

exponent vectors mod 2.

20Q
(i− jm)(i− j¸)f2

d

is a square in O,

ring of integers of Q(¸).

Multiply by g′(fd¸)2,

putting square root into Z[fd¸]:

compute r with r2 = g′(fd¸)2·Q
(i− jm)(i− j¸)f2

d .

Then apply the ring morphism

’ : Z[fd¸]→ Z=n taking

fd¸ to fdm. Compute gcd{n;
’(r)− g′(fdm)

Q
(i− jm)fd}.

In Z=n have ’(r)2 =

g′(fdm)2Q(i− jm)2f2
d .

21

How to find square product

of congruences (i− jm)(i− j¸)?

Start with congruences for,

e.g., y2 pairs (i; j).

Look for y-smooth congruences:

y-smooth i− jm and

y-smooth fd norm(i− j¸) =

fdi
d + · · ·+ f0j

d = jdf(i=j).

Here “y-smooth” means

“has no prime divisor > y.”

Find enough smooth congruences.

Perform linear algebra on

exponent vectors mod 2.

22

Asymptotic cost exponents

Number of bit operations

in number-field sieve,

with theorists’ parameters,

is L1:90:::+o(1) where L =

exp((logn)1=3(log logn)2=3).

What are theorists’ parameters?

Choose degree d with

d=(logn)1=3(log logn)−1=3

∈ 1:40 : : :+ o(1).

20Q
(i− jm)(i− j¸)f2

d

is a square in O,

ring of integers of Q(¸).

Multiply by g′(fd¸)2,

putting square root into Z[fd¸]:

compute r with r2 = g′(fd¸)2·Q
(i− jm)(i− j¸)f2

d .

Then apply the ring morphism

’ : Z[fd¸]→ Z=n taking

fd¸ to fdm. Compute gcd{n;
’(r)− g′(fdm)

Q
(i− jm)fd}.

In Z=n have ’(r)2 =

g′(fdm)2Q(i− jm)2f2
d .

21

How to find square product

of congruences (i− jm)(i− j¸)?

Start with congruences for,

e.g., y2 pairs (i; j).

Look for y-smooth congruences:

y-smooth i− jm and

y-smooth fd norm(i− j¸) =

fdi
d + · · ·+ f0j

d = jdf(i=j).

Here “y-smooth” means

“has no prime divisor > y.”

Find enough smooth congruences.

Perform linear algebra on

exponent vectors mod 2.

22

Asymptotic cost exponents

Number of bit operations

in number-field sieve,

with theorists’ parameters,

is L1:90:::+o(1) where L =

exp((logn)1=3(log logn)2=3).

What are theorists’ parameters?

Choose degree d with

d=(logn)1=3(log logn)−1=3

∈ 1:40 : : :+ o(1).

20Q
(i− jm)(i− j¸)f2

d

is a square in O,

ring of integers of Q(¸).

Multiply by g′(fd¸)2,

putting square root into Z[fd¸]:

compute r with r2 = g′(fd¸)2·Q
(i− jm)(i− j¸)f2

d .

Then apply the ring morphism

’ : Z[fd¸]→ Z=n taking

fd¸ to fdm. Compute gcd{n;
’(r)− g′(fdm)

Q
(i− jm)fd}.

In Z=n have ’(r)2 =

g′(fdm)2Q(i− jm)2f2
d .

21

How to find square product

of congruences (i− jm)(i− j¸)?

Start with congruences for,

e.g., y2 pairs (i; j).

Look for y-smooth congruences:

y-smooth i− jm and

y-smooth fd norm(i− j¸) =

fdi
d + · · ·+ f0j

d = jdf(i=j).

Here “y-smooth” means

“has no prime divisor > y.”

Find enough smooth congruences.

Perform linear algebra on

exponent vectors mod 2.

22

Asymptotic cost exponents

Number of bit operations

in number-field sieve,

with theorists’ parameters,

is L1:90:::+o(1) where L =

exp((logn)1=3(log logn)2=3).

What are theorists’ parameters?

Choose degree d with

d=(logn)1=3(log logn)−1=3

∈ 1:40 : : :+ o(1).

21

How to find square product

of congruences (i− jm)(i− j¸)?

Start with congruences for,

e.g., y2 pairs (i; j).

Look for y-smooth congruences:

y-smooth i− jm and

y-smooth fd norm(i− j¸) =

fdi
d + · · ·+ f0j

d = jdf(i=j).

Here “y-smooth” means

“has no prime divisor > y.”

Find enough smooth congruences.

Perform linear algebra on

exponent vectors mod 2.

22

Asymptotic cost exponents

Number of bit operations

in number-field sieve,

with theorists’ parameters,

is L1:90:::+o(1) where L =

exp((logn)1=3(log logn)2=3).

What are theorists’ parameters?

Choose degree d with

d=(logn)1=3(log logn)−1=3

∈ 1:40 : : :+ o(1).

21

How to find square product

of congruences (i− jm)(i− j¸)?

Start with congruences for,

e.g., y2 pairs (i; j).

Look for y-smooth congruences:

y-smooth i− jm and

y-smooth fd norm(i− j¸) =

fdi
d + · · ·+ f0j

d = jdf(i=j).

Here “y-smooth” means

“has no prime divisor > y.”

Find enough smooth congruences.

Perform linear algebra on

exponent vectors mod 2.

22

Asymptotic cost exponents

Number of bit operations

in number-field sieve,

with theorists’ parameters,

is L1:90:::+o(1) where L =

exp((logn)1=3(log logn)2=3).

What are theorists’ parameters?

Choose degree d with

d=(logn)1=3(log logn)−1=3

∈ 1:40 : : :+ o(1).

23

Choose integer m ≈ n1=d.

Write n as

md + fd−1m
d−1 + · · ·+ f1m+ f0

with each fk below n(1+o(1))=d.

Choose f with some randomness

in case there are bad f ’s.

Test smoothness of i− jm
for all coprime pairs (i; j)

with 1 ≤ i; j ≤ L0:95:::+o(1),

using primes ≤L0:95:::+o(1).

L1:90:::+o(1) pairs.

Conjecturally L1:65:::+o(1)

smooth values of i− jm.

21

How to find square product

of congruences (i− jm)(i− j¸)?

Start with congruences for,

e.g., y2 pairs (i; j).

Look for y-smooth congruences:

y-smooth i− jm and

y-smooth fd norm(i− j¸) =

fdi
d + · · ·+ f0j

d = jdf(i=j).

Here “y-smooth” means

“has no prime divisor > y.”

Find enough smooth congruences.

Perform linear algebra on

exponent vectors mod 2.

22

Asymptotic cost exponents

Number of bit operations

in number-field sieve,

with theorists’ parameters,

is L1:90:::+o(1) where L =

exp((logn)1=3(log logn)2=3).

What are theorists’ parameters?

Choose degree d with

d=(logn)1=3(log logn)−1=3

∈ 1:40 : : :+ o(1).

23

Choose integer m ≈ n1=d.

Write n as

md + fd−1m
d−1 + · · ·+ f1m+ f0

with each fk below n(1+o(1))=d.

Choose f with some randomness

in case there are bad f ’s.

Test smoothness of i− jm
for all coprime pairs (i; j)

with 1 ≤ i; j ≤ L0:95:::+o(1),

using primes ≤L0:95:::+o(1).

L1:90:::+o(1) pairs.

Conjecturally L1:65:::+o(1)

smooth values of i− jm.

21

How to find square product

of congruences (i− jm)(i− j¸)?

Start with congruences for,

e.g., y2 pairs (i; j).

Look for y-smooth congruences:

y-smooth i− jm and

y-smooth fd norm(i− j¸) =

fdi
d + · · ·+ f0j

d = jdf(i=j).

Here “y-smooth” means

“has no prime divisor > y.”

Find enough smooth congruences.

Perform linear algebra on

exponent vectors mod 2.

22

Asymptotic cost exponents

Number of bit operations

in number-field sieve,

with theorists’ parameters,

is L1:90:::+o(1) where L =

exp((logn)1=3(log logn)2=3).

What are theorists’ parameters?

Choose degree d with

d=(logn)1=3(log logn)−1=3

∈ 1:40 : : :+ o(1).

23

Choose integer m ≈ n1=d.

Write n as

md + fd−1m
d−1 + · · ·+ f1m+ f0

with each fk below n(1+o(1))=d.

Choose f with some randomness

in case there are bad f ’s.

Test smoothness of i− jm
for all coprime pairs (i; j)

with 1 ≤ i; j ≤ L0:95:::+o(1),

using primes ≤L0:95:::+o(1).

L1:90:::+o(1) pairs.

Conjecturally L1:65:::+o(1)

smooth values of i− jm.

22

Asymptotic cost exponents

Number of bit operations

in number-field sieve,

with theorists’ parameters,

is L1:90:::+o(1) where L =

exp((logn)1=3(log logn)2=3).

What are theorists’ parameters?

Choose degree d with

d=(logn)1=3(log logn)−1=3

∈ 1:40 : : :+ o(1).

23

Choose integer m ≈ n1=d.

Write n as

md + fd−1m
d−1 + · · ·+ f1m+ f0

with each fk below n(1+o(1))=d.

Choose f with some randomness

in case there are bad f ’s.

Test smoothness of i− jm
for all coprime pairs (i; j)

with 1 ≤ i; j ≤ L0:95:::+o(1),

using primes ≤L0:95:::+o(1).

L1:90:::+o(1) pairs.

Conjecturally L1:65:::+o(1)

smooth values of i− jm.

22

Asymptotic cost exponents

Number of bit operations

in number-field sieve,

with theorists’ parameters,

is L1:90:::+o(1) where L =

exp((logn)1=3(log logn)2=3).

What are theorists’ parameters?

Choose degree d with

d=(logn)1=3(log logn)−1=3

∈ 1:40 : : :+ o(1).

23

Choose integer m ≈ n1=d.

Write n as

md + fd−1m
d−1 + · · ·+ f1m+ f0

with each fk below n(1+o(1))=d.

Choose f with some randomness

in case there are bad f ’s.

Test smoothness of i− jm
for all coprime pairs (i; j)

with 1 ≤ i; j ≤ L0:95:::+o(1),

using primes ≤L0:95:::+o(1).

L1:90:::+o(1) pairs.

Conjecturally L1:65:::+o(1)

smooth values of i− jm.

24

Use L0:12:::+o(1) number fields.

For each (i; j)

with smooth i− jm,

test smoothness of i− j¸
and i− j˛ and so on,

using primes ≤L0:82:::+o(1).

L1:77:::+o(1) tests.

Each |jdf(i=j)| ≤m2:86:::+o(1).

Conjecturally L0:95:::+o(1)

smooth congruences.

L0:95:::+o(1) components

in the exponent vectors.

22

Asymptotic cost exponents

Number of bit operations

in number-field sieve,

with theorists’ parameters,

is L1:90:::+o(1) where L =

exp((logn)1=3(log logn)2=3).

What are theorists’ parameters?

Choose degree d with

d=(logn)1=3(log logn)−1=3

∈ 1:40 : : :+ o(1).

23

Choose integer m ≈ n1=d.

Write n as

md + fd−1m
d−1 + · · ·+ f1m+ f0

with each fk below n(1+o(1))=d.

Choose f with some randomness

in case there are bad f ’s.

Test smoothness of i− jm
for all coprime pairs (i; j)

with 1 ≤ i; j ≤ L0:95:::+o(1),

using primes ≤L0:95:::+o(1).

L1:90:::+o(1) pairs.

Conjecturally L1:65:::+o(1)

smooth values of i− jm.

24

Use L0:12:::+o(1) number fields.

For each (i; j)

with smooth i− jm,

test smoothness of i− j¸
and i− j˛ and so on,

using primes ≤L0:82:::+o(1).

L1:77:::+o(1) tests.

Each |jdf(i=j)| ≤m2:86:::+o(1).

Conjecturally L0:95:::+o(1)

smooth congruences.

