Engineering
cryptographic software

Daniel J. Bernstein

University of lllinois at Chicago &
Technische Universiteit Eindhoven

This Is easy, right?

1. Take general principles
of software engineering.
2. Apply principles to crypto.

Let's try some examples . ..

1972 Parnas “On the criteria
to be used in decomposing

systems into modules”:

“We propose instead that

one begins with a list of

like
IS t

design decisions whic

y to change. Eac

difficult design decisions or

1 dr€

n module

nen designed to hide such

a decision from the others.”

e.g. If number of cipher rounds

Is properly modularized as

#de

fine ROUNDS 20

then it Is easy to change.

Ing
aphic software

. Bernstein

ty of lllinois at Chicago &
he Universiteit Eindhoven

asy, right?

general principles
ftware engineering.
/ principles to crypto.

'some examples . ..

1972 Parnas “On the criteria
to be used in decomposing

systems into modules”:

“We propose instead that

one begins with a list of

design decisions which

likely to change. Each

Is then designed to hic

difficult design decisions or

are
module
e such

a decision from the ot

ners.’

e.g. If number of cipher rounds

Is properly modularized as

#define ROUNDS 20

then 1t Is easy to change.

Another

of softw;

Make th
and the

ware
N

is at Chicago &
siteit Eindhoven

Inciples
Ineering.
S to crypto.

mples . ..

1972 Parnas “On the criteria
to be used in decomposing
systems into modules”:

“We propose instead that
one begins with a list of
difficult design decisions or

design decisions which are

likely to change. Each module

Is then designed to hide such

a decision from the others.”

e.g. If number of cipher rounds
Is properly modularized as
#define ROUNDS 20

then 1t Is easy to change.

Another general p
of software engine
Make the right thi
and the wrong thi

g0 &
hoven

1972 Parnas “On the criteria
to be used in decomposing

systems into modules”:

“We propose instead that

one begins with a list of

design decisions which

likely to change. Each

Is then designed to hic

difficult design decisions or

are
module
e such

a decision from the ot

ners.’

e.g. If number of cipher rounds

Is properly modularized as

#define ROUNDS 20

then 1t Is easy to change.

Another general principle

of software engineering:
Make the right thing simple
and the wrong thing comple

1972 Parnas “On the criteria
to be used in decomposing
systems into modules”:

“We propose instead that
one begins with a list of
difficult design decisions or

design decisions which are

likely to change. Each module

Is then designed to hide such

a decision from the others.”

e.g. If number of cipher rounds
Is properly modularized as
#define ROUNDS 20

then 1t Is easy to change.

Another general principle

of software engineering:

Make the right thing simple
and the wrong thing complex.

1972 Parnas “On the criteria Another general principle
to be used in decomposing of software engineering:
systems into modules’: Make the right thing simple

. h hi lex.
“We propose instead that and the wrong thing complex

one begins with a list of e.g. Make it difficult to
difficult design decisions or ignore invalid authenticators.

design decisions which are

likely to change. Each module

Is then designed to hide such

a decision from the others.”

e.g. If number of cipher rounds
Is properly modularized as
#define ROUNDS 20

then 1t Is easy to change.

1972 Parnas “On the criteria
to be used in decomposing
systems into modules”:

“We propose instead that
one begins with a list of
difficult design decisions or

design decisions which are

likely to change. Each module

Is then designed to hide such

a decision from the others.”

e.g. If number of cipher rounds
Is properly modularized as
#define ROUNDS 20

then 1t Is easy to change.

Another general principle

of software engineering:

Make the right thing simple
and the wrong thing complex.

e.g. Make it difficult to
ignore invalid authenticators.

Do not design APls like this:
“The sample code used In

this manual omits the checking
of status values for clarity, but
when using cryptlib you should
check return values, particularly
for critical functions ..."

rnas 'On the criteria

ed in decomposing

Into modules’ :

pose instead t

hat

ns with a list of

design decisions or

ecisions which

change. Each
lesigned to hic

are
module
e such

n from the ot

ners.’

imber of cipher rounds

ly modularized as

ROUNDS 20

s easy to change.

Another general principle

of software engineering:

Make the right thing simple
and the wrong thing complex.

e.g. Make it difficult to
ignore invalid authenticators.

Do not design APIs like this:
“The sample code used In

this manual omits the checking
of status values for clarity, but
when using cryptlib you should
check return values, particularly
for critical functions ..."

Not so ¢

1970s:
compare
against
one chal
stopping

o AAAAA
e SAAAA
e SEAAA

Attacker

deduces
A few hi
reveal se

the criteria
mposing
1les” :

ad that
list of
“ISIoNs or
hich are

-ach module
> hide such

e others.”

“ipher rounds
rized as

0

“hange.

Another general principle

of software engineering:

Make the right thing simple
and the wrong thing complex.

e.g. Make it difficult to
ignore invalid authenticators.

Do not design APls like this:
“The sample code used In

this manual omits the checking
of status values for clarity, but
when using cryptlib you should
check return values, particularly
for critical functions ..."

Not so easy: Timi

1970s: TENEX or
compares user-sup
against secret pas:
one character at a
stopping at first d

o AAAAAA vs. SECI
e SAAAAA vs. SECI
e SEAAAA vs. SECI

Attacker sees com
deduces position ¢
A few hundred trie
reveal secret passv

1le

ds

Another general principle

of software engineering:

Make the right thing simple
and the wrong thing complex.

e.g. Make it difficult to
ignore invalid authenticators.

Do not design APls like this:
“The sample code used In

this manual omits the checking
of status values for clarity, but
when using cryptlib you should
check return values, particularly
for critical functions ..."

Not so easy: Timing attack:

1970s: TENEX operating sy
compares user-supplied strin
against secret password

one character at a time,
stopping at first difference:

o AAAAAA vs. SECRET: stop
o SAAAAA vs. SECRET: stop
e SEAAAA vs. SECRET: stop .

Attacker sees comparison tir
deduces position of differenc
A few hundred tries

reveal secret password.

Another general principle

of software engineering:

Make the right thing simple
and the wrong thing complex.

e.g. Make it difficult to
ignore invalid authenticators.

Do not design APls like this:
“The sample code used In

this manual omits the checking
of status values for clarity, but
when using cryptlib you should
check return values, particularly
for critical functions ..."

Not so easy: Timing attacks

1970s: TENEX operating system
compares user-supplied string
against secret password

one character at a time,
stopping at first difference:

e AAAAAA vs. SECRET: stop at 1.
e SAAAAA vs. SECRET: stop at 2.
e SEAAAA vs. SECRET: stop at 3.

Attacker sees comparison time,
deduces position of difference.
A few hundred tries

reveal secret password.

general principle

are engineering:

e right thing simple
wrong thing complex.

e 1t difficult to
wwvalid authenticators.

lesign APls like this:
mple code used In

\wual omits the checking
5 values for clarity, but
ing cryptlib you should
turn values, particularly
al functions ..."

Not so easy: Timing attacks

1970s: TENEX operating system
compares user-supplied string
against secret password

one character at a time,
stopping at first difference:

e AAAAAA vs. SECRET: stop at 1.
e SAAAAA vs. SECRET: stop at 2.
e SEAAAA vs. SECRET: stop at 3.

Attacker sees comparison time,
deduces position of difference.
A few hundred tries

reveal secret password.

How typ
16-byte
for
if

retu.

Fix, elim
from sec
diff

for
di:

retu.

Notice t
makes tl
and the

rinciple
ering:

ng simple
ng complex.

1t to
ienticators.

s like this:
used In

the checking
r clarity, but
b you should
s, particularly

NS ...

Not so easy: Timing attacks

1970s: TENEX operating system
compares user-supplied string
against secret password

one character at a time,
stopping at first difference:

e AAAAAA vs. SECRET: stop at 1.
e SAAAAA vs. SECRET: stop at 2.
e SEAAAA vs. SECRET: stop at 3.

