
1

Engineering

cryptographic software

Daniel J. Bernstein

University of Illinois at Chicago &

Technische Universiteit Eindhoven

This is easy, right?

1. Take general principles

of software engineering.

2. Apply principles to crypto.

Let’s try some examples : : :

2

1972 Parnas “On the criteria

to be used in decomposing

systems into modules”:

“We propose instead that

one begins with a list of

difficult design decisions or

design decisions which are

likely to change. Each module

is then designed to hide such

a decision from the others.”

e.g. If number of cipher rounds

is properly modularized as

#define ROUNDS 20

then it is easy to change.

1

Engineering

cryptographic software

Daniel J. Bernstein

University of Illinois at Chicago &

Technische Universiteit Eindhoven

This is easy, right?

1. Take general principles

of software engineering.

2. Apply principles to crypto.

Let’s try some examples : : :

2

1972 Parnas “On the criteria

to be used in decomposing

systems into modules”:

“We propose instead that

one begins with a list of

difficult design decisions or

design decisions which are

likely to change. Each module

is then designed to hide such

a decision from the others.”

e.g. If number of cipher rounds

is properly modularized as

#define ROUNDS 20

then it is easy to change.

3

Another general principle

of software engineering:

Make the right thing simple

and the wrong thing complex.

1

Engineering

cryptographic software

Daniel J. Bernstein

University of Illinois at Chicago &

Technische Universiteit Eindhoven

This is easy, right?

1. Take general principles

of software engineering.

2. Apply principles to crypto.

Let’s try some examples : : :

2

1972 Parnas “On the criteria

to be used in decomposing

systems into modules”:

“We propose instead that

one begins with a list of

difficult design decisions or

design decisions which are

likely to change. Each module

is then designed to hide such

a decision from the others.”

e.g. If number of cipher rounds

is properly modularized as

#define ROUNDS 20

then it is easy to change.

3

Another general principle

of software engineering:

Make the right thing simple

and the wrong thing complex.

1

Engineering

cryptographic software

Daniel J. Bernstein

University of Illinois at Chicago &

Technische Universiteit Eindhoven

This is easy, right?

1. Take general principles

of software engineering.

2. Apply principles to crypto.

Let’s try some examples : : :

2

1972 Parnas “On the criteria

to be used in decomposing

systems into modules”:

“We propose instead that

one begins with a list of

difficult design decisions or

design decisions which are

likely to change. Each module

is then designed to hide such

a decision from the others.”

e.g. If number of cipher rounds

is properly modularized as

#define ROUNDS 20

then it is easy to change.

3

Another general principle

of software engineering:

Make the right thing simple

and the wrong thing complex.

2

1972 Parnas “On the criteria

to be used in decomposing

systems into modules”:

“We propose instead that

one begins with a list of

difficult design decisions or

design decisions which are

likely to change. Each module

is then designed to hide such

a decision from the others.”

e.g. If number of cipher rounds

is properly modularized as

#define ROUNDS 20

then it is easy to change.

3

Another general principle

of software engineering:

Make the right thing simple

and the wrong thing complex.

2

1972 Parnas “On the criteria

to be used in decomposing

systems into modules”:

“We propose instead that

one begins with a list of

difficult design decisions or

design decisions which are

likely to change. Each module

is then designed to hide such

a decision from the others.”

e.g. If number of cipher rounds

is properly modularized as

#define ROUNDS 20

then it is easy to change.

3

Another general principle

of software engineering:

Make the right thing simple

and the wrong thing complex.

e.g. Make it difficult to

ignore invalid authenticators.

2

1972 Parnas “On the criteria

to be used in decomposing

systems into modules”:

“We propose instead that

one begins with a list of

difficult design decisions or

design decisions which are

likely to change. Each module

is then designed to hide such

a decision from the others.”

e.g. If number of cipher rounds

is properly modularized as

#define ROUNDS 20

then it is easy to change.

3

Another general principle

of software engineering:

Make the right thing simple

and the wrong thing complex.

e.g. Make it difficult to

ignore invalid authenticators.

Do not design APIs like this:

“The sample code used in

this manual omits the checking

of status values for clarity, but

when using cryptlib you should

check return values, particularly

for critical functions : : : ”

2

1972 Parnas “On the criteria

to be used in decomposing

systems into modules”:

“We propose instead that

one begins with a list of

difficult design decisions or

design decisions which are

likely to change. Each module

is then designed to hide such

a decision from the others.”

e.g. If number of cipher rounds

is properly modularized as

#define ROUNDS 20

then it is easy to change.

3

Another general principle

of software engineering:

Make the right thing simple

and the wrong thing complex.

e.g. Make it difficult to

ignore invalid authenticators.

Do not design APIs like this:

“The sample code used in

this manual omits the checking

of status values for clarity, but

when using cryptlib you should

check return values, particularly

for critical functions : : : ”

4

Not so easy: Timing attacks

1970s: TENEX operating system

compares user-supplied string

against secret password

one character at a time,

stopping at first difference:

• AAAAAA vs. SECRET: stop at 1.

• SAAAAA vs. SECRET: stop at 2.

• SEAAAA vs. SECRET: stop at 3.

Attacker sees comparison time,

deduces position of difference.

A few hundred tries

reveal secret password.

2

1972 Parnas “On the criteria

to be used in decomposing

systems into modules”:

“We propose instead that

one begins with a list of

difficult design decisions or

design decisions which are

likely to change. Each module

is then designed to hide such

a decision from the others.”

e.g. If number of cipher rounds

is properly modularized as

#define ROUNDS 20

then it is easy to change.

3

Another general principle

of software engineering:

Make the right thing simple

and the wrong thing complex.

e.g. Make it difficult to

ignore invalid authenticators.

Do not design APIs like this:

“The sample code used in

this manual omits the checking

of status values for clarity, but

when using cryptlib you should

check return values, particularly

for critical functions : : : ”

4

Not so easy: Timing attacks

1970s: TENEX operating system

compares user-supplied string

against secret password

one character at a time,

stopping at first difference:

• AAAAAA vs. SECRET: stop at 1.

• SAAAAA vs. SECRET: stop at 2.

• SEAAAA vs. SECRET: stop at 3.

Attacker sees comparison time,

deduces position of difference.

A few hundred tries

reveal secret password.

2

1972 Parnas “On the criteria

to be used in decomposing

systems into modules”:

“We propose instead that

one begins with a list of

difficult design decisions or

design decisions which are

likely to change. Each module

is then designed to hide such

a decision from the others.”

e.g. If number of cipher rounds

is properly modularized as

#define ROUNDS 20

then it is easy to change.

3

Another general principle

of software engineering:

Make the right thing simple

and the wrong thing complex.

e.g. Make it difficult to

ignore invalid authenticators.

Do not design APIs like this:

“The sample code used in

this manual omits the checking

of status values for clarity, but

when using cryptlib you should

check return values, particularly

for critical functions : : : ”

4

Not so easy: Timing attacks

1970s: TENEX operating system

compares user-supplied string

against secret password

one character at a time,

stopping at first difference:

• AAAAAA vs. SECRET: stop at 1.

• SAAAAA vs. SECRET: stop at 2.

• SEAAAA vs. SECRET: stop at 3.

Attacker sees comparison time,

deduces position of difference.

A few hundred tries

reveal secret password.

3

Another general principle

of software engineering:

Make the right thing simple

and the wrong thing complex.

e.g. Make it difficult to

ignore invalid authenticators.

Do not design APIs like this:

“The sample code used in

this manual omits the checking

of status values for clarity, but

when using cryptlib you should

check return values, particularly

for critical functions : : : ”

4

Not so easy: Timing attacks

1970s: TENEX operating system

compares user-supplied string

against secret password

one character at a time,

stopping at first difference:

• AAAAAA vs. SECRET: stop at 1.

• SAAAAA vs. SECRET: stop at 2.

• SEAAAA vs. SECRET: stop at 3.

Attacker sees comparison time,

deduces position of difference.

A few hundred tries

reveal secret password.

3

Another general principle

of software engineering:

Make the right thing simple

and the wrong thing complex.

e.g. Make it difficult to

ignore invalid authenticators.

Do not design APIs like this:

“The sample code used in

this manual omits the checking

of status values for clarity, but

when using cryptlib you should

check return values, particularly

for critical functions : : : ”

4

Not so easy: Timing attacks

1970s: TENEX operating system

compares user-supplied string

against secret password

one character at a time,

stopping at first difference:

• AAAAAA vs. SECRET: stop at 1.

• SAAAAA vs. SECRET: stop at 2.

• SEAAAA vs. SECRET: stop at 3.

Attacker sees comparison time,

deduces position of difference.

A few hundred tries

reveal secret password.

5

How typical software checks

16-byte authenticator:

for (i = 0;i < 16;++i)

if (x[i] != y[i]) return 0;

return 1;

Fix, eliminating information flow

from secrets to timings:

diff = 0;

for (i = 0;i < 16;++i)

diff |= x[i] ^ y[i];

return 1 & ((diff-1) >> 8);

Notice that the language

makes the wrong thing simple

and the right thing complex.

3

Another general principle

of software engineering:

Make the right thing simple

and the wrong thing complex.

e.g. Make it difficult to

ignore invalid authenticators.

Do not design APIs like this:

“The sample code used in

this manual omits the checking

of status values for clarity, but

when using cryptlib you should

check return values, particularly

for critical functions : : : ”

4

Not so easy: Timing attacks

1970s: TENEX operating system

compares user-supplied string

against secret password

one character at a time,

stopping at first difference:

• AAAAAA vs. SECRET: stop at 1.

• SAAAAA vs. SECRET: stop at 2.

• SEAAAA vs. SECRET: stop at 3.

Attacker sees comparison time,

deduces position of difference.

A few hundred tries

reveal secret password.

5

How typical software checks

16-byte authenticator:

for (i = 0;i < 16;++i)

if (x[i] != y[i]) return 0;

return 1;

Fix, eliminating information flow

from secrets to timings:

diff = 0;

for (i = 0;i < 16;++i)

diff |= x[i] ^ y[i];

return 1 & ((diff-1) >> 8);

Notice that the language

makes the wrong thing simple

and the right thing complex.

3

Another general principle

of software engineering:

Make the right thing simple

and the wrong thing complex.

e.g. Make it difficult to

ignore invalid authenticators.

Do not design APIs like this:

“The sample code used in

this manual omits the checking

of status values for clarity, but

when using cryptlib you should

check return values, particularly

for critical functions : : : ”

4

Not so easy: Timing attacks

1970s: TENEX operating system

compares user-supplied string

against secret password

one character at a time,

stopping at first difference:

• AAAAAA vs. SECRET: stop at 1.

• SAAAAA vs. SECRET: stop at 2.

• SEAAAA vs. SECRET: stop at 3.

Attacker sees comparison time,

deduces position of difference.

A few hundred tries

reveal secret password.

5

How typical software checks

16-byte authenticator:

for (i = 0;i < 16;++i)

if (x[i] != y[i]) return 0;

return 1;

Fix, eliminating information flow

from secrets to timings:

diff = 0;

for (i = 0;i < 16;++i)

diff |= x[i] ^ y[i];

return 1 & ((diff-1) >> 8);

Notice that the language

makes the wrong thing simple

and the right thing complex.

4

Not so easy: Timing attacks

1970s: TENEX operating system

compares user-supplied string

against secret password

one character at a time,

stopping at first difference:

• AAAAAA vs. SECRET: stop at 1.

• SAAAAA vs. SECRET: stop at 2.

• SEAAAA vs. SECRET: stop at 3.

Attacker sees comparison time,

deduces position of difference.

A few hundred tries

reveal secret password.

5

How typical software checks

16-byte authenticator:

for (i = 0;i < 16;++i)

if (x[i] != y[i]) return 0;

return 1;

Fix, eliminating information flow

from secrets to timings:

diff = 0;

for (i = 0;i < 16;++i)

diff |= x[i] ^ y[i];

return 1 & ((diff-1) >> 8);

Notice that the language

makes the wrong thing simple

and the right thing complex.

4

Not so easy: Timing attacks

1970s: TENEX operating system

compares user-supplied string

against secret password

one character at a time,

stopping at first difference:

• AAAAAA vs. SECRET: stop at 1.

• SAAAAA vs. SECRET: stop at 2.

• SEAAAA vs. SECRET: stop at 3.

Attacker sees comparison time,

deduces position of difference.

A few hundred tries

reveal secret password.

5

How typical software checks

16-byte authenticator:

for (i = 0;i < 16;++i)

if (x[i] != y[i]) return 0;

return 1;

Fix, eliminating information flow

from secrets to timings:

diff = 0;

for (i = 0;i < 16;++i)

diff |= x[i] ^ y[i];

return 1 & ((diff-1) >> 8);

Notice that the language

makes the wrong thing simple

and the right thing complex.

6

Language designer’s notion of

“right” is too weak for security.

So mistakes continue to happen.

4

Not so easy: Timing attacks

1970s: TENEX operating system

compares user-supplied string

against secret password

one character at a time,

stopping at first difference:

• AAAAAA vs. SECRET: stop at 1.

• SAAAAA vs. SECRET: stop at 2.

• SEAAAA vs. SECRET: stop at 3.

Attacker sees comparison time,

deduces position of difference.

A few hundred tries

reveal secret password.

5

How typical software checks

16-byte authenticator:

for (i = 0;i < 16;++i)

if (x[i] != y[i]) return 0;

return 1;

Fix, eliminating information flow

from secrets to timings:

diff = 0;

for (i = 0;i < 16;++i)

diff |= x[i] ^ y[i];

return 1 & ((diff-1) >> 8);

Notice that the language

makes the wrong thing simple

and the right thing complex.

6

Language designer’s notion of

“right” is too weak for security.

So mistakes continue to happen.

4

Not so easy: Timing attacks

1970s: TENEX operating system

compares user-supplied string

against secret password

one character at a time,

stopping at first difference:

• AAAAAA vs. SECRET: stop at 1.

• SAAAAA vs. SECRET: stop at 2.

• SEAAAA vs. SECRET: stop at 3.

Attacker sees comparison time,

deduces position of difference.

A few hundred tries

reveal secret password.

5

How typical software checks

16-byte authenticator:

for (i = 0;i < 16;++i)

if (x[i] != y[i]) return 0;

return 1;

Fix, eliminating information flow

from secrets to timings:

diff = 0;

for (i = 0;i < 16;++i)

diff |= x[i] ^ y[i];

return 1 & ((diff-1) >> 8);

Notice that the language

makes the wrong thing simple

and the right thing complex.

6

Language designer’s notion of

“right” is too weak for security.

So mistakes continue to happen.

5

How typical software checks

16-byte authenticator:

for (i = 0;i < 16;++i)

if (x[i] != y[i]) return 0;

return 1;

Fix, eliminating information flow

from secrets to timings:

diff = 0;

for (i = 0;i < 16;++i)

diff |= x[i] ^ y[i];

return 1 & ((diff-1) >> 8);

Notice that the language

makes the wrong thing simple

and the right thing complex.

6

Language designer’s notion of

“right” is too weak for security.

So mistakes continue to happen.

5

How typical software checks

16-byte authenticator:

for (i = 0;i < 16;++i)

if (x[i] != y[i]) return 0;

return 1;

Fix, eliminating information flow

from secrets to timings:

diff = 0;

for (i = 0;i < 16;++i)

diff |= x[i] ^ y[i];

return 1 & ((diff-1) >> 8);

Notice that the language

makes the wrong thing simple

and the right thing complex.

6

Language designer’s notion of

“right” is too weak for security.

So mistakes continue to happen.

One of many examples,

part of the reference software for

CAESAR candidate CLOC:

/* compare the tag */

int i;

for(i = 0;i < CRYPTO_ABYTES;i++)

if(tag[i] != c[(*mlen) + i]){

return RETURN_TAG_NO_MATCH;

}

return RETURN_SUCCESS;

5

How typical software checks

16-byte authenticator:

for (i = 0;i < 16;++i)

if (x[i] != y[i]) return 0;

return 1;

Fix, eliminating information flow

from secrets to timings:

diff = 0;

for (i = 0;i < 16;++i)

diff |= x[i] ^ y[i];

return 1 & ((diff-1) >> 8);

Notice that the language

makes the wrong thing simple

and the right thing complex.

6

Language designer’s notion of

“right” is too weak for security.

So mistakes continue to happen.

One of many examples,

part of the reference software for

CAESAR candidate CLOC:

/* compare the tag */

int i;

for(i = 0;i < CRYPTO_ABYTES;i++)

if(tag[i] != c[(*mlen) + i]){

return RETURN_TAG_NO_MATCH;

}

return RETURN_SUCCESS;

7

Do timing attacks really work?

Objection: “Timings are noisy!”

5

How typical software checks

16-byte authenticator:

for (i = 0;i < 16;++i)

if (x[i] != y[i]) return 0;

return 1;

Fix, eliminating information flow

from secrets to timings:

diff = 0;

for (i = 0;i < 16;++i)

diff |= x[i] ^ y[i];

return 1 & ((diff-1) >> 8);

Notice that the language

makes the wrong thing simple

and the right thing complex.

6

Language designer’s notion of

“right” is too weak for security.

So mistakes continue to happen.

One of many examples,

part of the reference software for

CAESAR candidate CLOC:

/* compare the tag */

int i;

for(i = 0;i < CRYPTO_ABYTES;i++)

if(tag[i] != c[(*mlen) + i]){

return RETURN_TAG_NO_MATCH;

}

return RETURN_SUCCESS;

7

Do timing attacks really work?

Objection: “Timings are noisy!”

5

How typical software checks

16-byte authenticator:

for (i = 0;i < 16;++i)

if (x[i] != y[i]) return 0;

return 1;

Fix, eliminating information flow

from secrets to timings:

diff = 0;

for (i = 0;i < 16;++i)

diff |= x[i] ^ y[i];

return 1 & ((diff-1) >> 8);

Notice that the language

makes the wrong thing simple

and the right thing complex.

6

Language designer’s notion of

“right” is too weak for security.

So mistakes continue to happen.

One of many examples,

part of the reference software for

CAESAR candidate CLOC:

/* compare the tag */

int i;

for(i = 0;i < CRYPTO_ABYTES;i++)

if(tag[i] != c[(*mlen) + i]){

return RETURN_TAG_NO_MATCH;

}

return RETURN_SUCCESS;

7

Do timing attacks really work?

Objection: “Timings are noisy!”

6

Language designer’s notion of

“right” is too weak for security.

So mistakes continue to happen.

One of many examples,

part of the reference software for

CAESAR candidate CLOC:

/* compare the tag */

int i;

for(i = 0;i < CRYPTO_ABYTES;i++)

if(tag[i] != c[(*mlen) + i]){

return RETURN_TAG_NO_MATCH;

}

return RETURN_SUCCESS;

7

Do timing attacks really work?

Objection: “Timings are noisy!”

6

Language designer’s notion of

“right” is too weak for security.

So mistakes continue to happen.

One of many examples,

part of the reference software for

CAESAR candidate CLOC:

/* compare the tag */

int i;

for(i = 0;i < CRYPTO_ABYTES;i++)

if(tag[i] != c[(*mlen) + i]){

return RETURN_TAG_NO_MATCH;

}

return RETURN_SUCCESS;

7

Do timing attacks really work?

Objection: “Timings are noisy!”

Answer #1:

Does noise stop all attacks?

To guarantee security, defender

must block all information flow.

6

Language designer’s notion of

“right” is too weak for security.

So mistakes continue to happen.

One of many examples,

part of the reference software for

CAESAR candidate CLOC:

/* compare the tag */

int i;

for(i = 0;i < CRYPTO_ABYTES;i++)

if(tag[i] != c[(*mlen) + i]){

return RETURN_TAG_NO_MATCH;

}

return RETURN_SUCCESS;

7

Do timing attacks really work?

Objection: “Timings are noisy!”

Answer #1:

Does noise stop all attacks?

To guarantee security, defender

must block all information flow.

Answer #2: Attacker uses

statistics to eliminate noise.

6

Language designer’s notion of

“right” is too weak for security.

So mistakes continue to happen.

One of many examples,

part of the reference software for

CAESAR candidate CLOC:

/* compare the tag */

int i;

for(i = 0;i < CRYPTO_ABYTES;i++)

if(tag[i] != c[(*mlen) + i]){

return RETURN_TAG_NO_MATCH;

}

return RETURN_SUCCESS;

7

Do timing attacks really work?

Objection: “Timings are noisy!”

Answer #1:

Does noise stop all attacks?

To guarantee security, defender

must block all information flow.

Answer #2: Attacker uses

statistics to eliminate noise.

Answer #3, what the

1970s attackers actually did:

Cross page boundary,

inducing page faults,

to amplify timing signal.

6

Language designer’s notion of

“right” is too weak for security.

So mistakes continue to happen.

One of many examples,

part of the reference software for

CAESAR candidate CLOC:

/* compare the tag */

int i;

for(i = 0;i < CRYPTO_ABYTES;i++)

if(tag[i] != c[(*mlen) + i]){

return RETURN_TAG_NO_MATCH;

}

return RETURN_SUCCESS;

7

Do timing attacks really work?

Objection: “Timings are noisy!”

Answer #1:

Does noise stop all attacks?

To guarantee security, defender

must block all information flow.

Answer #2: Attacker uses

statistics to eliminate noise.

Answer #3, what the

1970s attackers actually did:

Cross page boundary,

inducing page faults,

to amplify timing signal.

8

Defenders don’t learn

Some of the literature:

1996 Kocher pointed out timing

attacks on cryptographic key bits.

Briefly mentioned by

Kocher and by 1998 Kelsey–

Schneier–Wagner–Hall:

secret array indices can

affect timing via cache misses.

2002 Page, 2003 Tsunoo–Saito–

Suzaki–Shigeri–Miyauchi:

timing attacks on DES.

6

Language designer’s notion of

“right” is too weak for security.

So mistakes continue to happen.

One of many examples,

part of the reference software for

CAESAR candidate CLOC:

/* compare the tag */

int i;

for(i = 0;i < CRYPTO_ABYTES;i++)

if(tag[i] != c[(*mlen) + i]){

return RETURN_TAG_NO_MATCH;

}

return RETURN_SUCCESS;

7

Do timing attacks really work?

Objection: “Timings are noisy!”

Answer #1:

Does noise stop all attacks?

To guarantee security, defender

must block all information flow.

Answer #2: Attacker uses

statistics to eliminate noise.

Answer #3, what the

1970s attackers actually did:

Cross page boundary,

inducing page faults,

to amplify timing signal.

8

Defenders don’t learn

Some of the literature:

1996 Kocher pointed out timing

attacks on cryptographic key bits.

Briefly mentioned by

Kocher and by 1998 Kelsey–

Schneier–Wagner–Hall:

secret array indices can

affect timing via cache misses.

2002 Page, 2003 Tsunoo–Saito–

Suzaki–Shigeri–Miyauchi:

timing attacks on DES.

6

Language designer’s notion of

“right” is too weak for security.

So mistakes continue to happen.

One of many examples,

part of the reference software for

CAESAR candidate CLOC:

/* compare the tag */

int i;

for(i = 0;i < CRYPTO_ABYTES;i++)

if(tag[i] != c[(*mlen) + i]){

return RETURN_TAG_NO_MATCH;

}

return RETURN_SUCCESS;

7

Do timing attacks really work?

Objection: “Timings are noisy!”

Answer #1:

Does noise stop all attacks?

To guarantee security, defender

must block all information flow.

Answer #2: Attacker uses

statistics to eliminate noise.

Answer #3, what the

1970s attackers actually did:

Cross page boundary,

inducing page faults,

to amplify timing signal.

8

Defenders don’t learn

Some of the literature:

1996 Kocher pointed out timing

attacks on cryptographic key bits.

Briefly mentioned by

Kocher and by 1998 Kelsey–

Schneier–Wagner–Hall:

secret array indices can

affect timing via cache misses.

2002 Page, 2003 Tsunoo–Saito–

Suzaki–Shigeri–Miyauchi:

timing attacks on DES.

7

Do timing attacks really work?

Objection: “Timings are noisy!”

Answer #1:

Does noise stop all attacks?

To guarantee security, defender

must block all information flow.

Answer #2: Attacker uses

statistics to eliminate noise.