L0:95:::+o(1) components

in the exponent vectors.

22

Asymptotic cost exponents

Number of bit operations

in number-field sieve,

with theorists’ parameters,

is L1:90:::+o(1) where L =

exp((logn)1=3(log logn)2=3).

What are theorists’ parameters?

Choose degree d with

d=(logn)1=3(log logn)−1=3

∈ 1:40 : : :+ o(1).

23

Choose integer m ≈ n1=d.

Write n as

md + fd−1m
d−1 + · · ·+ f1m+ f0

with each fk below n(1+o(1))=d.

Choose f with some randomness

in case there are bad f ’s.

Test smoothness of i− jm
for all coprime pairs (i; j)

with 1 ≤ i; j ≤ L0:95:::+o(1),

using primes ≤L0:95:::+o(1).

L1:90:::+o(1) pairs.

Conjecturally L1:65:::+o(1)

smooth values of i− jm.

24

Use L0:12:::+o(1) number fields.

For each (i; j)

with smooth i− jm,

test smoothness of i− j¸
and i− j˛ and so on,

using primes ≤L0:82:::+o(1).

L1:77:::+o(1) tests.

Each |jdf(i=j)| ≤m2:86:::+o(1).

Conjecturally L0:95:::+o(1)

smooth congruences.

L0:95:::+o(1) components

in the exponent vectors.

23

Choose integer m ≈ n1=d.

Write n as

md + fd−1m
d−1 + · · ·+ f1m+ f0

with each fk below n(1+o(1))=d.

Choose f with some randomness

in case there are bad f ’s.

Test smoothness of i− jm
for all coprime pairs (i; j)

with 1 ≤ i; j ≤ L0:95:::+o(1),

using primes ≤L0:95:::+o(1).

L1:90:::+o(1) pairs.

Conjecturally L1:65:::+o(1)

smooth values of i− jm.

24

Use L0:12:::+o(1) number fields.

For each (i; j)

with smooth i− jm,

test smoothness of i− j¸
and i− j˛ and so on,

using primes ≤L0:82:::+o(1).

L1:77:::+o(1) tests.

Each |jdf(i=j)| ≤m2:86:::+o(1).

Conjecturally L0:95:::+o(1)

smooth congruences.

L0:95:::+o(1) components

in the exponent vectors.

23

Choose integer m ≈ n1=d.

Write n as

md + fd−1m
d−1 + · · ·+ f1m+ f0

with each fk below n(1+o(1))=d.

Choose f with some randomness

in case there are bad f ’s.

Test smoothness of i− jm
for all coprime pairs (i; j)

with 1 ≤ i; j ≤ L0:95:::+o(1),

using primes ≤L0:95:::+o(1).

L1:90:::+o(1) pairs.

Conjecturally L1:65:::+o(1)

smooth values of i− jm.

24

Use L0:12:::+o(1) number fields.

For each (i; j)

with smooth i− jm,

test smoothness of i− j¸
and i− j˛ and so on,

using primes ≤L0:82:::+o(1).

L1:77:::+o(1) tests.

Each |jdf(i=j)| ≤m2:86:::+o(1).

Conjecturally L0:95:::+o(1)

smooth congruences.

L0:95:::+o(1) components

in the exponent vectors.

25

Three sizes of numbers here:

(logn)1=3(log logn)2=3 bits:

y, i, j.

(logn)2=3(log logn)1=3 bits:

m, i− jm, jdf(i=j).

logn bits: n.

Unavoidably 1=3 in exponent:

usual smoothness optimization

forces (log y)2 ≈ logm;

balancing norms with m

forces d log y ≈ logm;

and d logm ≈ logn.

23

Choose integer m ≈ n1=d.

Write n as

md + fd−1m
d−1 + · · ·+ f1m+ f0

with each fk below n(1+o(1))=d.

Choose f with some randomness

in case there are bad f ’s.

Test smoothness of i− jm
for all coprime pairs (i; j)

with 1 ≤ i; j ≤ L0:95:::+o(1),

using primes ≤L0:95:::+o(1).

L1:90:::+o(1) pairs.

Conjecturally L1:65:::+o(1)

smooth values of i− jm.

24

Use L0:12:::+o(1) number fields.

For each (i; j)

with smooth i− jm,

test smoothness of i− j¸
and i− j˛ and so on,

using primes ≤L0:82:::+o(1).

L1:77:::+o(1) tests.

Each |jdf(i=j)| ≤m2:86:::+o(1).

Conjecturally L0:95:::+o(1)

smooth congruences.

L0:95:::+o(1) components

in the exponent vectors.

25

Three sizes of numbers here:

(logn)1=3(log logn)2=3 bits:

y, i, j.

(logn)2=3(log logn)1=3 bits:

m, i− jm, jdf(i=j).

logn bits: n.

Unavoidably 1=3 in exponent:

usual smoothness optimization

forces (log y)2 ≈ logm;

balancing norms with m

forces d log y ≈ logm;

and d logm ≈ logn.

23

Choose integer m ≈ n1=d.

Write n as

md + fd−1m
d−1 + · · ·+ f1m+ f0

with each fk below n(1+o(1))=d.

Choose f with some randomness

in case there are bad f ’s.

Test smoothness of i− jm
for all coprime pairs (i; j)

with 1 ≤ i; j ≤ L0:95:::+o(1),

using primes ≤L0:95:::+o(1).

L1:90:::+o(1) pairs.

Conjecturally L1:65:::+o(1)

smooth values of i− jm.

24

Use L0:12:::+o(1) number fields.

For each (i; j)

with smooth i− jm,

test smoothness of i− j¸
and i− j˛ and so on,

using primes ≤L0:82:::+o(1).

L1:77:::+o(1) tests.

Each |jdf(i=j)| ≤m2:86:::+o(1).

Conjecturally L0:95:::+o(1)

smooth congruences.

L0:95:::+o(1) components

in the exponent vectors.

25

Three sizes of numbers here:

(logn)1=3(log logn)2=3 bits:

y, i, j.

(logn)2=3(log logn)1=3 bits:

m, i− jm, jdf(i=j).

logn bits: n.

Unavoidably 1=3 in exponent:

usual smoothness optimization

forces (log y)2 ≈ logm;

balancing norms with m

forces d log y ≈ logm;

and d logm ≈ logn.

24

Use L0:12:::+o(1) number fields.

For each (i; j)

with smooth i− jm,

test smoothness of i− j¸
and i− j˛ and so on,

using primes ≤L0:82:::+o(1).

L1:77:::+o(1) tests.

Each |jdf(i=j)| ≤m2:86:::+o(1).

Conjecturally L0:95:::+o(1)

smooth congruences.

L0:95:::+o(1) components

in the exponent vectors.

25

Three sizes of numbers here:

(logn)1=3(log logn)2=3 bits:

y, i, j.

(logn)2=3(log logn)1=3 bits:

m, i− jm, jdf(i=j).

logn bits: n.

Unavoidably 1=3 in exponent:

usual smoothness optimization

forces (log y)2 ≈ logm;

balancing norms with m

forces d log y ≈ logm;

and d logm ≈ logn.

24

Use L0:12:::+o(1) number fields.

For each (i; j)

with smooth i− jm,

test smoothness of i− j¸
and i− j˛ and so on,

using primes ≤L0:82:::+o(1).

L1:77:::+o(1) tests.

Each |jdf(i=j)| ≤m2:86:::+o(1).

Conjecturally L0:95:::+o(1)

smooth congruences.

L0:95:::+o(1) components

in the exponent vectors.

25

Three sizes of numbers here:

(logn)1=3(log logn)2=3 bits:

y, i, j.

(logn)2=3(log logn)1=3 bits:

m, i− jm, jdf(i=j).

logn bits: n.

Unavoidably 1=3 in exponent:

usual smoothness optimization

forces (log y)2 ≈ logm;

balancing norms with m

forces d log y ≈ logm;

and d logm ≈ logn.

26

Batch NFS

The number-field sieve used

L1:90:::+o(1) bit operations

finding smooth i− jm; only

L1:77:::+o(1) bit operations

finding smooth jdf(i=j).

Many n’s can share one m;

L1:90:::+o(1) bit operations

to find squares for all n’s.

Oops, linear algebra hurts;

fix by reducing y.

But still end up factoring

batch in much less time than

factoring each n separately.

24

Use L0:12:::+o(1) number fields.

For each (i; j)

with smooth i− jm,

test smoothness of i− j¸
and i− j˛ and so on,

using primes ≤L0:82:::+o(1).

L1:77:::+o(1) tests.

Each |jdf(i=j)| ≤m2:86:::+o(1).

Conjecturally L0:95:::+o(1)

smooth congruences.

L0:95:::+o(1) components

in the exponent vectors.

25

Three sizes of numbers here:

(logn)1=3(log logn)2=3 bits:

y, i, j.

(logn)2=3(log logn)1=3 bits:

m, i− jm, jdf(i=j).

logn bits: n.

Unavoidably 1=3 in exponent:

usual smoothness optimization

forces (log y)2 ≈ logm;

balancing norms with m

forces d log y ≈ logm;

and d logm ≈ logn.

26

Batch NFS

The number-field sieve used

L1:90:::+o(1) bit operations

finding smooth i− jm; only

L1:77:::+o(1) bit operations

finding smooth jdf(i=j).

Many n’s can share one m;

L1:90:::+o(1) bit operations

to find squares for all n’s.

Oops, linear algebra hurts;

fix by reducing y.

But still end up factoring

batch in much less time than

factoring each n separately.

24

Use L0:12:::+o(1) number fields.

For each (i; j)

with smooth i− jm,

test smoothness of i− j¸
and i− j˛ and so on,

using primes ≤L0:82:::+o(1).

L1:77:::+o(1) tests.

Each |jdf(i=j)| ≤m2:86:::+o(1).

Conjecturally L0:95:::+o(1)

smooth congruences.

L0:95:::+o(1) components

in the exponent vectors.

25

Three sizes of numbers here:

(logn)1=3(log logn)2=3 bits:

y, i, j.

(logn)2=3(log logn)1=3 bits:

m, i− jm, jdf(i=j).

logn bits: n.

Unavoidably 1=3 in exponent:

usual smoothness optimization

forces (log y)2 ≈ logm;

balancing norms with m

forces d log y ≈ logm;

and d logm ≈ logn.

26

Batch NFS

The number-field sieve used

L1:90:::+o(1) bit operations

finding smooth i− jm; only

L1:77:::+o(1) bit operations

finding smooth jdf(i=j).

Many n’s can share one m;

L1:90:::+o(1) bit operations

to find squares for all n’s.

Oops, linear algebra hurts;

fix by reducing y.

But still end up factoring

batch in much less time than

factoring each n separately.

25

Three sizes of numbers here:

(logn)1=3(log logn)2=3 bits:

y, i, j.

(logn)2=3(log logn)1=3 bits:

m, i− jm, jdf(i=j).

logn bits: n.

Unavoidably 1=3 in exponent:

usual smoothness optimization

forces (log y)2 ≈ logm;

balancing norms with m

forces d log y ≈ logm;

and d logm ≈ logn.

26

Batch NFS

The number-field sieve used

L1:90:::+o(1) bit operations

finding smooth i− jm; only

L1:77:::+o(1) bit operations

finding smooth jdf(i=j).

Many n’s can share one m;

L1:90:::+o(1) bit operations

to find squares for all n’s.

Oops, linear algebra hurts;

fix by reducing y.

But still end up factoring

batch in much less time than

factoring each n separately.

25

Three sizes of numbers here:

(logn)1=3(log logn)2=3 bits:

y, i, j.

(logn)2=3(log logn)1=3 bits:

m, i− jm, jdf(i=j).

logn bits: n.

Unavoidably 1=3 in exponent:

usual smoothness optimization

forces (log y)2 ≈ logm;

balancing norms with m

forces d log y ≈ logm;

and d logm ≈ logn.

