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This Is easy, right?

1. Take general principles
of software engineering.
2. Apply principles to crypto.

Let's try some examples . ..
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then it Is easy to change.
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Not so easy: Timing attacks

1970s: TENEX operating system
compares user-supplied string
against secret password

one character at a time,
stopping at first difference:

e AAAAAA vs. SECRET: stop at 1.
e SAAAAA vs. SECRET: stop at 2.
e SEAAAA vs. SECRET: stop at 3.

Attacker sees comparison time,
deduces position of difference.
A few hundred tries

reveal secret password.

How typical software checks
16-byte authenticator:
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e SEAAAA vs. SECRET: stop at 3.
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A few hundred tries
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How typical software checks
16-byte authenticator:

for (i = 0;1 < 16;++1i)

if (x[i] '= y[i]) return O;

return 1;

Fix, eliminating information flow
from secrets to timings:
diff = O;
for (1 = 0;1 < 16;++1)
diff |= x[i] =~ yl[i];
return 1 & ((diff-1) >> 8);
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makes the wrong thing simple
and the right thing complex.
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for (1 = 0;1 < 16;++1)
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Notice that the language
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“right” Is too weak for security.

So mistakes continue to happen.

One of many examples,
part of the reference software for

CAESAR candidate CLOC:

/* compare the tag */
int 1;
for(i = 0;i < CRYPTO_ABYTES;i++)
if (tagli]l !'= c[(¥mlen) + i]){
return RETURN_TAG_NO_MATCH;

}
return RETURN_SUCCESS;
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“Okay, 8 cycles per addition.
Um, are microcontrollers

really this slow at addition?”

Bad practice:
Apply random “optimizations”
(and tweak compiler options)

until you get bored.
Keep the fastest results.

Good practice:

Figure out lower bound for
cycles spent on arithmetic etc.
Understand gap between

lower bound and observed time.
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Technical Reference Manual
Rely on Wikipedia comment
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Manual says that Cortex-M4
“Implements the ARMv7E-N
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Points to the "ARMv7-M
Architecture Reference Man
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e.g., 'ADD" for 32-bit addi

First manual says that
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practice:

y random “optimizations”
tweak compiler options)
you get bored.

Keep the fastest results.

Good practice:

Figure out lower bound for

cycles spent on arithmetic etc.

Understand gap between

lower bound and observed time.

18

Find "ARM Cortex-M4 Processor
Technical Reference Manual™.

Rely on Wikipedia comment that
MA4F = M4 + tloating-point unit.

Manual says that Cortex-M4
“Implements the ARMv7E-M

architecture profile” .

Points to the "ARMv7-M

Architecture Reference Manual’,

which defines instructions:
e.g., 'ADD" for 32-bit addition.

First manual says that
ADD takes just 1 cycle.
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e.g., 'ADD" for 32-bit addition.

First manual says that
ADD takes just 1 cycle.

19

Inputs a
“Integer
has 16 1
special-f
and “prec

Each ele
be “loac

Basic lo.
Manual
a note a
Then m
Instructi
address
then It s



r addition.
trollers

addition?”

timizations”
er options)

1.
osults.

ound for
thmetic etc.
atween

bserved time.

18

Find "ARM Cortex-M4 Processor
Technical Reference Manual™.

Rely on Wikipedia comment that
MA4F = M4 + tloating-point unit.
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Find "ARM Cortex-M4 Processor
Technical Reference Manual™.

Rely on Wikipedia comment that
MA4F = M4 4 tloating-point unit.

Manual says that Cortex-M4
“Implements the ARMv/7E-M

architecture profile” .

Points to the "ARMv7-M
Architecture Reference Manual’,

which defines instructions:
e.g., 'ADD" for 32-bit addition.

First manual says that
ADD takes just 1 cycle.
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Find "ARM Cortex-M4 Processor
Technical Reference Manual™.

Rely on Wikipedia comment that
MA4F = M4 4 tloating-point unit.

Manual says that Cortex-M4
“Implements the ARMv7E-M

architecture profile” .

Points to the "ARMv7-M
Architecture Reference Manual’,

which defines instructions:
e.g., 'ADD" for 32-bit addition.

First manual says that
ADD takes just 1 cycle.
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Inputs and output of ADD are

ARMv7-M
has 16 integer registers, including

“Integer registers’ .

special-purpose ‘stack pointer”
and “program counter .

Each element of x array needs to
be “loaded” into a register.

Basic load instruction: LDR.
Manual says 2 cycles but adds
a note about “pipelining”.
Then more explanation: if next
instruction is also LDR (with
address not based on first LDR)
then 1t saves 1 cycle.
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ARMv7-M
has 16 integer registers, including

“Integer registers’ .

special-purpose “stack pointer”
and “program counter’ .

Each element of x array needs to
be “loaded” into a register.

Basic load instruction: LDR.
Manual says 2 cycles but adds
a note about “pipelining”.
Then more explanation: if next
instruction is also LDR (with
address not based on first LDR)
then 1t saves 1 cycle.
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Inputs and output of ADD are
ARMv7-M
has 16 integer registers, including

“Integer registers’ .

special-purpose ‘stack pointer”
and “program counter .