Answer #3, what the

1970s attackers actually did:

Cross page boundary,

inducing page faults,

to amplify timing signal.

8

Defenders don’t learn

Some of the literature:

1996 Kocher pointed out timing

attacks on cryptographic key bits.

Briefly mentioned by

Kocher and by 1998 Kelsey–

Schneier–Wagner–Hall:

secret array indices can

affect timing via cache misses.

2002 Page, 2003 Tsunoo–Saito–

Suzaki–Shigeri–Miyauchi:

timing attacks on DES.

7

Do timing attacks really work?

Objection: “Timings are noisy!”

Answer #1:

Does noise stop all attacks?

To guarantee security, defender

must block all information flow.

Answer #2: Attacker uses

statistics to eliminate noise.

Answer #3, what the

1970s attackers actually did:

Cross page boundary,

inducing page faults,

to amplify timing signal.

8

Defenders don’t learn

Some of the literature:

1996 Kocher pointed out timing

attacks on cryptographic key bits.

Briefly mentioned by

Kocher and by 1998 Kelsey–

Schneier–Wagner–Hall:

secret array indices can

affect timing via cache misses.

2002 Page, 2003 Tsunoo–Saito–

Suzaki–Shigeri–Miyauchi:

timing attacks on DES.

9

“Guaranteed” countermeasure:

load entire table into cache.

7

Do timing attacks really work?

Objection: “Timings are noisy!”

Answer #1:

Does noise stop all attacks?

To guarantee security, defender

must block all information flow.

Answer #2: Attacker uses

statistics to eliminate noise.

Answer #3, what the

1970s attackers actually did:

Cross page boundary,

inducing page faults,

to amplify timing signal.

8

Defenders don’t learn

Some of the literature:

1996 Kocher pointed out timing

attacks on cryptographic key bits.

Briefly mentioned by

Kocher and by 1998 Kelsey–

Schneier–Wagner–Hall:

secret array indices can

affect timing via cache misses.

2002 Page, 2003 Tsunoo–Saito–

Suzaki–Shigeri–Miyauchi:

timing attacks on DES.

9

“Guaranteed” countermeasure:

load entire table into cache.

7

Do timing attacks really work?

Objection: “Timings are noisy!”

Answer #1:

Does noise stop all attacks?

To guarantee security, defender

must block all information flow.

Answer #2: Attacker uses

statistics to eliminate noise.

Answer #3, what the

1970s attackers actually did:

Cross page boundary,

inducing page faults,

to amplify timing signal.

8

Defenders don’t learn

Some of the literature:

1996 Kocher pointed out timing

attacks on cryptographic key bits.

Briefly mentioned by

Kocher and by 1998 Kelsey–

Schneier–Wagner–Hall:

secret array indices can

affect timing via cache misses.

2002 Page, 2003 Tsunoo–Saito–

Suzaki–Shigeri–Miyauchi:

timing attacks on DES.

9

“Guaranteed” countermeasure:

load entire table into cache.

8

Defenders don’t learn

Some of the literature:

1996 Kocher pointed out timing

attacks on cryptographic key bits.

Briefly mentioned by

Kocher and by 1998 Kelsey–

Schneier–Wagner–Hall:

secret array indices can

affect timing via cache misses.

2002 Page, 2003 Tsunoo–Saito–

Suzaki–Shigeri–Miyauchi:

timing attacks on DES.

9

“Guaranteed” countermeasure:

load entire table into cache.

8

Defenders don’t learn

Some of the literature:

1996 Kocher pointed out timing

attacks on cryptographic key bits.

Briefly mentioned by

Kocher and by 1998 Kelsey–

Schneier–Wagner–Hall:

secret array indices can

affect timing via cache misses.

2002 Page, 2003 Tsunoo–Saito–

Suzaki–Shigeri–Miyauchi:

timing attacks on DES.

9

“Guaranteed” countermeasure:

load entire table into cache.

2004.11/2005.04 Bernstein:

Timing attacks on AES.

Countermeasure isn’t safe;

e.g., secret array indices can affect

timing via cache-bank collisions.

What is safe: kill all data flow

from secrets to array indices.

8

Defenders don’t learn

Some of the literature:

1996 Kocher pointed out timing

attacks on cryptographic key bits.

Briefly mentioned by

Kocher and by 1998 Kelsey–

Schneier–Wagner–Hall:

secret array indices can

affect timing via cache misses.

2002 Page, 2003 Tsunoo–Saito–

Suzaki–Shigeri–Miyauchi:

timing attacks on DES.

9

“Guaranteed” countermeasure:

load entire table into cache.

2004.11/2005.04 Bernstein:

Timing attacks on AES.

Countermeasure isn’t safe;

e.g., secret array indices can affect

timing via cache-bank collisions.

What is safe: kill all data flow

from secrets to array indices.

2005 Tromer–Osvik–Shamir:

65ms to steal Linux AES key

used for hard-disk encryption.

8

Defenders don’t learn

Some of the literature:

1996 Kocher pointed out timing

attacks on cryptographic key bits.

Briefly mentioned by

Kocher and by 1998 Kelsey–

Schneier–Wagner–Hall:

secret array indices can

affect timing via cache misses.

2002 Page, 2003 Tsunoo–Saito–

Suzaki–Shigeri–Miyauchi:

timing attacks on DES.

9

“Guaranteed” countermeasure:

load entire table into cache.

2004.11/2005.04 Bernstein:

Timing attacks on AES.

Countermeasure isn’t safe;

e.g., secret array indices can affect

timing via cache-bank collisions.

What is safe: kill all data flow

from secrets to array indices.

2005 Tromer–Osvik–Shamir:

65ms to steal Linux AES key

used for hard-disk encryption.

10

Intel recommends, and

OpenSSL integrates, cheaper

countermeasure: always loading

from known lines of cache.

8

Defenders don’t learn

Some of the literature:

1996 Kocher pointed out timing

attacks on cryptographic key bits.

Briefly mentioned by

Kocher and by 1998 Kelsey–

Schneier–Wagner–Hall:

secret array indices can

affect timing via cache misses.

2002 Page, 2003 Tsunoo–Saito–

Suzaki–Shigeri–Miyauchi:

timing attacks on DES.

9

“Guaranteed” countermeasure:

load entire table into cache.

2004.11/2005.04 Bernstein:

Timing attacks on AES.

Countermeasure isn’t safe;

e.g., secret array indices can affect

timing via cache-bank collisions.

What is safe: kill all data flow

from secrets to array indices.

2005 Tromer–Osvik–Shamir:

65ms to steal Linux AES key

used for hard-disk encryption.

10

Intel recommends, and

OpenSSL integrates, cheaper

countermeasure: always loading

from known lines of cache.

8

Defenders don’t learn

Some of the literature:

1996 Kocher pointed out timing

attacks on cryptographic key bits.

Briefly mentioned by

Kocher and by 1998 Kelsey–

Schneier–Wagner–Hall:

secret array indices can

affect timing via cache misses.

2002 Page, 2003 Tsunoo–Saito–

Suzaki–Shigeri–Miyauchi:

timing attacks on DES.

9

“Guaranteed” countermeasure:

load entire table into cache.

2004.11/2005.04 Bernstein:

Timing attacks on AES.

Countermeasure isn’t safe;

e.g., secret array indices can affect

timing via cache-bank collisions.

What is safe: kill all data flow

from secrets to array indices.

2005 Tromer–Osvik–Shamir:

65ms to steal Linux AES key

used for hard-disk encryption.

10

Intel recommends, and

OpenSSL integrates, cheaper

countermeasure: always loading

from known lines of cache.

9

“Guaranteed” countermeasure:

load entire table into cache.

2004.11/2005.04 Bernstein:

Timing attacks on AES.

Countermeasure isn’t safe;

e.g., secret array indices can affect

timing via cache-bank collisions.

What is safe: kill all data flow

from secrets to array indices.

2005 Tromer–Osvik–Shamir:

65ms to steal Linux AES key

used for hard-disk encryption.

10

Intel recommends, and

OpenSSL integrates, cheaper

countermeasure: always loading

from known lines of cache.

9

“Guaranteed” countermeasure:

load entire table into cache.

2004.11/2005.04 Bernstein:

Timing attacks on AES.

Countermeasure isn’t safe;

e.g., secret array indices can affect

timing via cache-bank collisions.

What is safe: kill all data flow

from secrets to array indices.

2005 Tromer–Osvik–Shamir:

65ms to steal Linux AES key

used for hard-disk encryption.

10

Intel recommends, and

OpenSSL integrates, cheaper

countermeasure: always loading

from known lines of cache.

2013 Bernstein–Schwabe

“A word of warning”:

This countermeasure isn’t safe.

Same issues described in 2004.

9

“Guaranteed” countermeasure:

load entire table into cache.

2004.11/2005.04 Bernstein:

Timing attacks on AES.

Countermeasure isn’t safe;

e.g., secret array indices can affect

timing via cache-bank collisions.

What is safe: kill all data flow

from secrets to array indices.

2005 Tromer–Osvik–Shamir:

65ms to steal Linux AES key

used for hard-disk encryption.

10

Intel recommends, and

OpenSSL integrates, cheaper

countermeasure: always loading

from known lines of cache.

2013 Bernstein–Schwabe

“A word of warning”:

This countermeasure isn’t safe.

Same issues described in 2004.

2016 Yarom–Genkin–Heninger

“CacheBleed” steals RSA secret

key via timings of OpenSSL.

9

“Guaranteed” countermeasure:

load entire table into cache.

2004.11/2005.04 Bernstein:

Timing attacks on AES.

Countermeasure isn’t safe;

e.g., secret array indices can affect

timing via cache-bank collisions.

What is safe: kill all data flow

from secrets to array indices.

2005 Tromer–Osvik–Shamir:

65ms to steal Linux AES key

used for hard-disk encryption.

10

Intel recommends, and

OpenSSL integrates, cheaper

countermeasure: always loading

from known lines of cache.

2013 Bernstein–Schwabe

“A word of warning”:

This countermeasure isn’t safe.

Same issues described in 2004.

2016 Yarom–Genkin–Heninger

“CacheBleed” steals RSA secret

key via timings of OpenSSL.

11

2008 RFC 5246 “The Transport

Layer Security (TLS) Protocol,

Version 1.2”: “This leaves a

small timing channel, since MAC

performance depends to some

extent on the size of the data

fragment, but it is not believed to

be large enough to be exploitable,

due to the large block size of

existing MACs and the small size

of the timing signal.”

9

“Guaranteed” countermeasure:

load entire table into cache.

2004.11/2005.04 Bernstein:

Timing attacks on AES.

Countermeasure isn’t safe;

e.g., secret array indices can affect

timing via cache-bank collisions.

What is safe: kill all data flow

from secrets to array indices.

2005 Tromer–Osvik–Shamir:

65ms to steal Linux AES key

used for hard-disk encryption.

10

Intel recommends, and

OpenSSL integrates, cheaper

countermeasure: always loading

from known lines of cache.

2013 Bernstein–Schwabe

“A word of warning”:

This countermeasure isn’t safe.

Same issues described in 2004.

2016 Yarom–Genkin–Heninger

“CacheBleed” steals RSA secret

key via timings of OpenSSL.

11

2008 RFC 5246 “The Transport

Layer Security (TLS) Protocol,

Version 1.2”: “This leaves a

small timing channel, since MAC

performance depends to some

extent on the size of the data

fragment, but it is not believed to

be large enough to be exploitable,

due to the large block size of

existing MACs and the small size

of the timing signal.”

9

“Guaranteed” countermeasure:

load entire table into cache.

2004.11/2005.04 Bernstein:

Timing attacks on AES.

Countermeasure isn’t safe;

e.g., secret array indices can affect

timing via cache-bank collisions.

What is safe: kill all data flow

from secrets to array indices.

2005 Tromer–Osvik–Shamir:

65ms to steal Linux AES key

used for hard-disk encryption.

10

Intel recommends, and

OpenSSL integrates, cheaper

countermeasure: always loading

from known lines of cache.

2013 Bernstein–Schwabe

“A word of warning”:

This countermeasure isn’t safe.

Same issues described in 2004.

2016 Yarom–Genkin–Heninger

“CacheBleed” steals RSA secret

key via timings of OpenSSL.

11

2008 RFC 5246 “The Transport

Layer Security (TLS) Protocol,

Version 1.2”: “This leaves a

small timing channel, since MAC

performance depends to some

extent on the size of the data

fragment, but it is not believed to

be large enough to be exploitable,

due to the large block size of

existing MACs and the small size

of the timing signal.”

10

Intel recommends, and

OpenSSL integrates, cheaper

countermeasure: always loading

from known lines of cache.

2013 Bernstein–Schwabe

“A word of warning”:

This countermeasure isn’t safe.

Same issues described in 2004.

2016 Yarom–Genkin–Heninger

“CacheBleed” steals RSA secret

key via timings of OpenSSL.

11

2008 RFC 5246 “The Transport

Layer Security (TLS) Protocol,

Version 1.2”: “This leaves a

small timing channel, since MAC

performance depends to some

extent on the size of the data

fragment, but it is not believed to

be large enough to be exploitable,

due to the large block size of

existing MACs and the small size

of the timing signal.”

10

Intel recommends, and

OpenSSL integrates, cheaper

countermeasure: always loading

from known lines of cache.

2013 Bernstein–Schwabe

“A word of warning”:

This countermeasure isn’t safe.

Same issues described in 2004.

2016 Yarom–Genkin–Heninger

“CacheBleed” steals RSA secret

key via timings of OpenSSL.

11

2008 RFC 5246 “The Transport

Layer Security (TLS) Protocol,

Version 1.2”: “This leaves a

small timing channel, since MAC

performance depends to some

extent on the size of the data

fragment, but it is not believed to

be large enough to be exploitable,

due to the large block size of

existing MACs and the small size

of the timing signal.”

2013 AlFardan–Paterson “Lucky

Thirteen: breaking the TLS and

DTLS record protocols”: exploit

these timings; steal plaintext.

10

Intel recommends, and

OpenSSL integrates, cheaper

countermeasure: always loading

from known lines of cache.

2013 Bernstein–Schwabe

“A word of warning”:

This countermeasure isn’t safe.

Same issues described in 2004.

2016 Yarom–Genkin–Heninger

“CacheBleed” steals RSA secret

key via timings of OpenSSL.

11

2008 RFC 5246 “The Transport

Layer Security (TLS) Protocol,

Version 1.2”: “This leaves a

small timing channel, since MAC

performance depends to some

extent on the size of the data

fragment, but it is not believed to

be large enough to be exploitable,

due to the large block size of

existing MACs and the small size

of the timing signal.”

2013 AlFardan–Paterson “Lucky

Thirteen: breaking the TLS and

DTLS record protocols”: exploit

these timings; steal plaintext.

12

How to write constant-time code

If possible, write code in asm

to control instruction selection.

Look for documentation

identifying variability: e.g.,

“Division operations terminate

when the divide operation

completes, with the number of

cycles required dependent on the

values of the input operands.”

Measure cycles rather than

trusting CPU documentation.

10

Intel recommends, and

OpenSSL integrates, cheaper

countermeasure: always loading

from known lines of cache.

2013 Bernstein–Schwabe

“A word of warning”:

This countermeasure isn’t safe.

Same issues described in 2004.

2016 Yarom–Genkin–Heninger

“CacheBleed” steals RSA secret

key via timings of OpenSSL.

11

2008 RFC 5246 “The Transport

Layer Security (TLS) Protocol,

Version 1.2”: “This leaves a

small timing channel, since MAC

performance depends to some

extent on the size of the data

fragment, but it is not believed to

be large enough to be exploitable,

due to the large block size of

existing MACs and the small size

of the timing signal.”

2013 AlFardan–Paterson “Lucky

Thirteen: breaking the TLS and

DTLS record protocols”: exploit

these timings; steal plaintext.

12

How to write constant-time code

If possible, write code in asm

to control instruction selection.

Look for documentation

identifying variability: e.g.,

“Division operations terminate

when the divide operation

completes, with the number of

cycles required dependent on the

values of the input operands.”

Measure cycles rather than

trusting CPU documentation.

10

Intel recommends, and

OpenSSL integrates, cheaper

countermeasure: always loading

from known lines of cache.

2013 Bernstein–Schwabe

“A word of warning”:

This countermeasure isn’t safe.

Same issues described in 2004.

2016 Yarom–Genkin–Heninger

“CacheBleed” steals RSA secret

key via timings of OpenSSL.

11

2008 RFC 5246 “The Transport

Layer Security (TLS) Protocol,

Version 1.2”: “This leaves a

small timing channel, since MAC

performance depends to some

extent on the size of the data

fragment, but it is not believed to

be large enough to be exploitable,

due to the large block size of

existing MACs and the small size

of the timing signal.”

2013 AlFardan–Paterson “Lucky

Thirteen: breaking the TLS and

DTLS record protocols”: exploit

these timings; steal plaintext.

12

How to write constant-time code

If possible, write code in asm

to control instruction selection.

Look for documentation

identifying variability: e.g.,

“Division operations terminate

when the divide operation

completes, with the number of

cycles required dependent on the

values of the input operands.”

Measure cycles rather than

trusting CPU documentation.

11

2008 RFC 5246 “The Transport

Layer Security (TLS) Protocol,

Version 1.2”: “This leaves a

small timing channel, since MAC

performance depends to some

extent on the size of the data

fragment, but it is not believed to

be large enough to be exploitable,

due to the large block size of

existing MACs and the small size

of the timing signal.”

2013 AlFardan–Paterson “Lucky

Thirteen: breaking the TLS and

DTLS record protocols”: exploit

these timings; steal plaintext.

12

How to write constant-time code

If possible, write code in asm

to control instruction selection.

Look for documentation

identifying variability: e.g.,

“Division operations terminate

when the divide operation

completes, with the number of

cycles required dependent on the

values of the input operands.”

Measure cycles rather than

trusting CPU documentation.

11

2008 RFC 5246 “The Transport

Layer Security (TLS) Protocol,

Version 1.2”: “This leaves a

small timing channel, since MAC

performance depends to some

extent on the size of the data

fragment, but it is not believed to

be large enough to be exploitable,

due to the large block size of

existing MACs and the small size

of the timing signal.”

2013 AlFardan–Paterson “Lucky

Thirteen: breaking the TLS and

DTLS record protocols”: exploit

these timings; steal plaintext.

12

How to write constant-time code

If possible, write code in asm

to control instruction selection.

Look for documentation

identifying variability: e.g.,

“Division operations terminate

when the divide operation

completes, with the number of

cycles required dependent on the

values of the input operands.”

Measure cycles rather than

trusting CPU documentation.

13

Cut off all data flow from

secrets to branch conditions.

Cut off all data flow from

secrets to array indices.

Cut off all data flow from

secrets to shift/rotate distances.

Prefer logic instructions.

Prefer vector instructions.

Watch out for CPUs with

variable-time multipliers: e.g.,

Cortex-M3 and most PowerPCs.

11

2008 RFC 5246 “The Transport

Layer Security (TLS) Protocol,

Version 1.2”: “This leaves a

small timing channel, since MAC

performance depends to some

extent on the size of the data

fragment, but it is not believed to

be large enough to be exploitable,

due to the large block size of

existing MACs and the small size

of the timing signal.”

2013 AlFardan–Paterson “Lucky

Thirteen: breaking the TLS and

DTLS record protocols”: exploit

these timings; steal plaintext.

12

How to write constant-time code

If possible, write code in asm

to control instruction selection.

Look for documentation

identifying variability: e.g.,

“Division operations terminate

when the divide operation

completes, with the number of

cycles required dependent on the

values of the input operands.”

Measure cycles rather than

trusting CPU documentation.

13

Cut off all data flow from

secrets to branch conditions.

Cut off all data flow from

secrets to array indices.

Cut off all data flow from

secrets to shift/rotate distances.

Prefer logic instructions.

Prefer vector instructions.

Watch out for CPUs with

variable-time multipliers: e.g.,

Cortex-M3 and most PowerPCs.

11

2008 RFC 5246 “The Transport

Layer Security (TLS) Protocol,

Version 1.2”: “This leaves a

small timing channel, since MAC

performance depends to some

extent on the size of the data

fragment, but it is not believed to

be large enough to be exploitable,

due to the large block size of

existing MACs and the small size

of the timing signal.”

2013 AlFardan–Paterson “Lucky

Thirteen: breaking the TLS and

DTLS record protocols”: exploit

these timings; steal plaintext.

12

How to write constant-time code

If possible, write code in asm

to control instruction selection.

Look for documentation

identifying variability: e.g.,

“Division operations terminate

when the divide operation

completes, with the number of

cycles required dependent on the

values of the input operands.”

Measure cycles rather than

trusting CPU documentation.

13

Cut off all data flow from

secrets to branch conditions.

Cut off all data flow from

secrets to array indices.

Cut off all data flow from

secrets to shift/rotate distances.

Prefer logic instructions.

Prefer vector instructions.

Watch out for CPUs with

variable-time multipliers: e.g.,

Cortex-M3 and most PowerPCs.

12

How to write constant-time code

If possible, write code in asm

to control instruction selection.

Look for documentation

identifying variability: e.g.,

“Division operations terminate

when the divide operation

completes, with the number of

cycles required dependent on the

values of the input operands.”

Measure cycles rather than

trusting CPU documentation.

13

Cut off all data flow from

secrets to branch conditions.

Cut off all data flow from

secrets to array indices.

Cut off all data flow from

secrets to shift/rotate distances.

Prefer logic instructions.

Prefer vector instructions.

Watch out for CPUs with

variable-time multipliers: e.g.,

Cortex-M3 and most PowerPCs.

12

How to write constant-time code

If possible, write code in asm

to control instruction selection.

Look for documentation

identifying variability: e.g.,

“Division operations terminate

when the divide operation

completes, with the number of

cycles required dependent on the

values of the input operands.”

Measure cycles rather than

trusting CPU documentation.

13

Cut off all data flow from

secrets to branch conditions.

Cut off all data flow from

secrets to array indices.

Cut off all data flow from

secrets to shift/rotate distances.

Prefer logic instructions.

Prefer vector instructions.

Watch out for CPUs with

variable-time multipliers: e.g.,

Cortex-M3 and most PowerPCs.

14

Software optimization

Almost all software is

much slower than it could be.

12

How to write constant-time code

If possible, write code in asm

to control instruction selection.

Look for documentation

identifying variability: e.g.,

“Division operations terminate

when the divide operation

completes, with the number of

cycles required dependent on the

values of the input operands.”

Measure cycles rather than

trusting CPU documentation.

13

Cut off all data flow from

secrets to branch conditions.

Cut off all data flow from

secrets to array indices.

Cut off all data flow from

secrets to shift/rotate distances.

Prefer logic instructions.

Prefer vector instructions.

Watch out for CPUs with

variable-time multipliers: e.g.,

Cortex-M3 and most PowerPCs.

14

Software optimization

Almost all software is

much slower than it could be.

12

How to write constant-time code

If possible, write code in asm

to control instruction selection.

Look for documentation

identifying variability: e.g.,

“Division operations terminate

when the divide operation

completes, with the number of

cycles required dependent on the

values of the input operands.”

Measure cycles rather than

trusting CPU documentation.

13

Cut off all data flow from

secrets to branch conditions.

Cut off all data flow from

secrets to array indices.

Cut off all data flow from

secrets to shift/rotate distances.

Prefer logic instructions.

Prefer vector instructions.

Watch out for CPUs with

variable-time multipliers: e.g.,

Cortex-M3 and most PowerPCs.

14

Software optimization

Almost all software is

much slower than it could be.

13

Cut off all data flow from

secrets to branch conditions.

Cut off all data flow from

secrets to array indices.

Cut off all data flow from

secrets to shift/rotate distances.

Prefer logic instructions.

Prefer vector instructions.

Watch out for CPUs with

variable-time multipliers: e.g.,

Cortex-M3 and most PowerPCs.

14

Software optimization

Almost all software is

much slower than it could be.

13

Cut off all data flow from

secrets to branch conditions.

Cut off all data flow from

secrets to array indices.

Cut off all data flow from

secrets to shift/rotate distances.

Prefer logic instructions.

Prefer vector instructions.

Watch out for CPUs with

variable-time multipliers: e.g.,

Cortex-M3 and most PowerPCs.