26

Batch NFS

The number-field sieve used

L1:90:::+o(1) bit operations

finding smooth i− jm; only

L1:77:::+o(1) bit operations

finding smooth jdf(i=j).

Many n’s can share one m;

L1:90:::+o(1) bit operations

to find squares for all n’s.

Oops, linear algebra hurts;

fix by reducing y.

But still end up factoring

batch in much less time than

factoring each n separately.

27

Asymptotic batch-NFS

parameters:

d=(logn)1=3(log logn)−1=3

∈ 1:10 : : :+ o(1).

Primes ≤L0:82:::+o(1).

1 ≤ i; j ≤ L1:00:::+o(1).

Computation independent of n

finds L1:64:::+o(1)

smooth values i− jm.

L1:64:::+o(1) operations

for each target n.

25

Three sizes of numbers here:

(logn)1=3(log logn)2=3 bits:

y, i, j.

(logn)2=3(log logn)1=3 bits:

m, i− jm, jdf(i=j).

logn bits: n.

Unavoidably 1=3 in exponent:

usual smoothness optimization

forces (log y)2 ≈ logm;

balancing norms with m

forces d log y ≈ logm;

and d logm ≈ logn.

26

Batch NFS

The number-field sieve used

L1:90:::+o(1) bit operations

finding smooth i− jm; only

L1:77:::+o(1) bit operations

finding smooth jdf(i=j).

Many n’s can share one m;

L1:90:::+o(1) bit operations

to find squares for all n’s.

Oops, linear algebra hurts;

fix by reducing y.

But still end up factoring

batch in much less time than

factoring each n separately.

27

Asymptotic batch-NFS

parameters:

d=(logn)1=3(log logn)−1=3

∈ 1:10 : : :+ o(1).

Primes ≤L0:82:::+o(1).

1 ≤ i; j ≤ L1:00:::+o(1).

Computation independent of n

finds L1:64:::+o(1)

smooth values i− jm.

L1:64:::+o(1) operations

for each target n.

25

Three sizes of numbers here:

(logn)1=3(log logn)2=3 bits:

y, i, j.

(logn)2=3(log logn)1=3 bits:

m, i− jm, jdf(i=j).

logn bits: n.

Unavoidably 1=3 in exponent:

usual smoothness optimization

forces (log y)2 ≈ logm;

balancing norms with m

forces d log y ≈ logm;

and d logm ≈ logn.

26

Batch NFS

The number-field sieve used

L1:90:::+o(1) bit operations

finding smooth i− jm; only

L1:77:::+o(1) bit operations

finding smooth jdf(i=j).

Many n’s can share one m;

L1:90:::+o(1) bit operations

to find squares for all n’s.

Oops, linear algebra hurts;

fix by reducing y.

But still end up factoring

batch in much less time than

factoring each n separately.

27

Asymptotic batch-NFS

parameters:

d=(logn)1=3(log logn)−1=3

∈ 1:10 : : :+ o(1).

Primes ≤L0:82:::+o(1).

1 ≤ i; j ≤ L1:00:::+o(1).

Computation independent of n

finds L1:64:::+o(1)

smooth values i− jm.

L1:64:::+o(1) operations

for each target n.

26

Batch NFS

The number-field sieve used

L1:90:::+o(1) bit operations

finding smooth i− jm; only

L1:77:::+o(1) bit operations

finding smooth jdf(i=j).

Many n’s can share one m;

L1:90:::+o(1) bit operations

to find squares for all n’s.

Oops, linear algebra hurts;

fix by reducing y.

But still end up factoring

batch in much less time than

factoring each n separately.

27

Asymptotic batch-NFS

parameters:

d=(logn)1=3(log logn)−1=3

∈ 1:10 : : :+ o(1).

Primes ≤L0:82:::+o(1).

1 ≤ i; j ≤ L1:00:::+o(1).

Computation independent of n

finds L1:64:::+o(1)

smooth values i− jm.

L1:64:::+o(1) operations

for each target n.

26

Batch NFS

The number-field sieve used

L1:90:::+o(1) bit operations

finding smooth i− jm; only

L1:77:::+o(1) bit operations

finding smooth jdf(i=j).

Many n’s can share one m;

L1:90:::+o(1) bit operations

to find squares for all n’s.

Oops, linear algebra hurts;

fix by reducing y.

But still end up factoring

batch in much less time than

factoring each n separately.

27

Asymptotic batch-NFS

parameters:

d=(logn)1=3(log logn)−1=3

∈ 1:10 : : :+ o(1).

Primes ≤L0:82:::+o(1).

1 ≤ i; j ≤ L1:00:::+o(1).

Computation independent of n

finds L1:64:::+o(1)

smooth values i− jm.

L1:64:::+o(1) operations

for each target n.

Wait: how do we recognize

smooth integers so quickly?

26

Batch NFS

The number-field sieve used

L1:90:::+o(1) bit operations

finding smooth i− jm; only

L1:77:::+o(1) bit operations

finding smooth jdf(i=j).

Many n’s can share one m;

L1:90:::+o(1) bit operations

to find squares for all n’s.

Oops, linear algebra hurts;

fix by reducing y.

But still end up factoring

batch in much less time than

factoring each n separately.

27

Asymptotic batch-NFS

parameters:

d=(logn)1=3(log logn)−1=3

∈ 1:10 : : :+ o(1).

Primes ≤L0:82:::+o(1).

1 ≤ i; j ≤ L1:00:::+o(1).

Computation independent of n

finds L1:64:::+o(1)

smooth values i− jm.

L1:64:::+o(1) operations

for each target n.

Wait: how do we recognize

smooth integers so quickly?

28

The rho method

Define 0 = 0, k+1 = 2
k + 11.

Every prime ≤220 divides S =

(1 − 2)(2 − 4)(3 − 6)

· · · (3575 − 7150).

Also many larger primes.

Can compute gcd{c; S} using

≈ 214 multiplications mod c,

very little memory.

Compare to ≈ 216 divisions

for trial division up to 220.

26

Batch NFS

The number-field sieve used

L1:90:::+o(1) bit operations

finding smooth i− jm; only

L1:77:::+o(1) bit operations

finding smooth jdf(i=j).

Many n’s can share one m;

L1:90:::+o(1) bit operations

to find squares for all n’s.

Oops, linear algebra hurts;

fix by reducing y.

But still end up factoring

batch in much less time than

factoring each n separately.

27

Asymptotic batch-NFS

parameters:

d=(logn)1=3(log logn)−1=3

∈ 1:10 : : :+ o(1).

Primes ≤L0:82:::+o(1).

1 ≤ i; j ≤ L1:00:::+o(1).

Computation independent of n

finds L1:64:::+o(1)

smooth values i− jm.

L1:64:::+o(1) operations

for each target n.

Wait: how do we recognize

smooth integers so quickly?

28

The rho method

Define 0 = 0, k+1 = 2
k + 11.

Every prime ≤220 divides S =

(1 − 2)(2 − 4)(3 − 6)

· · · (3575 − 7150).

Also many larger primes.

Can compute gcd{c; S} using

≈ 214 multiplications mod c,

very little memory.

Compare to ≈ 216 divisions

for trial division up to 220.

26

Batch NFS

The number-field sieve used

L1:90:::+o(1) bit operations

finding smooth i− jm; only

L1:77:::+o(1) bit operations

finding smooth jdf(i=j).

Many n’s can share one m;

L1:90:::+o(1) bit operations

to find squares for all n’s.

Oops, linear algebra hurts;

fix by reducing y.

But still end up factoring

batch in much less time than

factoring each n separately.

27

Asymptotic batch-NFS

parameters:

d=(logn)1=3(log logn)−1=3

∈ 1:10 : : :+ o(1).

Primes ≤L0:82:::+o(1).

1 ≤ i; j ≤ L1:00:::+o(1).

Computation independent of n

finds L1:64:::+o(1)

smooth values i− jm.

L1:64:::+o(1) operations

for each target n.

Wait: how do we recognize

smooth integers so quickly?

28

The rho method

Define 0 = 0, k+1 = 2
k + 11.

Every prime ≤220 divides S =

(1 − 2)(2 − 4)(3 − 6)

· · · (3575 − 7150).

Also many larger primes.

Can compute gcd{c; S} using

≈ 214 multiplications mod c,

very little memory.

Compare to ≈ 216 divisions

for trial division up to 220.

27

Asymptotic batch-NFS

parameters:

d=(logn)1=3(log logn)−1=3

∈ 1:10 : : :+ o(1).

Primes ≤L0:82:::+o(1).

1 ≤ i; j ≤ L1:00:::+o(1).

Computation independent of n

finds L1:64:::+o(1)

smooth values i− jm.

L1:64:::+o(1) operations

for each target n.

Wait: how do we recognize

smooth integers so quickly?

28

The rho method

Define 0 = 0, k+1 = 2
k + 11.

Every prime ≤220 divides S =

(1 − 2)(2 − 4)(3 − 6)

· · · (3575 − 7150).

Also many larger primes.

Can compute gcd{c; S} using

≈ 214 multiplications mod c,

very little memory.

Compare to ≈ 216 divisions

for trial division up to 220.

27

Asymptotic batch-NFS

parameters:

d=(logn)1=3(log logn)−1=3

∈ 1:10 : : :+ o(1).

Primes ≤L0:82:::+o(1).

1 ≤ i; j ≤ L1:00:::+o(1).

Computation independent of n

finds L1:64:::+o(1)

smooth values i− jm.

L1:64:::+o(1) operations

for each target n.

Wait: how do we recognize

smooth integers so quickly?

28

The rho method

Define 0 = 0, k+1 = 2
k + 11.

Every prime ≤220 divides S =

(1 − 2)(2 − 4)(3 − 6)

· · · (3575 − 7150).

Also many larger primes.

Can compute gcd{c; S} using

≈ 214 multiplications mod c,

very little memory.

Compare to ≈ 216 divisions

for trial division up to 220.

29

More generally: Choose z.

Compute gcd{c; S} where S =

(1 − 2)(2 − 4) · · · (z − 2z).

How big does z have to be

for all primes ≤y to divide S?

Plausible conjecture: y1=2+o(1);

so y1=2+o(1) mults mod c.

Reason: Consider first collision in

1 mod p; 2 mod p; : : :.

If i mod p = j mod p

then k mod p = 2k mod p

for k ∈ (j − i)Z ∩ [i;∞] ∩ [j;∞].

27

Asymptotic batch-NFS

parameters:

d=(logn)1=3(log logn)−1=3

∈ 1:10 : : :+ o(1).

Primes ≤L0:82:::+o(1).

1 ≤ i; j ≤ L1:00:::+o(1).

Computation independent of n

finds L1:64:::+o(1)

smooth values i− jm.

L1:64:::+o(1) operations

for each target n.

Wait: how do we recognize

smooth integers so quickly?

28

The rho method

Define 0 = 0, k+1 = 2
k + 11.

Every prime ≤220 divides S =

(1 − 2)(2 − 4)(3 − 6)

· · · (3575 − 7150).

Also many larger primes.

Can compute gcd{c; S} using

≈ 214 multiplications mod c,

very little memory.

Compare to ≈ 216 divisions

for trial division up to 220.

29

More generally: Choose z.

Compute gcd{c; S} where S =

(1 − 2)(2 − 4) · · · (z − 2z).

How big does z have to be

for all primes ≤y to divide S?

Plausible conjecture: y1=2+o(1);

so y1=2+o(1) mults mod c.

Reason: Consider first collision in

1 mod p; 2 mod p; : : :.

If i mod p = j mod p

then k mod p = 2k mod p

for k ∈ (j − i)Z ∩ [i;∞] ∩ [j;∞].

27

Asymptotic batch-NFS

parameters:

d=(logn)1=3(log logn)−1=3

∈ 1:10 : : :+ o(1).

Primes ≤L0:82:::+o(1).

1 ≤ i; j ≤ L1:00:::+o(1).