Each element of x array needs to
be “loaded” into a register.

Basic load instruction: LDR.
Manual says 2 cycles but adds
a note about “pipelining”.
Then more explanation: if next
instruction is also LDR (with
address not based on first LDR)
then 1t saves 1 cycle.
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Inputs and output of ADD are
ARMv7-M
has 16 integer registers, including

“Integer registers’ .

special-purpose “stack pointer”
and “program counter’ .

Each element of x array needs to
be “loaded” into a register.

Basic load instruction: LDR.
Manual says 2 cycles but adds
a note about “pipelining”.
Then more explanation: if next
instruction is also LDR (with
address not based on first LDR)
then 1t saves 1 cycle.
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has 16 integer registers, including

“Integer registers’ .

special-purpose ‘stack pointer”
and “program counter .

Each element of x array needs to
be “loaded” into a register.

Basic load instruction: LDR.
Manual says 2 cycles but adds
a note about “pipelining”.
Then more explanation: if next
instruction is also LDR (with
address not based on first LDR)
then 1t saves 1 cycle.
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n consecutive LDRs

takes only n+ 1 cycles
(“more multiple LDRs can be
pipelined together” ).

Can achieve this speed
in other ways (LDRD, LDM)
but nothing seems faster.

Lower bound for nLDR 4+ n ADD:
2n + 1 cycles,
including n cycles of arithmetic.

Why observed time is higher:
non-consecutive LDRs;
costs of manipulating i.
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takes only n+ 1 cycles
(“more multiple LDRs can be
pipelined together” ).

Can achieve this speed
in other ways (LDRD, LDM)
but nothing seems faster.

Lower bound for nLDR + n ADD:

2n + 1 cycles,
including n cycles of arithmetic.

Why observed time is higher:
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int sum
{
int r
int
int x

X.

while
x0 -
x1 -
X2 -
X3 -
x4 -
X5 -
X6 :
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n consecutive LDRs

takes only n+ 1 cycles
(“more multiple LDRs can be
pipelined together” ).

Can achieve this speed
in other ways (LDRD, LDM)
but nothing seems faster.

Lower bound for nLDR + n ADD:

2n + 1 cycles,
including n cycles of arithmetic.

Why observed time is higher:
non-consecutive LDRs;
costs of manipulating i.
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int sum(int *x)

{

int
int

int

result = 0

xy = x + 1

x0,x1,x2,x

x5,x6,x7,X

while (x != y)
O[(vola

x0
x1
X2
x3
x4
X5
X6

1[(vola

S O WD

(vola
(vola
(vola
(vola

(vola



20 21

re n consecutive LDRs int sum(int *x)

-M takes only n+ 1 cycles {

uding (“more multiple LDRs can be int result = O;
er" pipelined together” ). int *y = x + 1000;

int x0,x1,x2,x3,x4,

x5,x6,x7,x8,x9;

Can achieve this speed
ds to in other ways (LDRD, LDM)

but nothing seems faster.
while (x != y) {

Lower bound for nLDR 4+ n ADD: x0 = 0[(volatile int
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takes only n+ 1 cycles
(“more multiple LDRs can be
pipelined together” ).

Can achieve this speed
in other ways (LDRD, LDM)
but nothing seems faster.

Lower bound for nLDR 4+ n ADD:
2n + 1 cycles,
including n cycles of arithmetic.

Why observed time is higher:
non-consecutive LDRs;
costs of manipulating i.
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int sum(int *x)

{

int result = O;
int *y = x + 1000;
int x0,x1,x2,x3,x4,

x5,x6,x7,x8,x9;

while (x != y) {

x0 = O0[(volatile
x1 = 1[(volatile
x2 = 2[(volatile
x3 = 3[(volatile
x4 = 4[(volatile
x5 = 5[ (volatile
x6 = 6[(volatile

int
int
int
int
int
int

int

22
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int sum(int *x)

{
int
int

int

result = 0O;

xy = x + 1000;

x0,x1,x2,x3,x4,
x5,x6,x7,x8,x9;

while (x != y) {

x0
x1
X2
X3
x4
X5
X6

= 0[(volatile

=1

I
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(volatile
(volatile
(volatile
(volatile
(volatile

(volatile

int
int
int
int
int
int

int
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res
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res
res
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int sum(int *x)

{

int
int

int

whil
x0
x1
X2
x3
x4
X5
X6

result = 0O;

xy = x + 1000;
x0,x1,x2,x3,x4,
x5,x6,x7,x8,x9;

e (x !'=y) {
= 0[(volatile
= 1[(volatile

(volatile

(volatile

 (volatile

(volatile
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S O WD

(volatile

int
int
int
int
int
int

int
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x7 = 7T[(vola
x8 = 8[(vola
x9 = 9[(vola
result += x0
result += x1
result += x2
result += x3
result += x4
result += x5
result += x6
result += x7
result += x8
result += x9

x0 = 10[(vol
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int sum(int *x)