Attacker sees comparison time,
deduces position of difference.
A few hundred tries

reveal secret password.

How typical softw:

16-byte authentics:
for (1 = 031

if (x[i] !=

return 1;

Fix, eliminating In

from secrets to tir

diff = 0;
for (1 = 031
diff |= x[i

return 1 & ((

Notice that the lal
makes the wrong f
and the right thin,

ing

uld
arly

Not so easy: Timing attacks

1970s: TENEX operating system
compares user-supplied string
against secret password

one character at a time,
stopping at first difference:

e AAAAAA vs. SECRET: stop at 1.
e SAAAAA vs. SECRET: stop at 2.
e SEAAAA vs. SECRET: stop at 3.

Attacker sees comparison time,
deduces position of difference.
A few hundred tries

reveal secret password.

How typical software checks
16-byte authenticator:

for (i = 0;1 < 16;++1i)

if (x[i] !'= y[il) re

return 1;

Fix, eliminating information
from secrets to timings:
diff = O;
for (1 = 0;1 < 16;++1i)
diff |= x[i] =~ yl[i];
return 1 & ((diff-1) >

Notice that the language
makes the wrong thing simg
and the right thing complex

Not so easy: Timing attacks

1970s: TENEX operating system
compares user-supplied string
against secret password

one character at a time,
stopping at first difference:

e AAAAAA vs. SECRET: stop at 1.
e SAAAAA vs. SECRET: stop at 2.
e SEAAAA vs. SECRET: stop at 3.

Attacker sees comparison time,
deduces position of difference.
A few hundred tries

reveal secret password.

How typical software checks
16-byte authenticator:

for (i = 0;1 < 16;++1i)

if (x[i] '= y[i]) return O;

return 1;

Fix, eliminating information flow
from secrets to timings:
diff = O;
for (1 = 0;1 < 16;++1)
diff |= x[i] =~ yl[i];
return 1 & ((diff-1) >> 8);

Notice that the language
makes the wrong thing simple
and the right thing complex.

asy: Timing attacks

[ENEX operating system
s user-supplied string
secret password

acter at a time,

- at first difference:

A vs. SECRET: stop at 1.
A vs. SECRET: stop at 2.
A vs. SECRET: stop at 3.

- sees comparison time,
position of difference.
indred tries

cret password.

How typical software checks
16-byte authenticator:
for (i = 0;1 < 16;++1i)
if (x[i] '= yl[i]) return O;

return 1;

Fix, eliminating information flow
from secrets to timings:
diff = 0O;
for (1 = 0;1i < 16;++1i)
diff |= x[i] =~ yl[i];
return 1 & ((diff-1) >> 8);

Notice that the language
makes the wrong thing simple
and the right thing complex.

Languag
“right” |

So mist:

ng attacks

erating system
plied string
sword

time,
ifference:

ET: stop at 1.
ET: stop at 2.
ET: stop at 3.

parison time,
f difference.
S

vord.

How typical software checks
16-byte authenticator:

for (i = 0;1i < 16;++1i)

if (x[i] '= y[i]) return O;

return 1;

Fix, eliminating information flow
from secrets to timings:
diff = O;
for (1 = 0;1 < 16;++1)
diff |= x[i] = yl[i];
return 1 & ((diff-1) >> 8);

Notice that the language
makes the wrong thing simple
and the right thing complex.

Language designet
“right” Is too wea

So mistakes contir

1\J]

stem

at 1.
at 2.
at 3.

Nne,

How typical software checks
16-byte authenticator:
for (i = 0;1 < 16;++1i)
if (x[i] '= y[i]) return O;

return 1;

Fix, eliminating information flow
from secrets to timings:
diff = 0O;
for (1 = 0;1 < 16;++1i)
diff |= x[i] =~ yl[i];
return 1 & ((diff-1) >> 8);

Notice that the language
makes the wrong thing simple
and the right thing complex.

Language designer's notion
“right” Is too weak for secu

So mistakes continue to hag

How typical software checks
16-byte authenticator:

for (i = 0;1 < 16;++1i)

if (x[i] '= y[i]) return O;

return 1;

Fix, eliminating information flow

from secrets to timings:

diff = O;
for (1 = 0;1 < 16;++1)
diff |= x[i] = yl[i];

return 1 & ((diff-1) >> 8);

Notice that the language
makes the wrong thing simple
and the right thing complex.

Language designer’'s notion of
“right” Is too weak for security.

So mistakes continue to happen.

How typical software checks
16-byte authenticator:

for (i = 0;1 < 16;++1i)

if (x[i] '= y[i]) return O;

return 1;

Fix, eliminating information flow
from secrets to timings:

diff = O;
for (1 = 0;1 < 16;++1)
diff |= x[i] = yl[i];

return 1 & ((diff-1) >> 8);

Notice that the language
makes the wrong thing simple
and the right thing complex.

Language designer’'s notion of
“right” Is too weak for security.

So mistakes continue to happen.

One of many examples,
part of the reference software for

CAESAR candidate CLOC:

/* compare the tag */
int 1;
for(i = 0;i < CRYPTO_ABYTES;i++)
if (tagli]l !'= c[(¥mlen) + i]){
return RETURN_TAG_NO_MATCH;

}
return RETURN_SUCCESS;

ical software checks

authenticator:

(1 = 0;1i < 16;++1i)
(x[i]

rn 1;

= y[i]) return O;

inating information flow
rets to timings:

= 0:

(1 = 0;1i < 16;++1i)

ff |[= x[i] =~ yl[il;

rn 1 & ((diff-1) >> 8);

hat the language
1e wrong thing simple
right thing complex.

Language designer’'s notion of
“right” Is too weak for security.

So mistakes continue to happen.

One of many examples,
part of the reference software for

CAESAR candidate CLOC:

/* compare the tag */
int 1;
for(i = 0;i < CRYPTO_ABYTES;i++)
if(tagli]l !'= cl[(¥mlen) + i]){
return RETURN_TAG_NO_MATCH;

}
return RETURN_SUCCESS;

Do timir

Objectic

ire checks
tor:
< 16;++1)

y[i]) return O;

formation flow

Nings:

< 16;++1)

1 7 ylil;
diff-1) >> 8);
nguage

thing simple
> complex.

Language designer’'s notion of
“right” Is too weak for security.

So mistakes continue to happen.

One of many examples,
part of the reference software for

CAESAR candidate CLOC:

/* compare the tag */
int 1;
for(i = 0;i < CRYPTO_ABYTES;i++)
if (tagli]l !'= c[(¥mlen) + i]){
return RETURN_TAG_NO_MATCH;

}
return RETURN_SUCCESS;

Do timing attacks

Objection: “Timir

turn O;

flow

Language designer’'s notion of
“right” Is too weak for security.

So mistakes continue to happen.

One of many examples,
part of the reference software for

CAESAR candidate CLOC:

/* compare the tag */
int 1;
for(i = 0;i < CRYPTO_ABYTES;i++)
if(tagli]l !'= cl[(¥mlen) + i]){
return RETURN_TAG_NO_MATCH;

}
return RETURN_SUCCESS;

Do timing attacks really wol

Objection: “Timings are noi

Language designer’'s notion of
“right” Is too weak for security.

So mistakes continue to happen.

One of many examples,
part of the reference software for

CAESAR candidate CLOC:

/* compare the tag */
int 1;
for(i = 0;i < CRYPTO_ABYTES;i++)
if (tagli]l !'= c[(¥mlen) + i]){
return RETURN_TAG_NO_MATCH;

}
return RETURN_SUCCESS;

Do timing attacks really work?

Objection: “Timings are noisy!”

Language designer’'s notion of
“right” Is too weak for security.

So mistakes continue to happen.