Computation independent of n

finds L1:64:::+o(1)

smooth values i− jm.

L1:64:::+o(1) operations

for each target n.

Wait: how do we recognize

smooth integers so quickly?

28

The rho method

Define 0 = 0, k+1 = 2
k + 11.

Every prime ≤220 divides S =

(1 − 2)(2 − 4)(3 − 6)

· · · (3575 − 7150).

Also many larger primes.

Can compute gcd{c; S} using

≈ 214 multiplications mod c,

very little memory.

Compare to ≈ 216 divisions

for trial division up to 220.

29

More generally: Choose z.

Compute gcd{c; S} where S =

(1 − 2)(2 − 4) · · · (z − 2z).

How big does z have to be

for all primes ≤y to divide S?

Plausible conjecture: y1=2+o(1);

so y1=2+o(1) mults mod c.

Reason: Consider first collision in

1 mod p; 2 mod p; : : :.

If i mod p = j mod p

then k mod p = 2k mod p

for k ∈ (j − i)Z ∩ [i;∞] ∩ [j;∞].

28

The rho method

Define 0 = 0, k+1 = 2
k + 11.

Every prime ≤220 divides S =

(1 − 2)(2 − 4)(3 − 6)

· · · (3575 − 7150).

Also many larger primes.

Can compute gcd{c; S} using

≈ 214 multiplications mod c,

very little memory.

Compare to ≈ 216 divisions

for trial division up to 220.

29

More generally: Choose z.

Compute gcd{c; S} where S =

(1 − 2)(2 − 4) · · · (z − 2z).

How big does z have to be

for all primes ≤y to divide S?

Plausible conjecture: y1=2+o(1);

so y1=2+o(1) mults mod c.

Reason: Consider first collision in

1 mod p; 2 mod p; : : :.

If i mod p = j mod p

then k mod p = 2k mod p

for k ∈ (j − i)Z ∩ [i;∞] ∩ [j;∞].

28

The rho method

Define 0 = 0, k+1 = 2
k + 11.

Every prime ≤220 divides S =

(1 − 2)(2 − 4)(3 − 6)

· · · (3575 − 7150).

Also many larger primes.

Can compute gcd{c; S} using

≈ 214 multiplications mod c,

very little memory.

Compare to ≈ 216 divisions

for trial division up to 220.

29

More generally: Choose z.

Compute gcd{c; S} where S =

(1 − 2)(2 − 4) · · · (z − 2z).

How big does z have to be

for all primes ≤y to divide S?

Plausible conjecture: y1=2+o(1);

so y1=2+o(1) mults mod c.

Reason: Consider first collision in

1 mod p; 2 mod p; : : :.

If i mod p = j mod p

then k mod p = 2k mod p

for k ∈ (j − i)Z ∩ [i;∞] ∩ [j;∞].

30

The p− 1 method

S1 = 2232792560 − 1

has prime divisors

3, 5, 7, 11, 13, 17, 19, 23, 29, 31,

37, 41, 43, 53, 61, 67, 71, 73, 79,

89, 97, 103, 109, 113, 127, 131,

137, 151, 157, 181, 191, 199 etc.

These divisors include

70 of the 168 primes ≤103;

156 of the 1229 primes ≤104;

296 of the 9592 primes ≤105;

470 of the 78498 primes ≤106;

etc.

28

The rho method

Define 0 = 0, k+1 = 2
k + 11.

Every prime ≤220 divides S =

(1 − 2)(2 − 4)(3 − 6)

· · · (3575 − 7150).

Also many larger primes.

Can compute gcd{c; S} using

≈ 214 multiplications mod c,

very little memory.

Compare to ≈ 216 divisions

for trial division up to 220.

29

More generally: Choose z.

Compute gcd{c; S} where S =

(1 − 2)(2 − 4) · · · (z − 2z).

How big does z have to be

for all primes ≤y to divide S?

Plausible conjecture: y1=2+o(1);

so y1=2+o(1) mults mod c.

Reason: Consider first collision in

1 mod p; 2 mod p; : : :.

If i mod p = j mod p

then k mod p = 2k mod p

for k ∈ (j − i)Z ∩ [i;∞] ∩ [j;∞].

30

The p− 1 method

S1 = 2232792560 − 1

has prime divisors

3, 5, 7, 11, 13, 17, 19, 23, 29, 31,

37, 41, 43, 53, 61, 67, 71, 73, 79,

89, 97, 103, 109, 113, 127, 131,

137, 151, 157, 181, 191, 199 etc.

These divisors include

70 of the 168 primes ≤103;

156 of the 1229 primes ≤104;

296 of the 9592 primes ≤105;

470 of the 78498 primes ≤106;

etc.

28

The rho method

Define 0 = 0, k+1 = 2
k + 11.

Every prime ≤220 divides S =

(1 − 2)(2 − 4)(3 − 6)

· · · (3575 − 7150).

Also many larger primes.

Can compute gcd{c; S} using

≈ 214 multiplications mod c,

very little memory.

Compare to ≈ 216 divisions

for trial division up to 220.

29

More generally: Choose z.

Compute gcd{c; S} where S =

(1 − 2)(2 − 4) · · · (z − 2z).

How big does z have to be

for all primes ≤y to divide S?

Plausible conjecture: y1=2+o(1);

so y1=2+o(1) mults mod c.

Reason: Consider first collision in

1 mod p; 2 mod p; : : :.

If i mod p = j mod p

then k mod p = 2k mod p

for k ∈ (j − i)Z ∩ [i;∞] ∩ [j;∞].

30

The p− 1 method

S1 = 2232792560 − 1

has prime divisors

3, 5, 7, 11, 13, 17, 19, 23, 29, 31,

37, 41, 43, 53, 61, 67, 71, 73, 79,

89, 97, 103, 109, 113, 127, 131,

137, 151, 157, 181, 191, 199 etc.

These divisors include

70 of the 168 primes ≤103;

156 of the 1229 primes ≤104;

296 of the 9592 primes ≤105;

470 of the 78498 primes ≤106;

etc.

29

More generally: Choose z.

Compute gcd{c; S} where S =

(1 − 2)(2 − 4) · · · (z − 2z).

How big does z have to be

for all primes ≤y to divide S?

Plausible conjecture: y1=2+o(1);

so y1=2+o(1) mults mod c.

Reason: Consider first collision in

1 mod p; 2 mod p; : : :.

If i mod p = j mod p

then k mod p = 2k mod p

for k ∈ (j − i)Z ∩ [i;∞] ∩ [j;∞].

30

The p− 1 method

S1 = 2232792560 − 1

has prime divisors

3, 5, 7, 11, 13, 17, 19, 23, 29, 31,

37, 41, 43, 53, 61, 67, 71, 73, 79,

89, 97, 103, 109, 113, 127, 131,

137, 151, 157, 181, 191, 199 etc.

These divisors include

70 of the 168 primes ≤103;

156 of the 1229 primes ≤104;

296 of the 9592 primes ≤105;

470 of the 78498 primes ≤106;

etc.

29

More generally: Choose z.

Compute gcd{c; S} where S =

(1 − 2)(2 − 4) · · · (z − 2z).

How big does z have to be

for all primes ≤y to divide S?

Plausible conjecture: y1=2+o(1);

so y1=2+o(1) mults mod c.

Reason: Consider first collision in

1 mod p; 2 mod p; : : :.

If i mod p = j mod p

then k mod p = 2k mod p

for k ∈ (j − i)Z ∩ [i;∞] ∩ [j;∞].

30

The p− 1 method

S1 = 2232792560 − 1

has prime divisors

3, 5, 7, 11, 13, 17, 19, 23, 29, 31,

37, 41, 43, 53, 61, 67, 71, 73, 79,

89, 97, 103, 109, 113, 127, 131,

137, 151, 157, 181, 191, 199 etc.

These divisors include

70 of the 168 primes ≤103;

156 of the 1229 primes ≤104;

296 of the 9592 primes ≤105;

470 of the 78498 primes ≤106;

etc.

31

An odd prime p

divides 2232792560 − 1

iff order of 2 in the

multiplicative group F∗p
divides s = 232792560.

Many ways for this to happen:

232792560 has 960 divisors.

Why so many?

Answer: s = 232792560

= lcm{1; 2; 3; 4; : : : ; 20}
= 24 · 32 · 5 · 7 · 11 · 13 · 17 · 19.

29

More generally: Choose z.

Compute gcd{c; S} where S =

(1 − 2)(2 − 4) · · · (z − 2z).

How big does z have to be

for all primes ≤y to divide S?

Plausible conjecture: y1=2+o(1);

so y1=2+o(1) mults mod c.

Reason: Consider first collision in

1 mod p; 2 mod p; : : :.

If i mod p = j mod p

then k mod p = 2k mod p

for k ∈ (j − i)Z ∩ [i;∞] ∩ [j;∞].

30

The p− 1 method

S1 = 2232792560 − 1

has prime divisors

3, 5, 7, 11, 13, 17, 19, 23, 29, 31,

37, 41, 43, 53, 61, 67, 71, 73, 79,

89, 97, 103, 109, 113, 127, 131,

137, 151, 157, 181, 191, 199 etc.

These divisors include

70 of the 168 primes ≤103;

156 of the 1229 primes ≤104;

296 of the 9592 primes ≤105;

470 of the 78498 primes ≤106;

etc.

31

An odd prime p

divides 2232792560 − 1

iff order of 2 in the

multiplicative group F∗p
divides s = 232792560.

Many ways for this to happen:

232792560 has 960 divisors.

Why so many?

Answer: s = 232792560

= lcm{1; 2; 3; 4; : : : ; 20}
= 24 · 32 · 5 · 7 · 11 · 13 · 17 · 19.

29

More generally: Choose z.

Compute gcd{c; S} where S =

(1 − 2)(2 − 4) · · · (z − 2z).

How big does z have to be

for all primes ≤y to divide S?

Plausible conjecture: y1=2+o(1);

so y1=2+o(1) mults mod c.

Reason: Consider first collision in

1 mod p; 2 mod p; : : :.

If i mod p = j mod p

then k mod p = 2k mod p

for k ∈ (j − i)Z ∩ [i;∞] ∩ [j;∞].

30

The p− 1 method

S1 = 2232792560 − 1

has prime divisors

3, 5, 7, 11, 13, 17, 19, 23, 29, 31,

37, 41, 43, 53, 61, 67, 71, 73, 79,

89, 97, 103, 109, 113, 127, 131,

137, 151, 157, 181, 191, 199 etc.

These divisors include

70 of the 168 primes ≤103;

156 of the 1229 primes ≤104;

296 of the 9592 primes ≤105;

470 of the 78498 primes ≤106;

etc.

31

An odd prime p

divides 2232792560 − 1

iff order of 2 in the

multiplicative group F∗p
divides s = 232792560.

Many ways for this to happen:

232792560 has 960 divisors.

Why so many?

Answer: s = 232792560

= lcm{1; 2; 3; 4; : : : ; 20}
= 24 · 32 · 5 · 7 · 11 · 13 · 17 · 19.

30

The p− 1 method

S1 = 2232792560 − 1

has prime divisors

3, 5, 7, 11, 13, 17, 19, 23, 29, 31,

37, 41, 43, 53, 61, 67, 71, 73, 79,

89, 97, 103, 109, 113, 127, 131,

137, 151, 157, 181, 191, 199 etc.

These divisors include

70 of the 168 primes ≤103;

156 of the 1229 primes ≤104;

296 of the 9592 primes ≤105;

470 of the 78498 primes ≤106;

etc.

31

An odd prime p

divides 2232792560 − 1

iff order of 2 in the

multiplicative group F∗p
divides s = 232792560.

Many ways for this to happen:

232792560 has 960 divisors.

Why so many?

Answer: s = 232792560

= lcm{1; 2; 3; 4; : : : ; 20}
= 24 · 32 · 5 · 7 · 11 · 13 · 17 · 19.