{

int
int

int

result = O;

xy = x + 1000;

x0,x1,x2,x3,x4,
x5,x6,x7,x8,x9;

while (x != y) {

x0
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X2
X3
x4
X5
X6

O[(volatile
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(volatile
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(volatile
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int
int
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x7 =71
x8 = 8[
x9 = 9]

result

result
result
result
result
result
result
result
result
result
x0 = 10
x1l = 11

(volatile int

(volatile int

(volatile int
+= x0;
+= x1;
+= x2;
+= x3;
+= x4;
+= x5;
+= X6;
+= X7;
+= x8;
+= x9;

[ (volatile int

[ (volatile int
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int sum(int *x) x7 = 7T[(volatile int *)x];

{ x8 = 8[(volatile int *)x];

int result = O; x9 = 9[(volatile int *)x];
int *y = x + 1000; result += x0;
int x0,x1,x2,x3,x4, result += x1;
x5,x6,x7,x8,x9; result += x2;

result += x3;

while (x !'= y) { result += x4;
x0 = O[(volatile int *)x]; result += x5;
x1 = 1[(volatile int *)x]; result += x6;
x2 = 2[(volatile int *)x]; result += x7;
x3 = 3[(volatile int *)x]; result += x8;
x4 = 4[(volatile int *)x]; result += x9;
x5 = 5[(volatile int *)x]; x0 = 10[(volatile int *)x];
x6 = 6[(volatile int *)x]; x1 = 11[(volatile int *)x];




(int *x)

osult = 0O;

y

0,x1,x2,x3,x4,
H,X6,x7,x8,%x9;

(x

x + 1000;

1= y) {

O[(volatile

1
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(volatile
(volatile
(volatile
(volatile
(volatile

(volatile

int
int
int
int
int
int

int

22

Xl =7
x8 = 8
x9

result
result
result
result
result
result
result
result
result

result

x0 = 10[(volatile int *)x]:

x1 = 11[(volatile int *)x]:

‘(volatile int *)x];:

9[(volatile int *)x];

‘(volatile int *)x];:

+= x0;
+= x1;
+= X2;
+= X3;
+= x4;
+= X5;
+= X6;
+= X7 ;
+= X3;
+= x9;
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X2 :
X3
x4 :
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X7 -
X8 :
X9 :
X +;
res
res
res
res
res
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tile
tile
tile

int
int
int
int
int
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xl =7
x8 = 8
x9

result
result
result
result
result
result
result
result
result

result

x0 = 10[(volatile int *)x]:

x1 = 11[(volatile int *)x]:

(volatile int *)x];

9[(volatile int *)x];

(volatile int *)x];:

+= x0;
+= x1;
+= X2;
+= xX3;
+= x4;
+= x5;
+= X6;
+= X7 ;
+= X8;
+= x9;
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x2 = 12
x3 = 13
x4 = 14
xb = 15
X6 = 16
x?7 = 17
x8 = 18
x9 = 19
x += 20;
result
result
result
result
result
result
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+= x0
+= x1
+= X2
+= X3
+= x4
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Xl =71
x8 = 8
x9

result
result
result
result
result
result
result
result
result

result

x0 = 10[(volatile int *)x]:

x1 = 11[(volatile int *)x]:

‘(volatile int *)x];:

9[(volatile int *)x];

‘(volatile int *)x];:

+= x0;
+= x1;
+= X2;
+= X3;
+= x4;
+= X5;
+= X6;
+= X7 ;
+= X3;
+= x9;
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(volatile

 (volatile
 (volatile
 (volatile
 (volatile
 (volatile

 (volatile

 (volatile

+= x0;
+= x1;
+= X2,
+= X3;

+= x4;

x2 = 12
x3 = 13
x4 = 14
xb = 15
X6 = 16
x7 = 17
x8 = 18
x9 = 19
x += 20;
result
result
result
result
result
result

+= x5;

int
int
int
int
int
int
int

1nt
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result
result
result
result
result
result
result
result
result

result

x0 = 10[(volatile int *)x]:

x1 = 11[(volatile int *)x]:

(volatile int *)x];

9[(volatile int *)x];

((volatile int *)x];:

+= x0;
+= x1;
+= X2;
+= xX3;
+= x4;
+= Xx5;
+= X6;
+= X7 ;
+= X8;
+= x9;
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(volatile

(volatile
(volatile
(volatile
(volatile
(volatile

(volatile

(volatile

+= x0;
+= x1;
+= X2;
+= X3;

+= x4;

x2 = 12
x3 = 13
x4 = 14
xb = 15
x6 = 16[
x7 = 17[
x8 = 18
x9 = 19
x += 20;
result
result
result
result
result
result

+= x5;
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int
int
int
int
int

int
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11t
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= 10[(volatile int *)x];

= 11[(volatile int *)x]:

‘(volatile int *)x];:

9[(volatile int *)x];

‘(volatile int *)x];:

+= x0;
+= x1;
+= X2;
+= X3;
+= x4;
+= X5;
+= X6;
+= X7 ;
+= X3;
+= x9;

