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This is easy, right?

1. Take general principles

of software engineering.

2. Apply principles to crypto.

Let’s try some examples : : :

2

1972 Parnas “On the criteria

to be used in decomposing

systems into modules”:

“We propose instead that

one begins with a list of

difficult design decisions or

design decisions which are

likely to change. Each module

is then designed to hide such

a decision from the others.”

e.g. If number of cipher rounds

is properly modularized as

#define ROUNDS 20

then it is easy to change.
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1970s: TENEX operating system
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• SEAAAA vs. SECRET: stop at 3.

Attacker sees comparison time,

deduces position of difference.

A few hundred tries

reveal secret password.
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ADD takes just 1 cycle.
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a note about “pipelining”.

Then more explanation: if next

instruction is also LDR (with
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then it saves 1 cycle.
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n consecutive LDRs

takes only n + 1 cycles

(“more multiple LDRs can be

pipelined together”).

Can achieve this speed

in other ways (LDRD, LDM)

but nothing seems faster.

Lower bound for n LDR + nADD:

2n + 1 cycles,

including n cycles of arithmetic.

Why observed time is higher:

non-consecutive LDRs;

costs of manipulating i.
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A real example

Salsa20 reference software:

30.25 cycles/byte on this CPU.

Lower bound for arithmetic:

64 bytes require

21 · 16 1-cycle ADDs,

20 · 16 1-cycle XORs,

so at least 10:25 cycles/byte.

ARMv7-M instruction set

includes free rotation

as part of XOR instruction.

(Compiler knows this.)
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32

Build circuit to compute

32-bit integer ri
given 4-bit integer i

and 32-bit integers r0; r1; : : : ; r15:

register
read
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38

Goal: Stage n handles instruction

one tick after stage n − 1.

Instruction fetch

reads next instruction,

feeds p′ back, sends instruction.

After next clock tick,

instruction decode

uncompresses this instruction,

while instruction fetch

reads another instruction.

Some extra flip-flop area.

Also extra area to

preserve instruction semantics:

e.g., stall on read-after-write.
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“Vector” processing:

Expand each 32-bit integer

into n-vector of 32-bit integers.

ARM “NEON” has n = 4;

Intel “AVX2” has n = 8;

Intel “AVX-512” has n = 16;

GPUs have larger n.
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43

Sort row of n0:5 cells

in n0:5+o(1) seconds:

• Sort each pair in parallel.

3 1 4 1 5 9 2 6 7→
1 3 1 4 5 9 2 6

• Sort alternate pairs in parallel.

1 3 1 4 5 9 2 6 7→
1 1 3 4 5 2 9 6

• Repeat until number of steps

equals row length.
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that this sorts whole array.



42

Spread array across

square mesh of n small cells,

each of area no(1),

with near-neighbor wiring:

× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×

43

Sort row of n0:5 cells

in n0:5+o(1) seconds:

• Sort each pair in parallel.

3 1 4 1 5 9 2 6 7→
1 3 1 4 5 9 2 6

• Sort alternate pairs in parallel.

1 3 1 4 5 9 2 6 7→
1 1 3 4 5 2 9 6

• Repeat until number of steps

equals row length.

Sort each row, in parallel,

in a total of n0:5+o(1) seconds.

44

Sort all n cells

in n0:5+o(1) seconds:

• Recursively sort quadrants

in parallel, if n > 1.

• Sort each column in parallel.

• Sort each row in parallel.

• Sort each column in parallel.

• Sort each row in parallel.

With proper choice of

left-to-right/right-to-left

for each row, can prove

that this sorts whole array.



42

Spread array across

square mesh of n small cells,

each of area no(1),

with near-neighbor wiring:

× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×

43

Sort row of n0:5 cells

in n0:5+o(1) seconds:

• Sort each pair in parallel.

3 1 4 1 5 9 2 6 7→
1 3 1 4 5 9 2 6

• Sort alternate pairs in parallel.

1 3 1 4 5 9 2 6 7→
1 1 3 4 5 2 9 6

• Repeat until number of steps

equals row length.

Sort each row, in parallel,

in a total of n0:5+o(1) seconds.

44

Sort all n cells

in n0:5+o(1) seconds:

• Recursively sort quadrants

in parallel, if n > 1.

• Sort each column in parallel.

• Sort each row in parallel.

• Sort each column in parallel.

• Sort each row in parallel.

With proper choice of

left-to-right/right-to-left

for each row, can prove

that this sorts whole array.



43

Sort row of n0:5 cells

in n0:5+o(1) seconds:

• Sort each pair in parallel.

3 1 4 1 5 9 2 6 7→
1 3 1 4 5 9 2 6

• Sort alternate pairs in parallel.

1 3 1 4 5 9 2 6 7→
1 1 3 4 5 2 9 6

• Repeat until number of steps

equals row length.

Sort each row, in parallel,

in a total of n0:5+o(1) seconds.

44

Sort all n cells

in n0:5+o(1) seconds:

• Recursively sort quadrants

in parallel, if n > 1.

• Sort each column in parallel.

• Sort each row in parallel.

• Sort each column in parallel.

• Sort each row in parallel.

With proper choice of

left-to-right/right-to-left

for each row, can prove

that this sorts whole array.



43

Sort row of n0:5 cells

in n0:5+o(1) seconds:

• Sort each pair in parallel.

3 1 4 1 5 9 2 6 7→
1 3 1 4 5 9 2 6

• Sort alternate pairs in parallel.

1 3 1 4 5 9 2 6 7→
1 1 3 4 5 2 9 6

• Repeat until number of steps

equals row length.

Sort each row, in parallel,

in a total of n0:5+o(1) seconds.

44

Sort all n cells

in n0:5+o(1) seconds:

• Recursively sort quadrants

in parallel, if n > 1.

• Sort each column in parallel.

• Sort each row in parallel.

• Sort each column in parallel.

• Sort each row in parallel.

With proper choice of

left-to-right/right-to-left

for each row, can prove

that this sorts whole array.

45

For example, assume that

this 8× 8 array is in cells:

3 1 4 1 5 9 2 6

5 3 5 8 9 7 9 3

2 3 8 4 6 2 6 4

3 3 8 3 2 7 9 5
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5 1 0 5 8 2 0 9

7 4 9 4 4 5 9 2
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towards having this much
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GPUs: parallel + global RAM.

Old Xeon Phi: parallel + ring.

New Xeon Phi: parallel + mesh.
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Chips are in fact evolving

towards having this much

parallelism and communication.

GPUs: parallel + global RAM.

Old Xeon Phi: parallel + ring.

New Xeon Phi: parallel + mesh.

Algorithm designers

don’t even get the right exponent

without taking this into account.

Shock waves from subroutines

into high-level algorithm design.