30

The p− 1 method

S1 = 2232792560 − 1

has prime divisors

3, 5, 7, 11, 13, 17, 19, 23, 29, 31,

37, 41, 43, 53, 61, 67, 71, 73, 79,

89, 97, 103, 109, 113, 127, 131,

137, 151, 157, 181, 191, 199 etc.

These divisors include

70 of the 168 primes ≤103;

156 of the 1229 primes ≤104;

296 of the 9592 primes ≤105;

470 of the 78498 primes ≤106;

etc.

31

An odd prime p

divides 2232792560 − 1

iff order of 2 in the

multiplicative group F∗p
divides s = 232792560.

Many ways for this to happen:

232792560 has 960 divisors.

Why so many?

Answer: s = 232792560

= lcm{1; 2; 3; 4; : : : ; 20}
= 24 · 32 · 5 · 7 · 11 · 13 · 17 · 19.

32

Can compute 2232792560 − 1

using 41 ring operations.

(Side note: 41 is not minimal.)

Ring operation: 0, 1, +, −, ·.

This computation: 1; 2 = 1 + 1;

22 = 2 · 2; 23 = 22 · 2; 26 = 23 · 23;

212 = 26·26; 213 = 212·2; 226; 227; 254;

255; 2110; 2111; 2222; 2444; 2888; 21776;

23552; 27104; 214208; 228416; 228417;

256834;2113668;2227336;2454672;2909344;

2909345; 21818690; 21818691; 23637382;

23637383; 27274766; 27274767; 214549534;

214549535; 229099070; 258198140;

2116396280; 2232792560; 2232792560−1.

30

The p− 1 method

S1 = 2232792560 − 1

has prime divisors

3, 5, 7, 11, 13, 17, 19, 23, 29, 31,

37, 41, 43, 53, 61, 67, 71, 73, 79,

89, 97, 103, 109, 113, 127, 131,

137, 151, 157, 181, 191, 199 etc.

These divisors include

70 of the 168 primes ≤103;

156 of the 1229 primes ≤104;

296 of the 9592 primes ≤105;

470 of the 78498 primes ≤106;

etc.

31

An odd prime p

divides 2232792560 − 1

iff order of 2 in the

multiplicative group F∗p
divides s = 232792560.

Many ways for this to happen:

232792560 has 960 divisors.

Why so many?

Answer: s = 232792560

= lcm{1; 2; 3; 4; : : : ; 20}
= 24 · 32 · 5 · 7 · 11 · 13 · 17 · 19.

32

Can compute 2232792560 − 1

using 41 ring operations.

(Side note: 41 is not minimal.)

Ring operation: 0, 1, +, −, ·.

This computation: 1; 2 = 1 + 1;

22 = 2 · 2; 23 = 22 · 2; 26 = 23 · 23;

212 = 26·26; 213 = 212·2; 226; 227; 254;

255; 2110; 2111; 2222; 2444; 2888; 21776;

23552; 27104; 214208; 228416; 228417;

256834;2113668;2227336;2454672;2909344;

2909345; 21818690; 21818691; 23637382;

23637383; 27274766; 27274767; 214549534;

214549535; 229099070; 258198140;

2116396280; 2232792560; 2232792560−1.

30

The p− 1 method

S1 = 2232792560 − 1

has prime divisors

3, 5, 7, 11, 13, 17, 19, 23, 29, 31,

37, 41, 43, 53, 61, 67, 71, 73, 79,

89, 97, 103, 109, 113, 127, 131,

137, 151, 157, 181, 191, 199 etc.

These divisors include

70 of the 168 primes ≤103;

156 of the 1229 primes ≤104;

296 of the 9592 primes ≤105;

470 of the 78498 primes ≤106;

etc.

31

An odd prime p

divides 2232792560 − 1

iff order of 2 in the

multiplicative group F∗p
divides s = 232792560.

Many ways for this to happen:

232792560 has 960 divisors.

Why so many?

Answer: s = 232792560

= lcm{1; 2; 3; 4; : : : ; 20}
= 24 · 32 · 5 · 7 · 11 · 13 · 17 · 19.

32

Can compute 2232792560 − 1

using 41 ring operations.

(Side note: 41 is not minimal.)

Ring operation: 0, 1, +, −, ·.

This computation: 1; 2 = 1 + 1;

22 = 2 · 2; 23 = 22 · 2; 26 = 23 · 23;

212 = 26·26; 213 = 212·2; 226; 227; 254;

255; 2110; 2111; 2222; 2444; 2888; 21776;

23552; 27104; 214208; 228416; 228417;

256834;2113668;2227336;2454672;2909344;

2909345; 21818690; 21818691; 23637382;

23637383; 27274766; 27274767; 214549534;

214549535; 229099070; 258198140;

2116396280; 2232792560; 2232792560−1.

31

An odd prime p

divides 2232792560 − 1

iff order of 2 in the

multiplicative group F∗p
divides s = 232792560.

Many ways for this to happen:

232792560 has 960 divisors.

Why so many?

Answer: s = 232792560

= lcm{1; 2; 3; 4; : : : ; 20}
= 24 · 32 · 5 · 7 · 11 · 13 · 17 · 19.

32

Can compute 2232792560 − 1

using 41 ring operations.

(Side note: 41 is not minimal.)

Ring operation: 0, 1, +, −, ·.

This computation: 1; 2 = 1 + 1;

22 = 2 · 2; 23 = 22 · 2; 26 = 23 · 23;

212 = 26·26; 213 = 212·2; 226; 227; 254;

255; 2110; 2111; 2222; 2444; 2888; 21776;

23552; 27104; 214208; 228416; 228417;

256834;2113668;2227336;2454672;2909344;

2909345; 21818690; 21818691; 23637382;

23637383; 27274766; 27274767; 214549534;

214549535; 229099070; 258198140;

2116396280; 2232792560; 2232792560−1.

31

An odd prime p

divides 2232792560 − 1

iff order of 2 in the

multiplicative group F∗p
divides s = 232792560.

Many ways for this to happen:

232792560 has 960 divisors.

Why so many?

Answer: s = 232792560

= lcm{1; 2; 3; 4; : : : ; 20}
= 24 · 32 · 5 · 7 · 11 · 13 · 17 · 19.

32

Can compute 2232792560 − 1

using 41 ring operations.

(Side note: 41 is not minimal.)

Ring operation: 0, 1, +, −, ·.

This computation: 1; 2 = 1 + 1;

22 = 2 · 2; 23 = 22 · 2; 26 = 23 · 23;

212 = 26·26; 213 = 212·2; 226; 227; 254;

255; 2110; 2111; 2222; 2444; 2888; 21776;

23552; 27104; 214208; 228416; 228417;

256834;2113668;2227336;2454672;2909344;

2909345; 21818690; 21818691; 23637382;

23637383; 27274766; 27274767; 214549534;

214549535; 229099070; 258198140;

2116396280; 2232792560; 2232792560−1.

33

Given positive integer n,

can compute 2232792560 − 1 modn

using 41 operations in Z=n.

Notation: amod b = a− b ba=bc.

e.g. n = 8597231219: : : :

227 modn = 134217728;

254 modn = 1342177282 modn

= 935663516;

255 modn = 1871327032;

2110 modn = 18713270322 modn

= 1458876811; : : : ;

2232792560−1 modn= 5626089344.

31

An odd prime p

divides 2232792560 − 1

iff order of 2 in the

multiplicative group F∗p
divides s = 232792560.

Many ways for this to happen:

232792560 has 960 divisors.

Why so many?

Answer: s = 232792560

= lcm{1; 2; 3; 4; : : : ; 20}
= 24 · 32 · 5 · 7 · 11 · 13 · 17 · 19.

32

Can compute 2232792560 − 1

using 41 ring operations.

(Side note: 41 is not minimal.)

Ring operation: 0, 1, +, −, ·.

This computation: 1; 2 = 1 + 1;

22 = 2 · 2; 23 = 22 · 2; 26 = 23 · 23;

212 = 26·26; 213 = 212·2; 226; 227; 254;

255; 2110; 2111; 2222; 2444; 2888; 21776;

23552; 27104; 214208; 228416; 228417;

256834;2113668;2227336;2454672;2909344;

2909345; 21818690; 21818691; 23637382;

23637383; 27274766; 27274767; 214549534;

214549535; 229099070; 258198140;

2116396280; 2232792560; 2232792560−1.

33

Given positive integer n,

can compute 2232792560 − 1 modn

using 41 operations in Z=n.

Notation: amod b = a− b ba=bc.

e.g. n = 8597231219: : : :

227 modn = 134217728;

254 modn = 1342177282 modn

= 935663516;

255 modn = 1871327032;

2110 modn = 18713270322 modn

= 1458876811; : : : ;

2232792560−1 modn= 5626089344.

31

An odd prime p

divides 2232792560 − 1

iff order of 2 in the

multiplicative group F∗p
divides s = 232792560.

Many ways for this to happen:

232792560 has 960 divisors.

Why so many?

Answer: s = 232792560

= lcm{1; 2; 3; 4; : : : ; 20}
= 24 · 32 · 5 · 7 · 11 · 13 · 17 · 19.

32

Can compute 2232792560 − 1

using 41 ring operations.

(Side note: 41 is not minimal.)

Ring operation: 0, 1, +, −, ·.

This computation: 1; 2 = 1 + 1;

22 = 2 · 2; 23 = 22 · 2; 26 = 23 · 23;

212 = 26·26; 213 = 212·2; 226; 227; 254;

255; 2110; 2111; 2222; 2444; 2888; 21776;

23552; 27104; 214208; 228416; 228417;

256834;2113668;2227336;2454672;2909344;

2909345; 21818690; 21818691; 23637382;

23637383; 27274766; 27274767; 214549534;

214549535; 229099070; 258198140;

2116396280; 2232792560; 2232792560−1.

33

Given positive integer n,

can compute 2232792560 − 1 modn

using 41 operations in Z=n.

Notation: amod b = a− b ba=bc.

e.g. n = 8597231219: : : :

227 modn = 134217728;

254 modn = 1342177282 modn

= 935663516;

255 modn = 1871327032;

2110 modn = 18713270322 modn

= 1458876811; : : : ;

2232792560−1 modn= 5626089344.

32

Can compute 2232792560 − 1

using 41 ring operations.

(Side note: 41 is not minimal.)

Ring operation: 0, 1, +, −, ·.

This computation: 1; 2 = 1 + 1;

22 = 2 · 2; 23 = 22 · 2; 26 = 23 · 23;

212 = 26·26; 213 = 212·2; 226; 227; 254;

255; 2110; 2111; 2222; 2444; 2888; 21776;

23552; 27104; 214208; 228416; 228417;

256834;2113668;2227336;2454672;2909344;

2909345; 21818690; 21818691; 23637382;

23637383; 27274766; 27274767; 214549534;

214549535; 229099070; 258198140;

2116396280; 2232792560; 2232792560−1.

33

Given positive integer n,

can compute 2232792560 − 1 modn

using 41 operations in Z=n.

Notation: amod b = a− b ba=bc.

e.g. n = 8597231219: : : :

227 modn = 134217728;

254 modn = 1342177282 modn

= 935663516;

255 modn = 1871327032;

2110 modn = 18713270322 modn

= 1458876811; : : : ;

2232792560−1 modn= 5626089344.

32

Can compute 2232792560 − 1

using 41 ring operations.

(Side note: 41 is not minimal.)

Ring operation: 0, 1, +, −, ·.

This computation: 1; 2 = 1 + 1;

22 = 2 · 2; 23 = 22 · 2; 26 = 23 · 23;

212 = 26·26; 213 = 212·2; 226; 227; 254;

255; 2110; 2111; 2222; 2444; 2888; 21776;

23552; 27104; 214208; 228416; 228417;

256834;2113668;2227336;2454672;2909344;

2909345; 21818690; 21818691; 23637382;

23637383; 27274766; 27274767; 214549534;

214549535; 229099070; 258198140;

2116396280; 2232792560; 2232792560−1.