23

x2 = 12
x3 = 13
x4 = 14
xb = 15
X6 = 16
x7 = 17
x8 = 18
x9 = 19
x += 20;
result
result
result
result
result
result

 (volatile
 (volatile
 (volatile
 (volatile
 (volatile
 (volatile
 (volatile

 (volatile

)
+= x0;
+= x1;
+= x2;
+= x3;
+= x4,
+= xb;

int
int
int
int
int
int
int

int
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12[(volatile
13[(volatile
14[(volatile
15[ (volatile

16 [(volatile
17 [(volatile
18[(volatile
19[(volatile

X2 =

X3 =

x4 =

X5 =

X6 =

X7 =

X8 =

X9 =

x += 20;
result +=
result +=
result +=
result +=
result +=
result +=

x0 ;
x1;
X2 ;
X3
x4 ;
X5 ;

int
int
int
int
int
int
int

int
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result += x6
result += x7
result += x8

result += x9

return result;
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12[(volatile
13[(volatile
14[(volatile
15[ (volatile
16 [(volatile
17 [(volatile
18[(volatile
19[(volatile

X2 =

X3 =

x4 =

X5 =

X6 =

X7 =

X8 =

X9 =

x += 20;
result +=
result +=
result +=
result +=
result +=
result +=

x0;
x1;
X2 ;
X3;
x4 ;
X0 ;

int
int
int
int
int
int
int

int

24

result +=
result +=
result +=

result +=

X6 ;
X7 ;
X3 ;
x9;

return result;



x2 = 12
x3 = 13
x4 = 14
xb = 15
X6 = 16
X7 = 17[
x8 = 18
x9 = 19
x += 20;
result
result
result
result
result
result

(volatile

(volatile
(volatile
(volatile
(volatile
(volatile

(volatile

(volatile
+= x0;
+= x1;
+= X2;
+= x3;
+= x4;

+= x5;

int
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int
int
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int
int
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24

result +=
result +=
result +=

result +=

X6 ;
>
X3 ;
x9;

return result;
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x2 = 12
x3 = 13
x4 = 14
xb = 15
X6 = 16
X7 = 17[
x8 = 18
x9 = 19
x += 20;
result
result
result
result
result
result

(volatile

(volatile
(volatile
(volatile
(volatile
(volatile

(volatile

(volatile
+= x0;
+= x1;
+= X2,
+= x3;
+= x4;

+= xb;

int
int
int
int
int
int
int

int

24

result +=
result +=
result +=

result +=

X6 ;
X7 ;
X3 ;
x9;

return result;

2526 cycles. Even better in asm.

25
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x2 = 12[(volatile int *)x]; result += x6;

x3 = 13[(volatile int *)x]; result += x7;

x4 = 14[(volatile int *)x]; result += x8;

x5 = 15[ (volatile int *)x]; result += x9;

x6 = 16[(volatile int *)x]; }

x7 = 17[(volatile int *)x];

x8 = 18[(volatile int *)x]; return result;

x9 = 19[(volatile int *)x]; }

x += 20;

result += x0: 2526 cycles. Even better in asm.
result += xi; Wikipedia: “By the late 1990s for

N .
result X2; even performance sensitive code,

result += x3; optimizing compilers exceeded the

result += x4; performance of human experts.”

result += xb5;
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x2 = 12[(volatile int *)x]; result += x6;

x3 = 13[(volatile int *)x]; result += x7;

x4 = 14[(volatile int *)x]; result += x8;

x5 = 15[ (volatile int *)x]; result += x9;

x6 = 16[(volatile int *)x]; }

x7 = 17[(volatile int *)x];

x8 = 18[(volatile int *)x]; return result;

x9 = 19[(volatile int *)x]; }

x += 20;

result += x0: 2526 cycles. Even better in asm.
result += xi; Wikipedia: “By the late 1990s for

N .
result X2; even performance sensitive code,

result += x3; optimizing compilers exceeded the

result += x4; performance of human experts.”

result += x5; — [citation needed]
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14
15
16
17
18
19

11t
11t
11t
11t
11t
11t

 (volatile
 (volatile
 (volatile
 (volatile
 (volatile
 (volatile
 (volatile
 (volatile

20;

;
+= x0;
+= x1;
+= X2;
+= X3;
+= x4;
+= xb;

int
int
int
int
int
int
int

int

24

result += x6;
result += x7;
result += x8;
result += x9;

return result;

2526 cycles. Even better in asm.

Wikipedia: "By the late 1990s for
even performance sensitive code,
optimizing compilers exceeded the
performance of human experts.”
— |citation needed]
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atile
atile
atile
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atile
atile

atile

int
int
int
int
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int
int

int
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result += x6;
result += x7;
result += x8;

result += x9;
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“Instruction decode”:
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format for op, Ip, jp, kp, P’

More (but slower) storage:
“load” from and “store” to
larger "RAM" arrays.
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“Instruction decode”:
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format for op, Ip, jp, kp, P’

More (but slower) storage:
“load” from and “store” to
larger "RAM" arrays.
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Build “flip-flops”
storing (p, rg, ..., 5).

Hook (p, n, ..., r15)
flip-tlops into circuit inputs.
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into the same flip-flops.