14

Software optimization

Almost all software is

much slower than it could be.

Is software applied to much data?

Usually not. Usually the

wasted CPU time is negligible.

13

Cut off all data flow from

secrets to branch conditions.

Cut off all data flow from

secrets to array indices.

Cut off all data flow from

secrets to shift/rotate distances.

Prefer logic instructions.

Prefer vector instructions.

Watch out for CPUs with

variable-time multipliers: e.g.,

Cortex-M3 and most PowerPCs.

14

Software optimization

Almost all software is

much slower than it could be.

Is software applied to much data?

Usually not. Usually the

wasted CPU time is negligible.

But crypto software should be

applied to all communication.

Crypto that’s too slow ⇒
fewer users ⇒ fewer cryptanalysts

⇒ less attractive for everybody.

13

Cut off all data flow from

secrets to branch conditions.

Cut off all data flow from

secrets to array indices.

Cut off all data flow from

secrets to shift/rotate distances.

Prefer logic instructions.

Prefer vector instructions.

Watch out for CPUs with

variable-time multipliers: e.g.,

Cortex-M3 and most PowerPCs.

14

Software optimization

Almost all software is

much slower than it could be.

Is software applied to much data?

Usually not. Usually the

wasted CPU time is negligible.

But crypto software should be

applied to all communication.

Crypto that’s too slow ⇒
fewer users ⇒ fewer cryptanalysts

⇒ less attractive for everybody.

15

Typical situation:

You want (constant-time)

software that computes cipher X

as efficiently as possible.

Starting point:

You have written a

reference implementation of X.

You have chosen a target CPU.

(Can repeat for other CPUs.)

You measure performance of the

implementation. Now what?

13

Cut off all data flow from

secrets to branch conditions.

Cut off all data flow from

secrets to array indices.

Cut off all data flow from

secrets to shift/rotate distances.

Prefer logic instructions.

Prefer vector instructions.

Watch out for CPUs with

variable-time multipliers: e.g.,

Cortex-M3 and most PowerPCs.

14

Software optimization

Almost all software is

much slower than it could be.

Is software applied to much data?

Usually not. Usually the

wasted CPU time is negligible.

But crypto software should be

applied to all communication.

Crypto that’s too slow ⇒
fewer users ⇒ fewer cryptanalysts

⇒ less attractive for everybody.

15

Typical situation:

You want (constant-time)

software that computes cipher X

as efficiently as possible.

Starting point:

You have written a

reference implementation of X.

You have chosen a target CPU.

(Can repeat for other CPUs.)

You measure performance of the

implementation. Now what?

13

Cut off all data flow from

secrets to branch conditions.

Cut off all data flow from

secrets to array indices.

Cut off all data flow from

secrets to shift/rotate distances.

Prefer logic instructions.

Prefer vector instructions.

Watch out for CPUs with

variable-time multipliers: e.g.,

Cortex-M3 and most PowerPCs.

14

Software optimization

Almost all software is

much slower than it could be.

Is software applied to much data?

Usually not. Usually the

wasted CPU time is negligible.

But crypto software should be

applied to all communication.

Crypto that’s too slow ⇒
fewer users ⇒ fewer cryptanalysts

⇒ less attractive for everybody.

15

Typical situation:

You want (constant-time)

software that computes cipher X

as efficiently as possible.

Starting point:

You have written a

reference implementation of X.

You have chosen a target CPU.

(Can repeat for other CPUs.)

You measure performance of the

implementation. Now what?

14

Software optimization

Almost all software is

much slower than it could be.

Is software applied to much data?

Usually not. Usually the

wasted CPU time is negligible.

But crypto software should be

applied to all communication.

Crypto that’s too slow ⇒
fewer users ⇒ fewer cryptanalysts

⇒ less attractive for everybody.

15

Typical situation:

You want (constant-time)

software that computes cipher X

as efficiently as possible.

Starting point:

You have written a

reference implementation of X.

You have chosen a target CPU.

(Can repeat for other CPUs.)

You measure performance of the

implementation. Now what?

14

Software optimization

Almost all software is

much slower than it could be.

Is software applied to much data?

Usually not. Usually the

wasted CPU time is negligible.

But crypto software should be

applied to all communication.

Crypto that’s too slow ⇒
fewer users ⇒ fewer cryptanalysts

⇒ less attractive for everybody.

15

Typical situation:

You want (constant-time)

software that computes cipher X

as efficiently as possible.

Starting point:

You have written a

reference implementation of X.

You have chosen a target CPU.

(Can repeat for other CPUs.)

You measure performance of the

implementation. Now what?

16

A simplified example

Target CPU: TI LM4F120H5QR

microcontroller containing

one ARM Cortex-M4F core.

Reference implementation:

int sum(int *x)

{

int result = 0;

int i;

for (i = 0;i < 1000;++i)

result += x[i];

return result;

}

14

Software optimization

Almost all software is

much slower than it could be.

Is software applied to much data?

Usually not. Usually the

wasted CPU time is negligible.

But crypto software should be

applied to all communication.

Crypto that’s too slow ⇒
fewer users ⇒ fewer cryptanalysts

⇒ less attractive for everybody.

15

Typical situation:

You want (constant-time)

software that computes cipher X

as efficiently as possible.

Starting point:

You have written a

reference implementation of X.

You have chosen a target CPU.

(Can repeat for other CPUs.)

You measure performance of the

implementation. Now what?

16

A simplified example

Target CPU: TI LM4F120H5QR

microcontroller containing

one ARM Cortex-M4F core.

Reference implementation:

int sum(int *x)

{

int result = 0;

int i;

for (i = 0;i < 1000;++i)

result += x[i];

return result;

}

14

Software optimization

Almost all software is

much slower than it could be.

Is software applied to much data?

Usually not. Usually the

wasted CPU time is negligible.

But crypto software should be

applied to all communication.

Crypto that’s too slow ⇒
fewer users ⇒ fewer cryptanalysts

⇒ less attractive for everybody.

15

Typical situation:

You want (constant-time)

software that computes cipher X

as efficiently as possible.

Starting point:

You have written a

reference implementation of X.

You have chosen a target CPU.

(Can repeat for other CPUs.)

You measure performance of the

implementation. Now what?

16

A simplified example

Target CPU: TI LM4F120H5QR

microcontroller containing

one ARM Cortex-M4F core.

Reference implementation:

int sum(int *x)

{

int result = 0;

int i;

for (i = 0;i < 1000;++i)

result += x[i];

return result;

}

15

Typical situation:

You want (constant-time)

software that computes cipher X

as efficiently as possible.

Starting point:

You have written a

reference implementation of X.

You have chosen a target CPU.

(Can repeat for other CPUs.)

You measure performance of the

implementation. Now what?

16

A simplified example

Target CPU: TI LM4F120H5QR

microcontroller containing

one ARM Cortex-M4F core.

Reference implementation:

int sum(int *x)

{

int result = 0;

int i;

for (i = 0;i < 1000;++i)

result += x[i];

return result;

}

15

Typical situation:

You want (constant-time)

software that computes cipher X

as efficiently as possible.

Starting point:

You have written a

reference implementation of X.

You have chosen a target CPU.

(Can repeat for other CPUs.)

You measure performance of the

implementation. Now what?

16

A simplified example

Target CPU: TI LM4F120H5QR

microcontroller containing

one ARM Cortex-M4F core.

Reference implementation:

int sum(int *x)

{

int result = 0;

int i;

for (i = 0;i < 1000;++i)

result += x[i];

return result;

}

17

Counting cycles:

static volatile unsigned int

*const DWT_CYCCNT

= (void *) 0xE0001004;

...

int beforesum = *DWT_CYCCNT;

int result = sum(x);

int aftersum = *DWT_CYCCNT;

UARTprintf("sum %d %d\n",

result,aftersum-beforesum);

Output shows 8012 cycles.

Change 1000 to 500: 4012.

15

Typical situation:

You want (constant-time)

software that computes cipher X

as efficiently as possible.

Starting point:

You have written a

reference implementation of X.

You have chosen a target CPU.

(Can repeat for other CPUs.)

You measure performance of the

implementation. Now what?

16

A simplified example

Target CPU: TI LM4F120H5QR

microcontroller containing

one ARM Cortex-M4F core.

Reference implementation:

int sum(int *x)

{

int result = 0;

int i;

for (i = 0;i < 1000;++i)

result += x[i];

return result;

}

17

Counting cycles:

static volatile unsigned int

*const DWT_CYCCNT

= (void *) 0xE0001004;

...

int beforesum = *DWT_CYCCNT;

int result = sum(x);

int aftersum = *DWT_CYCCNT;

UARTprintf("sum %d %d\n",

result,aftersum-beforesum);

Output shows 8012 cycles.

Change 1000 to 500: 4012.

15

Typical situation:

You want (constant-time)

software that computes cipher X

as efficiently as possible.

Starting point:

You have written a

reference implementation of X.

You have chosen a target CPU.

(Can repeat for other CPUs.)

You measure performance of the

implementation. Now what?

16

A simplified example

Target CPU: TI LM4F120H5QR

microcontroller containing

one ARM Cortex-M4F core.

Reference implementation:

int sum(int *x)

{

int result = 0;

int i;

for (i = 0;i < 1000;++i)

result += x[i];

return result;

}

17

Counting cycles:

static volatile unsigned int

*const DWT_CYCCNT

= (void *) 0xE0001004;

...

int beforesum = *DWT_CYCCNT;

int result = sum(x);

int aftersum = *DWT_CYCCNT;

UARTprintf("sum %d %d\n",

result,aftersum-beforesum);

Output shows 8012 cycles.

Change 1000 to 500: 4012.

16

A simplified example

Target CPU: TI LM4F120H5QR

microcontroller containing

one ARM Cortex-M4F core.

Reference implementation:

int sum(int *x)

{

int result = 0;

int i;

for (i = 0;i < 1000;++i)

result += x[i];

return result;

}

17

Counting cycles:

static volatile unsigned int

*const DWT_CYCCNT

= (void *) 0xE0001004;

...

int beforesum = *DWT_CYCCNT;

int result = sum(x);

int aftersum = *DWT_CYCCNT;

UARTprintf("sum %d %d\n",

result,aftersum-beforesum);

Output shows 8012 cycles.

Change 1000 to 500: 4012.

16

A simplified example

Target CPU: TI LM4F120H5QR

microcontroller containing

one ARM Cortex-M4F core.

Reference implementation:

int sum(int *x)

{

int result = 0;

int i;

for (i = 0;i < 1000;++i)

result += x[i];

return result;

}

17

Counting cycles:

static volatile unsigned int

*const DWT_CYCCNT

= (void *) 0xE0001004;

...

int beforesum = *DWT_CYCCNT;

int result = sum(x);

int aftersum = *DWT_CYCCNT;

UARTprintf("sum %d %d\n",

result,aftersum-beforesum);

Output shows 8012 cycles.

Change 1000 to 500: 4012.

18

“Okay, 8 cycles per addition.

Um, are microcontrollers

really this slow at addition?”

16

A simplified example

Target CPU: TI LM4F120H5QR

microcontroller containing

one ARM Cortex-M4F core.

Reference implementation:

int sum(int *x)

{

int result = 0;

int i;

for (i = 0;i < 1000;++i)

result += x[i];

return result;

}

17

Counting cycles:

static volatile unsigned int

*const DWT_CYCCNT

= (void *) 0xE0001004;

...

int beforesum = *DWT_CYCCNT;

int result = sum(x);

int aftersum = *DWT_CYCCNT;

UARTprintf("sum %d %d\n",

result,aftersum-beforesum);

Output shows 8012 cycles.

Change 1000 to 500: 4012.

18

“Okay, 8 cycles per addition.

Um, are microcontrollers

really this slow at addition?”

16

A simplified example

Target CPU: TI LM4F120H5QR

microcontroller containing

one ARM Cortex-M4F core.

Reference implementation:

int sum(int *x)

{

int result = 0;

int i;

for (i = 0;i < 1000;++i)

result += x[i];

return result;

}

17

Counting cycles:

static volatile unsigned int

*const DWT_CYCCNT

= (void *) 0xE0001004;

...

int beforesum = *DWT_CYCCNT;

int result = sum(x);

int aftersum = *DWT_CYCCNT;

UARTprintf("sum %d %d\n",

result,aftersum-beforesum);

Output shows 8012 cycles.

Change 1000 to 500: 4012.

18

“Okay, 8 cycles per addition.

Um, are microcontrollers

really this slow at addition?”

17

Counting cycles:

static volatile unsigned int

*const DWT_CYCCNT

= (void *) 0xE0001004;

...

int beforesum = *DWT_CYCCNT;

int result = sum(x);

int aftersum = *DWT_CYCCNT;

UARTprintf("sum %d %d\n",

result,aftersum-beforesum);

Output shows 8012 cycles.

Change 1000 to 500: 4012.

18

“Okay, 8 cycles per addition.

Um, are microcontrollers

really this slow at addition?”

17

Counting cycles:

static volatile unsigned int

*const DWT_CYCCNT

= (void *) 0xE0001004;

...

int beforesum = *DWT_CYCCNT;

int result = sum(x);

int aftersum = *DWT_CYCCNT;

UARTprintf("sum %d %d\n",

result,aftersum-beforesum);

Output shows 8012 cycles.

Change 1000 to 500: 4012.

18

“Okay, 8 cycles per addition.

Um, are microcontrollers

really this slow at addition?”

Bad practice:

Apply random “optimizations”

(and tweak compiler options)

until you get bored.

Keep the fastest results.

17

Counting cycles:

static volatile unsigned int

*const DWT_CYCCNT

= (void *) 0xE0001004;

...

int beforesum = *DWT_CYCCNT;

int result = sum(x);

int aftersum = *DWT_CYCCNT;

UARTprintf("sum %d %d\n",

result,aftersum-beforesum);

Output shows 8012 cycles.

Change 1000 to 500: 4012.

18

“Okay, 8 cycles per addition.

Um, are microcontrollers

really this slow at addition?”

Bad practice:

Apply random “optimizations”

(and tweak compiler options)

until you get bored.

Keep the fastest results.

Good practice:

Figure out lower bound for

cycles spent on arithmetic etc.

Understand gap between

lower bound and observed time.

17

Counting cycles:

static volatile unsigned int

*const DWT_CYCCNT

= (void *) 0xE0001004;

...

int beforesum = *DWT_CYCCNT;

int result = sum(x);

int aftersum = *DWT_CYCCNT;

UARTprintf("sum %d %d\n",

result,aftersum-beforesum);

Output shows 8012 cycles.

Change 1000 to 500: 4012.

18

“Okay, 8 cycles per addition.

Um, are microcontrollers

really this slow at addition?”

Bad practice:

Apply random “optimizations”

(and tweak compiler options)

until you get bored.

Keep the fastest results.

Good practice:

Figure out lower bound for

cycles spent on arithmetic etc.

Understand gap between

lower bound and observed time.

19

Find “ARM Cortex-M4 Processor

Technical Reference Manual”.

Rely on Wikipedia comment that

M4F = M4 + floating-point unit.

Manual says that Cortex-M4

“implements the ARMv7E-M

architecture profile”.

Points to the “ARMv7-M

Architecture Reference Manual”,

which defines instructions:

e.g., “ADD” for 32-bit addition.

First manual says that

ADD takes just 1 cycle.

17

Counting cycles:

static volatile unsigned int

*const DWT_CYCCNT

= (void *) 0xE0001004;

...

int beforesum = *DWT_CYCCNT;

int result = sum(x);

int aftersum = *DWT_CYCCNT;

UARTprintf("sum %d %d\n",

result,aftersum-beforesum);

Output shows 8012 cycles.

Change 1000 to 500: 4012.

18

“Okay, 8 cycles per addition.

Um, are microcontrollers

really this slow at addition?”

Bad practice:

Apply random “optimizations”

(and tweak compiler options)

until you get bored.

Keep the fastest results.

Good practice:

Figure out lower bound for

cycles spent on arithmetic etc.

Understand gap between

lower bound and observed time.

19

Find “ARM Cortex-M4 Processor

Technical Reference Manual”.

Rely on Wikipedia comment that

M4F = M4 + floating-point unit.

Manual says that Cortex-M4

“implements the ARMv7E-M

architecture profile”.

Points to the “ARMv7-M

Architecture Reference Manual”,

which defines instructions:

e.g., “ADD” for 32-bit addition.

First manual says that

ADD takes just 1 cycle.

17

Counting cycles:

static volatile unsigned int

*const DWT_CYCCNT

= (void *) 0xE0001004;

...

int beforesum = *DWT_CYCCNT;

int result = sum(x);

int aftersum = *DWT_CYCCNT;

UARTprintf("sum %d %d\n",

result,aftersum-beforesum);

Output shows 8012 cycles.

Change 1000 to 500: 4012.

18

“Okay, 8 cycles per addition.

Um, are microcontrollers

really this slow at addition?”

Bad practice:

Apply random “optimizations”

(and tweak compiler options)

until you get bored.

Keep the fastest results.

Good practice:

Figure out lower bound for

cycles spent on arithmetic etc.

Understand gap between

lower bound and observed time.

19

Find “ARM Cortex-M4 Processor

Technical Reference Manual”.

Rely on Wikipedia comment that

M4F = M4 + floating-point unit.

Manual says that Cortex-M4

“implements the ARMv7E-M

architecture profile”.

Points to the “ARMv7-M

Architecture Reference Manual”,

which defines instructions:

e.g., “ADD” for 32-bit addition.

First manual says that

ADD takes just 1 cycle.

18

“Okay, 8 cycles per addition.

Um, are microcontrollers

really this slow at addition?”

Bad practice:

Apply random “optimizations”

(and tweak compiler options)

until you get bored.

Keep the fastest results.

Good practice:

Figure out lower bound for

cycles spent on arithmetic etc.

Understand gap between

lower bound and observed time.

19

Find “ARM Cortex-M4 Processor

Technical Reference Manual”.

Rely on Wikipedia comment that

M4F = M4 + floating-point unit.

Manual says that Cortex-M4

“implements the ARMv7E-M

architecture profile”.

Points to the “ARMv7-M

Architecture Reference Manual”,

which defines instructions:

e.g., “ADD” for 32-bit addition.

First manual says that

ADD takes just 1 cycle.

18

“Okay, 8 cycles per addition.

Um, are microcontrollers

really this slow at addition?”

Bad practice:

Apply random “optimizations”

(and tweak compiler options)

until you get bored.

Keep the fastest results.

Good practice:

Figure out lower bound for

cycles spent on arithmetic etc.

Understand gap between

lower bound and observed time.

19

Find “ARM Cortex-M4 Processor

Technical Reference Manual”.

Rely on Wikipedia comment that

M4F = M4 + floating-point unit.

Manual says that Cortex-M4

“implements the ARMv7E-M

architecture profile”.

Points to the “ARMv7-M

Architecture Reference Manual”,

which defines instructions:

e.g., “ADD” for 32-bit addition.

First manual says that

ADD takes just 1 cycle.

20

Inputs and output of ADD are

“integer registers”. ARMv7-M

has 16 integer registers, including

special-purpose “stack pointer”

and “program counter”.

Each element of x array needs to

be “loaded” into a register.

Basic load instruction: LDR.

Manual says 2 cycles but adds

a note about “pipelining”.

Then more explanation: if next

instruction is also LDR (with

address not based on first LDR)

then it saves 1 cycle.

18

“Okay, 8 cycles per addition.

Um, are microcontrollers

really this slow at addition?”

Bad practice:

Apply random “optimizations”

(and tweak compiler options)

until you get bored.

Keep the fastest results.

Good practice:

Figure out lower bound for

cycles spent on arithmetic etc.

Understand gap between

lower bound and observed time.

19

Find “ARM Cortex-M4 Processor

Technical Reference Manual”.

Rely on Wikipedia comment that

M4F = M4 + floating-point unit.

Manual says that Cortex-M4

“implements the ARMv7E-M

architecture profile”.

Points to the “ARMv7-M

Architecture Reference Manual”,

which defines instructions:

e.g., “ADD” for 32-bit addition.

First manual says that

ADD takes just 1 cycle.

20

Inputs and output of ADD are

“integer registers”. ARMv7-M

has 16 integer registers, including

special-purpose “stack pointer”

and “program counter”.

Each element of x array needs to

be “loaded” into a register.

Basic load instruction: LDR.

Manual says 2 cycles but adds

a note about “pipelining”.

Then more explanation: if next

instruction is also LDR (with

address not based on first LDR)

then it saves 1 cycle.

18

“Okay, 8 cycles per addition.

Um, are microcontrollers

really this slow at addition?”

Bad practice:

Apply random “optimizations”

(and tweak compiler options)

until you get bored.

Keep the fastest results.

Good practice:

Figure out lower bound for

cycles spent on arithmetic etc.

Understand gap between

lower bound and observed time.

19

Find “ARM Cortex-M4 Processor

Technical Reference Manual”.

Rely on Wikipedia comment that

M4F = M4 + floating-point unit.

Manual says that Cortex-M4

“implements the ARMv7E-M

architecture profile”.

Points to the “ARMv7-M

Architecture Reference Manual”,

which defines instructions:

e.g., “ADD” for 32-bit addition.

First manual says that

ADD takes just 1 cycle.

20

Inputs and output of ADD are

“integer registers”. ARMv7-M

has 16 integer registers, including

special-purpose “stack pointer”

and “program counter”.

Each element of x array needs to

be “loaded” into a register.

Basic load instruction: LDR.

Manual says 2 cycles but adds

a note about “pipelining”.

Then more explanation: if next

instruction is also LDR (with

address not based on first LDR)

then it saves 1 cycle.

19

Find “ARM Cortex-M4 Processor

Technical Reference Manual”.

Rely on Wikipedia comment that

M4F = M4 + floating-point unit.

Manual says that Cortex-M4

“implements the ARMv7E-M

architecture profile”.

Points to the “ARMv7-M

Architecture Reference Manual”,

which defines instructions:

e.g., “ADD” for 32-bit addition.

First manual says that

ADD takes just 1 cycle.

20

Inputs and output of ADD are

“integer registers”. ARMv7-M

has 16 integer registers, including

special-purpose “stack pointer”

and “program counter”.

Each element of x array needs to

be “loaded” into a register.

Basic load instruction: LDR.

Manual says 2 cycles but adds

a note about “pipelining”.

Then more explanation: if next

instruction is also LDR (with

address not based on first LDR)

then it saves 1 cycle.

19

Find “ARM Cortex-M4 Processor

Technical Reference Manual”.

Rely on Wikipedia comment that

M4F = M4 + floating-point unit.

Manual says that Cortex-M4

“implements the ARMv7E-M

architecture profile”.

Points to the “ARMv7-M

Architecture Reference Manual”,

which defines instructions:

e.g., “ADD” for 32-bit addition.

First manual says that

ADD takes just 1 cycle.

20

Inputs and output of ADD are

“integer registers”. ARMv7-M

has 16 integer registers, including

special-purpose “stack pointer”

and “program counter”.

Each element of x array needs to

be “loaded” into a register.

Basic load instruction: LDR.

Manual says 2 cycles but adds

a note about “pipelining”.

Then more explanation: if next

instruction is also LDR (with

address not based on first LDR)

then it saves 1 cycle.

21

n consecutive LDRs

takes only n + 1 cycles

(“more multiple LDRs can be

pipelined together”).

Can achieve this speed

in other ways (LDRD, LDM)

but nothing seems faster.

Lower bound for n LDR + nADD:

2n + 1 cycles,

including n cycles of arithmetic.

Why observed time is higher:

non-consecutive LDRs;

costs of manipulating i.

19

Find “ARM Cortex-M4 Processor

Technical Reference Manual”.

Rely on Wikipedia comment that

M4F = M4 + floating-point unit.

Manual says that Cortex-M4

“implements the ARMv7E-M

architecture profile”.

Points to the “ARMv7-M

Architecture Reference Manual”,

which defines instructions:

e.g., “ADD” for 32-bit addition.

First manual says that

ADD takes just 1 cycle.

20

Inputs and output of ADD are

“integer registers”. ARMv7-M

has 16 integer registers, including

special-purpose “stack pointer”

and “program counter”.

Each element of x array needs to

be “loaded” into a register.

Basic load instruction: LDR.