One of many examples,
part of the reference software for

CAESAR candidate CLOC:

/* compare the tag */
int 1;
for(i = 0;i < CRYPTO_ABYTES;i++)
if (tagli]l !'= c[(¥mlen) + i]){
return RETURN_TAG_NO_MATCH;

}
return RETURN_SUCCESS;

Do timing attacks really work?

Objection: “Timings are noisy!”

Answer 7£1:

Does noise stop all attacks?
To guarantee security, defender
must block all information flow.

Language designer’'s notion of
“right” Is too weak for security.

So mistakes continue to happen.

One of many examples,
part of the reference software for

CAESAR candidate CLOC:

/* compare the tag */
int 1;
for(i = 0;i < CRYPTO_ABYTES;i++)
if (tagli]l !'= c[(¥mlen) + i]){
return RETURN_TAG_NO_MATCH;

}
return RETURN_SUCCESS;

Do timing attacks really work?

Objection: “Timings are noisy!”

Answer 7£1:

Does noise stop all attacks?
To guarantee security, defender
must block all information flow.

Answer #2: Attacker uses
statistics to eliminate noise.

Language designer’'s notion of
“right” Is too weak for security.

So mistakes continue to happen.

One of many examples,
part of the reference software for

CAESAR candidate CLOC:

/* compare the tag */
int 1;
for(i = 0;i < CRYPTO_ABYTES;i++)
if (tagli]l !'= c[(¥mlen) + i]){
return RETURN_TAG_NO_MATCH;

}
return RETURN_SUCCESS;

Do timing attacks really work?

Objection: “Timings are noisy!”

Answer 7£1:

Does noise stop all attacks?
To guarantee security, defender
must block all information flow.

Answer #2: Attacker uses
statistics to eliminate noise.

Answer #3, what the

1970s attackers actually did:
Cross page boundary,
inducing page faults,

to amplify timing signal.

e designer’'s notion of
s too weak for security.

1kes continue to happen.

nany examples,
he reference software for

R candidate CLOC:

are the tag */

0;i < CRYPTO_ABYTES;i++)

o[i] !'= cl[(*mlen) + i])A
airn RETURN_TAG_NO_MATCH;

RETURN_SUCCESS

Do timing attacks really work?

Objection: “Timings are noisy!”

Answer 7£1:
Does noise stop all attacks?
To guarantee security, defender

must block all information flow.

Answer #2: Attacker uses
statistics to eliminate noise.

Answer #3, what the

1970s attackers actually did:
Cross page boundary,
inducing page faults,

to amplify timing signal.

Defende

Some of

1996 Kc
attacks

Briefly r
Kocher
Schneier
secret at
affect ti

2002 Pa
Suzaki—!

timing a

's notion of
k for security.

'ue to happen.

1ples,
ce software for

e CLOC:

ag */

YPTO_ABYTES;i++)
[(*mlen) + i]){
N_TAG_NO_MATCH;

CCESS;

Do timing attacks really work?

Objection: “Timings are noisy!”

Answer 7£1:
Does noise stop all attacks?
To guarantee security, defender

must block all information flow.

Answer #2: Attacker uses
statistics to eliminate noise.

Answer #3, what the

1970s attackers actually did:
Cross page boundary,
inducing page faults,

to amplify timing signal.

Defenders don't le

Some of the litera

1996 Kocher poin
attacks on cryptog

Briefly mentioned
Kocher and by 19
Schneier—-Wagner-
secret array indice
affect timing via c

2002 Page, 2003
Suzaki—Shigeri—M;
timing attacks on

of
rity.

pen.

e for

ES;i++)
+ i]){
MATCH;

Do timing attacks really work?

Objection: “Timings are noisy!”

Answer 7£1:
Does noise stop all attacks?
To guarantee security, defender

must block all information flow.

Answer #2: Attacker uses
statistics to eliminate noise.

Answer #3, what the

1970s attackers actually did:
Cross page boundary,
inducing page faults,

to amplify timing signal.

Defenders don't learn

Some of the literature:

1996 Kocher pointed out tir
attacks on cryptographic ke

Briefly mentioned by
Kocher and by 1998 Kelsey-
Schneier—Wagner—Hall:
secret array indices can
affect timing via cache miss

2002 Page, 2003 Tsunoo—S:
Suzaki—Shigeri—-Miyauchi:
timing attacks on DES.

Do timing attacks really work?

Objection: “Timings are noisy!”

Answer 7£1:
Does noise stop all attacks?
To guarantee security, defender

must block all information flow.

Answer #2: Attacker uses
statistics to eliminate noise.

Answer #3, what the

1970s attackers actually did:
Cross page boundary,
inducing page faults,

to amplify timing signal.

Defenders don't learn

Some of the literature:

1996 Kocher pointed out timing
attacks on cryptographic key bits.

Briefly mentioned by

Kocher and by 1998 Kelsey—
Schneier—-Wagner—Hall:

secret array indices can

affect timing via cache misses.

2002 Page, 2003 Tsunoo—Saito—
Suzaki—Shigeri—-Miyauchi:
timing attacks on DES.

g attacks really work?

n: “Timings are noisy!”

1
ise stop all attacks?
antee security, defender

yck all information flow.

#2: Attacker uses
5 to eliminate noise.

3, what the
tackers actually did:
ge boundary,

- page faults,

fy timing signal.

Defenders don't learn

Some of the literature:

1996 Kocher pointed out timing
attacks on cryptographic key bits.

Briefly mentioned by

Kocher and by 1998 Kelsey—
Schneier—Wagner—Hall:

secret array indices can

affect timing via cache misses.

2002 Page, 2003 Tsunoo—Saito—
Suzaki—Shigeri—-Miyauchi:
timing attacks on DES.

“Guaran
load ent

really work?

\gs are noisy!”

| attacks?
rity, defender

yrmation flow.

ker uses
ate noise.

the
tually did:

ary,
ts,

signal.

Defenders don't learn

Some of the literature:

1996 Kocher pointed out timing
attacks on cryptographic key bits.

Briefly mentioned by

Kocher and by 1998 Kelsey—
Schneier—-Wagner—Hall:

secret array indices can

affect timing via cache misses.

2002 Page, 2003 Tsunoo—Saito—
Suzaki—Shigeri—-Miyauchi:
timing attacks on DES.

“Guaranteed’ cou
load entire table 1

der

low.

Defenders don't learn

Some of the literature:

1996 Kocher pointed out timing

attacks on cryptographic key bits.

Briefly mentioned by

Kocher and by 1998 Kelsey—
Schneier—Wagner—Hall:

secret array indices can

affect timing via cache misses.

2002 Page, 2003 Tsunoo—Saito—
Suzaki—Shigeri—-Miyauchi:
timing attacks on DES.

“Guaranteed’ countermeasu
load entire table into cache.

Defenders don't learn

Some of the literature:

1996 Kocher pointed out timing
attacks on cryptographic key bits.

Briefly mentioned by

Kocher and by 1998 Kelsey—
Schneier—-Wagner—Hall:

secret array indices can

affect timing via cache misses.

2002 Page, 2003 Tsunoo—Saito—
Suzaki—Shigeri—-Miyauchi:
timing attacks on DES.

“Guaranteed’ countermeasure:
load entire table into cache.

Defenders don't learn

Some of the literature:

1996 Kocher pointed out timing
attacks on cryptographic key bits.

Briefly mentioned by

Kocher and by 1998 Kelsey—
Schneier—-Wagner—Hall:

secret array indices can

affect timing via cache misses.

2002 Page, 2003 Tsunoo—Saito—
Suzaki—Shigeri—-Miyauchi:
timing attacks on DES.

“Guaranteed’ countermeasure:
load entire table into cache.

2004.11/2005.04 Bernstein:
Timing attacks on AES.
Countermeasure isn't safe:

e.g., secret array indices can affect
timing via cache-bank collisions.
What is safe: kill all data flow
from secrets to array indices.

Defenders don't learn

Some of the literature:

1996 Kocher pointed out timing

attacks on cryptographic key bits.