At each “clock tick”,
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larger "RAM" arrays.
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Build “flip-flops”
storing (p, ro, ..., s5).
Hook (p, n, ..., r15)

flip-tlops into circuit inputs.

Hook outputs (p, 1, ..., ris)

into the same flip-flops.

At each “clock tick™,
flip-tlops are overwritten
with the outputs.

Clock needs to be slow enough
for electricity to percolate
all the way through the circuit,
from flip-flops to flip-flops.
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Now have semi-flexible CPU:
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one tick after stage n — 1.

Instruction fetch
reads next instruction,

feeds p’ back, sends instruction.

After next clock tick,
Instruction decode

uncompresses this instruction,
while instruction fetch
reads another instruction.

Some extra flip-flop area.

Also extra area to

preserve Instruction semantics:
e.g., stall on read-after-write.
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Goal: Stage n handles instruction
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After next clock tick,

Instruction decode

uncompresses this instruction,
while instruction fetch
reads another instruction.

Some extra flip-flop area.

Also extra area to

preserve instruction semantics:
e.g., stall on read-after-write.

38

“Superscalar” processing:

thip-t

ops

INsn
fetch

Insn
fetch

flip-

lops

Insn
decode

Insn
decode

flip-

lops

register
read

register
read

register
read

register
read

flip-

lops

Pt

flip-flops

register
write

register
write




Goal: Stage n handles instruction
one tick after stage n — 1.

Instruction fetch
reads next instruction,

feeds p’ back, sends instruction.

After next clock tick,
Instruction decode

uncompresses this instruction,
while instruction fetch
reads another instruction.

Some extra flip-flop area.

Also extra area to

preserve Instruction semantics:
e.g., stall on read-after-write.

38

“Superscalar’ processing:

tlip-tlops

INsn
fetch

INsn
fetch

flip-1

lops

Insn
decode

Insn
decode

flip-

lops

register
read

register
read

register
read

register
read

flip-

lops

X

flip-

flops

register
write

register
write

39



age n handles instruction
after stage n — 1.

on fetch
xt Instruction,
back, sends instruction.

xt clock tick,

on decode

esses this instruction,
truction fetch

other instruction.

tra flip-flop area.

ra area to

Instruction semantics:
| on read-after-write.

38

“Superscalar” processing:

thip-t

ops

INsn
fetch

Insn
fetch

flip-

lops

Insn
decode

Insn
decode

flip-

lops

register
read

register
read

register
read

register
read

flip-

lops

Pt

flip-flops

register
write

register
write

39

“Vector

Expand

INtO N-V¢
ARM “|

Inte
Inte

AN
AN

GPUs h:



dles instruction

en—1.

jon,
ds instruction.

ck,

Instruction,
etch
ruction.

p area.

n semantics:
after-write.

38

“Superscalar’ processing:

tlip-tlops

INsn
fetch

INsn
fetch

flip-1

lops

Insn
decode

Insn
decode

flip-

lops

register
read

register
read

register
read

register
read

flip-

lops

X

flip-

flops

register

register
write

write

39

“Vector” processir

Expand each 32-b
Into n-vector of 3.
ARM “NEON" ha

Inte
Inte

"AVX2" has
"AVX-512" |

GPUs have larger



Iction

on.

CS.

\v

38

“Superscalar’ processing:

thip-t

ops

INsn
fetch

Insn
fetch

flip-

lops

Insn
decode

Insn
decode

flip-

lops

register
read

register
read

register
read

register
read

flip-

lops

Pl

flip-flops

register
write

register

write

39

“Vector’ processing:

Expand each 32-bit integer

into n-vector of 32-bit integ
ARM “NEON" has n = 4;

Inte
Inte

"AVX2" has n = 8;
"AVX-512" has n =16

GPUs have larger n.



“Superscalar’ processing:

tlip-tlops

INsn
fetch

INsn
fetch

flip-1

lops

Insn
decode

Insn
decode

flip-

lops

register
read

register
read

register
read

register
read

flip-

lops

X

flip-

flops

register
write

register
write

39
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“Vector’ processing:

Expand each 32-bit integer
into n-vector of 32-bit integers.
ARM “NEON" has n = 4;
"AVX2" has n = 8;
"AVX-512" has n = 16;
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nx read/write circuits.

Benefit: Amortizes insn circuits.
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Expand each 32-bit integer
into n-vector of 32-bit integers.
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Expand each 32-bit integer
into n-vector of 32-bit integers.
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“Vector’ processing:

Expand each 32-bit integer
into n-vector of 32-bit integers.
ARM “NEON" has n = 4;

Intel “AVX2" has n = 8;

Intel “AVX-512" has n = 16;

GPUs have larger n.

nx speedup if

nx arithmetic circuits,

nx read/write circuits.

Benefit: Amortizes insn circuits.

Huge effect on higher-level
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Network on chip: the mesh

How expensive is sorting?

Input: array of n numbers.
Each number In {1, 2.....nN
represented in binary.