33

Given positive integer n,

can compute 2232792560 − 1 modn

using 41 operations in Z=n.

Notation: amod b = a− b ba=bc.

e.g. n = 8597231219: : : :

227 modn = 134217728;

254 modn = 1342177282 modn

= 935663516;

255 modn = 1871327032;

2110 modn = 18713270322 modn

= 1458876811; : : : ;

2232792560−1 modn= 5626089344.

Easy extra computation (Euclid):

gcd{5626089344; n} = 991.

32

Can compute 2232792560 − 1

using 41 ring operations.

(Side note: 41 is not minimal.)

Ring operation: 0, 1, +, −, ·.

This computation: 1; 2 = 1 + 1;

22 = 2 · 2; 23 = 22 · 2; 26 = 23 · 23;

212 = 26·26; 213 = 212·2; 226; 227; 254;

255; 2110; 2111; 2222; 2444; 2888; 21776;

23552; 27104; 214208; 228416; 228417;

256834;2113668;2227336;2454672;2909344;

2909345; 21818690; 21818691; 23637382;

23637383; 27274766; 27274767; 214549534;

214549535; 229099070; 258198140;

2116396280; 2232792560; 2232792560−1.

33

Given positive integer n,

can compute 2232792560 − 1 modn

using 41 operations in Z=n.

Notation: amod b = a− b ba=bc.

e.g. n = 8597231219: : : :

227 modn = 134217728;

254 modn = 1342177282 modn

= 935663516;

255 modn = 1871327032;

2110 modn = 18713270322 modn

= 1458876811; : : : ;

2232792560−1 modn= 5626089344.

Easy extra computation (Euclid):

gcd{5626089344; n} = 991.

34

This p− 1 method (1974 Pollard)

quickly factored n = 8597231219.

Main work: 27 squarings mod n.

Could instead have checked

n’s divisibility by 2; 3; 5; : : :.

The 167th trial division

would have found divisor 991.

Not clear which method is better.

Dividing by small p

is faster than squaring mod n.

The p− 1 method finds

only 70 of the primes ≤1000;

trial division finds all 168 primes.

32

Can compute 2232792560 − 1

using 41 ring operations.

(Side note: 41 is not minimal.)

Ring operation: 0, 1, +, −, ·.

This computation: 1; 2 = 1 + 1;

22 = 2 · 2; 23 = 22 · 2; 26 = 23 · 23;

212 = 26·26; 213 = 212·2; 226; 227; 254;

255; 2110; 2111; 2222; 2444; 2888; 21776;

23552; 27104; 214208; 228416; 228417;

256834;2113668;2227336;2454672;2909344;

2909345; 21818690; 21818691; 23637382;

23637383; 27274766; 27274767; 214549534;

214549535; 229099070; 258198140;

2116396280; 2232792560; 2232792560−1.

33

Given positive integer n,

can compute 2232792560 − 1 modn

using 41 operations in Z=n.

Notation: amod b = a− b ba=bc.

e.g. n = 8597231219: : : :

227 modn = 134217728;

254 modn = 1342177282 modn

= 935663516;

255 modn = 1871327032;

2110 modn = 18713270322 modn

= 1458876811; : : : ;

2232792560−1 modn= 5626089344.

Easy extra computation (Euclid):

gcd{5626089344; n} = 991.

34

This p− 1 method (1974 Pollard)

quickly factored n = 8597231219.

Main work: 27 squarings mod n.

Could instead have checked

n’s divisibility by 2; 3; 5; : : :.

The 167th trial division

would have found divisor 991.

Not clear which method is better.

Dividing by small p

is faster than squaring mod n.

The p− 1 method finds

only 70 of the primes ≤1000;

trial division finds all 168 primes.

32

Can compute 2232792560 − 1

using 41 ring operations.

(Side note: 41 is not minimal.)

Ring operation: 0, 1, +, −, ·.

This computation: 1; 2 = 1 + 1;

22 = 2 · 2; 23 = 22 · 2; 26 = 23 · 23;

212 = 26·26; 213 = 212·2; 226; 227; 254;

255; 2110; 2111; 2222; 2444; 2888; 21776;

23552; 27104; 214208; 228416; 228417;

256834;2113668;2227336;2454672;2909344;

2909345; 21818690; 21818691; 23637382;

23637383; 27274766; 27274767; 214549534;

214549535; 229099070; 258198140;

2116396280; 2232792560; 2232792560−1.

33

Given positive integer n,

can compute 2232792560 − 1 modn

using 41 operations in Z=n.

Notation: amod b = a− b ba=bc.

e.g. n = 8597231219: : : :

227 modn = 134217728;

254 modn = 1342177282 modn

= 935663516;

255 modn = 1871327032;

2110 modn = 18713270322 modn

= 1458876811; : : : ;

2232792560−1 modn= 5626089344.

Easy extra computation (Euclid):

gcd{5626089344; n} = 991.

34

This p− 1 method (1974 Pollard)

quickly factored n = 8597231219.

Main work: 27 squarings mod n.

Could instead have checked

n’s divisibility by 2; 3; 5; : : :.

The 167th trial division

would have found divisor 991.

Not clear which method is better.

Dividing by small p

is faster than squaring mod n.

The p− 1 method finds

only 70 of the primes ≤1000;

trial division finds all 168 primes.

33

Given positive integer n,

can compute 2232792560 − 1 modn

using 41 operations in Z=n.

Notation: amod b = a− b ba=bc.

e.g. n = 8597231219: : : :

227 modn = 134217728;

254 modn = 1342177282 modn

= 935663516;

255 modn = 1871327032;

2110 modn = 18713270322 modn

= 1458876811; : : : ;

2232792560−1 modn= 5626089344.

Easy extra computation (Euclid):

gcd{5626089344; n} = 991.

34

This p− 1 method (1974 Pollard)

quickly factored n = 8597231219.

Main work: 27 squarings mod n.

Could instead have checked

n’s divisibility by 2; 3; 5; : : :.

The 167th trial division

would have found divisor 991.

Not clear which method is better.

Dividing by small p

is faster than squaring mod n.

The p− 1 method finds

only 70 of the primes ≤1000;

trial division finds all 168 primes.

33

Given positive integer n,

can compute 2232792560 − 1 modn

using 41 operations in Z=n.

Notation: amod b = a− b ba=bc.

e.g. n = 8597231219: : : :

227 modn = 134217728;

254 modn = 1342177282 modn

= 935663516;

255 modn = 1871327032;

2110 modn = 18713270322 modn

= 1458876811; : : : ;

2232792560−1 modn= 5626089344.

Easy extra computation (Euclid):

gcd{5626089344; n} = 991.

34

This p− 1 method (1974 Pollard)

quickly factored n = 8597231219.

Main work: 27 squarings mod n.

Could instead have checked

n’s divisibility by 2; 3; 5; : : :.

The 167th trial division

would have found divisor 991.

Not clear which method is better.

Dividing by small p

is faster than squaring mod n.

The p− 1 method finds

only 70 of the primes ≤1000;

trial division finds all 168 primes.

35

Scale up to larger exponent

s = lcm{1; 2; 3; 4; : : : ; 100}:
using 136 squarings mod n

find 2317 of the primes ≤105.

Is a squaring mod n

faster than 17 trial divisions?

Or s = lcm{1; 2; 3; 4; : : : ; 1000}:
using 1438 squarings mod n

find 180121 of the primes ≤107.

Is a squaring mod n

faster than 125 trial divisions?

Extra benefit:

no need to store the primes.

33

Given positive integer n,

can compute 2232792560 − 1 modn

using 41 operations in Z=n.

Notation: amod b = a− b ba=bc.

e.g. n = 8597231219: : : :

227 modn = 134217728;

254 modn = 1342177282 modn

= 935663516;

255 modn = 1871327032;

2110 modn = 18713270322 modn

= 1458876811; : : : ;

2232792560−1 modn= 5626089344.

Easy extra computation (Euclid):

gcd{5626089344; n} = 991.

34

This p− 1 method (1974 Pollard)

quickly factored n = 8597231219.

Main work: 27 squarings mod n.

Could instead have checked

n’s divisibility by 2; 3; 5; : : :.

The 167th trial division

would have found divisor 991.

Not clear which method is better.

Dividing by small p

is faster than squaring mod n.

The p− 1 method finds

only 70 of the primes ≤1000;

trial division finds all 168 primes.

35

Scale up to larger exponent

s = lcm{1; 2; 3; 4; : : : ; 100}:
using 136 squarings mod n

find 2317 of the primes ≤105.

Is a squaring mod n

faster than 17 trial divisions?

Or s = lcm{1; 2; 3; 4; : : : ; 1000}:
using 1438 squarings mod n

find 180121 of the primes ≤107.

Is a squaring mod n

faster than 125 trial divisions?

Extra benefit:

no need to store the primes.

33

Given positive integer n,

can compute 2232792560 − 1 modn

using 41 operations in Z=n.

Notation: amod b = a− b ba=bc.

e.g. n = 8597231219: : : :

227 modn = 134217728;

254 modn = 1342177282 modn

= 935663516;

255 modn = 1871327032;

2110 modn = 18713270322 modn

= 1458876811; : : : ;

2232792560−1 modn= 5626089344.

Easy extra computation (Euclid):

gcd{5626089344; n} = 991.

34

This p− 1 method (1974 Pollard)

quickly factored n = 8597231219.

Main work: 27 squarings mod n.

Could instead have checked

n’s divisibility by 2; 3; 5; : : :.

The 167th trial division

would have found divisor 991.

Not clear which method is better.

Dividing by small p

is faster than squaring mod n.

The p− 1 method finds

only 70 of the primes ≤1000;

trial division finds all 168 primes.

35

Scale up to larger exponent

s = lcm{1; 2; 3; 4; : : : ; 100}:
using 136 squarings mod n

find 2317 of the primes ≤105.

Is a squaring mod n

faster than 17 trial divisions?

Or s = lcm{1; 2; 3; 4; : : : ; 1000}:
using 1438 squarings mod n

find 180121 of the primes ≤107.

Is a squaring mod n

faster than 125 trial divisions?

Extra benefit:

no need to store the primes.

34

This p− 1 method (1974 Pollard)

quickly factored n = 8597231219.

Main work: 27 squarings mod n.

Could instead have checked

n’s divisibility by 2; 3; 5; : : :.

The 167th trial division

would have found divisor 991.

Not clear which method is better.

Dividing by small p

is faster than squaring mod n.

The p− 1 method finds

only 70 of the primes ≤1000;

trial division finds all 168 primes.

35

Scale up to larger exponent

s = lcm{1; 2; 3; 4; : : : ; 100}:
using 136 squarings mod n

find 2317 of the primes ≤105.

Is a squaring mod n

faster than 17 trial divisions?

Or s = lcm{1; 2; 3; 4; : : : ; 1000}:
using 1438 squarings mod n

find 180121 of the primes ≤107.

Is a squaring mod n

faster than 125 trial divisions?

Extra benefit:

no need to store the primes.

34

This p− 1 method (1974 Pollard)

quickly factored n = 8597231219.

Main work: 27 squarings mod n.

Could instead have checked

n’s divisibility by 2; 3; 5; : : :.

The 167th trial division

would have found divisor 991.

Not clear which method is better.

Dividing by small p

is faster than squaring mod n.

The p− 1 method finds

only 70 of the primes ≤1000;

trial division finds all 168 primes.

35

Scale up to larger exponent

s = lcm{1; 2; 3; 4; : : : ; 100}:
using 136 squarings mod n

find 2317 of the primes ≤105.

Is a squaring mod n

faster than 17 trial divisions?

Or s = lcm{1; 2; 3; 4; : : : ; 1000}:
using 1438 squarings mod n

find 180121 of the primes ≤107.

Is a squaring mod n

faster than 125 trial divisions?

Extra benefit:

no need to store the primes.