Manual says 2 cycles but adds

a note about “pipelining”.

Then more explanation: if next

instruction is also LDR (with

address not based on first LDR)

then it saves 1 cycle.

21

n consecutive LDRs

takes only n + 1 cycles

(“more multiple LDRs can be

pipelined together”).

Can achieve this speed

in other ways (LDRD, LDM)

but nothing seems faster.

Lower bound for n LDR + nADD:

2n + 1 cycles,

including n cycles of arithmetic.

Why observed time is higher:

non-consecutive LDRs;

costs of manipulating i.

19

Find “ARM Cortex-M4 Processor

Technical Reference Manual”.

Rely on Wikipedia comment that

M4F = M4 + floating-point unit.

Manual says that Cortex-M4

“implements the ARMv7E-M

architecture profile”.

Points to the “ARMv7-M

Architecture Reference Manual”,

which defines instructions:

e.g., “ADD” for 32-bit addition.

First manual says that

ADD takes just 1 cycle.

20

Inputs and output of ADD are

“integer registers”. ARMv7-M

has 16 integer registers, including

special-purpose “stack pointer”

and “program counter”.

Each element of x array needs to

be “loaded” into a register.

Basic load instruction: LDR.

Manual says 2 cycles but adds

a note about “pipelining”.

Then more explanation: if next

instruction is also LDR (with

address not based on first LDR)

then it saves 1 cycle.

21

n consecutive LDRs

takes only n + 1 cycles

(“more multiple LDRs can be

pipelined together”).

Can achieve this speed

in other ways (LDRD, LDM)

but nothing seems faster.

Lower bound for n LDR + nADD:

2n + 1 cycles,

including n cycles of arithmetic.

Why observed time is higher:

non-consecutive LDRs;

costs of manipulating i.

20

Inputs and output of ADD are

“integer registers”. ARMv7-M

has 16 integer registers, including

special-purpose “stack pointer”

and “program counter”.

Each element of x array needs to

be “loaded” into a register.

Basic load instruction: LDR.

Manual says 2 cycles but adds

a note about “pipelining”.

Then more explanation: if next

instruction is also LDR (with

address not based on first LDR)

then it saves 1 cycle.

21

n consecutive LDRs

takes only n + 1 cycles

(“more multiple LDRs can be

pipelined together”).

Can achieve this speed

in other ways (LDRD, LDM)

but nothing seems faster.

Lower bound for n LDR + nADD:

2n + 1 cycles,

including n cycles of arithmetic.

Why observed time is higher:

non-consecutive LDRs;

costs of manipulating i.

20

Inputs and output of ADD are

“integer registers”. ARMv7-M

has 16 integer registers, including

special-purpose “stack pointer”

and “program counter”.

Each element of x array needs to

be “loaded” into a register.

Basic load instruction: LDR.

Manual says 2 cycles but adds

a note about “pipelining”.

Then more explanation: if next

instruction is also LDR (with

address not based on first LDR)

then it saves 1 cycle.

21

n consecutive LDRs

takes only n + 1 cycles

(“more multiple LDRs can be

pipelined together”).

Can achieve this speed

in other ways (LDRD, LDM)

but nothing seems faster.

Lower bound for n LDR + nADD:

2n + 1 cycles,

including n cycles of arithmetic.

Why observed time is higher:

non-consecutive LDRs;

costs of manipulating i.

22

int sum(int *x)

{

int result = 0;

int *y = x + 1000;

int x0,x1,x2,x3,x4,

x5,x6,x7,x8,x9;

while (x != y) {

x0 = 0[(volatile int *)x];

x1 = 1[(volatile int *)x];

x2 = 2[(volatile int *)x];

x3 = 3[(volatile int *)x];

x4 = 4[(volatile int *)x];

x5 = 5[(volatile int *)x];

x6 = 6[(volatile int *)x];

20

Inputs and output of ADD are

“integer registers”. ARMv7-M

has 16 integer registers, including

special-purpose “stack pointer”

and “program counter”.

Each element of x array needs to

be “loaded” into a register.

Basic load instruction: LDR.

Manual says 2 cycles but adds

a note about “pipelining”.

Then more explanation: if next

instruction is also LDR (with

address not based on first LDR)

then it saves 1 cycle.

21

n consecutive LDRs

takes only n + 1 cycles

(“more multiple LDRs can be

pipelined together”).

Can achieve this speed

in other ways (LDRD, LDM)

but nothing seems faster.

Lower bound for n LDR + nADD:

2n + 1 cycles,

including n cycles of arithmetic.

Why observed time is higher:

non-consecutive LDRs;

costs of manipulating i.

22

int sum(int *x)

{

int result = 0;

int *y = x + 1000;

int x0,x1,x2,x3,x4,

x5,x6,x7,x8,x9;

while (x != y) {

x0 = 0[(volatile int *)x];

x1 = 1[(volatile int *)x];

x2 = 2[(volatile int *)x];

x3 = 3[(volatile int *)x];

x4 = 4[(volatile int *)x];

x5 = 5[(volatile int *)x];

x6 = 6[(volatile int *)x];

20

Inputs and output of ADD are

“integer registers”. ARMv7-M

has 16 integer registers, including

special-purpose “stack pointer”

and “program counter”.

Each element of x array needs to

be “loaded” into a register.

Basic load instruction: LDR.

Manual says 2 cycles but adds

a note about “pipelining”.

Then more explanation: if next

instruction is also LDR (with

address not based on first LDR)

then it saves 1 cycle.

21

n consecutive LDRs

takes only n + 1 cycles

(“more multiple LDRs can be

pipelined together”).

Can achieve this speed

in other ways (LDRD, LDM)

but nothing seems faster.

Lower bound for n LDR + nADD:

2n + 1 cycles,

including n cycles of arithmetic.

Why observed time is higher:

non-consecutive LDRs;

costs of manipulating i.

22

int sum(int *x)

{

int result = 0;

int *y = x + 1000;

int x0,x1,x2,x3,x4,

x5,x6,x7,x8,x9;

while (x != y) {

x0 = 0[(volatile int *)x];

x1 = 1[(volatile int *)x];

x2 = 2[(volatile int *)x];

x3 = 3[(volatile int *)x];

x4 = 4[(volatile int *)x];

x5 = 5[(volatile int *)x];

x6 = 6[(volatile int *)x];

21

n consecutive LDRs

takes only n + 1 cycles

(“more multiple LDRs can be

pipelined together”).

Can achieve this speed

in other ways (LDRD, LDM)

but nothing seems faster.

Lower bound for n LDR + nADD:

2n + 1 cycles,

including n cycles of arithmetic.

Why observed time is higher:

non-consecutive LDRs;

costs of manipulating i.

22

int sum(int *x)

{

int result = 0;

int *y = x + 1000;

int x0,x1,x2,x3,x4,

x5,x6,x7,x8,x9;

while (x != y) {

x0 = 0[(volatile int *)x];

x1 = 1[(volatile int *)x];

x2 = 2[(volatile int *)x];

x3 = 3[(volatile int *)x];

x4 = 4[(volatile int *)x];

x5 = 5[(volatile int *)x];

x6 = 6[(volatile int *)x];

21

n consecutive LDRs

takes only n + 1 cycles

(“more multiple LDRs can be

pipelined together”).

Can achieve this speed

in other ways (LDRD, LDM)

but nothing seems faster.

Lower bound for n LDR + nADD:

2n + 1 cycles,

including n cycles of arithmetic.

Why observed time is higher:

non-consecutive LDRs;

costs of manipulating i.

22

int sum(int *x)

{

int result = 0;

int *y = x + 1000;

int x0,x1,x2,x3,x4,

x5,x6,x7,x8,x9;

while (x != y) {

x0 = 0[(volatile int *)x];

x1 = 1[(volatile int *)x];

x2 = 2[(volatile int *)x];

x3 = 3[(volatile int *)x];

x4 = 4[(volatile int *)x];

x5 = 5[(volatile int *)x];

x6 = 6[(volatile int *)x];

23

x7 = 7[(volatile int *)x];

x8 = 8[(volatile int *)x];

x9 = 9[(volatile int *)x];

result += x0;

result += x1;

result += x2;

result += x3;

result += x4;

result += x5;

result += x6;

result += x7;

result += x8;

result += x9;

x0 = 10[(volatile int *)x];

x1 = 11[(volatile int *)x];

21

n consecutive LDRs

takes only n + 1 cycles

(“more multiple LDRs can be

pipelined together”).

Can achieve this speed

in other ways (LDRD, LDM)

but nothing seems faster.

Lower bound for n LDR + nADD:

2n + 1 cycles,

including n cycles of arithmetic.

Why observed time is higher:

non-consecutive LDRs;

costs of manipulating i.

22

int sum(int *x)

{

int result = 0;

int *y = x + 1000;

int x0,x1,x2,x3,x4,

x5,x6,x7,x8,x9;

while (x != y) {

x0 = 0[(volatile int *)x];

x1 = 1[(volatile int *)x];

x2 = 2[(volatile int *)x];

x3 = 3[(volatile int *)x];

x4 = 4[(volatile int *)x];

x5 = 5[(volatile int *)x];

x6 = 6[(volatile int *)x];

23

x7 = 7[(volatile int *)x];

x8 = 8[(volatile int *)x];

x9 = 9[(volatile int *)x];

result += x0;

result += x1;

result += x2;

result += x3;

result += x4;

result += x5;

result += x6;

result += x7;

result += x8;

result += x9;

x0 = 10[(volatile int *)x];

x1 = 11[(volatile int *)x];

21

n consecutive LDRs

takes only n + 1 cycles

(“more multiple LDRs can be

pipelined together”).

Can achieve this speed

in other ways (LDRD, LDM)

but nothing seems faster.

Lower bound for n LDR + nADD:

2n + 1 cycles,

including n cycles of arithmetic.

Why observed time is higher:

non-consecutive LDRs;

costs of manipulating i.

22

int sum(int *x)

{

int result = 0;

int *y = x + 1000;

int x0,x1,x2,x3,x4,

x5,x6,x7,x8,x9;

while (x != y) {

x0 = 0[(volatile int *)x];

x1 = 1[(volatile int *)x];

x2 = 2[(volatile int *)x];

x3 = 3[(volatile int *)x];

x4 = 4[(volatile int *)x];

x5 = 5[(volatile int *)x];

x6 = 6[(volatile int *)x];

23

x7 = 7[(volatile int *)x];

x8 = 8[(volatile int *)x];

x9 = 9[(volatile int *)x];

result += x0;

result += x1;

result += x2;

result += x3;

result += x4;

result += x5;

result += x6;

result += x7;

result += x8;

result += x9;

x0 = 10[(volatile int *)x];

x1 = 11[(volatile int *)x];

22

int sum(int *x)

{

int result = 0;

int *y = x + 1000;

int x0,x1,x2,x3,x4,

x5,x6,x7,x8,x9;

while (x != y) {

x0 = 0[(volatile int *)x];

x1 = 1[(volatile int *)x];

x2 = 2[(volatile int *)x];

x3 = 3[(volatile int *)x];

x4 = 4[(volatile int *)x];

x5 = 5[(volatile int *)x];

x6 = 6[(volatile int *)x];

23

x7 = 7[(volatile int *)x];

x8 = 8[(volatile int *)x];

x9 = 9[(volatile int *)x];

result += x0;

result += x1;

result += x2;

result += x3;

result += x4;

result += x5;

result += x6;

result += x7;

result += x8;

result += x9;

x0 = 10[(volatile int *)x];

x1 = 11[(volatile int *)x];

22

int sum(int *x)

{

int result = 0;

int *y = x + 1000;

int x0,x1,x2,x3,x4,

x5,x6,x7,x8,x9;

while (x != y) {

x0 = 0[(volatile int *)x];

x1 = 1[(volatile int *)x];

x2 = 2[(volatile int *)x];

x3 = 3[(volatile int *)x];

x4 = 4[(volatile int *)x];

x5 = 5[(volatile int *)x];

x6 = 6[(volatile int *)x];

23

x7 = 7[(volatile int *)x];

x8 = 8[(volatile int *)x];

x9 = 9[(volatile int *)x];

result += x0;

result += x1;

result += x2;

result += x3;

result += x4;

result += x5;

result += x6;

result += x7;

result += x8;

result += x9;

x0 = 10[(volatile int *)x];

x1 = 11[(volatile int *)x];

24

x2 = 12[(volatile int *)x];

x3 = 13[(volatile int *)x];

x4 = 14[(volatile int *)x];

x5 = 15[(volatile int *)x];

x6 = 16[(volatile int *)x];

x7 = 17[(volatile int *)x];

x8 = 18[(volatile int *)x];

x9 = 19[(volatile int *)x];

x += 20;

result += x0;

result += x1;

result += x2;

result += x3;

result += x4;

result += x5;

22

int sum(int *x)

{

int result = 0;

int *y = x + 1000;

int x0,x1,x2,x3,x4,

x5,x6,x7,x8,x9;

while (x != y) {

x0 = 0[(volatile int *)x];

x1 = 1[(volatile int *)x];

x2 = 2[(volatile int *)x];

x3 = 3[(volatile int *)x];

x4 = 4[(volatile int *)x];

x5 = 5[(volatile int *)x];

x6 = 6[(volatile int *)x];

23

x7 = 7[(volatile int *)x];

x8 = 8[(volatile int *)x];

x9 = 9[(volatile int *)x];

result += x0;

result += x1;

result += x2;

result += x3;

result += x4;

result += x5;

result += x6;

result += x7;

result += x8;

result += x9;

x0 = 10[(volatile int *)x];

x1 = 11[(volatile int *)x];

24

x2 = 12[(volatile int *)x];

x3 = 13[(volatile int *)x];

x4 = 14[(volatile int *)x];

x5 = 15[(volatile int *)x];

x6 = 16[(volatile int *)x];

x7 = 17[(volatile int *)x];

x8 = 18[(volatile int *)x];

x9 = 19[(volatile int *)x];

x += 20;

result += x0;

result += x1;

result += x2;

result += x3;

result += x4;

result += x5;

22

int sum(int *x)

{

int result = 0;

int *y = x + 1000;

int x0,x1,x2,x3,x4,

x5,x6,x7,x8,x9;

while (x != y) {

x0 = 0[(volatile int *)x];

x1 = 1[(volatile int *)x];

x2 = 2[(volatile int *)x];

x3 = 3[(volatile int *)x];

x4 = 4[(volatile int *)x];

x5 = 5[(volatile int *)x];

x6 = 6[(volatile int *)x];

23

x7 = 7[(volatile int *)x];

x8 = 8[(volatile int *)x];

x9 = 9[(volatile int *)x];

result += x0;

result += x1;

result += x2;

result += x3;

result += x4;

result += x5;

result += x6;

result += x7;

result += x8;

result += x9;

x0 = 10[(volatile int *)x];

x1 = 11[(volatile int *)x];

24

x2 = 12[(volatile int *)x];

x3 = 13[(volatile int *)x];

x4 = 14[(volatile int *)x];

x5 = 15[(volatile int *)x];

x6 = 16[(volatile int *)x];

x7 = 17[(volatile int *)x];

x8 = 18[(volatile int *)x];

x9 = 19[(volatile int *)x];

x += 20;

result += x0;

result += x1;

result += x2;

result += x3;

result += x4;

result += x5;

23

x7 = 7[(volatile int *)x];

x8 = 8[(volatile int *)x];

x9 = 9[(volatile int *)x];

result += x0;

result += x1;

result += x2;

result += x3;

result += x4;

result += x5;

result += x6;

result += x7;

result += x8;

result += x9;

x0 = 10[(volatile int *)x];

x1 = 11[(volatile int *)x];

24

x2 = 12[(volatile int *)x];

x3 = 13[(volatile int *)x];

x4 = 14[(volatile int *)x];

x5 = 15[(volatile int *)x];

x6 = 16[(volatile int *)x];

x7 = 17[(volatile int *)x];

x8 = 18[(volatile int *)x];

x9 = 19[(volatile int *)x];

x += 20;

result += x0;

result += x1;

result += x2;

result += x3;

result += x4;

result += x5;

23

x7 = 7[(volatile int *)x];

x8 = 8[(volatile int *)x];

x9 = 9[(volatile int *)x];

result += x0;

result += x1;

result += x2;

result += x3;

result += x4;

result += x5;

result += x6;

result += x7;

result += x8;

result += x9;

x0 = 10[(volatile int *)x];

x1 = 11[(volatile int *)x];

24

x2 = 12[(volatile int *)x];

x3 = 13[(volatile int *)x];

x4 = 14[(volatile int *)x];

x5 = 15[(volatile int *)x];

x6 = 16[(volatile int *)x];

x7 = 17[(volatile int *)x];

x8 = 18[(volatile int *)x];

x9 = 19[(volatile int *)x];

x += 20;

result += x0;

result += x1;

result += x2;

result += x3;

result += x4;

result += x5;

25

result += x6;

result += x7;

result += x8;

result += x9;

}

return result;

}

23

x7 = 7[(volatile int *)x];

x8 = 8[(volatile int *)x];

x9 = 9[(volatile int *)x];

result += x0;

result += x1;

result += x2;

result += x3;

result += x4;

result += x5;

result += x6;

result += x7;

result += x8;

result += x9;

x0 = 10[(volatile int *)x];

x1 = 11[(volatile int *)x];

24

x2 = 12[(volatile int *)x];

x3 = 13[(volatile int *)x];

x4 = 14[(volatile int *)x];

x5 = 15[(volatile int *)x];

x6 = 16[(volatile int *)x];

x7 = 17[(volatile int *)x];

x8 = 18[(volatile int *)x];

x9 = 19[(volatile int *)x];

x += 20;

result += x0;

result += x1;

result += x2;

result += x3;

result += x4;

result += x5;

25

result += x6;

result += x7;

result += x8;

result += x9;

}

return result;

}

23

x7 = 7[(volatile int *)x];

x8 = 8[(volatile int *)x];

x9 = 9[(volatile int *)x];

result += x0;

result += x1;

result += x2;

result += x3;

result += x4;

result += x5;

result += x6;

result += x7;

result += x8;

result += x9;

x0 = 10[(volatile int *)x];

x1 = 11[(volatile int *)x];

24

x2 = 12[(volatile int *)x];

x3 = 13[(volatile int *)x];

x4 = 14[(volatile int *)x];

x5 = 15[(volatile int *)x];

x6 = 16[(volatile int *)x];

x7 = 17[(volatile int *)x];

x8 = 18[(volatile int *)x];

x9 = 19[(volatile int *)x];

x += 20;

result += x0;

result += x1;

result += x2;

result += x3;

result += x4;

result += x5;

25

result += x6;

result += x7;

result += x8;

result += x9;

}

return result;

}

24

x2 = 12[(volatile int *)x];

x3 = 13[(volatile int *)x];

x4 = 14[(volatile int *)x];

x5 = 15[(volatile int *)x];

x6 = 16[(volatile int *)x];

x7 = 17[(volatile int *)x];

x8 = 18[(volatile int *)x];

x9 = 19[(volatile int *)x];

x += 20;

result += x0;

result += x1;

result += x2;

result += x3;

result += x4;

result += x5;

25

result += x6;

result += x7;

result += x8;

result += x9;

}

return result;

}

24

x2 = 12[(volatile int *)x];

x3 = 13[(volatile int *)x];

x4 = 14[(volatile int *)x];

x5 = 15[(volatile int *)x];

x6 = 16[(volatile int *)x];

x7 = 17[(volatile int *)x];

x8 = 18[(volatile int *)x];

x9 = 19[(volatile int *)x];

x += 20;

result += x0;

result += x1;

result += x2;

result += x3;

result += x4;

result += x5;

25

result += x6;

result += x7;

result += x8;

result += x9;

}

return result;

}

2526 cycles. Even better in asm.

24

x2 = 12[(volatile int *)x];

x3 = 13[(volatile int *)x];

x4 = 14[(volatile int *)x];

x5 = 15[(volatile int *)x];

x6 = 16[(volatile int *)x];

x7 = 17[(volatile int *)x];

x8 = 18[(volatile int *)x];

x9 = 19[(volatile int *)x];

x += 20;

result += x0;

result += x1;

result += x2;

result += x3;

result += x4;

result += x5;

25

result += x6;

result += x7;

result += x8;

result += x9;

}

return result;

}

2526 cycles. Even better in asm.

Wikipedia: “By the late 1990s for

even performance sensitive code,

optimizing compilers exceeded the

performance of human experts.”

24

x2 = 12[(volatile int *)x];

x3 = 13[(volatile int *)x];

x4 = 14[(volatile int *)x];

x5 = 15[(volatile int *)x];

x6 = 16[(volatile int *)x];

x7 = 17[(volatile int *)x];

x8 = 18[(volatile int *)x];

x9 = 19[(volatile int *)x];

x += 20;

result += x0;

result += x1;

result += x2;

result += x3;

result += x4;

result += x5;

25

result += x6;

result += x7;

result += x8;

result += x9;

}

return result;

}

2526 cycles. Even better in asm.

Wikipedia: “By the late 1990s for

even performance sensitive code,

optimizing compilers exceeded the

performance of human experts.”

— [citation needed]

24

x2 = 12[(volatile int *)x];

x3 = 13[(volatile int *)x];

x4 = 14[(volatile int *)x];

x5 = 15[(volatile int *)x];

x6 = 16[(volatile int *)x];

x7 = 17[(volatile int *)x];

x8 = 18[(volatile int *)x];

x9 = 19[(volatile int *)x];

x += 20;

result += x0;

result += x1;

result += x2;

result += x3;

result += x4;

result += x5;

25

result += x6;

result += x7;

result += x8;

result += x9;

}

return result;

}

2526 cycles. Even better in asm.

Wikipedia: “By the late 1990s for

even performance sensitive code,

optimizing compilers exceeded the

performance of human experts.”

— [citation needed]

26

A real example

Salsa20 reference software:

30.25 cycles/byte on this CPU.

Lower bound for arithmetic:

64 bytes require

21 · 16 1-cycle ADDs,

20 · 16 1-cycle XORs,

so at least 10:25 cycles/byte.

ARMv7-M instruction set

includes free rotation

as part of XOR instruction.

(Compiler knows this.)

24

x2 = 12[(volatile int *)x];

x3 = 13[(volatile int *)x];

x4 = 14[(volatile int *)x];

x5 = 15[(volatile int *)x];

x6 = 16[(volatile int *)x];

x7 = 17[(volatile int *)x];

x8 = 18[(volatile int *)x];

x9 = 19[(volatile int *)x];

x += 20;

result += x0;

result += x1;

result += x2;

result += x3;

result += x4;

result += x5;

25

result += x6;

result += x7;

result += x8;

result += x9;

}

return result;

}

2526 cycles. Even better in asm.

Wikipedia: “By the late 1990s for

even performance sensitive code,

optimizing compilers exceeded the

performance of human experts.”

— [citation needed]

26

A real example

Salsa20 reference software:

30.25 cycles/byte on this CPU.

Lower bound for arithmetic:

64 bytes require

21 · 16 1-cycle ADDs,

20 · 16 1-cycle XORs,

so at least 10:25 cycles/byte.

ARMv7-M instruction set

includes free rotation

as part of XOR instruction.

(Compiler knows this.)

24

x2 = 12[(volatile int *)x];

x3 = 13[(volatile int *)x];

x4 = 14[(volatile int *)x];

x5 = 15[(volatile int *)x];

x6 = 16[(volatile int *)x];

x7 = 17[(volatile int *)x];

x8 = 18[(volatile int *)x];

x9 = 19[(volatile int *)x];

x += 20;

result += x0;

result += x1;

result += x2;

result += x3;

result += x4;

result += x5;

25

result += x6;

result += x7;

result += x8;

result += x9;

}

return result;

}

2526 cycles. Even better in asm.

Wikipedia: “By the late 1990s for

even performance sensitive code,

optimizing compilers exceeded the

performance of human experts.”

— [citation needed]

26

A real example

Salsa20 reference software:

30.25 cycles/byte on this CPU.

Lower bound for arithmetic:

64 bytes require

21 · 16 1-cycle ADDs,

20 · 16 1-cycle XORs,

so at least 10:25 cycles/byte.

ARMv7-M instruction set

includes free rotation

as part of XOR instruction.

(Compiler knows this.)