Output: array of n numbers
in Increasing order,
represented In binary:;

same multiset as input.
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“Vector' processing: Network on chip: the mesh

Expand each 32-bit integer How expensive is sorting?
into n-vector of 32-bit integers.
ARM “NEON" has n = 4;

Intel “"AVX2" has n = 8;

Intel “AVX-512" has n = 16;
GPUs have larger n. Output: array of n numbers,
In Increasing order,

Input: array of n numbers.
Each number In {1, 2. ..., n2},
represented in binary.

nx speedup if represented In binary;

nx arithmetic circuits, . .
S same multiset as input.
nx read/write circuits.

Benefit: Amortizes insn circuits.

Huge effect on higher-level
algorithms and data structures.
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Network on chip: the mesh

How expensive is sorting?

Input: array of n numbers.
Each number In {1, 2. ..., n2},
represented in binary.

Output: array of n numbers,
In Increasing order,
represented In binary;

same multiset as input.

Metric: seconds used by
circuit of area nito(l),

For simplicity assume n = 4k



" processing:

each 32-bit integer
actor of 32-bit integers.
\[EON" has n = 4;
VX2" has n = 8;
VX-512" has n = 16;

e larger n.

dup if
metic circults,
/write circuits.

Amortizes insnh circuits.

ect on higher-level
ns and data structures.

40

Network on chip: the mesh

How expensive is sorting?

Input: array of n numbers.
Each number In {1, 2. ..., nz},
represented in binary.

Output: array of n numbers,
In Increasing order,
represented In binary;

same multiset as input.

Metric: seconds used by
circuit of area nito(l),
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How expensive is sorting? square mesh of n small cells

each of area n°(1),
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Input: array of n numbers. with near-neighbor wiring:
; 2
Each number in {1,2,...,n°}, VARV VIV VIV
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X—X—X—X—X—X—X—X

K —X—X—X—X—X—X—X

HX—X—X—X—X—X—X—X—X—X

K —X— X —X—X—X—X—X—X—X

42

0.5 ¢

Sort row of n ¢

in n0-5To(1) secon

e Sort each pair ir
31415926
13145926

e Sort alternate p:
13145926
113452906

e Repeat until nur
equals row lengt



41

Spread array across

square mesh of n small cells,
each of area no(l),

with near-neighbor wiring:

K—X—X—X—X—X

X—X—X—X—X

X —X—X—X—X—X—X—X—X—X
K —X—X—X—X—X—X—X—X—X
X—X—X—X—X—X—X—X—X
HX—X—X—X—X—X—X—X
X—X—X—X—X—X—X—X
X—X—X—X—X—X—X—X
K—X—X—X—X—X—X—X
X—X—X—X—X—X—X—X

K —X—X—X—X—X—X—X—X—X

X—X—X—X—X—X—X—X—X—X

42

Sort row of n®> cells

0.5+0(1)

N N seconds:

e Sort each pair in parallel.
31415926 +—
13145926

e Sort alternate pairs in par
13145926 +—

11345296

e Repeat until number of st
equals row length.



Spread array across

square mesh of n small cells,

each of area no(l),

with near-neighbor wiring:

K —X—X—X—X—X—X—X

X

K—X—X—X—X—X—X—X

X

X

X

X

X

X

X—X—X—X—X—X—X—X—X

K—X—X—X—X—X—X—X

X—X—X—X—X—X—X—X

X—X—X—X—X—X—X—X

X—X—X—X—X—X—X—X

X—X—X—X—X—X—X—X

K —X—X—X—X—X—X—X

HX—X—X—X—X—X—X—X—X—X

K —X— XK —X—X—X—X—X—X—X

42

Sort row of n%> cells
in n0-5to(1) seconds:

e Sort each pair in parallel.
31415926+
131459026

e Sort alternate pairs in parallel.

1314592606 +—
113452906

e Repeat until number of steps
equals row length.

43



Spread array across

square mesh of n small cells,

each of area no(l),

with near-neighbor wiring:

K —X—X—X—XK—X—X—X—X
X—X—X—X— XK —X—X—X—X
K —X—X—X—XK—X—X—X—X
X—X—X—X—XK—X—X—X—X
K —X—X—X—XK—X—X—X—X
X—X—X—X—XK—X—X—X—X
X —X—X—X—XK—X—XK—X—X
K—X—X—X—XK—X—X—X—X
X—X—X—X— XK —X—X—X—X
K —X—X—X—XK—X—X—X—X

K —X— XK —X—X—X—X—X—X—X

42

Sort row of n%> cells
in n0-5to(1) seconds:

e Sort each pair in parallel.
31415926+
131459026

e Sort alternate pairs in parallel.

1314592606 +—
113452906

e Repeat until number of steps
equals row length.

Sort each row, in parallel,

0.540(1)

In a total of n seconds.

43



Irray across

1esh of n small cells,

area no(l),

r-neighbor wiring:

K—X—X—X—X

X

X

X

X

X

X—X—X—X—X—X—X—X

X—X—X—X—X—X—X—X

X—X—X—X—X—X—X—X

K—X—X—X—X—X—X—X

X—X—X—X—X—X—X—X

K —X—X—X—X—X—X—X—X—X

X —X—X—X—X—X—X—X—X—X

42

Sort row of n®> cells

0.5+0(1)

N N seconds:

e Sort each pair in parallel.
31415926 +—
13145926

e Sort alternate pairs in parallel.