Briefly mentioned by

Kocher and by 1998 Kelsey—
Schneier—-Wagner—Hall:

secret array indices can

affect timing via cache misses.

2002 Page, 2003 Tsunoo—Saito—
Suzaki—Shigeri—-Miyauchi:
timing attacks on DES.

“Guaranteed’ countermeasure:
load entire table into cache.

2004.11/2005.04 Bernstein:
Timing attacks on AES.
Countermeasure isn't safe:

e.g., secret array indices can affect
timing via cache-bank collisions.
What is safe: kill all data flow
from secrets to array indices.

2005 Tromer—Osvik—Shamir:
65ms to steal Linux AES key
used for hard-disk encryption.

rs don't learn “Guaranteed” countermeasure: Intel rec

| . load entire table into cache. OpenSS
the literature: P

| - 2004.11/2005.04 Bernstein: countert
cher pointed out timing from kn

Timing attacks on AES.

on cryptographic key bits. o
Countermeasure isn't safe;

nentioned by e.g., secret array indices can affect
and by 1998 Kelsey— timing via cache-bank collisions.
—Wagner—Hall: What is safe: kill all data flow
ray indices can from secrets to array indices.

ming via cache misses. | |
2005 Tromer—Osvik—Shamir:

ge, 2003 Tsunoo—Saito- 65ms to steal Linux AES key

>higeri—-Miyauchi: used for hard-disk encryption.
ttacks on DES.

clil

ture:

fed out timing

rraphic key bits.

by

)8 Kelsey—
-Hall:

S can

ache misses.

[sunoo—Saito—
yauchi:
DES.

“Guaranteed’ countermeasure:
load entire table into cache.

2004.11/2005.04 Bernstein:
Timing attacks on AES.
Countermeasure isn't safe:

e.g., secret array indices can affect
timing via cache-bank collisions.
What is safe: kill all data flow
from secrets to array indices.

2005 Tromer—Osvik—Shamir:
65ms to steal Linux AES key
used for hard-disk encryption.

Intel recommends,
OpenSSL integrat:
countermeasure: ¢
from known lines

ning

v bits.

) ItO—

“Guaranteed’ countermeasure:
load entire table into cache.

2004.11/2005.04 Bernstein:
Timing attacks on AES.
Countermeasure isn't safe:

e.g., secret array indices can affect
timing via cache-bank collisions.
What /s safe: kill all data flow
from secrets to array indices.

2005 Tromer—Osvik—Shamir:
65ms to steal Linux AES key
used for hard-disk encryption.

Intel recommends, and
OpenSSL integrates, cheape
countermeasure: always loac
from known /ines of cache.

“Guaranteed’ countermeasure:
load entire table into cache.

2004.11/2005.04 Bernstein:
Timing attacks on AES.
Countermeasure isn't safe:

e.g., secret array indices can affect
timing via cache-bank collisions.
What is safe: kill all data flow
from secrets to array indices.

2005 Tromer—Osvik—Shamir:
65ms to steal Linux AES key
used for hard-disk encryption.

Intel recommends, and
OpenSSL integrates, cheaper
countermeasure: always loading
from known /ines of cache.

10

“Guaranteed’ countermeasure:
load entire table into cache.

2004.11/2005.04 Bernstein:
Timing attacks on AES.
Countermeasure isn't safe:

e.g., secret array indices can affect
timing via cache-bank collisions.
What is safe: kill all data flow
from secrets to array indices.

2005 Tromer—Osvik—Shamir:
65ms to steal Linux AES key
used for hard-disk encryption.

10
Intel recommends, and

OpenSSL integrates, cheaper
countermeasure: always loading
from known /ines of cache.

2013 Bernstein—Schwabe

“A word of warning"

This countermeasure isn't safe.
Same issues described in 2004.

“Guaranteed’ countermeasure:
load entire table into cache.

2004.11/2005.04 Bernstein:
Timing attacks on AES.
Countermeasure isn't safe:

e.g., secret array indices can affect
timing via cache-bank collisions.
What is safe: kill all data flow
from secrets to array indices.

2005 Tromer—Osvik—Shamir:
65ms to steal Linux AES key
used for hard-disk encryption.

10
Intel recommends, and

OpenSSL integrates, cheaper
countermeasure: always loading
from known /ines of cache.

2013 Bernstein—Schwabe

“A word of warning"

This countermeasure isn't safe.
Same issues described in 2004.

2016 Yarom—Genkin—Heninger
“CacheBleed” steals RSA secret
key via timings of OpenSSL.

teed” countermeasure:
ire table into cache.

/2005.04 Bernstein:
yttacks on AES.

measure isn't safe;

ret array indices can affect
la cache-bank collisions.
safe: kill all data flow
rets to array indices.

omer—0Osvik—Shamir:
steal Linux AES key
hard-disk encryption.

Intel recommends, and
OpenSSL integrates, cheaper
countermeasure: always loading
from known lines of cache.

2013 Bernstein—Schwabe

“A word of warning" :

This countermeasure isn't safe.
Same issues described in 2004.

2016 Yarom—Genkin—Heninger
“CacheBleed” steals RSA secret
key via timings of OpenSSL.

10

2008 RF
Layer Se
Version

small tir
perform:
extent o
fragmen
be large
due to t
existing
of the ti

ntermeasure:
1to cache.

3ernstein:

AES.
n't safe:
ndices can affect
ank collisions.
all data flow
ay Indices.

k—Shamir:
Ix AES key
encryption.

Intel recommends, and
OpenSSL integrates, cheaper
countermeasure: always loading
from known /ines of cache.

2013 Bernstein—Schwabe

“A word of warning"

This countermeasure isn't safe.
Same issues described in 2004.

2016 Yarom—Genkin—Heninger
“CacheBleed” steals RSA secret
key via timings of OpenSSL.

10

2008 RFC 5246
Layer Security (TL
Version 1.2": “Th
small timing chani
performance depel
extent on the size
fragment, but it is
be large enough tc
due to the large b
existing MACs anc
of the timing sign:

re.

affect
ons.

OW

Intel recommends, and
OpenSSL integrates, cheaper
countermeasure: always loading
from known /ines of cache.

2013 Bernstein—Schwabe

“A word of warning"

This countermeasure isn't safe.
Same issues described in 2004.

2016 Yarom—Genkin—Heninger
“CacheBleed” steals RSA secret
key via timings of OpenSSL.

10

2008 RFC 5246 “The Trans
Layer Security (TLS) Protoc
Version 1.2": "This leaves &
small timing channel, since |
performance depends to son
extent on the size of the daf
fragment, but it is not belie:
be large enough to be explo
due to the large block size ¢
existing MACs and the smal
of the timing signal.”

Intel recommends, and
OpenSSL integrates, cheaper
countermeasure: always loading
from known /ines of cache.

2013 Bernstein—Schwabe

“A word of warning"

This countermeasure isn't safe.
Same issues described in 2004.

2016 Yarom—Genkin—Heninger
“CacheBleed” steals RSA secret
key via timings of OpenSSL.

10

2008 RFC 5246 “The Transport
Layer Security (TLS) Protocol,
Version 1.2": “This leaves a
small timing channel, since MAC
performance depends to some
extent on the size of the data
fragment, but it is not believed to

be large enough to be exploitable,
due to the large block size of
existing MACs and the small size
of the timing signal.”

11

Intel recommends, and
OpenSSL integrates, cheaper
countermeasure: always loading
from known /ines of cache.

2013 Bernstein—Schwabe

“A word of warning"

This countermeasure isn't safe.
Same issues described in 2004.

2016 Yarom—Genkin—Heninger
“CacheBleed” steals RSA secret
key via timings of OpenSSL.

10

2008 RFC 5246 “The Transport
Layer Security (TLS) Protocol,
Version 1.2":

small timing channel, since MAC

“This leaves a

performance depends to some
extent on the size of the data
fragment, but it is not believed to

be large enough to be exploitable,
due to the large block size of
existing MACs and the small size
of the timing signal.”