25

result += x6;

result += x7;

result += x8;

result += x9;

}

return result;

}

2526 cycles. Even better in asm.

Wikipedia: “By the late 1990s for

even performance sensitive code,

optimizing compilers exceeded the

performance of human experts.”

— [citation needed]

26

A real example

Salsa20 reference software:

30.25 cycles/byte on this CPU.

Lower bound for arithmetic:

64 bytes require

21 · 16 1-cycle ADDs,

20 · 16 1-cycle XORs,

so at least 10:25 cycles/byte.

ARMv7-M instruction set

includes free rotation

as part of XOR instruction.

(Compiler knows this.)

25

result += x6;

result += x7;

result += x8;

result += x9;

}

return result;

}

2526 cycles. Even better in asm.

Wikipedia: “By the late 1990s for

even performance sensitive code,

optimizing compilers exceeded the

performance of human experts.”

— [citation needed]

26

A real example

Salsa20 reference software:

30.25 cycles/byte on this CPU.

Lower bound for arithmetic:

64 bytes require

21 · 16 1-cycle ADDs,

20 · 16 1-cycle XORs,

so at least 10:25 cycles/byte.

ARMv7-M instruction set

includes free rotation

as part of XOR instruction.

(Compiler knows this.)

27

Detailed benchmarks show

several cycles/byte spent on

load_littleendian and

store_littleendian.

Can replace with LDR and STR.

(Compiler doesn’t see this.)

Then observe 23 cycles/byte:

18 cycles/byte for rounds,

plus 5 cycles/byte overhead.

Still far above 10.25 cycles/byte.

25

result += x6;

result += x7;

result += x8;

result += x9;

}

return result;

}

2526 cycles. Even better in asm.

Wikipedia: “By the late 1990s for

even performance sensitive code,

optimizing compilers exceeded the

performance of human experts.”

— [citation needed]

26

A real example

Salsa20 reference software:

30.25 cycles/byte on this CPU.

Lower bound for arithmetic:

64 bytes require

21 · 16 1-cycle ADDs,

20 · 16 1-cycle XORs,

so at least 10:25 cycles/byte.

ARMv7-M instruction set

includes free rotation

as part of XOR instruction.

(Compiler knows this.)

27

Detailed benchmarks show

several cycles/byte spent on

load_littleendian and

store_littleendian.

Can replace with LDR and STR.

(Compiler doesn’t see this.)

Then observe 23 cycles/byte:

18 cycles/byte for rounds,

plus 5 cycles/byte overhead.

Still far above 10.25 cycles/byte.

25

result += x6;

result += x7;

result += x8;

result += x9;

}

return result;

}

2526 cycles. Even better in asm.

Wikipedia: “By the late 1990s for

even performance sensitive code,

optimizing compilers exceeded the

performance of human experts.”

— [citation needed]

26

A real example

Salsa20 reference software:

30.25 cycles/byte on this CPU.

Lower bound for arithmetic:

64 bytes require

21 · 16 1-cycle ADDs,

20 · 16 1-cycle XORs,

so at least 10:25 cycles/byte.

ARMv7-M instruction set

includes free rotation

as part of XOR instruction.

(Compiler knows this.)

27

Detailed benchmarks show

several cycles/byte spent on

load_littleendian and

store_littleendian.

Can replace with LDR and STR.

(Compiler doesn’t see this.)

Then observe 23 cycles/byte:

18 cycles/byte for rounds,

plus 5 cycles/byte overhead.

Still far above 10.25 cycles/byte.

26

A real example

Salsa20 reference software:

30.25 cycles/byte on this CPU.

Lower bound for arithmetic:

64 bytes require

21 · 16 1-cycle ADDs,

20 · 16 1-cycle XORs,

so at least 10:25 cycles/byte.

ARMv7-M instruction set

includes free rotation

as part of XOR instruction.

(Compiler knows this.)

27

Detailed benchmarks show

several cycles/byte spent on

load_littleendian and

store_littleendian.

Can replace with LDR and STR.

(Compiler doesn’t see this.)

Then observe 23 cycles/byte:

18 cycles/byte for rounds,

plus 5 cycles/byte overhead.

Still far above 10.25 cycles/byte.

26

A real example

Salsa20 reference software:

30.25 cycles/byte on this CPU.

Lower bound for arithmetic:

64 bytes require

21 · 16 1-cycle ADDs,

20 · 16 1-cycle XORs,

so at least 10:25 cycles/byte.

ARMv7-M instruction set

includes free rotation

as part of XOR instruction.

(Compiler knows this.)

27

Detailed benchmarks show

several cycles/byte spent on

load_littleendian and

store_littleendian.

Can replace with LDR and STR.

(Compiler doesn’t see this.)

Then observe 23 cycles/byte:

18 cycles/byte for rounds,

plus 5 cycles/byte overhead.

Still far above 10.25 cycles/byte.

Gap is mostly loads, stores.

Minimize load/store cost by

choosing “spills” carefully.

26

A real example

Salsa20 reference software:

30.25 cycles/byte on this CPU.

Lower bound for arithmetic:

64 bytes require

21 · 16 1-cycle ADDs,

20 · 16 1-cycle XORs,

so at least 10:25 cycles/byte.

ARMv7-M instruction set

includes free rotation

as part of XOR instruction.

(Compiler knows this.)

27

Detailed benchmarks show

several cycles/byte spent on

load_littleendian and

store_littleendian.

Can replace with LDR and STR.

(Compiler doesn’t see this.)

Then observe 23 cycles/byte:

18 cycles/byte for rounds,

plus 5 cycles/byte overhead.

Still far above 10.25 cycles/byte.

Gap is mostly loads, stores.

Minimize load/store cost by

choosing “spills” carefully.

28

Which of the 16 Salsa20 words

should be in registers?

Don’t trust compiler to

optimize register allocation.

Make loads consecutive?

Don’t trust compiler to

optimize instruction scheduling.

Spill to FPU instead of stack?

Don’t trust compiler to

optimize instruction selection.

On bigger CPUs,

selecting vector instructions

is critical for performance.

26

A real example

Salsa20 reference software:

30.25 cycles/byte on this CPU.

Lower bound for arithmetic:

64 bytes require

21 · 16 1-cycle ADDs,

20 · 16 1-cycle XORs,

so at least 10:25 cycles/byte.

ARMv7-M instruction set

includes free rotation

as part of XOR instruction.

(Compiler knows this.)

27

Detailed benchmarks show

several cycles/byte spent on

load_littleendian and

store_littleendian.

Can replace with LDR and STR.

(Compiler doesn’t see this.)

Then observe 23 cycles/byte:

18 cycles/byte for rounds,

plus 5 cycles/byte overhead.

Still far above 10.25 cycles/byte.

Gap is mostly loads, stores.

Minimize load/store cost by

choosing “spills” carefully.

28

Which of the 16 Salsa20 words

should be in registers?

Don’t trust compiler to

optimize register allocation.

Make loads consecutive?

Don’t trust compiler to

optimize instruction scheduling.

Spill to FPU instead of stack?

Don’t trust compiler to

optimize instruction selection.

On bigger CPUs,

selecting vector instructions

is critical for performance.

26

A real example

Salsa20 reference software:

30.25 cycles/byte on this CPU.

Lower bound for arithmetic:

64 bytes require

21 · 16 1-cycle ADDs,

20 · 16 1-cycle XORs,

so at least 10:25 cycles/byte.

ARMv7-M instruction set

includes free rotation

as part of XOR instruction.

(Compiler knows this.)

27

Detailed benchmarks show

several cycles/byte spent on

load_littleendian and

store_littleendian.

Can replace with LDR and STR.

(Compiler doesn’t see this.)

Then observe 23 cycles/byte:

18 cycles/byte for rounds,

plus 5 cycles/byte overhead.

Still far above 10.25 cycles/byte.

Gap is mostly loads, stores.

Minimize load/store cost by

choosing “spills” carefully.

28

Which of the 16 Salsa20 words

should be in registers?

Don’t trust compiler to

optimize register allocation.

Make loads consecutive?

Don’t trust compiler to

optimize instruction scheduling.

Spill to FPU instead of stack?

Don’t trust compiler to

optimize instruction selection.

On bigger CPUs,

selecting vector instructions

is critical for performance.

27

Detailed benchmarks show

several cycles/byte spent on

load_littleendian and

store_littleendian.

Can replace with LDR and STR.

(Compiler doesn’t see this.)

Then observe 23 cycles/byte:

18 cycles/byte for rounds,

plus 5 cycles/byte overhead.

Still far above 10.25 cycles/byte.

Gap is mostly loads, stores.

Minimize load/store cost by

choosing “spills” carefully.

28

Which of the 16 Salsa20 words

should be in registers?

Don’t trust compiler to

optimize register allocation.

Make loads consecutive?

Don’t trust compiler to

optimize instruction scheduling.

Spill to FPU instead of stack?

Don’t trust compiler to

optimize instruction selection.

On bigger CPUs,

selecting vector instructions

is critical for performance.

27

Detailed benchmarks show

several cycles/byte spent on

load_littleendian and

store_littleendian.

Can replace with LDR and STR.

(Compiler doesn’t see this.)

Then observe 23 cycles/byte:

18 cycles/byte for rounds,

plus 5 cycles/byte overhead.

Still far above 10.25 cycles/byte.

Gap is mostly loads, stores.

Minimize load/store cost by

choosing “spills” carefully.

28

Which of the 16 Salsa20 words

should be in registers?

Don’t trust compiler to

optimize register allocation.

Make loads consecutive?

Don’t trust compiler to

optimize instruction scheduling.

Spill to FPU instead of stack?

Don’t trust compiler to

optimize instruction selection.

On bigger CPUs,

selecting vector instructions

is critical for performance.

29

The big picture

CPUs are evolving

farther and farther away

from naive models of CPUs.

27

Detailed benchmarks show

several cycles/byte spent on

load_littleendian and

store_littleendian.

Can replace with LDR and STR.

(Compiler doesn’t see this.)

Then observe 23 cycles/byte:

18 cycles/byte for rounds,

plus 5 cycles/byte overhead.

Still far above 10.25 cycles/byte.

Gap is mostly loads, stores.

Minimize load/store cost by

choosing “spills” carefully.

28

Which of the 16 Salsa20 words

should be in registers?

Don’t trust compiler to

optimize register allocation.

Make loads consecutive?

Don’t trust compiler to

optimize instruction scheduling.

Spill to FPU instead of stack?

Don’t trust compiler to

optimize instruction selection.

On bigger CPUs,

selecting vector instructions

is critical for performance.

29

The big picture

CPUs are evolving

farther and farther away

from naive models of CPUs.

27

Detailed benchmarks show

several cycles/byte spent on

load_littleendian and

store_littleendian.

Can replace with LDR and STR.

(Compiler doesn’t see this.)

Then observe 23 cycles/byte:

18 cycles/byte for rounds,

plus 5 cycles/byte overhead.

Still far above 10.25 cycles/byte.

Gap is mostly loads, stores.

Minimize load/store cost by

choosing “spills” carefully.

28

Which of the 16 Salsa20 words

should be in registers?

Don’t trust compiler to

optimize register allocation.

Make loads consecutive?

Don’t trust compiler to

optimize instruction scheduling.

Spill to FPU instead of stack?

Don’t trust compiler to

optimize instruction selection.

On bigger CPUs,

selecting vector instructions

is critical for performance.

29

The big picture

CPUs are evolving

farther and farther away

from naive models of CPUs.

28

Which of the 16 Salsa20 words

should be in registers?

Don’t trust compiler to

optimize register allocation.

Make loads consecutive?

Don’t trust compiler to

optimize instruction scheduling.

Spill to FPU instead of stack?

Don’t trust compiler to

optimize instruction selection.

On bigger CPUs,

selecting vector instructions

is critical for performance.

29

The big picture

CPUs are evolving

farther and farther away

from naive models of CPUs.

28

Which of the 16 Salsa20 words

should be in registers?

Don’t trust compiler to

optimize register allocation.

Make loads consecutive?

Don’t trust compiler to

optimize instruction scheduling.

Spill to FPU instead of stack?

Don’t trust compiler to

optimize instruction selection.

On bigger CPUs,

selecting vector instructions

is critical for performance.

29

The big picture

CPUs are evolving

farther and farther away

from naive models of CPUs.

Minor optimization challenges:

• Pipelining.

• Superscalar processing.

Major optimization challenges:

• Vectorization.

• Many threads; many cores.

• The memory hierarchy;

the ring; the mesh.

• Larger-scale parallelism.

• Larger-scale networking.

28

Which of the 16 Salsa20 words

should be in registers?

Don’t trust compiler to

optimize register allocation.

Make loads consecutive?

Don’t trust compiler to

optimize instruction scheduling.

Spill to FPU instead of stack?

Don’t trust compiler to

optimize instruction selection.

On bigger CPUs,

selecting vector instructions

is critical for performance.

29

The big picture

CPUs are evolving

farther and farther away

from naive models of CPUs.

Minor optimization challenges:

• Pipelining.

• Superscalar processing.

Major optimization challenges:

• Vectorization.

• Many threads; many cores.

• The memory hierarchy;

the ring; the mesh.

• Larger-scale parallelism.

• Larger-scale networking.

30

CPU design in a nutshell

f0

�� !!BBBB g0

}}||||
((QQQQQQQQQ g1

vvmmmmmmmmm

 AAAA f1

~~}}}}
��

∧

��

∧

�� ""EEEEE ∧

��||yyyyy ∧

��
∧

��

∧

""EEEEE ∧

��

∧

||yyyyy ∧

����������

∧

��||yyyyy
""EEEEE

∧

��

∧

��

∧

��
∧

��

∧

��
h0 h1 h3 h2

Gates ∧ : a; b 7→ 1− ab computing

product h0 + 2h1 + 4h2 + 8h3

of integers f0 + 2f1; g0 + 2g1.

28

Which of the 16 Salsa20 words

should be in registers?

Don’t trust compiler to

optimize register allocation.

Make loads consecutive?

Don’t trust compiler to

optimize instruction scheduling.

Spill to FPU instead of stack?

Don’t trust compiler to

optimize instruction selection.

On bigger CPUs,

selecting vector instructions

is critical for performance.

29

The big picture

CPUs are evolving

farther and farther away

from naive models of CPUs.

Minor optimization challenges:

• Pipelining.

• Superscalar processing.

Major optimization challenges:

• Vectorization.

• Many threads; many cores.

• The memory hierarchy;

the ring; the mesh.

• Larger-scale parallelism.

• Larger-scale networking.

30

CPU design in a nutshell

f0

�� !!BBBB g0

}}||||
((QQQQQQQQQ g1

vvmmmmmmmmm

 AAAA f1

~~}}}}
��

∧

��

∧

�� ""EEEEE ∧

��||yyyyy ∧

��
∧

��

∧

""EEEEE ∧

��

∧

||yyyyy ∧

����������

∧

��||yyyyy
""EEEEE

∧

��

∧

��

∧

��
∧

��

∧

��
h0 h1 h3 h2

Gates ∧ : a; b 7→ 1− ab computing

product h0 + 2h1 + 4h2 + 8h3

of integers f0 + 2f1; g0 + 2g1.

28

Which of the 16 Salsa20 words

should be in registers?

Don’t trust compiler to

optimize register allocation.

Make loads consecutive?

Don’t trust compiler to

optimize instruction scheduling.

Spill to FPU instead of stack?

Don’t trust compiler to

optimize instruction selection.

On bigger CPUs,

selecting vector instructions

is critical for performance.

29

The big picture

CPUs are evolving

farther and farther away

from naive models of CPUs.

Minor optimization challenges:

• Pipelining.

• Superscalar processing.

Major optimization challenges:

• Vectorization.

• Many threads; many cores.

• The memory hierarchy;

the ring; the mesh.

• Larger-scale parallelism.

• Larger-scale networking.

30

CPU design in a nutshell

f0

�� !!BBBB g0

}}||||
((QQQQQQQQQ g1

vvmmmmmmmmm

 AAAA f1

~~}}}}
��

∧

��

∧

�� ""EEEEE ∧

��||yyyyy ∧

��
∧

��

∧

""EEEEE ∧

��

∧

||yyyyy ∧

����������

∧

��||yyyyy
""EEEEE

∧

��

∧

��

∧

��
∧

��

∧

��
h0 h1 h3 h2

Gates ∧ : a; b 7→ 1− ab computing

product h0 + 2h1 + 4h2 + 8h3

of integers f0 + 2f1; g0 + 2g1.

29

The big picture

CPUs are evolving

farther and farther away

from naive models of CPUs.

Minor optimization challenges:

• Pipelining.

• Superscalar processing.

Major optimization challenges:

• Vectorization.

• Many threads; many cores.

• The memory hierarchy;

the ring; the mesh.

• Larger-scale parallelism.

• Larger-scale networking.

30

CPU design in a nutshell

f0

�� !!BBBB g0

}}||||
((QQQQQQQQQ g1

vvmmmmmmmmm

 AAAA f1

~~}}}}
��

∧

��

∧

�� ""EEEEE ∧

��||yyyyy ∧

��
∧

��

∧

""EEEEE ∧

��

∧

||yyyyy ∧

����������

∧

��||yyyyy
""EEEEE

∧

��

∧

��

∧

��
∧

��

∧

��
h0 h1 h3 h2

Gates ∧ : a; b 7→ 1− ab computing

product h0 + 2h1 + 4h2 + 8h3

of integers f0 + 2f1; g0 + 2g1.

29

The big picture

CPUs are evolving

farther and farther away

from naive models of CPUs.

Minor optimization challenges:

• Pipelining.

• Superscalar processing.

Major optimization challenges:

• Vectorization.

• Many threads; many cores.

• The memory hierarchy;

the ring; the mesh.

• Larger-scale parallelism.

• Larger-scale networking.

30

CPU design in a nutshell

f0

�� !!BBBB g0

}}||||
((QQQQQQQQQ g1

vvmmmmmmmmm

 AAAA f1

~~}}}}
��

∧

��

∧

�� ""EEEEE ∧

��||yyyyy ∧

��
∧

��

∧

""EEEEE ∧

��

∧

||yyyyy ∧

����������

∧

��||yyyyy
""EEEEE

∧

��

∧

��

∧

��
∧

��

∧

��
h0 h1 h3 h2

Gates ∧ : a; b 7→ 1− ab computing

product h0 + 2h1 + 4h2 + 8h3

of integers f0 + 2f1; g0 + 2g1.

31

Electricity takes time to

percolate through wires and gates.

If f0; f1; g0; g1 are stable

then h0; h1; h2; h3 are stable

a few moments later.

29

The big picture

CPUs are evolving

farther and farther away

from naive models of CPUs.

Minor optimization challenges:

• Pipelining.

• Superscalar processing.

Major optimization challenges:

• Vectorization.

• Many threads; many cores.

• The memory hierarchy;

the ring; the mesh.

• Larger-scale parallelism.

• Larger-scale networking.

30

CPU design in a nutshell

f0

�� !!BBBB g0

}}||||
((QQQQQQQQQ g1

vvmmmmmmmmm

 AAAA f1

~~}}}}
��

∧

��

∧

�� ""EEEEE ∧

��||yyyyy ∧

��
∧

��

∧

""EEEEE ∧

��

∧

||yyyyy ∧

����������

∧

��||yyyyy
""EEEEE

∧

��

∧

��

∧

��
∧

��

∧

��
h0 h1 h3 h2

Gates ∧ : a; b 7→ 1− ab computing

product h0 + 2h1 + 4h2 + 8h3

of integers f0 + 2f1; g0 + 2g1.

31

Electricity takes time to

percolate through wires and gates.

If f0; f1; g0; g1 are stable

then h0; h1; h2; h3 are stable

a few moments later.

29

The big picture

CPUs are evolving

farther and farther away

from naive models of CPUs.

Minor optimization challenges:

• Pipelining.

• Superscalar processing.

Major optimization challenges:

• Vectorization.

• Many threads; many cores.

• The memory hierarchy;

the ring; the mesh.

• Larger-scale parallelism.

• Larger-scale networking.

30

CPU design in a nutshell

f0

�� !!BBBB g0

}}||||
((QQQQQQQQQ g1

vvmmmmmmmmm

 AAAA f1

~~}}}}
��

∧

��

∧

�� ""EEEEE ∧

��||yyyyy ∧

��
∧

��

∧

""EEEEE ∧

��

∧

||yyyyy ∧

����������

∧

��||yyyyy
""EEEEE

∧

��

∧

��

∧

��
∧

��

∧

��
h0 h1 h3 h2

Gates ∧ : a; b 7→ 1− ab computing

product h0 + 2h1 + 4h2 + 8h3

of integers f0 + 2f1; g0 + 2g1.

31

Electricity takes time to

percolate through wires and gates.

If f0; f1; g0; g1 are stable

then h0; h1; h2; h3 are stable

a few moments later.

30

CPU design in a nutshell

f0

�� !!BBBB g0

}}||||
((QQQQQQQQQ g1

vvmmmmmmmmm

 AAAA f1

~~}}}}
��

∧

��

∧

�� ""EEEEE ∧

��||yyyyy ∧

��
∧

��

∧

""EEEEE ∧

��

∧

||yyyyy ∧

����������

∧

��||yyyyy
""EEEEE

∧

��

∧

��

∧

��
∧

��

∧

��
h0 h1 h3 h2

Gates ∧ : a; b 7→ 1− ab computing

product h0 + 2h1 + 4h2 + 8h3

of integers f0 + 2f1; g0 + 2g1.

31

Electricity takes time to

percolate through wires and gates.

If f0; f1; g0; g1 are stable

then h0; h1; h2; h3 are stable

a few moments later.

30

CPU design in a nutshell

f0

�� !!BBBB g0

}}||||
((QQQQQQQQQ g1

vvmmmmmmmmm

 AAAA f1

~~}}}}
��

∧

��

∧

�� ""EEEEE ∧

��||yyyyy ∧

��
∧

��

∧

""EEEEE ∧

��

∧

||yyyyy ∧

����������

∧

��||yyyyy
""EEEEE

∧

��

∧

��

∧

��
∧

��

∧

��
h0 h1 h3 h2

Gates ∧ : a; b 7→ 1− ab computing

product h0 + 2h1 + 4h2 + 8h3

of integers f0 + 2f1; g0 + 2g1.

31

Electricity takes time to

percolate through wires and gates.

If f0; f1; g0; g1 are stable

then h0; h1; h2; h3 are stable

a few moments later.

Build circuit with more gates

to multiply (e.g.) 32-bit integers:

������������������� ???????????????????

(Details omitted.)

30

CPU design in a nutshell

f0

�� !!BBBB g0

}}||||
((QQQQQQQQQ g1

vvmmmmmmmmm

 AAAA f1

~~}}}}
��

∧

��

∧

�� ""EEEEE ∧

��||yyyyy ∧

��
∧

��

∧

""EEEEE ∧

��

∧

||yyyyy ∧

����������

∧

��||yyyyy
""EEEEE

∧

��

∧

��

∧

��
∧

��

∧

��
h0 h1 h3 h2

Gates ∧ : a; b 7→ 1− ab computing

product h0 + 2h1 + 4h2 + 8h3

of integers f0 + 2f1; g0 + 2g1.

31

Electricity takes time to

percolate through wires and gates.

If f0; f1; g0; g1 are stable

then h0; h1; h2; h3 are stable

a few moments later.

Build circuit with more gates

to multiply (e.g.) 32-bit integers:

������������������� ???????????????????

(Details omitted.)

32

Build circuit to compute

32-bit integer ri
given 4-bit integer i

and 32-bit integers r0; r1; : : : ; r15:

register
read

30

CPU design in a nutshell

f0

�� !!BBBB g0

}}||||
((QQQQQQQQQ g1

vvmmmmmmmmm

 AAAA f1

~~}}}}
��

∧

��

∧

�� ""EEEEE ∧

��||yyyyy ∧

��
∧

��

∧

""EEEEE ∧

��

∧

||yyyyy ∧

����������

∧

��||yyyyy
""EEEEE

∧

��

∧

��

∧

��
∧

��

∧

��
h0 h1 h3 h2

Gates ∧ : a; b 7→ 1− ab computing

product h0 + 2h1 + 4h2 + 8h3

of integers f0 + 2f1; g0 + 2g1.