13145926 +—
11345296

e Repeat until number of steps
equals row length.

Sort each row, in parallel,

0.54+0(

In a total of n 1) seconds.

43

Sort all

i n0.5—|—<

e Recur:

In par:
e Sort e
e Sort e
e Sort e
e Sort e

With pre
left-to-ri
for each
that this



S
small cells,

r WIring:

(—X—X

X
X

KX—X—X—X—X—X—X—X
K —X—X—X—X—X—X—X
X—X—X—X—X—X—X—X—X—X

K —X— XK —X— XK —X—X—X—X—X

42

Sort row of n%> cells
in n0-5to(1) seconds:

e Sort each pair in parallel.
31415926+~
131459026

e Sort alternate pairs in parallel.

1314592606 +—
11345296

e Repeat until number of steps
equals row length.

Sort each row, in parallel,

0.540(1)

In a total of n seconds.

43

Sort all n cells

in n0-5to(1) secon

e Recursively sort

in parallel, if n>

e Sort eac
e Sort eac
e Sort eac
e Sort eac

N colum
N row In

N colum

N row In

With proper choic
left-to-right /right-
for each row, can

that this sorts whe



42

Sort row of n%> cells

0.540(1)

N N seconds:

e Sort each pair in parallel.
31415926 —
13145926

e Sort alternate pairs in parallel.

13145926 +—
11345296

e Repeat until number of steps
equals row length.

Sort each row, in parallel,

0.54+0(

In a total of n 1) seconds.

43

Sort all n cells

0.5+0(1)

N N seconds:

e Recursively sort quadrants
in parallel, if n > 1.

e Sort each column in parall

e Sort each row in parallel.

e Sort each column in parall

e Sort each row in parallel.

With proper choice of
left-to-right /right-to-left
for each row, can prove
that this sorts whole array.



Sort row of n%> cells
in n0-5to(1) seconds:

e Sort each pair in parallel.
31415926+~
131459026

e Sort alternate pairs in parallel.

1314592606 +—
11345296

e Repeat until number of steps
equals row length.

Sort each row, in parallel,

0.540(1)

In a total of n seconds.

43

Sort all n cells
in n0-5to(1) seconds:

e Recursively sort quadrants
in parallel, if n > 1.

e Sort each column in parallel.

e Sort each row in parallel.

e Sort each column in parallel.

e Sort each row in parallel.

With proper choice of
left-to-right /right-to-left
for each row, can prove
that this sorts whole array.

44



of n%° cells
(1) seconds:

ach pair in parallel.
15926 +—
415926

lternate pairs in parallel.

415926 +—
415296

t until number of steps
row length.

h row, In parallel,

0.54+0(

[ of n 1) seconds.

43

Sort all n cells

N n

0.5+0(1)

seconds:

e Recursively sort quadrants

in parallel, if n > 1.

e Sort eac
e Sort eac
e Sort eac
e Sort eac

n column in parallel.

n row In parallel.

n column in parallel.

n row In parallel.

With proper choice of
left-to-right /right-to-left
for each row, can prove

that this sorts whole array.

44

For exar
this 8 X

¢

~N O m O W N O W
~ B OO DD W W W =
P Ny TN

| N




o||s
1s:

' parallel.
—

airs In parallel.

—

nber of steps
h.

parallel,
o(1) seconds.

43

Sort all n cells
in n0-5to(1) seconds:

e Recursively sort quadrants
in parallel, if n > 1.

e Sort each column in parallel.

e Sort each row in parallel.

e Sort each column in parallel.

e Sort each row in parallel.

With proper choice of
left-to-right /right-to-left
for each row, can prove
that this sorts whole array.

44

For example, assu
this 8 x 8 array Is

5

~N OO0 = O W N 61 W
~ B O DD W W W =
© O © OO o o O H
~ 1 W OO W H OO ¥
~ O O H N O O

0
i
2
7
1
0
2
5




43 44

Sort all n cells For example, assume that
in n9-50(1) seconds: this 8 x 8 array Is in cells:
e Recursively sort quadrants 31 415 9 26
in parallel, it n > 1. 5 35 8 0 7 O 3
e Sort each column in parallel. > 38 46 2 6 4
el e Sort each row in p.araIIeI. 1383027095
e Sort each column in parallel.
. 0 2 8 8 41 9 7
e Sort each row in parallel.
1 6 9 3 9 9 3 7
DS With pr.oper c-hoice of 5 1058920 0
left-to-right /right-to-left
{4 9 4 4 5 9 2
for each row, can prove

that this sorts whole array.