2013 AlFardan—Paterson “Lucky
Thirteen: breaking the TLS and

DTLS record protocols”: exploit

these timings; steal plaintext.

11

ommends, and

L integrates, cheaper
neasure: always loading
own lines of cache.

rnstein—Schwabe
of warning":

Intermeasure isn't safe.
sues described 1in 2004.

rom—Genkin—Heninger
3leed” steals RSA secret
imings of OpenSSL.

10

2008 RFC 5246 “The Transport
Layer Security (TLS) Protocol,
Version 1.2": “This leaves a
small timing channel, since MAC
performance depends to some
extent on the size of the data
fragment, but it is not believed to

be large enough to be exploitable,
due to the large block size of
existing MACs and the small size
of the timing signal.”

2013 AlFardan—Paterson “Lucky

Thirteen: breaking the TLS and
DTLS record protocols”: exploit

these timings; steal plaintext.

11

How to

If possib
to contr

Look for
identifyi
“Divisiol
when th
complet:
cycles re
values o

Measure
trusting

and
es, cheaper
lways loading
of cache.

"hwabe

g’
Ire isn't safe.
bed in 2004.

In—Heninger
1Is RSA secret
OpenSSL.

10

2008 RFC 5246 “The Transport
Layer Security (TLS) Protocol,
Version 1.2": “This leaves a
small timing channel, since MAC
performance depends to some
extent on the size of the data
fragment, but it is not believed to

be large enough to be exploitable,
due to the large block size of
existing MACs and the small size
of the timing signal.”

2013 AlFardan—Paterson “Lucky

Thirteen: breaking the TLS and
DTLS record protocols”: exploit

these timings; steal plaintext.

11

How to write cons

If possible, write c
to control instruct

Look for documen
identifying variabil
“Division operatio
when the divide o)
completes, with tk
cycles required de
values of the inpus

Measure cycles rat
trusting CPU docl

ling

fe.
)4 .
er
cret

10

2008 RFC 5246 “The Transport
Layer Security (TLS) Protocol,
Version 1.2": “This leaves a
small timing channel, since MAC
performance depends to some
extent on the size of the data
fragment, but it is not believed to

be large enough to be exploitable,
due to the large block size of
existing MACs and the small size
of the timing signal.”

2013 AlFardan—Paterson “Lucky
Thirteen: breaking the TLS and

DTLS record protocols”: exploit

these timings; steal plaintext.

11

How to write constant-time

If possible, write code in asr
to control instruction selecti

Look for documentation
identifying variability: e.g.,
“Division operations terminz:
when the divide operation
completes, with the number
cycles required dependent ol
values of the input operands

Measure cycles rather than
trusting CPU documentatiol

2008 RFC 5246 “The Transport
Layer Security (TLS) Protocol,
Version 1.2": “This leaves a
small timing channel, since MAC
performance depends to some
extent on the size of the data
fragment, but it is not believed to

be large enough to be exploitable,
due to the large block size of
existing MACs and the small size
of the timing signal.”

2013 AlFardan—Paterson “Lucky
Thirteen: breaking the TLS and

DTLS record protocols”: exploit

these timings; steal plaintext.

11

How to write constant-time code

If possible, write code in asm
to control instruction selection.

Look for documentation
identitying variability: e.g.,
“Division operations terminate
when the divide operation
completes, with the number of
cycles required dependent on the
values of the input operands.”

Measure cycles rather than
trusting CPU documentation.

12

C 5246 “The Transport
curity (TLS) Protocol,
1.2": “This leaves a

ning channel, since MAC
ance depends to some

n the size of the data

t, but 1t 1s not believed to

enough to be exploitable,
he large block size of
MACs and the small size

ming signal.”

-ardan—Paterson “Lucky
: breaking the TLS and
cord protocols™: exploit

nings; steal plaintext.

11

How to write constant-time code

If possible, write code in asm
to control instruction selection.

Look for documentation
identifying variability: e.g.,
“Division operations terminate
when the divide operation
completes, with the number of
cycles required dependent on the
values of the input operands.”

Measure cycles rather than
trusting CPU documentation.

12

Cut off :
secrets t

Cut off :
secrets t

Cut off :
secrets t

Prefer Ic

Prefer v

Watch c

variable-
Cortex-N\

[he Transport
S) Protocaol,

Is leaves a

1el, since MAC
1ds to some

of the data

' not believed to

) be exploitable,
lock size of
] the small size

18

terson “Lucky
r the TLS and

bcols™ : exploit

| plaintext.

11

How to write constant-time code

If possible, write code in asm
to control instruction selection.

Look for documentation
identitying variability: e.g.,
“Division operations terminate
when the divide operation
completes, with the number of
cycles required dependent on the
values of the input operands.”

Measure cycles rather than
trusting CPU documentation.

12

Cut off all data flc
secrets to branch

Cut off all data flc
secrets to array in

Cut off all data flc
secrets to shift/ro

Prefer logic instru

Prefer vector instr

Watch out for CP

variable-time mult
Cortex-M3 and m«

ololgs
ol

MAC
e

a

ved to

table,
f

| size

ucky
and
ploit

11

How to write constant-time code

If possible, write code in asm
to control instruction selection.

Look for documentation
identifying variability: e.g.,
“Division operations terminate
when the divide operation
completes, with the number of
cycles required dependent on the
values of the input operands.”

Measure cycles rather than
trusting CPU documentation.

12

Cut off all data flow from
secrets to branch conditions

Cut off all data flow from
secrets to array indices.

Cut off all data flow from
secrets to shift/rotate distar

Prefer logic instructions.

Prefer vector instructions.

Watch out for CPUs with

variable-time multipliers: e.g
Cortex-M3 and most Powerl

How to write constant-time code

If possible, write code in asm
to control instruction selection.

Look for documentation
identitying variability: e.g.,
“Division operations terminate
when the divide operation
completes, with the number of
cycles required dependent on the
values of the input operands.”

Measure cycles rather than
trusting CPU documentation.

12

13
Cut off all data flow from

secrets to branch conditions.

Cut off all data flow from
secrets to array indices.

Cut off all data flow from
secrets to shift/rotate distances.

Prefer logic instructions.

Prefer vector instructions.

Watch out for CPUs with

variable-time multipliers: e.g.,
Cortex-M3 and most PowerPCs.

write constant-time code

le, write code Iin asm
ol Instruction selection.

~documentation

ng variability: e.g.,

1 operations terminate

e divide operation

o5 with the number of
quired dependent on the
f the input operands.”

cycles rather than
CPU documentation.

12

13
Cut off all data flow from

secrets to branch conditions.

Cut off all data flow from
secrets to array indices.

Cut off all data flow from
secrets to shift/rotate distances.

Prefer logic instructions.

Prefer vector instructions.

Watch out for CPUs with

variable-time multipliers: e.g.,
Cortex-M3 and most PowerPCs.

Software

Almost
much sl

tant-time code

ode In asm
lon selection.

tation

ity: e.g.,

ns terminate
beration

e number of
bendent on the
t operands.”

‘her than
Imentation.

12

13
Cut off all data flow from

secrets to branch conditions.

Cut off all data flow from
secrets to array indices.

Cut off all data flow from
secrets to shift/rotate distances.

Prefer logic instructions.

Prefer vector instructions.

Watch out for CPUs with

variable-time multipliers: e.g.,
Cortex-M3 and most PowerPCs.

Software optimiza

Almost all softwar
much slower than

code

1te

of
1 the

12

Cut off all data flow from
secrets to branch conditions.

Cut off all data flow from
secrets to array indices.

Cut off all data flow from

secrets to shift/rotate distances.

Prefer logic instructions.

Prefer vector instructions.

Watch out for CPUs with
variable-time multipliers: e.g.,

Cortex-M3 and most PowerPCs.