31

Electricity takes time to

percolate through wires and gates.

If f0; f1; g0; g1 are stable

then h0; h1; h2; h3 are stable

a few moments later.

Build circuit with more gates

to multiply (e.g.) 32-bit integers:

������������������� ???????????????????

(Details omitted.)

32

Build circuit to compute

32-bit integer ri
given 4-bit integer i

and 32-bit integers r0; r1; : : : ; r15:

register
read

30

CPU design in a nutshell

f0

�� !!BBBB g0

}}||||
((QQQQQQQQQ g1

vvmmmmmmmmm

 AAAA f1

~~}}}}
��

∧

��

∧

�� ""EEEEE ∧

��||yyyyy ∧

��
∧

��

∧

""EEEEE ∧

��

∧

||yyyyy ∧

����������

∧

��||yyyyy
""EEEEE

∧

��

∧

��

∧

��
∧

��

∧

��
h0 h1 h3 h2

Gates ∧ : a; b 7→ 1− ab computing

product h0 + 2h1 + 4h2 + 8h3

of integers f0 + 2f1; g0 + 2g1.

31

Electricity takes time to

percolate through wires and gates.

If f0; f1; g0; g1 are stable

then h0; h1; h2; h3 are stable

a few moments later.

Build circuit with more gates

to multiply (e.g.) 32-bit integers:

������������������� ???????????????????

(Details omitted.)

32

Build circuit to compute

32-bit integer ri
given 4-bit integer i

and 32-bit integers r0; r1; : : : ; r15:

register
read

31

Electricity takes time to

percolate through wires and gates.

If f0; f1; g0; g1 are stable

then h0; h1; h2; h3 are stable

a few moments later.

Build circuit with more gates

to multiply (e.g.) 32-bit integers:

������������������� ???????????????????

(Details omitted.)

32

Build circuit to compute

32-bit integer ri
given 4-bit integer i

and 32-bit integers r0; r1; : : : ; r15:

register
read

31

Electricity takes time to

percolate through wires and gates.

If f0; f1; g0; g1 are stable

then h0; h1; h2; h3 are stable

a few moments later.

Build circuit with more gates

to multiply (e.g.) 32-bit integers:

������������������� ???????????????????

(Details omitted.)

32

Build circuit to compute

32-bit integer ri
given 4-bit integer i

and 32-bit integers r0; r1; : : : ; r15:

register
read

Build circuit for “register write”:

r0; : : : ; r15; s; i 7→ r ′0; : : : ; r
′
15

where r ′j = rj except r ′i = s.

31

Electricity takes time to

percolate through wires and gates.

If f0; f1; g0; g1 are stable

then h0; h1; h2; h3 are stable

a few moments later.

Build circuit with more gates

to multiply (e.g.) 32-bit integers:

������������������� ???????????????????

(Details omitted.)

32

Build circuit to compute

32-bit integer ri
given 4-bit integer i

and 32-bit integers r0; r1; : : : ; r15:

register
read

Build circuit for “register write”:

r0; : : : ; r15; s; i 7→ r ′0; : : : ; r
′
15

where r ′j = rj except r ′i = s.

Build circuit for addition. Etc.

31

Electricity takes time to

percolate through wires and gates.

If f0; f1; g0; g1 are stable

then h0; h1; h2; h3 are stable

a few moments later.

Build circuit with more gates

to multiply (e.g.) 32-bit integers:

������������������� ???????????????????

(Details omitted.)

32

Build circuit to compute

32-bit integer ri
given 4-bit integer i

and 32-bit integers r0; r1; : : : ; r15:

register
read

Build circuit for “register write”:

r0; : : : ; r15; s; i 7→ r ′0; : : : ; r
′
15

where r ′j = rj except r ′i = s.

Build circuit for addition. Etc.

33

r0; : : : ; r15; i ; j; k 7→ r ′0; : : : ; r
′
15

where r ′‘ = r‘ except r ′i = rj rk :

register
read

register
read

������������� ?????????????

register
write

31

Electricity takes time to

percolate through wires and gates.

If f0; f1; g0; g1 are stable

then h0; h1; h2; h3 are stable

a few moments later.

Build circuit with more gates

to multiply (e.g.) 32-bit integers:

������������������� ???????????????????

(Details omitted.)

32

Build circuit to compute

32-bit integer ri
given 4-bit integer i

and 32-bit integers r0; r1; : : : ; r15:

register
read

Build circuit for “register write”:

r0; : : : ; r15; s; i 7→ r ′0; : : : ; r
′
15

where r ′j = rj except r ′i = s.

Build circuit for addition. Etc.

33

r0; : : : ; r15; i ; j; k 7→ r ′0; : : : ; r
′
15

where r ′‘ = r‘ except r ′i = rj rk :

register
read

register
read

������������� ?????????????

register
write

31

Electricity takes time to

percolate through wires and gates.

If f0; f1; g0; g1 are stable

then h0; h1; h2; h3 are stable

a few moments later.

Build circuit with more gates

to multiply (e.g.) 32-bit integers:

������������������� ???????????????????

(Details omitted.)

32

Build circuit to compute

32-bit integer ri
given 4-bit integer i

and 32-bit integers r0; r1; : : : ; r15:

register
read

Build circuit for “register write”:

r0; : : : ; r15; s; i 7→ r ′0; : : : ; r
′
15

where r ′j = rj except r ′i = s.

Build circuit for addition. Etc.

33

r0; : : : ; r15; i ; j; k 7→ r ′0; : : : ; r
′
15

where r ′‘ = r‘ except r ′i = rj rk :

register
read

register
read

������������� ?????????????

register
write

32

Build circuit to compute

32-bit integer ri
given 4-bit integer i

and 32-bit integers r0; r1; : : : ; r15:

register
read

Build circuit for “register write”:

r0; : : : ; r15; s; i 7→ r ′0; : : : ; r
′
15

where r ′j = rj except r ′i = s.

Build circuit for addition. Etc.

33

r0; : : : ; r15; i ; j; k 7→ r ′0; : : : ; r
′
15

where r ′‘ = r‘ except r ′i = rj rk :

register
read

register
read

������������� ?????????????

register
write

32

Build circuit to compute

32-bit integer ri
given 4-bit integer i

and 32-bit integers r0; r1; : : : ; r15:

register
read

Build circuit for “register write”:

r0; : : : ; r15; s; i 7→ r ′0; : : : ; r
′
15

where r ′j = rj except r ′i = s.

Build circuit for addition. Etc.

33

r0; : : : ; r15; i ; j; k 7→ r ′0; : : : ; r
′
15

where r ′‘ = r‘ except r ′i = rj rk :

register
read

register
read

������������� ?????????????

register
write

34

Add more flexibility.

More arithmetic:

replace (i ; j; k) with

(“×”; i ; j; k) and

(“+”; i ; j; k) and more options.

32

Build circuit to compute

32-bit integer ri
given 4-bit integer i

and 32-bit integers r0; r1; : : : ; r15:

register
read

Build circuit for “register write”:

r0; : : : ; r15; s; i 7→ r ′0; : : : ; r
′
15

where r ′j = rj except r ′i = s.

Build circuit for addition. Etc.

33

r0; : : : ; r15; i ; j; k 7→ r ′0; : : : ; r
′
15

where r ′‘ = r‘ except r ′i = rj rk :

register
read

register
read

������������� ?????????????

register
write

34

Add more flexibility.

More arithmetic:

replace (i ; j; k) with

(“×”; i ; j; k) and

(“+”; i ; j; k) and more options.

32

Build circuit to compute

32-bit integer ri
given 4-bit integer i

and 32-bit integers r0; r1; : : : ; r15:

register
read

Build circuit for “register write”:

r0; : : : ; r15; s; i 7→ r ′0; : : : ; r
′
15

where r ′j = rj except r ′i = s.

Build circuit for addition. Etc.

33

r0; : : : ; r15; i ; j; k 7→ r ′0; : : : ; r
′
15

where r ′‘ = r‘ except r ′i = rj rk :

register
read

register
read

������������� ?????????????

register
write

34

Add more flexibility.

More arithmetic:

replace (i ; j; k) with

(“×”; i ; j; k) and

(“+”; i ; j; k) and more options.

33

r0; : : : ; r15; i ; j; k 7→ r ′0; : : : ; r
′
15

where r ′‘ = r‘ except r ′i = rj rk :

register
read

register
read

������������� ?????????????

register
write

34

Add more flexibility.

More arithmetic:

replace (i ; j; k) with

(“×”; i ; j; k) and

(“+”; i ; j; k) and more options.

33

r0; : : : ; r15; i ; j; k 7→ r ′0; : : : ; r
′
15

where r ′‘ = r‘ except r ′i = rj rk :

register
read

register
read

������������� ?????????????

register
write

34

Add more flexibility.

More arithmetic:

replace (i ; j; k) with

(“×”; i ; j; k) and

(“+”; i ; j; k) and more options.

“Instruction fetch”:

p 7→ op; ip; jp; kp; p
′.

33

r0; : : : ; r15; i ; j; k 7→ r ′0; : : : ; r
′
15

where r ′‘ = r‘ except r ′i = rj rk :

register
read

register
read

������������� ?????????????

register
write

34

Add more flexibility.

More arithmetic:

replace (i ; j; k) with

(“×”; i ; j; k) and

(“+”; i ; j; k) and more options.

“Instruction fetch”:

p 7→ op; ip; jp; kp; p
′.

“Instruction decode”:

decompression of compressed

format for op; ip; jp; kp; p
′.

33

r0; : : : ; r15; i ; j; k 7→ r ′0; : : : ; r
′
15

where r ′‘ = r‘ except r ′i = rj rk :

register
read

register
read

������������� ?????????????

register
write

34

Add more flexibility.

More arithmetic:

replace (i ; j; k) with

(“×”; i ; j; k) and

(“+”; i ; j; k) and more options.

“Instruction fetch”:

p 7→ op; ip; jp; kp; p
′.

“Instruction decode”:

decompression of compressed

format for op; ip; jp; kp; p
′.

More (but slower) storage:

“load” from and “store” to

larger “RAM” arrays.

33

r0; : : : ; r15; i ; j; k 7→ r ′0; : : : ; r
′
15

where r ′‘ = r‘ except r ′i = rj rk :

register
read

register
read

������������� ?????????????

register
write

34

Add more flexibility.

More arithmetic:

replace (i ; j; k) with

(“×”; i ; j; k) and

(“+”; i ; j; k) and more options.

“Instruction fetch”:

p 7→ op; ip; jp; kp; p
′.

“Instruction decode”:

decompression of compressed

format for op; ip; jp; kp; p
′.

More (but slower) storage:

“load” from and “store” to

larger “RAM” arrays.

35

Build “flip-flops”

storing (p; r0; : : : ; r15).

Hook (p; r0; : : : ; r15)

flip-flops into circuit inputs.

Hook outputs (p′; r ′0; : : : ; r
′
15)

into the same flip-flops.

At each “clock tick”,

flip-flops are overwritten

with the outputs.

Clock needs to be slow enough

for electricity to percolate

all the way through the circuit,

from flip-flops to flip-flops.

33

r0; : : : ; r15; i ; j; k 7→ r ′0; : : : ; r
′
15

where r ′‘ = r‘ except r ′i = rj rk :

register
read

register
read

������������� ?????????????

register
write

34

Add more flexibility.

More arithmetic:

replace (i ; j; k) with

(“×”; i ; j; k) and

(“+”; i ; j; k) and more options.

“Instruction fetch”:

p 7→ op; ip; jp; kp; p
′.

“Instruction decode”:

decompression of compressed

format for op; ip; jp; kp; p
′.

More (but slower) storage:

“load” from and “store” to

larger “RAM” arrays.

35

Build “flip-flops”

storing (p; r0; : : : ; r15).

Hook (p; r0; : : : ; r15)

flip-flops into circuit inputs.

Hook outputs (p′; r ′0; : : : ; r
′
15)

into the same flip-flops.

At each “clock tick”,

flip-flops are overwritten

with the outputs.

Clock needs to be slow enough

for electricity to percolate

all the way through the circuit,

from flip-flops to flip-flops.

33

r0; : : : ; r15; i ; j; k 7→ r ′0; : : : ; r
′
15

where r ′‘ = r‘ except r ′i = rj rk :

register
read

register
read

������������� ?????????????

register
write

34

Add more flexibility.

More arithmetic:

replace (i ; j; k) with

(“×”; i ; j; k) and

(“+”; i ; j; k) and more options.

“Instruction fetch”:

p 7→ op; ip; jp; kp; p
′.

“Instruction decode”:

decompression of compressed

format for op; ip; jp; kp; p
′.

More (but slower) storage:

“load” from and “store” to

larger “RAM” arrays.

35

Build “flip-flops”

storing (p; r0; : : : ; r15).

Hook (p; r0; : : : ; r15)

flip-flops into circuit inputs.

Hook outputs (p′; r ′0; : : : ; r
′
15)

into the same flip-flops.

At each “clock tick”,

flip-flops are overwritten

with the outputs.

Clock needs to be slow enough

for electricity to percolate

all the way through the circuit,

from flip-flops to flip-flops.

34

Add more flexibility.

More arithmetic:

replace (i ; j; k) with

(“×”; i ; j; k) and

(“+”; i ; j; k) and more options.

“Instruction fetch”:

p 7→ op; ip; jp; kp; p
′.

“Instruction decode”:

decompression of compressed

format for op; ip; jp; kp; p
′.

More (but slower) storage:

“load” from and “store” to

larger “RAM” arrays.

35

Build “flip-flops”

storing (p; r0; : : : ; r15).

Hook (p; r0; : : : ; r15)

flip-flops into circuit inputs.

Hook outputs (p′; r ′0; : : : ; r
′
15)

into the same flip-flops.

At each “clock tick”,

flip-flops are overwritten

with the outputs.

Clock needs to be slow enough

for electricity to percolate

all the way through the circuit,

from flip-flops to flip-flops.

34

Add more flexibility.

More arithmetic:

replace (i ; j; k) with

(“×”; i ; j; k) and

(“+”; i ; j; k) and more options.

“Instruction fetch”:

p 7→ op; ip; jp; kp; p
′.

“Instruction decode”:

decompression of compressed

format for op; ip; jp; kp; p
′.

More (but slower) storage:

“load” from and “store” to

larger “RAM” arrays.

35

Build “flip-flops”

storing (p; r0; : : : ; r15).

Hook (p; r0; : : : ; r15)

flip-flops into circuit inputs.

Hook outputs (p′; r ′0; : : : ; r
′
15)

into the same flip-flops.

At each “clock tick”,

flip-flops are overwritten

with the outputs.

Clock needs to be slow enough

for electricity to percolate

all the way through the circuit,

from flip-flops to flip-flops.

36

Now have semi-flexible CPU:

flip-flops

insn
fetch

insn
decode

register
read

register
read

������� ???????

register
write

Further flexibility is useful:

e.g., rotation instructions.

34

Add more flexibility.

More arithmetic:

replace (i ; j; k) with

(“×”; i ; j; k) and

(“+”; i ; j; k) and more options.

“Instruction fetch”:

p 7→ op; ip; jp; kp; p
′.

“Instruction decode”:

decompression of compressed

format for op; ip; jp; kp; p
′.

More (but slower) storage:

“load” from and “store” to

larger “RAM” arrays.

35

Build “flip-flops”

storing (p; r0; : : : ; r15).

Hook (p; r0; : : : ; r15)

flip-flops into circuit inputs.

Hook outputs (p′; r ′0; : : : ; r
′
15)

into the same flip-flops.

At each “clock tick”,

flip-flops are overwritten

with the outputs.

Clock needs to be slow enough

for electricity to percolate

all the way through the circuit,

from flip-flops to flip-flops.

36

Now have semi-flexible CPU:

flip-flops

insn
fetch

insn
decode

register
read

register
read

������� ???????

register
write

Further flexibility is useful:

e.g., rotation instructions.

34

Add more flexibility.

More arithmetic:

replace (i ; j; k) with

(“×”; i ; j; k) and

(“+”; i ; j; k) and more options.

“Instruction fetch”:

p 7→ op; ip; jp; kp; p
′.

“Instruction decode”:

decompression of compressed

format for op; ip; jp; kp; p
′.

More (but slower) storage:

“load” from and “store” to

larger “RAM” arrays.

35

Build “flip-flops”

storing (p; r0; : : : ; r15).

Hook (p; r0; : : : ; r15)

flip-flops into circuit inputs.

Hook outputs (p′; r ′0; : : : ; r
′
15)

into the same flip-flops.

At each “clock tick”,

flip-flops are overwritten

with the outputs.

Clock needs to be slow enough

for electricity to percolate

all the way through the circuit,

from flip-flops to flip-flops.

36

Now have semi-flexible CPU:

flip-flops

insn
fetch

insn
decode

register
read

register
read

������� ???????

register
write

Further flexibility is useful:

e.g., rotation instructions.

35

Build “flip-flops”

storing (p; r0; : : : ; r15).

Hook (p; r0; : : : ; r15)

flip-flops into circuit inputs.

Hook outputs (p′; r ′0; : : : ; r
′
15)

into the same flip-flops.

At each “clock tick”,

flip-flops are overwritten

with the outputs.

Clock needs to be slow enough

for electricity to percolate

all the way through the circuit,

from flip-flops to flip-flops.

36

Now have semi-flexible CPU:

flip-flops

insn
fetch

insn
decode

register
read

register
read

������� ???????

register
write

Further flexibility is useful:

e.g., rotation instructions.

35

Build “flip-flops”

storing (p; r0; : : : ; r15).

Hook (p; r0; : : : ; r15)

flip-flops into circuit inputs.

Hook outputs (p′; r ′0; : : : ; r
′
15)

into the same flip-flops.

At each “clock tick”,

flip-flops are overwritten

with the outputs.

Clock needs to be slow enough

for electricity to percolate

all the way through the circuit,

from flip-flops to flip-flops.

36

Now have semi-flexible CPU:

flip-flops

insn
fetch

insn
decode

register
read

register
read

������� ???????

register
write

Further flexibility is useful:

e.g., rotation instructions.

37

“Pipelining” allows faster clock:

flip-flops

insn
fetch

stage 1

flip-flops

insn
decode

stage 2

flip-flops

register
read

register
read

stage 3

flip-flops
������� ???????

stage 4

flip-flops

register
write

stage 5

35

Build “flip-flops”

storing (p; r0; : : : ; r15).

Hook (p; r0; : : : ; r15)

flip-flops into circuit inputs.

Hook outputs (p′; r ′0; : : : ; r
′
15)

into the same flip-flops.

At each “clock tick”,

flip-flops are overwritten

with the outputs.

Clock needs to be slow enough

for electricity to percolate

all the way through the circuit,

from flip-flops to flip-flops.

36

Now have semi-flexible CPU:

flip-flops

insn
fetch

insn
decode

register
read

register
read

������� ???????

register
write

Further flexibility is useful:

e.g., rotation instructions.

37

“Pipelining” allows faster clock:

flip-flops

insn
fetch

stage 1

flip-flops

insn
decode

stage 2

flip-flops

register
read

register
read

stage 3

flip-flops
������� ???????

stage 4

flip-flops

register
write

stage 5

35

Build “flip-flops”

storing (p; r0; : : : ; r15).

Hook (p; r0; : : : ; r15)

flip-flops into circuit inputs.

Hook outputs (p′; r ′0; : : : ; r
′
15)

into the same flip-flops.

At each “clock tick”,

flip-flops are overwritten

with the outputs.

Clock needs to be slow enough

for electricity to percolate

all the way through the circuit,

from flip-flops to flip-flops.

36

Now have semi-flexible CPU:

flip-flops

insn
fetch

insn
decode

register
read

register
read

������� ???????

register
write

Further flexibility is useful:

e.g., rotation instructions.

37

“Pipelining” allows faster clock:

flip-flops

insn
fetch

stage 1

flip-flops

insn
decode

stage 2

flip-flops

register
read

register
read

stage 3

flip-flops
������� ???????

stage 4

flip-flops

register
write

stage 5

36

Now have semi-flexible CPU:

flip-flops

insn
fetch

insn
decode

register
read

register
read

������� ???????

register
write

Further flexibility is useful:

e.g., rotation instructions.

37

“Pipelining” allows faster clock:

flip-flops

insn
fetch

stage 1

flip-flops

insn
decode

stage 2

flip-flops

register
read

register
read

stage 3

flip-flops
������� ???????

stage 4

flip-flops

register
write

stage 5

36

Now have semi-flexible CPU:

flip-flops

insn
fetch

insn
decode

register
read

register
read

������� ???????

register
write

Further flexibility is useful:

e.g., rotation instructions.

37

“Pipelining” allows faster clock:

flip-flops

insn
fetch

stage 1

flip-flops

insn
decode

stage 2

flip-flops

register
read

register
read

stage 3

flip-flops
������� ???????

stage 4

flip-flops

register
write

stage 5

38

Goal: Stage n handles instruction

one tick after stage n − 1.

Instruction fetch

reads next instruction,

feeds p′ back, sends instruction.

After next clock tick,

instruction decode

uncompresses this instruction,

while instruction fetch

reads another instruction.

Some extra flip-flop area.

Also extra area to

preserve instruction semantics:

e.g., stall on read-after-write.

36

Now have semi-flexible CPU:

flip-flops

insn
fetch

insn
decode

register
read

register
read

������� ???????

register
write

Further flexibility is useful:

e.g., rotation instructions.

37

“Pipelining” allows faster clock:

flip-flops

insn
fetch

stage 1

flip-flops

insn
decode

stage 2

flip-flops

register
read

register
read

stage 3

flip-flops
������� ???????

stage 4

flip-flops

register
write

stage 5

38

Goal: Stage n handles instruction

one tick after stage n − 1.

Instruction fetch

reads next instruction,

feeds p′ back, sends instruction.

After next clock tick,

instruction decode

uncompresses this instruction,

while instruction fetch

reads another instruction.

Some extra flip-flop area.

Also extra area to

preserve instruction semantics:

e.g., stall on read-after-write.

36

Now have semi-flexible CPU:

flip-flops

insn
fetch

insn
decode

register
read

register
read

������� ???????

register
write

Further flexibility is useful:

e.g., rotation instructions.

37

“Pipelining” allows faster clock:

flip-flops

insn
fetch

stage 1

flip-flops

insn
decode

stage 2

flip-flops

register
read

register
read

stage 3

flip-flops
������� ???????

stage 4

flip-flops

register
write

stage 5

38

Goal: Stage n handles instruction

one tick after stage n − 1.

Instruction fetch

reads next instruction,

feeds p′ back, sends instruction.

After next clock tick,

instruction decode

uncompresses this instruction,

while instruction fetch

reads another instruction.

Some extra flip-flop area.

Also extra area to

preserve instruction semantics:

e.g., stall on read-after-write.

37

“Pipelining” allows faster clock:

flip-flops

insn
fetch

stage 1

flip-flops

insn
decode

stage 2

flip-flops

register
read

register
read

stage 3

flip-flops
������� ???????

stage 4

flip-flops

register
write

stage 5

38

Goal: Stage n handles instruction

one tick after stage n − 1.

Instruction fetch

reads next instruction,

feeds p′ back, sends instruction.

After next clock tick,

instruction decode

uncompresses this instruction,

while instruction fetch

reads another instruction.

Some extra flip-flop area.

Also extra area to

preserve instruction semantics:

e.g., stall on read-after-write.

37

“Pipelining” allows faster clock:

flip-flops

insn
fetch

stage 1

flip-flops

insn
decode

stage 2

flip-flops

register
read

register
read

stage 3

flip-flops
������� ???????

stage 4

flip-flops

register
write

stage 5

38

Goal: Stage n handles instruction

one tick after stage n − 1.

Instruction fetch

reads next instruction,

feeds p′ back, sends instruction.

After next clock tick,

instruction decode

uncompresses this instruction,

while instruction fetch

reads another instruction.

Some extra flip-flop area.

Also extra area to

preserve instruction semantics:

e.g., stall on read-after-write.