44

Sort all n cells For example, assume that
in n9-5t0(1) seconds: this 8 x 8 array Is in cells:
e Recursively sort quadrants 31 415 9 2 6
in parallel, it n > 1. 5 35 8 0 7 O 3
e Sort each column in parallel. > 38 46 2 6 4
t | llel.
e Sort each row in p.ara e 338130270 5
e Sort each column in parallel.
. 0 2 8 8 41 9 7
e Sort each row in parallel.
1 6 9 3 9 9 3 7
With pr?per c.hoice of 5 1058920 0
left-to-right /right-to-left
{4 9 4 4 5 9 2
for each row, can prove

that this sorts whole array.




n cells

(1) seconds:

sively sort quadrants
allel, if n > 1.

dC
dC
dC
dC

n row In parallel.

n row In parallel.

bper choice of
ght /right-to-left
row, can prove

, sorts whole array.

n column in parallel.

n column in parallel.

44

For example, assume that
this 8 x 8 array Is in cells:

31 415 9 26
5 353 9 7 9 3
2 3 3 46 2 6 4
33 8 3 2 7 95
0 2 8 3 4 1 9 7
1 6 9 3 99 3 7
51 05 8 2009
(4 9 4 45 9 2

45

Recursiv
top —,

N DY |

) N | oD TN

(¢

O ~N A RO W W =
O O Hh R |IO0O A W =




]s:

quadrants
> 1.

n in parallel.

 parallel.

n in parallel.

 parallel.

e of
to-left
prove

le array.

44

For example, assume that
this 8 x 8 array Is in cells:

31 415 9 26
b 353 9 7 9 3
2 3 3 4606 2 6 4
33 83 2 7 95
0 2 8 3 41 9 7
1 6 9 3 9 9 37
5 1 05 8 2009
4 9 4 45 9 2

45

Recursively sort gt
top —, bottom «+

1 1 2 3[2 2
3 3 3 3|4 5
3 4 4 5|6 6
5 8 8 8|9 0
1 10 0|2 2
4 4 3 2|5 4
7 6 5 5|9 8
0 9 8 8|9 ¢
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Sort each row in

(— or — as desire(

00011 1

2 2 2 2 2 9

3 3 3 3 3 3

4 4 4 4 4 4

5 55 5 5 5
6 6 7 7 7 T

8 8 8 8 8 9

0 999 9 ¢

49

Sort each column

in parallel:

0001|1111

3122221222

31313133333

4044|544 ]4]4
6(5|5|5|6|5[5|5
718|7|7|6|6|7]|7
0(8(8/8/9/9(8(8
0(9]/9]/9]/9[9(9|9

43

arallel,

3

3

9
8

9
8
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Sort each row in parallel,

< or — as desired:

00011111
2 2 2 2 2 2 2 3
333 3 3 3 33
4 4 4 4 4 4 4 5
b 55 5 5 5 6 6
6 6 7 7 7 (7 7 8
8 833 3 8 9 99
99 99 9 9 99

50

Chips are in fact €
towards having thi
parallelism and co

GPUs: parallel 4

Old Xeon Phi: pa
New Xeon Phi: pa
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Sort each row in parallel, Chips are in fact evolving
< or — as desired: towards having this much
00071111 1 parallelism and communicat
2 2 2 2. 2 2 2 3 GPUs: parallel + global RA
33 3 3 3 3 3 3 Old Xeon Phi: parallel + rir
4 4 4 4 4 4 4 5 New Xeon Phi: parallel 4 n
5 55 5 5 5 6 6

6 6 7 7 7 7T 7 8

8 8 88 38 9 9 9

9 9 9 9 9 9 9 9
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Sort each row in parallel, Chips are in fact evolving

< or — as desired: towards having this much
00011111 parallelism and communication.
2 2 2 2 2 2 2 3 GPUs: parallel + global RAM.
33 33 3 3 3 3 Old Xeon Phi: parallel + ring.
4 4 4 4 4 4 4 5 New Xeon Phi: parallel + mesh.
b 55 5 5 5 6 6

6 6 7 7 7 7 [ 8

8 38 838 9 9 9

99 99 9 9 99




50 51

Sort each row in parallel, Chips are in fact evolving

< or — as desired: towards having this much
00011111 parallelism and communication.

2 2 2 2 2 2 2 3 GPUs: parallel + global RAM.

3 3 3 3 3 3 3 3 Old Xeon Pf\i:. parallel + ring.

A 4 4 4 4 4 4 5 New Xeon Phi: parallel + mesh.
5 5 5 5 5 5 6 6 Algorithm designers

6 6 7 7 7 7 7 8 dc?n't even get thé r.ight exponent
3 8 888 9 09 0 without taking this into account.
9 99 9 9 9 9 9
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Sort each row in parallel, Chips are in fact evolving

< or — as desired: towards having this much
00011111 parallelism and communication.

2 2 2 2 2 2 2 3 GPUs: parallel + global RAM.

3 3 3 3 3 3 3 3 Old Xeon Phi: parallel + ring.

A 4 4 4 4 4 4 5 New Xeon Phi: parallel + mesh.
5 5 5 5 5 5 6 6 Algorithm designers

6 6 7 7 7 7 7 8 don't even get the right exponent
3 8 888 9 09 0 without taking this into account.
O 999909 909 Shock waves from subroutines

into high-level algorithm design.