13

Software optimization

Almost all software is
much slower than it could b

Cut off all data flow from
secrets to branch conditions.

Cut off all data flow from
secrets to array indices.

Cut off all data flow from
secrets to shift/rotate distances.

Prefer logic instructions.

Prefer vector instructions.

Watch out for CPUs with
variable-time multipliers: e.g.,
Cortex-M3 and most PowerPCs.

13

Software optimization

Almost all software is
much slower than it could be.

14

Cut off all data flow from
secrets to branch conditions.

Cut off all data flow from
secrets to array indices.

Cut off all data flow from

secrets to shift/rotate distances.

Prefer logic instructions.

Prefer vector instructions.

Watch out for CPUs with

variable-time multipliers: e.g.,

Cortex-M3 and most PowerPC(Cs.

13

Software optimization

Almost all software is
much slower than it could be.

|s software applied to much data?
Usually not. Usually the
wasted CPU time is negligible.

14

Cut off all data flow from
secrets to branch conditions.

Cut off all data flow from
secrets to array indices.

Cut off all data flow from

secrets to shift/rotate distances.

Prefer logic instructions.

Prefer vector instructions.

Watch out for CPUs with
variable-time multipliers: e.g.,

Cortex-M3 and most PowerPC(Cs.

13

Software optimization

Almost all software is
much slower than it could be.

|s software applied to much data?
Usually not. Usually the
wasted CPU time is negligible.

But crypto software should be
applied to all communication.

Crypto that's too slow =
fewer users = fewer cryptanalysts

= less attractive for everybody.

14

11l data flow from
o branch conditions.

1l data flow from
0 array Iindices.

1|l data flow from

o shift /rotate distances.

gic Instructions.

actor Instructions.

ut for CPUs with
time multipliers: e.g.,

A3 and most PowerPC(Cs.

13

Software optimization

Almost all software is
much slower than it could be.

|s software applied to much data?

Usually not. Usually the
wasted CPU time is negligible

But crypto software should be

applied to all communication.

Crypto that's too slow =
fewer users = fewer cryptana

= less attractive for everyboc

ysts

14

Typical :
You war
software
as efficie

Starting
You hav

referenc:

You hav
(Can reg

You me:
impleme

w from

~onditions.

w from

dices.

w from

tate distances.

ctions.
uctions.

Us with
ipliers: e.g.,

st PowerPC(Cs.

13

Software optimization

Almost all software is
much slower than it could be.

|s software applied to much data?

Usually not. Usually the
wasted CPU time is negligible

But crypto software should be

applied to all communication.

Crypto that's too slow =
fewer users = fewer cryptana

= less attractive for everyboc

ysts

14

Typical situation:

You want (constar
software that com
as efficiently as pc

Starting point:
You have written .

reference impleme

You have chosen
(Can repeat for ot

You measure perfc
implementation. |

1CES.

13
Software optimization

Almost all software is
much slower than it could be.

|s software applied to much data?
Usually not. Usually the
wasted CPU time is negligible.

But crypto software should be
applied to all communication.

Crypto that's too slow =
fewer users = fewer cryptanalysts

= less attractive for everybody.

14

Typical situation:

You want (constant-time)
software that computes ciph
as efficiently as possible.

Starting point:
You have written a
reference implementation of

You have chosen a target Cl
(Can repeat for other CPUs

You measure performance o
implementation. Now what:

14 15
Software optimization Typical situation:

. You want (constant-time
Almost all software is ()

. software that computes cipher X
much slower than it could be. P P

as efficiently as possible.

|s software applied to much data?

Usually not. Usually the Starting point:

wasted CPU time is negligible. You have written a

reference implementation of X.

But crypto software should be
You have chosen a target CPU.

applied to all communication.
(Can repeat for other CPUs.)

Crypto that's too slow =

You measure performance of the
fewer users = fewer cryptanalysts

. implementation. Now what?
= less attractive for everybody.

 optimization

11l software is
wer than 1t could be.

ire applied to much data?

not. Usually the
_PU time is negligible

yto software should be

o all communication.

hat's too slow =
ers = fewer cryptana

ttractive for everyboc

ysts

14

Typical situation:

You want (constant-time)
software that computes cipher X
as efficiently as possible.

Starting point:
You have written a
reference implementation of X.

You have chosen a target CPU.
(Can repeat for other CPUs.)

You measure performance of the
implementation. Now what?

15

A simpli

Target (

MICroco
one AR

Referenc

int sum
int
int 1
for (
res:

retur:

tion

e IS
it could be.

| to much data?
lly the
Is negligible.

re should be

munication.

slow =
er cryptanalysts

‘or everybody.

14

Typical situation:

You want (constant-time)
software that computes cipher X
as efficiently as possible.

Starting point:
You have written a
reference implementation of X.

You have chosen a target CPU.
(Can repeat for other CPUs.)

You measure performance of the
implementation. Now what?

15

A simplified exam|

Target CPU: TI L
microcontroller co
one ARM Cortex-|

Reference impleme

int sum(int *x)
{
int result = 0O
int 1;
for (1 = 0;1 <
result += x|[

return result;

1d

OC

ysts

14

Typical situation:

You want (constant-time)
software that computes cipher X
as efficiently as possible.

Starting point:
You have written a
reference implementation of X.

You have chosen a target CPU.
(Can repeat for other CPUs.)

You measure performance of the
implementation. Now what?

15

A simplified example

Target CPU: TI LM4F120H!
microcontroller containing
one ARM Cortex-M4F core.

Reference implementation:

int sum(int *x)
{
int result = 0;
int 1;
for (i = 0;i < 1000;++i
result += x[i];

return result;

Typical situation:

You want (constant-time)
software that computes cipher X
as efficiently as possible.

Starting point:
You have written a
reference implementation of X.

You have chosen a target CPU.
(Can repeat for other CPUs.)

You measure performance of the
implementation. Now what?

15

16
A simplified example

Target CPU: TI LM4F120H5QR
microcontroller containing
one ARM Cortex-M4F core.

Reference implementation:

int sum(int *x)
{
int result = O;
int 1;
for (i = 0;i < 1000;++i)
result += x[i];

return result;

situation:

t (constant-time)

that computes cipher X
ntly as possible.

point:
e written a
> implementation of X.

e chosen a target CPU.
eat for other CPUs.)

sure performance of the
ntation. Now what?

15

A simplified example

Target CPU: TI LM4F120H5QR
microcontroller containing
one ARM Cortex-M4F core.

Reference implementation:

int sum(int *x)
{
int result = O;
int 1;
for (i = 0;i < 1000;++i)
result += x[i];

return result;

16

Countin;

static -
xcons:

= (vo.

int bef
int res:
int aft
UARTpri:

resul:

Output
Change

1t-time)
putes cipher X
ssible.

3
ntation of X.

) target CPU.
her CPUs.)

yrmance of the
Now what?

15

A simplified example

Target CPU: TI LM4F120H5QR
microcontroller containing
one ARM Cortex-M4F core.

Reference implementation:

int sum(int *x)
{
int result = O;
int 1;
for (i = 0;i < 1000;++i)
result += x[i];

return result;

16

Counting cycles:

static volatile
xconst DWT_CYC
= (void *) OxE

int beforesum =
int result = sum
int aftersum = *
UARTprintf ("sum

result,aftersu

Output shows 801
Change 1000 to 5

er X

°U.

f the

15

A simplified example

Target CPU: TI LM4F120H5QR
microcontroller containing
one ARM Cortex-M4F core.

Reference implementation:

int sum(int *x)
{
int result = O;
int 1;
for (i = 0;i < 1000;++i)
result += x[i];

return result;

16

Counting cycles:

static volatile unsigned
xconst DWT_CYCCNT
= (void *) 0xE0001004;

int beforesum = *DWT_CYCC
int result = sum(x);

int aftersum = *xDWT_CYCCN
UARTprintf ("sum %d %d\n",

result,aftersum-befores

Output shows 8012 cycles.
Change 1000 to 500: 4012.