39

“Superscalar” processing:

flip-flops

insn
fetch

insn
fetch

flip-flops

insn
decode

insn
decode

flip-flops

register
read

register
read

register
read

register
read

flip-flops
������� ???????

flip-flops

register
write

register
write

37

“Pipelining” allows faster clock:

flip-flops

insn
fetch

stage 1

flip-flops

insn
decode

stage 2

flip-flops

register
read

register
read

stage 3

flip-flops
������� ???????

stage 4

flip-flops

register
write

stage 5

38

Goal: Stage n handles instruction

one tick after stage n − 1.

Instruction fetch

reads next instruction,

feeds p′ back, sends instruction.

After next clock tick,

instruction decode

uncompresses this instruction,

while instruction fetch

reads another instruction.

Some extra flip-flop area.

Also extra area to

preserve instruction semantics:

e.g., stall on read-after-write.

39

“Superscalar” processing:

flip-flops

insn
fetch

insn
fetch

flip-flops

insn
decode

insn
decode

flip-flops

register
read

register
read

register
read

register
read

flip-flops
������� ???????

flip-flops

register
write

register
write

37

“Pipelining” allows faster clock:

flip-flops

insn
fetch

stage 1

flip-flops

insn
decode

stage 2

flip-flops

register
read

register
read

stage 3

flip-flops
������� ???????

stage 4

flip-flops

register
write

stage 5

38

Goal: Stage n handles instruction

one tick after stage n − 1.

Instruction fetch

reads next instruction,

feeds p′ back, sends instruction.

After next clock tick,

instruction decode

uncompresses this instruction,

while instruction fetch

reads another instruction.

Some extra flip-flop area.

Also extra area to

preserve instruction semantics:

e.g., stall on read-after-write.

39

“Superscalar” processing:

flip-flops

insn
fetch

insn
fetch

flip-flops

insn
decode

insn
decode

flip-flops

register
read

register
read

register
read

register
read

flip-flops
������� ???????

flip-flops

register
write

register
write

38

Goal: Stage n handles instruction

one tick after stage n − 1.

Instruction fetch

reads next instruction,

feeds p′ back, sends instruction.

After next clock tick,

instruction decode

uncompresses this instruction,

while instruction fetch

reads another instruction.

Some extra flip-flop area.

Also extra area to

preserve instruction semantics:

e.g., stall on read-after-write.

39

“Superscalar” processing:

flip-flops

insn
fetch

insn
fetch

flip-flops

insn
decode

insn
decode

flip-flops

register
read

register
read

register
read

register
read

flip-flops
������� ???????

flip-flops

register
write

register
write

38

Goal: Stage n handles instruction

one tick after stage n − 1.

Instruction fetch

reads next instruction,

feeds p′ back, sends instruction.

After next clock tick,

instruction decode

uncompresses this instruction,

while instruction fetch

reads another instruction.

Some extra flip-flop area.

Also extra area to

preserve instruction semantics:

e.g., stall on read-after-write.

39

“Superscalar” processing:

flip-flops

insn
fetch

insn
fetch

flip-flops

insn
decode

insn
decode

flip-flops

register
read

register
read

register
read

register
read

flip-flops
������� ???????

flip-flops

register
write

register
write

40

“Vector” processing:

Expand each 32-bit integer

into n-vector of 32-bit integers.

ARM “NEON” has n = 4;

Intel “AVX2” has n = 8;

Intel “AVX-512” has n = 16;

GPUs have larger n.

38

Goal: Stage n handles instruction

one tick after stage n − 1.

Instruction fetch

reads next instruction,

feeds p′ back, sends instruction.

After next clock tick,

instruction decode

uncompresses this instruction,

while instruction fetch

reads another instruction.

Some extra flip-flop area.

Also extra area to

preserve instruction semantics:

e.g., stall on read-after-write.

39

“Superscalar” processing:

flip-flops

insn
fetch

insn
fetch

flip-flops

insn
decode

insn
decode

flip-flops

register
read

register
read

register
read

register
read

flip-flops
������� ???????

flip-flops

register
write

register
write

40

“Vector” processing:

Expand each 32-bit integer

into n-vector of 32-bit integers.

ARM “NEON” has n = 4;

Intel “AVX2” has n = 8;

Intel “AVX-512” has n = 16;

GPUs have larger n.

38

Goal: Stage n handles instruction

one tick after stage n − 1.

Instruction fetch

reads next instruction,

feeds p′ back, sends instruction.

After next clock tick,

instruction decode

uncompresses this instruction,

while instruction fetch

reads another instruction.

Some extra flip-flop area.

Also extra area to

preserve instruction semantics:

e.g., stall on read-after-write.

39

“Superscalar” processing:

flip-flops

insn
fetch

insn
fetch

flip-flops

insn
decode

insn
decode

flip-flops

register
read

register
read

register
read

register
read

flip-flops
������� ???????

flip-flops

register
write

register
write

40

“Vector” processing:

Expand each 32-bit integer

into n-vector of 32-bit integers.

ARM “NEON” has n = 4;

Intel “AVX2” has n = 8;

Intel “AVX-512” has n = 16;

GPUs have larger n.

39

“Superscalar” processing:

flip-flops

insn
fetch

insn
fetch

flip-flops

insn
decode

insn
decode

flip-flops

register
read

register
read

register
read

register
read

flip-flops
������� ???????

flip-flops

register
write

register
write

40

“Vector” processing:

Expand each 32-bit integer

into n-vector of 32-bit integers.

ARM “NEON” has n = 4;

Intel “AVX2” has n = 8;

Intel “AVX-512” has n = 16;

GPUs have larger n.

39

“Superscalar” processing:

flip-flops

insn
fetch

insn
fetch

flip-flops

insn
decode

insn
decode

flip-flops

register
read

register
read

register
read

register
read

flip-flops
������� ???????

flip-flops

register
write

register
write

40

“Vector” processing:

Expand each 32-bit integer

into n-vector of 32-bit integers.

ARM “NEON” has n = 4;

Intel “AVX2” has n = 8;

Intel “AVX-512” has n = 16;

GPUs have larger n.

n× speedup if

n× arithmetic circuits,

n× read/write circuits.

Benefit: Amortizes insn circuits.

39

“Superscalar” processing:

flip-flops

insn
fetch

insn
fetch

flip-flops

insn
decode

insn
decode

flip-flops

register
read

register
read

register
read

register
read

flip-flops
������� ???????

flip-flops

register
write

register
write

40

“Vector” processing:

Expand each 32-bit integer

into n-vector of 32-bit integers.

ARM “NEON” has n = 4;

Intel “AVX2” has n = 8;

Intel “AVX-512” has n = 16;

GPUs have larger n.

n× speedup if

n× arithmetic circuits,

n× read/write circuits.

Benefit: Amortizes insn circuits.

Huge effect on higher-level

algorithms and data structures.

39

“Superscalar” processing:

flip-flops

insn
fetch

insn
fetch

flip-flops

insn
decode

insn
decode

flip-flops

register
read

register
read

register
read

register
read

flip-flops
������� ???????

flip-flops

register
write

register
write

40

“Vector” processing:

Expand each 32-bit integer

into n-vector of 32-bit integers.

ARM “NEON” has n = 4;

Intel “AVX2” has n = 8;

Intel “AVX-512” has n = 16;

GPUs have larger n.

n× speedup if

n× arithmetic circuits,

n× read/write circuits.

Benefit: Amortizes insn circuits.

Huge effect on higher-level

algorithms and data structures.

41

Network on chip: the mesh

How expensive is sorting?

Input: array of n numbers.

Each number in
˘

1; 2; : : : ; n2
¯

,

represented in binary.

Output: array of n numbers,

in increasing order,

represented in binary;

same multiset as input.

39

“Superscalar” processing:

flip-flops

insn
fetch

insn
fetch

flip-flops

insn
decode

insn
decode

flip-flops

register
read

register
read

register
read

register
read

flip-flops
������� ???????

flip-flops

register
write

register
write

40

“Vector” processing:

Expand each 32-bit integer

into n-vector of 32-bit integers.

ARM “NEON” has n = 4;

Intel “AVX2” has n = 8;

Intel “AVX-512” has n = 16;

GPUs have larger n.

n× speedup if

n× arithmetic circuits,

n× read/write circuits.

Benefit: Amortizes insn circuits.

Huge effect on higher-level

algorithms and data structures.

41

Network on chip: the mesh

How expensive is sorting?

Input: array of n numbers.

Each number in
˘

1; 2; : : : ; n2
¯

,

represented in binary.

Output: array of n numbers,

in increasing order,

represented in binary;

same multiset as input.

39

“Superscalar” processing:

flip-flops

insn
fetch

insn
fetch

flip-flops

insn
decode

insn
decode

flip-flops

register
read

register
read

register
read

register
read

flip-flops
������� ???????

flip-flops

register
write

register
write

40

“Vector” processing:

Expand each 32-bit integer

into n-vector of 32-bit integers.

ARM “NEON” has n = 4;

Intel “AVX2” has n = 8;

Intel “AVX-512” has n = 16;

GPUs have larger n.

n× speedup if

n× arithmetic circuits,

n× read/write circuits.

Benefit: Amortizes insn circuits.

Huge effect on higher-level

algorithms and data structures.

41

Network on chip: the mesh

How expensive is sorting?

Input: array of n numbers.

Each number in
˘

1; 2; : : : ; n2
¯

,

represented in binary.

Output: array of n numbers,

in increasing order,

represented in binary;

same multiset as input.

40

“Vector” processing:

Expand each 32-bit integer

into n-vector of 32-bit integers.

ARM “NEON” has n = 4;

Intel “AVX2” has n = 8;

Intel “AVX-512” has n = 16;

GPUs have larger n.

n× speedup if

n× arithmetic circuits,

n× read/write circuits.

Benefit: Amortizes insn circuits.

Huge effect on higher-level

algorithms and data structures.

41

Network on chip: the mesh

How expensive is sorting?

Input: array of n numbers.

Each number in
˘

1; 2; : : : ; n2
¯

,

represented in binary.

Output: array of n numbers,

in increasing order,

represented in binary;

same multiset as input.

40

“Vector” processing:

Expand each 32-bit integer

into n-vector of 32-bit integers.

ARM “NEON” has n = 4;

Intel “AVX2” has n = 8;

Intel “AVX-512” has n = 16;

GPUs have larger n.

n× speedup if

n× arithmetic circuits,

n× read/write circuits.

Benefit: Amortizes insn circuits.

Huge effect on higher-level

algorithms and data structures.

41

Network on chip: the mesh

How expensive is sorting?

Input: array of n numbers.

Each number in
˘

1; 2; : : : ; n2
¯

,

represented in binary.

Output: array of n numbers,

in increasing order,

represented in binary;

same multiset as input.

Metric: seconds used by

circuit of area n1+o(1).

For simplicity assume n = 4k .

40

“Vector” processing:

Expand each 32-bit integer

into n-vector of 32-bit integers.

ARM “NEON” has n = 4;

Intel “AVX2” has n = 8;

Intel “AVX-512” has n = 16;

GPUs have larger n.

n× speedup if

n× arithmetic circuits,

n× read/write circuits.

Benefit: Amortizes insn circuits.

Huge effect on higher-level

algorithms and data structures.

41

Network on chip: the mesh

How expensive is sorting?

Input: array of n numbers.

Each number in
˘

1; 2; : : : ; n2
¯

,

represented in binary.

Output: array of n numbers,

in increasing order,

represented in binary;

same multiset as input.

Metric: seconds used by

circuit of area n1+o(1).

For simplicity assume n = 4k .

42

Spread array across

square mesh of n small cells,

each of area no(1),

with near-neighbor wiring:

× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×

40

“Vector” processing:

Expand each 32-bit integer

into n-vector of 32-bit integers.

ARM “NEON” has n = 4;

Intel “AVX2” has n = 8;

Intel “AVX-512” has n = 16;

GPUs have larger n.

n× speedup if

n× arithmetic circuits,

n× read/write circuits.

Benefit: Amortizes insn circuits.

Huge effect on higher-level

algorithms and data structures.

41

Network on chip: the mesh

How expensive is sorting?

Input: array of n numbers.

Each number in
˘

1; 2; : : : ; n2
¯

,

represented in binary.

Output: array of n numbers,

in increasing order,

represented in binary;

same multiset as input.

Metric: seconds used by

circuit of area n1+o(1).

For simplicity assume n = 4k .

42

Spread array across

square mesh of n small cells,

each of area no(1),

with near-neighbor wiring:

× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×

40

“Vector” processing:

Expand each 32-bit integer

into n-vector of 32-bit integers.

ARM “NEON” has n = 4;

Intel “AVX2” has n = 8;

Intel “AVX-512” has n = 16;

GPUs have larger n.

n× speedup if

n× arithmetic circuits,

n× read/write circuits.

Benefit: Amortizes insn circuits.

Huge effect on higher-level

algorithms and data structures.

41

Network on chip: the mesh

How expensive is sorting?

Input: array of n numbers.

Each number in
˘

1; 2; : : : ; n2
¯

,

represented in binary.

Output: array of n numbers,

in increasing order,

represented in binary;

same multiset as input.

Metric: seconds used by

circuit of area n1+o(1).

For simplicity assume n = 4k .

42

Spread array across

square mesh of n small cells,

each of area no(1),

with near-neighbor wiring:

× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×

41

Network on chip: the mesh

How expensive is sorting?

Input: array of n numbers.

Each number in
˘

1; 2; : : : ; n2
¯

,

represented in binary.

Output: array of n numbers,

in increasing order,

represented in binary;

same multiset as input.

Metric: seconds used by

circuit of area n1+o(1).

For simplicity assume n = 4k .

42

Spread array across

square mesh of n small cells,

each of area no(1),

with near-neighbor wiring:

× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×

41

Network on chip: the mesh

How expensive is sorting?

Input: array of n numbers.

Each number in
˘

1; 2; : : : ; n2
¯

,

represented in binary.

Output: array of n numbers,

in increasing order,

represented in binary;

same multiset as input.

Metric: seconds used by

circuit of area n1+o(1).

For simplicity assume n = 4k .

42

Spread array across

square mesh of n small cells,

each of area no(1),

with near-neighbor wiring:

× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×

43

Sort row of n0:5 cells

in n0:5+o(1) seconds:

• Sort each pair in parallel.

3 1 4 1 5 9 2 6 7→
1 3 1 4 5 9 2 6

• Sort alternate pairs in parallel.

1 3 1 4 5 9 2 6 7→
1 1 3 4 5 2 9 6

• Repeat until number of steps

equals row length.

41

Network on chip: the mesh

How expensive is sorting?

Input: array of n numbers.

Each number in
˘

1; 2; : : : ; n2
¯

,

represented in binary.

Output: array of n numbers,

in increasing order,

represented in binary;

same multiset as input.

Metric: seconds used by

circuit of area n1+o(1).

For simplicity assume n = 4k .

42

Spread array across

square mesh of n small cells,

each of area no(1),

with near-neighbor wiring:

× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×

43

Sort row of n0:5 cells

in n0:5+o(1) seconds:

• Sort each pair in parallel.

3 1 4 1 5 9 2 6 7→
1 3 1 4 5 9 2 6

• Sort alternate pairs in parallel.

1 3 1 4 5 9 2 6 7→
1 1 3 4 5 2 9 6

• Repeat until number of steps

equals row length.

41

Network on chip: the mesh

How expensive is sorting?

Input: array of n numbers.

Each number in
˘

1; 2; : : : ; n2
¯

,

represented in binary.

Output: array of n numbers,

in increasing order,

represented in binary;

same multiset as input.

Metric: seconds used by

circuit of area n1+o(1).

For simplicity assume n = 4k .

42

Spread array across

square mesh of n small cells,

each of area no(1),

with near-neighbor wiring:

× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×

43

Sort row of n0:5 cells

in n0:5+o(1) seconds:

• Sort each pair in parallel.

3 1 4 1 5 9 2 6 7→
1 3 1 4 5 9 2 6

• Sort alternate pairs in parallel.

1 3 1 4 5 9 2 6 7→
1 1 3 4 5 2 9 6

• Repeat until number of steps

equals row length.

42

Spread array across

square mesh of n small cells,

each of area no(1),

with near-neighbor wiring:

× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×

43

Sort row of n0:5 cells

in n0:5+o(1) seconds:

• Sort each pair in parallel.

3 1 4 1 5 9 2 6 7→
1 3 1 4 5 9 2 6

• Sort alternate pairs in parallel.

1 3 1 4 5 9 2 6 7→
1 1 3 4 5 2 9 6

• Repeat until number of steps

equals row length.

42

Spread array across

square mesh of n small cells,

each of area no(1),

with near-neighbor wiring:

× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×

43

Sort row of n0:5 cells

in n0:5+o(1) seconds:

• Sort each pair in parallel.

3 1 4 1 5 9 2 6 7→
1 3 1 4 5 9 2 6

• Sort alternate pairs in parallel.

1 3 1 4 5 9 2 6 7→
1 1 3 4 5 2 9 6

• Repeat until number of steps

equals row length.

Sort each row, in parallel,

in a total of n0:5+o(1) seconds.

42

Spread array across

square mesh of n small cells,

each of area no(1),

with near-neighbor wiring:

× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×

43

Sort row of n0:5 cells

in n0:5+o(1) seconds:

• Sort each pair in parallel.

3 1 4 1 5 9 2 6 7→
1 3 1 4 5 9 2 6

• Sort alternate pairs in parallel.

1 3 1 4 5 9 2 6 7→
1 1 3 4 5 2 9 6

• Repeat until number of steps

equals row length.

Sort each row, in parallel,

in a total of n0:5+o(1) seconds.

44

Sort all n cells

in n0:5+o(1) seconds:

• Recursively sort quadrants

in parallel, if n > 1.

• Sort each column in parallel.

• Sort each row in parallel.

• Sort each column in parallel.

• Sort each row in parallel.

With proper choice of

left-to-right/right-to-left

for each row, can prove

that this sorts whole array.

42

Spread array across

square mesh of n small cells,

each of area no(1),

with near-neighbor wiring:

× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×

43

Sort row of n0:5 cells

in n0:5+o(1) seconds:

• Sort each pair in parallel.

3 1 4 1 5 9 2 6 7→
1 3 1 4 5 9 2 6

• Sort alternate pairs in parallel.

1 3 1 4 5 9 2 6 7→
1 1 3 4 5 2 9 6

• Repeat until number of steps

equals row length.

Sort each row, in parallel,

in a total of n0:5+o(1) seconds.

44

Sort all n cells

in n0:5+o(1) seconds:

• Recursively sort quadrants

in parallel, if n > 1.

• Sort each column in parallel.

• Sort each row in parallel.

• Sort each column in parallel.

• Sort each row in parallel.

With proper choice of

left-to-right/right-to-left

for each row, can prove

that this sorts whole array.

42

Spread array across

square mesh of n small cells,

each of area no(1),

with near-neighbor wiring:

× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×

43

Sort row of n0:5 cells

in n0:5+o(1) seconds:

• Sort each pair in parallel.

3 1 4 1 5 9 2 6 7→
1 3 1 4 5 9 2 6

• Sort alternate pairs in parallel.

1 3 1 4 5 9 2 6 7→
1 1 3 4 5 2 9 6

• Repeat until number of steps

equals row length.

Sort each row, in parallel,

in a total of n0:5+o(1) seconds.

44

Sort all n cells

in n0:5+o(1) seconds:

• Recursively sort quadrants

in parallel, if n > 1.

• Sort each column in parallel.

• Sort each row in parallel.

• Sort each column in parallel.

• Sort each row in parallel.

With proper choice of

left-to-right/right-to-left

for each row, can prove

that this sorts whole array.

43

Sort row of n0:5 cells

in n0:5+o(1) seconds:

• Sort each pair in parallel.

3 1 4 1 5 9 2 6 7→
1 3 1 4 5 9 2 6

• Sort alternate pairs in parallel.

1 3 1 4 5 9 2 6 7→
1 1 3 4 5 2 9 6

• Repeat until number of steps

equals row length.

Sort each row, in parallel,

in a total of n0:5+o(1) seconds.

44

Sort all n cells

in n0:5+o(1) seconds:

• Recursively sort quadrants

in parallel, if n > 1.

• Sort each column in parallel.

• Sort each row in parallel.

• Sort each column in parallel.

• Sort each row in parallel.

With proper choice of

left-to-right/right-to-left

for each row, can prove

that this sorts whole array.

43

Sort row of n0:5 cells

in n0:5+o(1) seconds:

• Sort each pair in parallel.

3 1 4 1 5 9 2 6 7→
1 3 1 4 5 9 2 6

• Sort alternate pairs in parallel.

1 3 1 4 5 9 2 6 7→
1 1 3 4 5 2 9 6

• Repeat until number of steps

equals row length.

Sort each row, in parallel,

in a total of n0:5+o(1) seconds.

44

Sort all n cells

in n0:5+o(1) seconds:

• Recursively sort quadrants

in parallel, if n > 1.

• Sort each column in parallel.

• Sort each row in parallel.

• Sort each column in parallel.

• Sort each row in parallel.

With proper choice of

left-to-right/right-to-left

for each row, can prove

that this sorts whole array.

45

For example, assume that

this 8× 8 array is in cells:

3 1 4 1 5 9 2 6

5 3 5 8 9 7 9 3

2 3 8 4 6 2 6 4

3 3 8 3 2 7 9 5

0 2 8 8 4 1 9 7

1 6 9 3 9 9 3 7

5 1 0 5 8 2 0 9

7 4 9 4 4 5 9 2

43

Sort row of n0:5 cells

in n0:5+o(1) seconds:

• Sort each pair in parallel.

3 1 4 1 5 9 2 6 7→
1 3 1 4 5 9 2 6

• Sort alternate pairs in parallel.

1 3 1 4 5 9 2 6 7→
1 1 3 4 5 2 9 6

• Repeat until number of steps

equals row length.

Sort each row, in parallel,

in a total of n0:5+o(1) seconds.

44

Sort all n cells

in n0:5+o(1) seconds:

• Recursively sort quadrants

in parallel, if n > 1.

• Sort each column in parallel.

• Sort each row in parallel.

• Sort each column in parallel.

• Sort each row in parallel.

With proper choice of

left-to-right/right-to-left

for each row, can prove

that this sorts whole array.

45

For example, assume that

this 8× 8 array is in cells:

3 1 4 1 5 9 2 6

5 3 5 8 9 7 9 3

2 3 8 4 6 2 6 4

3 3 8 3 2 7 9 5

0 2 8 8 4 1 9 7

1 6 9 3 9 9 3 7

5 1 0 5 8 2 0 9

7 4 9 4 4 5 9 2

43

Sort row of n0:5 cells

in n0:5+o(1) seconds:

• Sort each pair in parallel.

3 1 4 1 5 9 2 6 7→
1 3 1 4 5 9 2 6

• Sort alternate pairs in parallel.

1 3 1 4 5 9 2 6 7→
1 1 3 4 5 2 9 6

• Repeat until number of steps

equals row length.

Sort each row, in parallel,

in a total of n0:5+o(1) seconds.

44

Sort all n cells

in n0:5+o(1) seconds:

• Recursively sort quadrants

in parallel, if n > 1.

• Sort each column in parallel.

• Sort each row in parallel.

• Sort each column in parallel.

• Sort each row in parallel.

With proper choice of

left-to-right/right-to-left

for each row, can prove

that this sorts whole array.

45

For example, assume that

this 8× 8 array is in cells:

3 1 4 1 5 9 2 6

5 3 5 8 9 7 9 3

2 3 8 4 6 2 6 4

3 3 8 3 2 7 9 5

0 2 8 8 4 1 9 7

1 6 9 3 9 9 3 7

5 1 0 5 8 2 0 9

7 4 9 4 4 5 9 2

44

Sort all n cells

in n0:5+o(1) seconds:

• Recursively sort quadrants

in parallel, if n > 1.

• Sort each column in parallel.

• Sort each row in parallel.

• Sort each column in parallel.

• Sort each row in parallel.

With proper choice of

left-to-right/right-to-left

for each row, can prove

that this sorts whole array.

45

For example, assume that

this 8× 8 array is in cells:

3 1 4 1 5 9 2 6

5 3 5 8 9 7 9 3

2 3 8 4 6 2 6 4

3 3 8 3 2 7 9 5

0 2 8 8 4 1 9 7

1 6 9 3 9 9 3 7

5 1 0 5 8 2 0 9

7 4 9 4 4 5 9 2

44

Sort all n cells

in n0:5+o(1) seconds:

• Recursively sort quadrants

in parallel, if n > 1.