36

Plausible conjecture: if K is

exp
q`

1
2 + o(1)

´
logH log logH

then p−1 divides lcm{1; 2; : : : ; K}
for H=K1+o(1) primes p ≤ H.

Same if p− 1 is replaced by

order of 2 in F∗p.

So uniform random prime p ≤ H
divides 2lcm{1;2;:::;K} − 1

with probability 1=K1+o(1).

(1:4 : : :+ o(1))K squarings mod n

produce 2lcm{1;2;:::;K} − 1 modn.

Similar time spent on trial division

finds far fewer primes for large H.

34

This p− 1 method (1974 Pollard)

quickly factored n = 8597231219.

Main work: 27 squarings mod n.

Could instead have checked

n’s divisibility by 2; 3; 5; : : :.

The 167th trial division

would have found divisor 991.

Not clear which method is better.

Dividing by small p

is faster than squaring mod n.

The p− 1 method finds

only 70 of the primes ≤1000;

trial division finds all 168 primes.

35

Scale up to larger exponent

s = lcm{1; 2; 3; 4; : : : ; 100}:
using 136 squarings mod n

find 2317 of the primes ≤105.

Is a squaring mod n

faster than 17 trial divisions?

Or s = lcm{1; 2; 3; 4; : : : ; 1000}:
using 1438 squarings mod n

find 180121 of the primes ≤107.

Is a squaring mod n

faster than 125 trial divisions?

Extra benefit:

no need to store the primes.

36

Plausible conjecture: if K is

exp
q`

1
2 + o(1)

´
logH log logH

then p−1 divides lcm{1; 2; : : : ; K}
for H=K1+o(1) primes p ≤ H.

Same if p− 1 is replaced by

order of 2 in F∗p.

So uniform random prime p ≤ H
divides 2lcm{1;2;:::;K} − 1

with probability 1=K1+o(1).

(1:4 : : :+ o(1))K squarings mod n

produce 2lcm{1;2;:::;K} − 1 modn.

Similar time spent on trial division

finds far fewer primes for large H.

34

This p− 1 method (1974 Pollard)

quickly factored n = 8597231219.

Main work: 27 squarings mod n.

Could instead have checked

n’s divisibility by 2; 3; 5; : : :.

The 167th trial division

would have found divisor 991.

Not clear which method is better.

Dividing by small p

is faster than squaring mod n.

The p− 1 method finds

only 70 of the primes ≤1000;

trial division finds all 168 primes.

35

Scale up to larger exponent

s = lcm{1; 2; 3; 4; : : : ; 100}:
using 136 squarings mod n

find 2317 of the primes ≤105.

Is a squaring mod n

faster than 17 trial divisions?

Or s = lcm{1; 2; 3; 4; : : : ; 1000}:
using 1438 squarings mod n

find 180121 of the primes ≤107.

Is a squaring mod n

faster than 125 trial divisions?

Extra benefit:

no need to store the primes.

36

Plausible conjecture: if K is

exp
q`

1
2 + o(1)

´
logH log logH

then p−1 divides lcm{1; 2; : : : ; K}
for H=K1+o(1) primes p ≤ H.

Same if p− 1 is replaced by

order of 2 in F∗p.

So uniform random prime p ≤ H
divides 2lcm{1;2;:::;K} − 1

with probability 1=K1+o(1).

(1:4 : : :+ o(1))K squarings mod n

produce 2lcm{1;2;:::;K} − 1 modn.

Similar time spent on trial division

finds far fewer primes for large H.

35

Scale up to larger exponent

s = lcm{1; 2; 3; 4; : : : ; 100}:
using 136 squarings mod n

find 2317 of the primes ≤105.

Is a squaring mod n

faster than 17 trial divisions?

Or s = lcm{1; 2; 3; 4; : : : ; 1000}:
using 1438 squarings mod n

find 180121 of the primes ≤107.

Is a squaring mod n

faster than 125 trial divisions?

Extra benefit:

no need to store the primes.

36

Plausible conjecture: if K is

exp
q`

1
2 + o(1)

´
logH log logH

then p−1 divides lcm{1; 2; : : : ; K}
for H=K1+o(1) primes p ≤ H.

Same if p− 1 is replaced by

order of 2 in F∗p.

So uniform random prime p ≤ H
divides 2lcm{1;2;:::;K} − 1

with probability 1=K1+o(1).

(1:4 : : :+ o(1))K squarings mod n

produce 2lcm{1;2;:::;K} − 1 modn.

Similar time spent on trial division

finds far fewer primes for large H.

35

Scale up to larger exponent

s = lcm{1; 2; 3; 4; : : : ; 100}:
using 136 squarings mod n

find 2317 of the primes ≤105.

Is a squaring mod n

faster than 17 trial divisions?

Or s = lcm{1; 2; 3; 4; : : : ; 1000}:
using 1438 squarings mod n

find 180121 of the primes ≤107.

Is a squaring mod n

faster than 125 trial divisions?

Extra benefit:

no need to store the primes.

36

Plausible conjecture: if K is

exp
q`

1
2 + o(1)

´
logH log logH

then p−1 divides lcm{1; 2; : : : ; K}
for H=K1+o(1) primes p ≤ H.

Same if p− 1 is replaced by

order of 2 in F∗p.

So uniform random prime p ≤ H
divides 2lcm{1;2;:::;K} − 1

with probability 1=K1+o(1).

(1:4 : : :+ o(1))K squarings mod n

produce 2lcm{1;2;:::;K} − 1 modn.

Similar time spent on trial division

finds far fewer primes for large H.

37

The p+ 1 factorization method

(1982 Williams)

Define (X; Y) ∈ Q×Q as the

232792560th multiple of

(3=5; 4=5) in the group Clock(Q).

The integer S2 = 5232792560X

is divisible by

82 of the primes ≤103;

223 of the primes ≤104;

455 of the primes ≤105;

720 of the primes ≤106;

etc.

35

Scale up to larger exponent

s = lcm{1; 2; 3; 4; : : : ; 100}:
using 136 squarings mod n

find 2317 of the primes ≤105.

Is a squaring mod n

faster than 17 trial divisions?

Or s = lcm{1; 2; 3; 4; : : : ; 1000}:
using 1438 squarings mod n

find 180121 of the primes ≤107.

Is a squaring mod n

faster than 125 trial divisions?

Extra benefit:

no need to store the primes.

36

Plausible conjecture: if K is

exp
q`

1
2 + o(1)

´
logH log logH

then p−1 divides lcm{1; 2; : : : ; K}
for H=K1+o(1) primes p ≤ H.

Same if p− 1 is replaced by

order of 2 in F∗p.

So uniform random prime p ≤ H
divides 2lcm{1;2;:::;K} − 1

with probability 1=K1+o(1).

(1:4 : : :+ o(1))K squarings mod n

produce 2lcm{1;2;:::;K} − 1 modn.

Similar time spent on trial division

finds far fewer primes for large H.

37

The p+ 1 factorization method

(1982 Williams)

Define (X; Y) ∈ Q×Q as the

232792560th multiple of

(3=5; 4=5) in the group Clock(Q).

The integer S2 = 5232792560X

is divisible by

82 of the primes ≤103;

223 of the primes ≤104;

455 of the primes ≤105;

720 of the primes ≤106;

etc.

35

Scale up to larger exponent

s = lcm{1; 2; 3; 4; : : : ; 100}:
using 136 squarings mod n

find 2317 of the primes ≤105.

Is a squaring mod n

faster than 17 trial divisions?

Or s = lcm{1; 2; 3; 4; : : : ; 1000}:
using 1438 squarings mod n

find 180121 of the primes ≤107.

Is a squaring mod n

faster than 125 trial divisions?

Extra benefit:

no need to store the primes.

36

Plausible conjecture: if K is

exp
q`

1
2 + o(1)

´
logH log logH

then p−1 divides lcm{1; 2; : : : ; K}
for H=K1+o(1) primes p ≤ H.

Same if p− 1 is replaced by

order of 2 in F∗p.

So uniform random prime p ≤ H
divides 2lcm{1;2;:::;K} − 1

with probability 1=K1+o(1).

(1:4 : : :+ o(1))K squarings mod n

produce 2lcm{1;2;:::;K} − 1 modn.

Similar time spent on trial division

finds far fewer primes for large H.

37

The p+ 1 factorization method

(1982 Williams)

Define (X; Y) ∈ Q×Q as the

232792560th multiple of

(3=5; 4=5) in the group Clock(Q).

The integer S2 = 5232792560X

is divisible by

82 of the primes ≤103;

223 of the primes ≤104;

455 of the primes ≤105;

720 of the primes ≤106;

etc.

36

Plausible conjecture: if K is

exp
q`

1
2 + o(1)

´
logH log logH

then p−1 divides lcm{1; 2; : : : ; K}
for H=K1+o(1) primes p ≤ H.

Same if p− 1 is replaced by

order of 2 in F∗p.

So uniform random prime p ≤ H
divides 2lcm{1;2;:::;K} − 1

with probability 1=K1+o(1).

(1:4 : : :+ o(1))K squarings mod n

produce 2lcm{1;2;:::;K} − 1 modn.

Similar time spent on trial division

finds far fewer primes for large H.

37

The p+ 1 factorization method

(1982 Williams)

Define (X; Y) ∈ Q×Q as the

232792560th multiple of

(3=5; 4=5) in the group Clock(Q).

The integer S2 = 5232792560X

is divisible by

82 of the primes ≤103;

223 of the primes ≤104;

455 of the primes ≤105;

720 of the primes ≤106;

etc.

36

Plausible conjecture: if K is

exp
q`

1
2 + o(1)

´
logH log logH

then p−1 divides lcm{1; 2; : : : ; K}
for H=K1+o(1) primes p ≤ H.

Same if p− 1 is replaced by

order of 2 in F∗p.

So uniform random prime p ≤ H
divides 2lcm{1;2;:::;K} − 1

with probability 1=K1+o(1).

(1:4 : : :+ o(1))K squarings mod n

produce 2lcm{1;2;:::;K} − 1 modn.

Similar time spent on trial division

finds far fewer primes for large H.

37

The p+ 1 factorization method

(1982 Williams)

Define (X; Y) ∈ Q×Q as the

232792560th multiple of

(3=5; 4=5) in the group Clock(Q).

The integer S2 = 5232792560X

is divisible by

82 of the primes ≤103;

223 of the primes ≤104;

455 of the primes ≤105;

720 of the primes ≤106;

etc.

38

Given an integer n,

compute 5232792560X mod n

and compute gcd with n,

hoping to factor n.

Many p’s not found by F∗p
are found by Clock(Fp).

If −1 is not a square mod p

and p+ 1 divides 232792560

then 5232792560X mod p = 0.

Proof: p ≡ 3 (mod 4),

so (4=5 + 3i=5)p = 4=5− 3i=5,

so (p+ 1)(3=5; 4=5) = (0; 1)

in the group Clock(Fp),

so 232792560(3=5; 4=5) = (0; 1).

36

Plausible conjecture: if K is

exp
q`

1
2 + o(1)

´
logH log logH

then p−1 divides lcm{1; 2; : : : ; K}
for H=K1+o(1) primes p ≤ H.

Same if p− 1 is replaced by

order of 2 in F∗p.

So uniform random prime p ≤ H
divides 2lcm{1;2;:::;K} − 1

with probability 1=K1+o(1).

(1:4 : : :+ o(1))K squarings mod n

produce 2lcm{1;2;:::;K} − 1 modn.

Similar time spent on trial division

finds far fewer primes for large H.

37

The p+ 1 factorization method

(1982 Williams)

Define (X; Y) ∈ Q×Q as the

232792560th multiple of

(3=5; 4=5) in the group Clock(Q).

The integer S2 = 5232792560X

is divisible by

82 of the primes ≤103;

223 of the primes ≤104;

455 of the primes ≤105;

720 of the primes ≤106;

etc.

38

Given an integer n,

compute 5232792560X mod n

and compute gcd with n,

hoping to factor n.