A simplified example

Target CPU: TI LM4F120H5QR
microcontroller containing
one ARM Cortex-M4F core.

Reference implementation:

int sum(int *x)
{
int result = O;
int 1;
for (i = 0;i < 1000;++i)
result += x[i];

return result;

16

Counting cycles:

static volatile unsigned 1int
xconst DWT_CYCCNT
= (void *) 0xE0001004;

int beforesum = *DWIT_CYCCNT;
int result = sum(x);

int aftersum = *DWT_CYCCNT;
UARTprintf ("sum %d %d\n",

result,aftersum-beforesum) ;

Output shows 8012 cycles.
Change 1000 to 500: 4012.

17

fled example

PU: TI LM4F120H5QR
ntroller containing
VI Cortex-M4F core.

e Implementation:

(int *x)

osult = 0;
i = 0;1 < 1000;++1)
11t += x[i];

n result;

16

Counting cycles:

static volatile unsigned 1int
xconst DWT_CYCCNT
= (void *) 0xE0001004;

int beforesum = *DWI_CYCCNT;
int result = sum(x);

int aftersum = *xDWT_CYCCNT;
UARTprintf ("sum %d %d\n",

result,aftersum-beforesum) ;

Output shows 8012 cycles.
Change 1000 to 500: 4012.

17

“Okay, ¢
Um, are
really th

ole

M4F120H5QR
ntaining
VI4F core.

ntation:

1000 ;++1)
il;

16

Counting cycles:

static volatile unsigned 1int
xconst DWT_CYCCNT
= (void *) 0xE0001004;

int beforesum = *DWIT_CYCCNT;
int result = sum(x);

int aftersum = *DWT_CYCCNT;
UARTprintf ("sum %d %d\n",

result,aftersum-beforesum) ;

Output shows 8012 cycles.
Change 1000 to 500: 4012.

17

“Okay, 8 cycles pe
Um, are microcon
really this slow at

16 17
Counting cycles: “Okay, 8 cycles per addition

. , , , Um, are microcontrollers
QR static volatile unsigned int

xconst DWT_CYCCNT
= (void *) 0xE0001004;

really this slow at addition?’

int beforesum = *DWI_CYCCNT;
int result = sum(x);

int aftersum = *xDWT_CYCCNT;
UARTprintf ("sum %d %d\n",

) result,aftersum-beforesum) ;

Output shows 8012 cycles.
Change 1000 to 500: 4012.

Counting cycles:

static volatile unsigned 1int

xconst DWT_CYCCNT
= (void *) 0xE0001004;

int beforesum = *DWIT_CYCCNT;

int result = sum(x);
int aftersum = *DWT_CYCCNT;
UARTprintf ("sum %d %d\n",

result,aftersum-beforesum) ;

Output shows 8012 cycles.
Change 1000 to 500: 4012.

17

“Okay, 8 cycles per addition.
Um, are microcontrollers

really this slow at addition?”

18

Counting cycles:

static volatile unsigned 1int

xconst DWT_CYCCNT
= (void *) 0xE0001004;

int beforesum = *DWIT_CYCCNT;
int result = sum(x);

int aftersum = *DWT_CYCCNT;
UARTprintf ("sum %d %d\n",

result,aftersum-beforesum) ;

Output shows 8012 cycles.
Change 1000 to 500: 4012.

17

“Okay, 8 cycles per addition.
Um, are microcontrollers

really this slow at addition?”

Bad practice:

Apply random “optimizations”
(and tweak compiler options)

until you get bored.
Keep the fastest results.

18

Counting cycles:

static volatile unsigned 1int
xconst DWT_CYCCNT
= (void *) 0xE0001004;

int beforesum = *DWIT_CYCCNT;
int result = sum(x);

int aftersum = *DWT_CYCCNT;
UARTprintf ("sum %d %d\n",

result,aftersum-beforesum) ;

Output shows 8012 cycles.
Change 1000 to 500: 4012.

17

“Okay, 8 cycles per addition.
Um, are microcontrollers

really this slow at addition?”

Bad practice:
Apply random “optimizations”
(and tweak compiler options)

until you get bored.
Keep the fastest results.

Good practice:

Figure out lower bound for
cycles spent on arithmetic etc.
Understand gap between

lower bound and observed time.

18

r cycles:

volatile unsigned int
t DWIT_CYCCNT
id *) 0xE0001004;

oresum = *xDWT_CYCCNT;
11t = sum(x);

orsum = *DWIT_CYCCNT;
ntf ("sum %d %d\n",

t ,aftersum-beforesum) ;

shows 8012 cycles.
1000 to 500: 4012.

17

“Okay, 8 cycles per addition.
Um, are microcontrollers

really this slow at addition?”

Bad practice:
Apply random “optimizations”
(and tweak compiler options)

until you get bored.
Keep the fastest results.

Good practice:

Figure out lower bound for
cycles spent on arithmetic etc.
Understand gap between

lower bound and observed time.

18

Find “A
Technic:

Rely on
MAF = |

Manual
“Implem
architect

Points t
Architec

which d
e.g., A

First ma
ADD tal

unsigned int
CNT
0001004 ;

*DWT_CYCCNT;

(x);
DWT_CYCCNT;

/d hd\n",

m-beforesum) ;

2 cycles.
00: 4012.

17

“Okay, 8 cycles per addition.

Um,

are microcontrollers

really this slow at addition?”

Bad

App
(anc

unti

practice:

y random “optimizations”
tweak compiler options)
you get bored.

Keep the fastest results.

Good practice:

Figure out lower bound for

cycles spent on arithmetic etc.

Understand gap between

lower bound and observed time.

18

Find "ARM Corte:
Technical Referenc
Rely on Wikipedia
M4F = M4 + float

Manual says that
“Implements the /
architecture profile

Points to the “AR
Architecture Refer

which defines insti
e.g., "ADD" for 3

First manual says
ADD takes just 1

int

NT;

um) ;

17

“Okay, 8 cycles per addition.
Um, are microcontrollers

really this slow at addition?”

Bad practice:
Apply random “optimizations”
(and tweak compiler options)

until you get bored.
Keep the fastest results.

Good practice:

Figure out lower bound for
cycles spent on arithmetic etc.
Understand gap between

lower bound and observed time.

18

Find “ARM Cortex-M4 Proc
Technical Reference Manual
Rely on Wikipedia comment
M4F = M4 + tloating-point

Manual says that Cortex-M4
“Implements the ARMv7E-N
architecture profile” .

Points to the "ARMv7-M
Architecture Reference Man

which defines instructions:
e.g., 'ADD" for 32-bit addi

First manual says that
ADD takes just 1 cycle.

“Okay, 8 cycles per addition.

Um,

are microcontrollers

really this slow at addition?”

Bad

App
(anc

unti

practice:

y random “optimizations”
tweak compiler options)
you get bored.

Keep the fastest results.

Good practice:

Figure out lower bound for

cycles spent on arithmetic etc.

Understand gap between

lower bound and observed time.

18

Find "ARM Cortex-M4 Processor
Technical Reference Manual™.

Rely on Wikipedia comment that
MA4F = M4 + tloating-point unit.

Manual says that Cortex-M4
“Implements the ARMv7E-M

architecture profile” .

Points to the "ARMv7-M

Architecture Reference Manual’,

which defines instructions:
e.g., 'ADD" for 32-bit addition.

First manual says that
ADD takes just 1 cycle.

19

3 cycles per addition.
microcontrollers

Is slow at addition?”

ctice:

ndom “optimizations”
2ak compiler options)
| get bored.

> fastest results.

actice:

ut lower bound for
yent on arithmetic etc.
and gap between

und and observed time.

18

Find "ARM Cortex-M4 Processor
Technical Reference Manual™.