• Sort each column in parallel.

• Sort each row in parallel.

• Sort each column in parallel.

• Sort each row in parallel.

With proper choice of

left-to-right/right-to-left

for each row, can prove

that this sorts whole array.

45

For example, assume that

this 8× 8 array is in cells:

3 1 4 1 5 9 2 6

5 3 5 8 9 7 9 3

2 3 8 4 6 2 6 4

3 3 8 3 2 7 9 5

0 2 8 8 4 1 9 7

1 6 9 3 9 9 3 7

5 1 0 5 8 2 0 9

7 4 9 4 4 5 9 2

46

Recursively sort quadrants,

top →, bottom ←:

1 1 2 3 2 2 2 3

3 3 3 3 4 5 5 6

3 4 4 5 6 6 7 7

5 8 8 8 9 9 9 9

1 1 0 0 2 2 1 0

4 4 3 2 5 4 4 3

7 6 5 5 9 8 7 7

9 9 8 8 9 9 9 9

44

Sort all n cells

in n0:5+o(1) seconds:

• Recursively sort quadrants

in parallel, if n > 1.

• Sort each column in parallel.

• Sort each row in parallel.

• Sort each column in parallel.

• Sort each row in parallel.

With proper choice of

left-to-right/right-to-left

for each row, can prove

that this sorts whole array.

45

For example, assume that

this 8× 8 array is in cells:

3 1 4 1 5 9 2 6

5 3 5 8 9 7 9 3

2 3 8 4 6 2 6 4

3 3 8 3 2 7 9 5

0 2 8 8 4 1 9 7

1 6 9 3 9 9 3 7

5 1 0 5 8 2 0 9

7 4 9 4 4 5 9 2

46

Recursively sort quadrants,

top →, bottom ←:

1 1 2 3 2 2 2 3

3 3 3 3 4 5 5 6

3 4 4 5 6 6 7 7

5 8 8 8 9 9 9 9

1 1 0 0 2 2 1 0

4 4 3 2 5 4 4 3

7 6 5 5 9 8 7 7

9 9 8 8 9 9 9 9

44

Sort all n cells

in n0:5+o(1) seconds:

• Recursively sort quadrants

in parallel, if n > 1.

• Sort each column in parallel.

• Sort each row in parallel.

• Sort each column in parallel.

• Sort each row in parallel.

With proper choice of

left-to-right/right-to-left

for each row, can prove

that this sorts whole array.

45

For example, assume that

this 8× 8 array is in cells:

3 1 4 1 5 9 2 6

5 3 5 8 9 7 9 3

2 3 8 4 6 2 6 4

3 3 8 3 2 7 9 5

0 2 8 8 4 1 9 7

1 6 9 3 9 9 3 7

5 1 0 5 8 2 0 9

7 4 9 4 4 5 9 2

46

Recursively sort quadrants,

top →, bottom ←:

1 1 2 3 2 2 2 3

3 3 3 3 4 5 5 6

3 4 4 5 6 6 7 7

5 8 8 8 9 9 9 9

1 1 0 0 2 2 1 0

4 4 3 2 5 4 4 3

7 6 5 5 9 8 7 7

9 9 8 8 9 9 9 9

45

For example, assume that

this 8× 8 array is in cells:

3 1 4 1 5 9 2 6

5 3 5 8 9 7 9 3

2 3 8 4 6 2 6 4

3 3 8 3 2 7 9 5

0 2 8 8 4 1 9 7

1 6 9 3 9 9 3 7

5 1 0 5 8 2 0 9

7 4 9 4 4 5 9 2

46

Recursively sort quadrants,

top →, bottom ←:

1 1 2 3 2 2 2 3

3 3 3 3 4 5 5 6

3 4 4 5 6 6 7 7

5 8 8 8 9 9 9 9

1 1 0 0 2 2 1 0

4 4 3 2 5 4 4 3

7 6 5 5 9 8 7 7

9 9 8 8 9 9 9 9

45

For example, assume that

this 8× 8 array is in cells:

3 1 4 1 5 9 2 6

5 3 5 8 9 7 9 3

2 3 8 4 6 2 6 4

3 3 8 3 2 7 9 5

0 2 8 8 4 1 9 7

1 6 9 3 9 9 3 7

5 1 0 5 8 2 0 9

7 4 9 4 4 5 9 2

46

Recursively sort quadrants,

top →, bottom ←:

1 1 2 3 2 2 2 3

3 3 3 3 4 5 5 6

3 4 4 5 6 6 7 7

5 8 8 8 9 9 9 9

1 1 0 0 2 2 1 0

4 4 3 2 5 4 4 3

7 6 5 5 9 8 7 7

9 9 8 8 9 9 9 9

47

Sort each column

in parallel:

1 1 0 0 2 2 1 0

1 1 2 2 2 2 2 3

3 3 3 3 4 4 4 3

3 4 3 3 5 5 5 6

4 4 4 5 6 6 7 7

5 6 5 5 9 8 7 7

7 8 8 8 9 9 9 9

9 9 8 8 9 9 9 9

45

For example, assume that

this 8× 8 array is in cells:

3 1 4 1 5 9 2 6

5 3 5 8 9 7 9 3

2 3 8 4 6 2 6 4

3 3 8 3 2 7 9 5

0 2 8 8 4 1 9 7

1 6 9 3 9 9 3 7

5 1 0 5 8 2 0 9

7 4 9 4 4 5 9 2

46

Recursively sort quadrants,

top →, bottom ←:

1 1 2 3 2 2 2 3

3 3 3 3 4 5 5 6

3 4 4 5 6 6 7 7

5 8 8 8 9 9 9 9

1 1 0 0 2 2 1 0

4 4 3 2 5 4 4 3

7 6 5 5 9 8 7 7

9 9 8 8 9 9 9 9

47

Sort each column

in parallel:

1 1 0 0 2 2 1 0

1 1 2 2 2 2 2 3

3 3 3 3 4 4 4 3

3 4 3 3 5 5 5 6

4 4 4 5 6 6 7 7

5 6 5 5 9 8 7 7

7 8 8 8 9 9 9 9

9 9 8 8 9 9 9 9

45

For example, assume that

this 8× 8 array is in cells:

3 1 4 1 5 9 2 6

5 3 5 8 9 7 9 3

2 3 8 4 6 2 6 4

3 3 8 3 2 7 9 5

0 2 8 8 4 1 9 7

1 6 9 3 9 9 3 7

5 1 0 5 8 2 0 9

7 4 9 4 4 5 9 2

46

Recursively sort quadrants,

top →, bottom ←:

1 1 2 3 2 2 2 3

3 3 3 3 4 5 5 6

3 4 4 5 6 6 7 7

5 8 8 8 9 9 9 9

1 1 0 0 2 2 1 0

4 4 3 2 5 4 4 3

7 6 5 5 9 8 7 7

9 9 8 8 9 9 9 9

47

Sort each column

in parallel:

1 1 0 0 2 2 1 0

1 1 2 2 2 2 2 3

3 3 3 3 4 4 4 3

3 4 3 3 5 5 5 6

4 4 4 5 6 6 7 7

5 6 5 5 9 8 7 7

7 8 8 8 9 9 9 9

9 9 8 8 9 9 9 9

46

Recursively sort quadrants,

top →, bottom ←:

1 1 2 3 2 2 2 3

3 3 3 3 4 5 5 6

3 4 4 5 6 6 7 7

5 8 8 8 9 9 9 9

1 1 0 0 2 2 1 0

4 4 3 2 5 4 4 3

7 6 5 5 9 8 7 7

9 9 8 8 9 9 9 9

47

Sort each column

in parallel:

1 1 0 0 2 2 1 0

1 1 2 2 2 2 2 3

3 3 3 3 4 4 4 3

3 4 3 3 5 5 5 6

4 4 4 5 6 6 7 7

5 6 5 5 9 8 7 7

7 8 8 8 9 9 9 9

9 9 8 8 9 9 9 9

46

Recursively sort quadrants,

top →, bottom ←:

1 1 2 3 2 2 2 3

3 3 3 3 4 5 5 6

3 4 4 5 6 6 7 7

5 8 8 8 9 9 9 9

1 1 0 0 2 2 1 0

4 4 3 2 5 4 4 3

7 6 5 5 9 8 7 7

9 9 8 8 9 9 9 9

47

Sort each column

in parallel:

1 1 0 0 2 2 1 0

1 1 2 2 2 2 2 3

3 3 3 3 4 4 4 3

3 4 3 3 5 5 5 6

4 4 4 5 6 6 7 7

5 6 5 5 9 8 7 7

7 8 8 8 9 9 9 9

9 9 8 8 9 9 9 9

48

Sort each row in parallel,

alternately ←, →:

0 0 0 1 1 1 2 2

3 2 2 2 2 2 1 1

3 3 3 3 3 4 4 4

6 5 5 5 4 3 3 3

4 4 4 5 6 6 7 7

9 8 7 7 6 5 5 5

7 8 8 8 9 9 9 9

9 9 9 9 9 9 8 8

46

Recursively sort quadrants,

top →, bottom ←:

1 1 2 3 2 2 2 3

3 3 3 3 4 5 5 6

3 4 4 5 6 6 7 7

5 8 8 8 9 9 9 9

1 1 0 0 2 2 1 0

4 4 3 2 5 4 4 3

7 6 5 5 9 8 7 7

9 9 8 8 9 9 9 9

47

Sort each column

in parallel:

1 1 0 0 2 2 1 0

1 1 2 2 2 2 2 3

3 3 3 3 4 4 4 3

3 4 3 3 5 5 5 6

4 4 4 5 6 6 7 7

5 6 5 5 9 8 7 7

7 8 8 8 9 9 9 9

9 9 8 8 9 9 9 9

48

Sort each row in parallel,

alternately ←, →:

0 0 0 1 1 1 2 2

3 2 2 2 2 2 1 1

3 3 3 3 3 4 4 4

6 5 5 5 4 3 3 3

4 4 4 5 6 6 7 7

9 8 7 7 6 5 5 5

7 8 8 8 9 9 9 9

9 9 9 9 9 9 8 8

46

Recursively sort quadrants,

top →, bottom ←:

1 1 2 3 2 2 2 3

3 3 3 3 4 5 5 6

3 4 4 5 6 6 7 7

5 8 8 8 9 9 9 9

1 1 0 0 2 2 1 0

4 4 3 2 5 4 4 3

7 6 5 5 9 8 7 7

9 9 8 8 9 9 9 9

47

Sort each column

in parallel:

1 1 0 0 2 2 1 0

1 1 2 2 2 2 2 3

3 3 3 3 4 4 4 3

3 4 3 3 5 5 5 6

4 4 4 5 6 6 7 7

5 6 5 5 9 8 7 7

7 8 8 8 9 9 9 9

9 9 8 8 9 9 9 9

48

Sort each row in parallel,

alternately ←, →:

0 0 0 1 1 1 2 2

3 2 2 2 2 2 1 1

3 3 3 3 3 4 4 4

6 5 5 5 4 3 3 3

4 4 4 5 6 6 7 7

9 8 7 7 6 5 5 5

7 8 8 8 9 9 9 9

9 9 9 9 9 9 8 8

47

Sort each column

in parallel:

1 1 0 0 2 2 1 0

1 1 2 2 2 2 2 3

3 3 3 3 4 4 4 3

3 4 3 3 5 5 5 6

4 4 4 5 6 6 7 7

5 6 5 5 9 8 7 7

7 8 8 8 9 9 9 9

9 9 8 8 9 9 9 9

48

Sort each row in parallel,

alternately ←, →:

0 0 0 1 1 1 2 2

3 2 2 2 2 2 1 1

3 3 3 3 3 4 4 4

6 5 5 5 4 3 3 3

4 4 4 5 6 6 7 7

9 8 7 7 6 5 5 5

7 8 8 8 9 9 9 9

9 9 9 9 9 9 8 8

47

Sort each column

in parallel:

1 1 0 0 2 2 1 0

1 1 2 2 2 2 2 3

3 3 3 3 4 4 4 3

3 4 3 3 5 5 5 6

4 4 4 5 6 6 7 7

5 6 5 5 9 8 7 7

7 8 8 8 9 9 9 9

9 9 8 8 9 9 9 9

48

Sort each row in parallel,

alternately ←, →:

0 0 0 1 1 1 2 2

3 2 2 2 2 2 1 1

3 3 3 3 3 4 4 4

6 5 5 5 4 3 3 3

4 4 4 5 6 6 7 7

9 8 7 7 6 5 5 5

7 8 8 8 9 9 9 9

9 9 9 9 9 9 8 8

49

Sort each column

in parallel:

0 0 0 1 1 1 1 1

3 2 2 2 2 2 2 2

3 3 3 3 3 3 3 3

4 4 4 5 4 4 4 4

6 5 5 5 6 5 5 5

7 8 7 7 6 6 7 7

9 8 8 8 9 9 8 8

9 9 9 9 9 9 9 9

47

Sort each column

in parallel:

1 1 0 0 2 2 1 0

1 1 2 2 2 2 2 3

3 3 3 3 4 4 4 3

3 4 3 3 5 5 5 6

4 4 4 5 6 6 7 7

5 6 5 5 9 8 7 7

7 8 8 8 9 9 9 9

9 9 8 8 9 9 9 9

48

Sort each row in parallel,

alternately ←, →:

0 0 0 1 1 1 2 2

3 2 2 2 2 2 1 1

3 3 3 3 3 4 4 4

6 5 5 5 4 3 3 3

4 4 4 5 6 6 7 7

9 8 7 7 6 5 5 5

7 8 8 8 9 9 9 9

9 9 9 9 9 9 8 8

49

Sort each column

in parallel:

0 0 0 1 1 1 1 1

3 2 2 2 2 2 2 2

3 3 3 3 3 3 3 3

4 4 4 5 4 4 4 4

6 5 5 5 6 5 5 5

7 8 7 7 6 6 7 7

9 8 8 8 9 9 8 8

9 9 9 9 9 9 9 9

47

Sort each column

in parallel:

1 1 0 0 2 2 1 0

1 1 2 2 2 2 2 3

3 3 3 3 4 4 4 3

3 4 3 3 5 5 5 6

4 4 4 5 6 6 7 7

5 6 5 5 9 8 7 7

7 8 8 8 9 9 9 9

9 9 8 8 9 9 9 9

48

Sort each row in parallel,

alternately ←, →:

0 0 0 1 1 1 2 2

3 2 2 2 2 2 1 1

3 3 3 3 3 4 4 4

6 5 5 5 4 3 3 3

4 4 4 5 6 6 7 7

9 8 7 7 6 5 5 5

7 8 8 8 9 9 9 9

9 9 9 9 9 9 8 8

49

Sort each column

in parallel:

0 0 0 1 1 1 1 1

3 2 2 2 2 2 2 2

3 3 3 3 3 3 3 3

4 4 4 5 4 4 4 4

6 5 5 5 6 5 5 5

7 8 7 7 6 6 7 7

9 8 8 8 9 9 8 8

9 9 9 9 9 9 9 9

48

Sort each row in parallel,

alternately ←, →:

0 0 0 1 1 1 2 2

3 2 2 2 2 2 1 1

3 3 3 3 3 4 4 4

6 5 5 5 4 3 3 3

4 4 4 5 6 6 7 7

9 8 7 7 6 5 5 5

7 8 8 8 9 9 9 9

9 9 9 9 9 9 8 8

49

Sort each column

in parallel:

0 0 0 1 1 1 1 1

3 2 2 2 2 2 2 2

3 3 3 3 3 3 3 3

4 4 4 5 4 4 4 4

6 5 5 5 6 5 5 5

7 8 7 7 6 6 7 7

9 8 8 8 9 9 8 8

9 9 9 9 9 9 9 9

48

Sort each row in parallel,

alternately ←, →:

0 0 0 1 1 1 2 2

3 2 2 2 2 2 1 1

3 3 3 3 3 4 4 4

6 5 5 5 4 3 3 3

4 4 4 5 6 6 7 7

9 8 7 7 6 5 5 5

7 8 8 8 9 9 9 9

9 9 9 9 9 9 8 8

49

Sort each column

in parallel:

0 0 0 1 1 1 1 1

3 2 2 2 2 2 2 2

3 3 3 3 3 3 3 3

4 4 4 5 4 4 4 4

6 5 5 5 6 5 5 5

7 8 7 7 6 6 7 7

9 8 8 8 9 9 8 8

9 9 9 9 9 9 9 9

50

Sort each row in parallel,

← or → as desired:

0 0 0 1 1 1 1 1

2 2 2 2 2 2 2 3

3 3 3 3 3 3 3 3

4 4 4 4 4 4 4 5

5 5 5 5 5 5 6 6

6 6 7 7 7 7 7 8

8 8 8 8 8 9 9 9

9 9 9 9 9 9 9 9

48

Sort each row in parallel,

alternately ←, →:

0 0 0 1 1 1 2 2

3 2 2 2 2 2 1 1

3 3 3 3 3 4 4 4

6 5 5 5 4 3 3 3

4 4 4 5 6 6 7 7

9 8 7 7 6 5 5 5

7 8 8 8 9 9 9 9

9 9 9 9 9 9 8 8

49

Sort each column

in parallel:

0 0 0 1 1 1 1 1

3 2 2 2 2 2 2 2

3 3 3 3 3 3 3 3

4 4 4 5 4 4 4 4

6 5 5 5 6 5 5 5

7 8 7 7 6 6 7 7

9 8 8 8 9 9 8 8

9 9 9 9 9 9 9 9

50

Sort each row in parallel,

← or → as desired:

0 0 0 1 1 1 1 1

2 2 2 2 2 2 2 3

3 3 3 3 3 3 3 3

4 4 4 4 4 4 4 5

5 5 5 5 5 5 6 6

6 6 7 7 7 7 7 8

8 8 8 8 8 9 9 9

9 9 9 9 9 9 9 9

48

Sort each row in parallel,

alternately ←, →:

0 0 0 1 1 1 2 2

3 2 2 2 2 2 1 1

3 3 3 3 3 4 4 4

6 5 5 5 4 3 3 3

4 4 4 5 6 6 7 7

9 8 7 7 6 5 5 5

7 8 8 8 9 9 9 9

9 9 9 9 9 9 8 8

49

Sort each column

in parallel:

0 0 0 1 1 1 1 1

3 2 2 2 2 2 2 2

3 3 3 3 3 3 3 3

4 4 4 5 4 4 4 4

6 5 5 5 6 5 5 5

7 8 7 7 6 6 7 7

9 8 8 8 9 9 8 8

9 9 9 9 9 9 9 9

50

Sort each row in parallel,

← or → as desired:

0 0 0 1 1 1 1 1

2 2 2 2 2 2 2 3

3 3 3 3 3 3 3 3

4 4 4 4 4 4 4 5

5 5 5 5 5 5 6 6

6 6 7 7 7 7 7 8

8 8 8 8 8 9 9 9

9 9 9 9 9 9 9 9

49

Sort each column

in parallel:

0 0 0 1 1 1 1 1

3 2 2 2 2 2 2 2

3 3 3 3 3 3 3 3

4 4 4 5 4 4 4 4

6 5 5 5 6 5 5 5

7 8 7 7 6 6 7 7

9 8 8 8 9 9 8 8

9 9 9 9 9 9 9 9

50

Sort each row in parallel,

← or → as desired:

0 0 0 1 1 1 1 1

2 2 2 2 2 2 2 3

3 3 3 3 3 3 3 3

4 4 4 4 4 4 4 5

5 5 5 5 5 5 6 6

6 6 7 7 7 7 7 8

8 8 8 8 8 9 9 9

9 9 9 9 9 9 9 9

49

Sort each column

in parallel:

0 0 0 1 1 1 1 1

3 2 2 2 2 2 2 2

3 3 3 3 3 3 3 3

4 4 4 5 4 4 4 4

6 5 5 5 6 5 5 5

7 8 7 7 6 6 7 7

9 8 8 8 9 9 8 8

9 9 9 9 9 9 9 9

50

Sort each row in parallel,

← or → as desired:

0 0 0 1 1 1 1 1

2 2 2 2 2 2 2 3

3 3 3 3 3 3 3 3

4 4 4 4 4 4 4 5

5 5 5 5 5 5 6 6

6 6 7 7 7 7 7 8

8 8 8 8 8 9 9 9

9 9 9 9 9 9 9 9

51

Chips are in fact evolving

towards having this much

parallelism and communication.

GPUs: parallel + global RAM.

Old Xeon Phi: parallel + ring.

New Xeon Phi: parallel + mesh.

49

Sort each column

in parallel:

0 0 0 1 1 1 1 1

3 2 2 2 2 2 2 2

3 3 3 3 3 3 3 3

4 4 4 5 4 4 4 4

6 5 5 5 6 5 5 5

7 8 7 7 6 6 7 7

9 8 8 8 9 9 8 8

9 9 9 9 9 9 9 9

50

Sort each row in parallel,

← or → as desired:

0 0 0 1 1 1 1 1

2 2 2 2 2 2 2 3

3 3 3 3 3 3 3 3

4 4 4 4 4 4 4 5

5 5 5 5 5 5 6 6

6 6 7 7 7 7 7 8

8 8 8 8 8 9 9 9

9 9 9 9 9 9 9 9

51

Chips are in fact evolving

towards having this much

parallelism and communication.

GPUs: parallel + global RAM.

Old Xeon Phi: parallel + ring.

New Xeon Phi: parallel + mesh.

49

Sort each column

in parallel:

0 0 0 1 1 1 1 1

3 2 2 2 2 2 2 2

3 3 3 3 3 3 3 3

4 4 4 5 4 4 4 4

6 5 5 5 6 5 5 5

7 8 7 7 6 6 7 7

9 8 8 8 9 9 8 8

9 9 9 9 9 9 9 9

50

Sort each row in parallel,

← or → as desired:

0 0 0 1 1 1 1 1

2 2 2 2 2 2 2 3

3 3 3 3 3 3 3 3

4 4 4 4 4 4 4 5

5 5 5 5 5 5 6 6

6 6 7 7 7 7 7 8

8 8 8 8 8 9 9 9

9 9 9 9 9 9 9 9

51

Chips are in fact evolving

towards having this much

parallelism and communication.

GPUs: parallel + global RAM.

Old Xeon Phi: parallel + ring.

New Xeon Phi: parallel + mesh.

50

Sort each row in parallel,

← or → as desired:

0 0 0 1 1 1 1 1

2 2 2 2 2 2 2 3

3 3 3 3 3 3 3 3

4 4 4 4 4 4 4 5

5 5 5 5 5 5 6 6

6 6 7 7 7 7 7 8

8 8 8 8 8 9 9 9

9 9 9 9 9 9 9 9

51

Chips are in fact evolving

towards having this much

parallelism and communication.

GPUs: parallel + global RAM.

Old Xeon Phi: parallel + ring.

New Xeon Phi: parallel + mesh.

50

Sort each row in parallel,

← or → as desired:

0 0 0 1 1 1 1 1

2 2 2 2 2 2 2 3

3 3 3 3 3 3 3 3

4 4 4 4 4 4 4 5

5 5 5 5 5 5 6 6

6 6 7 7 7 7 7 8

8 8 8 8 8 9 9 9

9 9 9 9 9 9 9 9

51

Chips are in fact evolving

towards having this much

parallelism and communication.

GPUs: parallel + global RAM.

Old Xeon Phi: parallel + ring.

New Xeon Phi: parallel + mesh.

Algorithm designers

don’t even get the right exponent

without taking this into account.

50

Sort each row in parallel,

← or → as desired:

0 0 0 1 1 1 1 1

2 2 2 2 2 2 2 3

3 3 3 3 3 3 3 3

4 4 4 4 4 4 4 5

5 5 5 5 5 5 6 6

6 6 7 7 7 7 7 8

8 8 8 8 8 9 9 9

9 9 9 9 9 9 9 9

51

Chips are in fact evolving

towards having this much

parallelism and communication.

GPUs: parallel + global RAM.

Old Xeon Phi: parallel + ring.

New Xeon Phi: parallel + mesh.

Algorithm designers

don’t even get the right exponent

without taking this into account.

Shock waves from subroutines

into high-level algorithm design.