Many p’s not found by F∗p
are found by Clock(Fp).

If −1 is not a square mod p

and p+ 1 divides 232792560

then 5232792560X mod p = 0.

Proof: p ≡ 3 (mod 4),

so (4=5 + 3i=5)p = 4=5− 3i=5,

so (p+ 1)(3=5; 4=5) = (0; 1)

in the group Clock(Fp),

so 232792560(3=5; 4=5) = (0; 1).

36

Plausible conjecture: if K is

exp
q`

1
2 + o(1)

´
logH log logH

then p−1 divides lcm{1; 2; : : : ; K}
for H=K1+o(1) primes p ≤ H.

Same if p− 1 is replaced by

order of 2 in F∗p.

So uniform random prime p ≤ H
divides 2lcm{1;2;:::;K} − 1

with probability 1=K1+o(1).

(1:4 : : :+ o(1))K squarings mod n

produce 2lcm{1;2;:::;K} − 1 modn.

Similar time spent on trial division

finds far fewer primes for large H.

37

The p+ 1 factorization method

(1982 Williams)

Define (X; Y) ∈ Q×Q as the

232792560th multiple of

(3=5; 4=5) in the group Clock(Q).

The integer S2 = 5232792560X

is divisible by

82 of the primes ≤103;

223 of the primes ≤104;

455 of the primes ≤105;

720 of the primes ≤106;

etc.

38

Given an integer n,

compute 5232792560X mod n

and compute gcd with n,

hoping to factor n.

Many p’s not found by F∗p
are found by Clock(Fp).

If −1 is not a square mod p

and p+ 1 divides 232792560

then 5232792560X mod p = 0.

Proof: p ≡ 3 (mod 4),

so (4=5 + 3i=5)p = 4=5− 3i=5,

so (p+ 1)(3=5; 4=5) = (0; 1)

in the group Clock(Fp),

so 232792560(3=5; 4=5) = (0; 1).

37

The p+ 1 factorization method

(1982 Williams)

Define (X; Y) ∈ Q×Q as the

232792560th multiple of

(3=5; 4=5) in the group Clock(Q).

The integer S2 = 5232792560X

is divisible by

82 of the primes ≤103;

223 of the primes ≤104;

455 of the primes ≤105;

720 of the primes ≤106;

etc.

38

Given an integer n,

compute 5232792560X mod n

and compute gcd with n,

hoping to factor n.

Many p’s not found by F∗p
are found by Clock(Fp).

If −1 is not a square mod p

and p+ 1 divides 232792560

then 5232792560X mod p = 0.

Proof: p ≡ 3 (mod 4),

so (4=5 + 3i=5)p = 4=5− 3i=5,

so (p+ 1)(3=5; 4=5) = (0; 1)

in the group Clock(Fp),

so 232792560(3=5; 4=5) = (0; 1).

37

The p+ 1 factorization method

(1982 Williams)

Define (X; Y) ∈ Q×Q as the

232792560th multiple of

(3=5; 4=5) in the group Clock(Q).

The integer S2 = 5232792560X

is divisible by

82 of the primes ≤103;

223 of the primes ≤104;

455 of the primes ≤105;

720 of the primes ≤106;

etc.

38

Given an integer n,

compute 5232792560X mod n

and compute gcd with n,

hoping to factor n.

Many p’s not found by F∗p
are found by Clock(Fp).

If −1 is not a square mod p

and p+ 1 divides 232792560

then 5232792560X mod p = 0.

Proof: p ≡ 3 (mod 4),

so (4=5 + 3i=5)p = 4=5− 3i=5,

so (p+ 1)(3=5; 4=5) = (0; 1)

in the group Clock(Fp),

so 232792560(3=5; 4=5) = (0; 1).

39

The elliptic-curve method

Replace clock group with

a random elliptic curve.

Order of elliptic-curve group

∈ [p+ 1− 2
√
p; p+ 1 + 2

√
p].

If a curve fails, try another.

Good news (for the attacker):

All primes ≤H
seem to be found after a

reasonable number of curves.

Time subexponential in H.

37

The p+ 1 factorization method

(1982 Williams)

Define (X; Y) ∈ Q×Q as the

232792560th multiple of

(3=5; 4=5) in the group Clock(Q).

The integer S2 = 5232792560X

is divisible by

82 of the primes ≤103;

223 of the primes ≤104;

455 of the primes ≤105;

720 of the primes ≤106;

etc.

38

Given an integer n,

compute 5232792560X mod n

and compute gcd with n,

hoping to factor n.

Many p’s not found by F∗p
are found by Clock(Fp).

If −1 is not a square mod p

and p+ 1 divides 232792560

then 5232792560X mod p = 0.

Proof: p ≡ 3 (mod 4),

so (4=5 + 3i=5)p = 4=5− 3i=5,

so (p+ 1)(3=5; 4=5) = (0; 1)

in the group Clock(Fp),

so 232792560(3=5; 4=5) = (0; 1).

39

The elliptic-curve method

Replace clock group with

a random elliptic curve.

Order of elliptic-curve group

∈ [p+ 1− 2
√
p; p+ 1 + 2

√
p].

If a curve fails, try another.

Good news (for the attacker):

All primes ≤H
seem to be found after a

reasonable number of curves.

Time subexponential in H.

37

The p+ 1 factorization method

(1982 Williams)

Define (X; Y) ∈ Q×Q as the

232792560th multiple of

(3=5; 4=5) in the group Clock(Q).

The integer S2 = 5232792560X

is divisible by

82 of the primes ≤103;

223 of the primes ≤104;

455 of the primes ≤105;

720 of the primes ≤106;

etc.

38

Given an integer n,

compute 5232792560X mod n

and compute gcd with n,

hoping to factor n.

Many p’s not found by F∗p
are found by Clock(Fp).

If −1 is not a square mod p

and p+ 1 divides 232792560

then 5232792560X mod p = 0.

Proof: p ≡ 3 (mod 4),

so (4=5 + 3i=5)p = 4=5− 3i=5,

so (p+ 1)(3=5; 4=5) = (0; 1)

in the group Clock(Fp),

so 232792560(3=5; 4=5) = (0; 1).

39

The elliptic-curve method

Replace clock group with

a random elliptic curve.

Order of elliptic-curve group

∈ [p+ 1− 2
√
p; p+ 1 + 2

√
p].

If a curve fails, try another.

Good news (for the attacker):

All primes ≤H
seem to be found after a

reasonable number of curves.

Time subexponential in H.

38

Given an integer n,

compute 5232792560X mod n

and compute gcd with n,

hoping to factor n.

Many p’s not found by F∗p
are found by Clock(Fp).

If −1 is not a square mod p

and p+ 1 divides 232792560

then 5232792560X mod p = 0.

Proof: p ≡ 3 (mod 4),

so (4=5 + 3i=5)p = 4=5− 3i=5,

so (p+ 1)(3=5; 4=5) = (0; 1)

in the group Clock(Fp),

so 232792560(3=5; 4=5) = (0; 1).

39

The elliptic-curve method

Replace clock group with

a random elliptic curve.

Order of elliptic-curve group

∈ [p+ 1− 2
√
p; p+ 1 + 2

√
p].

If a curve fails, try another.

Good news (for the attacker):

All primes ≤H
seem to be found after a

reasonable number of curves.

Time subexponential in H.

38

Given an integer n,

compute 5232792560X mod n

and compute gcd with n,

hoping to factor n.

Many p’s not found by F∗p
are found by Clock(Fp).

If −1 is not a square mod p

and p+ 1 divides 232792560

then 5232792560X mod p = 0.

Proof: p ≡ 3 (mod 4),

so (4=5 + 3i=5)p = 4=5− 3i=5,

so (p+ 1)(3=5; 4=5) = (0; 1)

in the group Clock(Fp),

so 232792560(3=5; 4=5) = (0; 1).

39

The elliptic-curve method

Replace clock group with

a random elliptic curve.

Order of elliptic-curve group

∈ [p+ 1− 2
√
p; p+ 1 + 2

√
p].

If a curve fails, try another.

Good news (for the attacker):

All primes ≤H
seem to be found after a

reasonable number of curves.

Time subexponential in H.

40

More reading

eecm.cr.yp.to

cr.yp.to/papers.html#batchnfs

smartfacts.cr.yp.to

“Factoring RSA keys from

certified smart cards:

Coppersmith in the wild”

eprint.iacr.org/2016/961

“A kilobit hidden SNFS discrete

logarithm computation”

eprint.iacr.org/2017/142

“Computing generator : : : and

application to cryptanalysis of a

[lattice-based] FHE scheme”

38

Given an integer n,

compute 5232792560X mod n

and compute gcd with n,

hoping to factor n.

Many p’s not found by F∗p
are found by Clock(Fp).

If −1 is not a square mod p

and p+ 1 divides 232792560

then 5232792560X mod p = 0.

Proof: p ≡ 3 (mod 4),

so (4=5 + 3i=5)p = 4=5− 3i=5,

so (p+ 1)(3=5; 4=5) = (0; 1)

in the group Clock(Fp),

so 232792560(3=5; 4=5) = (0; 1).

39

The elliptic-curve method

Replace clock group with

a random elliptic curve.

Order of elliptic-curve group

∈ [p+ 1− 2
√
p; p+ 1 + 2

√
p].

If a curve fails, try another.

Good news (for the attacker):

All primes ≤H
seem to be found after a

reasonable number of curves.

Time subexponential in H.

40

More reading

eecm.cr.yp.to

cr.yp.to/papers.html#batchnfs

smartfacts.cr.yp.to

“Factoring RSA keys from

certified smart cards:

Coppersmith in the wild”

eprint.iacr.org/2016/961

“A kilobit hidden SNFS discrete

logarithm computation”

eprint.iacr.org/2017/142

“Computing generator : : : and

application to cryptanalysis of a

[lattice-based] FHE scheme”

38

Given an integer n,

compute 5232792560X mod n

and compute gcd with n,

hoping to factor n.

Many p’s not found by F∗p
are found by Clock(Fp).

If −1 is not a square mod p

and p+ 1 divides 232792560

then 5232792560X mod p = 0.

Proof: p ≡ 3 (mod 4),

so (4=5 + 3i=5)p = 4=5− 3i=5,

so (p+ 1)(3=5; 4=5) = (0; 1)

in the group Clock(Fp),

so 232792560(3=5; 4=5) = (0; 1).

39

The elliptic-curve method

Replace clock group with

a random elliptic curve.

Order of elliptic-curve group

∈ [p+ 1− 2
√
p; p+ 1 + 2

√
p].

If a curve fails, try another.

Good news (for the attacker):

All primes ≤H
seem to be found after a

reasonable number of curves.

Time subexponential in H.

40

More reading

eecm.cr.yp.to

cr.yp.to/papers.html#batchnfs

smartfacts.cr.yp.to

“Factoring RSA keys from

certified smart cards:

Coppersmith in the wild”

eprint.iacr.org/2016/961

“A kilobit hidden SNFS discrete

logarithm computation”

eprint.iacr.org/2017/142

“Computing generator : : : and

application to cryptanalysis of a

[lattice-based] FHE scheme”

39

The elliptic-curve method

Replace clock group with

a random elliptic curve.

Order of elliptic-curve group

∈ [p+ 1− 2
√
p; p+ 1 + 2

√
p].

If a curve fails, try another.

Good news (for the attacker):

All primes ≤H
seem to be found after a

reasonable number of curves.

Time subexponential in H.

40

More reading

eecm.cr.yp.to

cr.yp.to/papers.html#batchnfs

smartfacts.cr.yp.to

“Factoring RSA keys from

certified smart cards:

Coppersmith in the wild”

eprint.iacr.org/2016/961

“A kilobit hidden SNFS discrete

logarithm computation”

eprint.iacr.org/2017/142

“Computing generator : : : and

application to cryptanalysis of a

[lattice-based] FHE scheme”