Rely on Wikipedia comment that
MA4F = M4 4 tloating-point unit.

Manual says that Cortex-M4
“Implements the ARMv/7E-M

architecture profile” .

Points to the "ARMv7-M
Architecture Reference Manual’,

which defines instructions:
e.g., 'ADD" for 32-bit addition.

First manual says that
ADD takes just 1 cycle.

19

Inputs a
“Integer
has 16 1
special-f
and “prec

Each ele
be “loac

Basic lo.
Manual
a note a
Then m
Instructi
address
then It s

r addition.
trollers

addition?”

timizations”
er options)

1.
osults.

ound for
thmetic etc.
atween

bserved time.

18

Find "ARM Cortex-M4 Processor
Technical Reference Manual™.

Rely on Wikipedia comment that
MA4F = M4 + tloating-point unit.

Manual says that Cortex-M4
“Implements the ARMv7E-M

architecture profile” .

Points to the "ARMv7-M

Architecture Reference Manual’,

which defines instructions:
e.g., 'ADD" for 32-bit addition.

First manual says that
ADD takes just 1 cycle.

19

Inputs and output
“Integer registers”
has 16 integer reg
special-purpose ‘s
and “program cou

Each element of x
be “loaded” Into :

Basic load instruct
Manual says 2 cyc
a note about “pip
Then more explan
Instruction is also
address not based
then 1t saves 1 cyc

1S

LC.

me.

18

Find "ARM Cortex-M4 Processor
Technical Reference Manual™.

Rely on Wikipedia comment that
MA4F = M4 4 tloating-point unit.

Manual says that Cortex-M4
“Implements the ARMv/7E-M

architecture profile” .

Points to the "ARMv7-M
Architecture Reference Manual’,

which defines instructions:
e.g., 'ADD" for 32-bit addition.

First manual says that
ADD takes just 1 cycle.

19

Inputs and output of ADD =
ARMVvT-

has 16 integer registers, incl

“Integer registers’ .

special-purpose “stack point
and “program counter’ .

Each element of x array nee
be “loaded” into a register.

Basic load instruction: LDR
Manual says 2 cycles but ad
a note about “pipelining”.
Then more explanation: if n
instruction is also LDR (witl
address not based on first L
then 1t saves 1 cycle.

Find "ARM Cortex-M4 Processor
Technical Reference Manual™.

Rely on Wikipedia comment that
MA4F = M4 4 tloating-point unit.

Manual says that Cortex-M4
“Implements the ARMv7E-M

architecture profile” .

Points to the "ARMv7-M
Architecture Reference Manual’,

which defines instructions:
e.g., 'ADD" for 32-bit addition.

First manual says that
ADD takes just 1 cycle.

19

20
Inputs and output of ADD are

ARMv7-M
has 16 integer registers, including

“Integer registers’ .

special-purpose ‘stack pointer”
and “program counter .

Each element of x array needs to
be “loaded” into a register.

Basic load instruction: LDR.
Manual says 2 cycles but adds
a note about “pipelining”.
Then more explanation: if next
instruction is also LDR (with
address not based on first LDR)
then 1t saves 1 cycle.

RM Cortex-M4 Processor
| Reference Manual”.

Wikipedia comment that
M4 4 tloating-point unit.

says that Cortex-M4
ents the ARMv/7/E-M

ure profile” .

0 the "ARMv7-M

ture Reference Manual”,

>fines instructions:
DD" for 32-bit addition.

nual says that
es Jjust 1 cycle.

19

Inputs and output of ADD are
ARMv7-M
has 16 integer registers, including

“Integer registers’ .

special-purpose “stack pointer”
and “program counter’ .

Each element of x array needs to
be “loaded” into a register.

Basic load instruction: LDR.
Manual says 2 cycles but adds
a note about “pipelining”.
Then more explanation: if next
instruction is also LDR (with
address not based on first LDR)
then 1t saves 1 cycle.

20

n CONSEC
takes on
(“more |
pipelinec

Can ach
In other
but nott

Lower b
2n+1 c
including

Why ob:
non-con:
costs of

x-M4 Processor
e Manual”.

comment that
Ing-point unit.

Cortex-M4
\RMv7E-M

1
a

Mv7-M
ence Manual”,

‘uctions:
2-bit addition.

that
cycle.

19

Inputs and output of ADD are
ARMv7-M
has 16 integer registers, including

“Integer registers’ .

special-purpose ‘stack pointer”
and “program counter .

Each element of x array needs to
be “loaded” into a register.

Basic load instruction: LDR.
Manual says 2 cycles but adds
a note about “pipelining”.
Then more explanation: if next
instruction is also LDR (with
address not based on first LDR)
then 1t saves 1 cycle.

20

n consecutive LDF
takes only n+1 ¢
(“more multiple L
pipelined together

Can achieve this s
in other ways (LD
but nothing seems

Lower bound for r
2n + 1 cycles,
including n cycles

Why observed tim
non-consecutive L
costs of manipulat

_.E€SSOr

that

unit.

ual’,

1on.

19

Inputs and output of ADD are
ARMv7-M
has 16 integer registers, including

“Integer registers’ .

special-purpose “stack pointer”
and “program counter’ .

Each element of x array needs to
be “loaded” into a register.

Basic load instruction: LDR.
Manual says 2 cycles but adds
a note about “pipelining”.
Then more explanation: if next
instruction is also LDR (with
address not based on first LDR)
then 1t saves 1 cycle.

20

n consecutive LDRs

takes only n+ 1 cycles
(“more multiple LDRs can &
pipelined together”).

Can achieve this speed
in other ways (LDRD, LDM
but nothing seems faster.

Lower bound for nLDR + n
2n + 1 cycles,
including n cycles of arithme

Why observed time is highel
non-consecutive LDRs;
costs of manipulating i.

Inputs and output of ADD are
ARMv7-M
has 16 integer registers, including

“Integer registers’ .

special-purpose ‘stack pointer”
and “program counter .

Each element of x array needs to
be “loaded” into a register.

Basic load instruction: LDR.
Manual says 2 cycles but adds
a note about “pipelining”.
Then more explanation: if next
instruction is also LDR (with
address not based on first LDR)
then 1t saves 1 cycle.

20

n consecutive LDRs

takes only n+ 1 cycles
(“more multiple LDRs can be
pipelined together”).

Can achieve this speed
in other ways (LDRD, LDM)
but nothing seems faster.

Lower bound for nLDR 4+ n ADD:
2n + 1 cycles,
including n cycles of arithmetic.

Why observed time is higher:
non-consecutive LDRs;
costs of manipulating i.

21

nd output of ADD are
ARMv7-M

teger registers, including

registers’ .

yurpose stack pointer”
gram counter’ .

ment of x array needs to
led” Into a register.

ad instruction: LDR.
says 2 cycles but adds
bout “pipelining”.

ore explanation: if next
on is also LDR (with

not based on first LDR)
aves 1 cycle.

20

n consecutive LDRs

takes only n+ 1 cycles
(“more multiple LDRs can be
pipelined together”).

Can achieve this speed
in other ways (LDRD, LDM)
but nothing seems faster.

Lower bound for nLDR + n ADD:

2n + 1 cycles,
including n cycles of arithmetic.

Why observed time is higher:
non-consecutive LDRs;
costs of manipulating i.

21

int sum
{
int r
int
int x

X.

while
x0 -
x1 -
X2 -
X3 -
x4 -
X5 -
X6 :

of ADD are

. ARMv7-M
isters, including
tack pointer”
nter” .

“array needs to
) register.

sion: LDR.
les but adds
elining”™ .
ation: iIf next
LDR (with
on first LDR)
le.

20

n consecutive LDRs

takes only n+ 1 cycles
(“more multiple LDRs can be
pipelined together”).

Can achieve this speed
in other ways (LDRD, LDM)
but nothing seems faster.

Lower bound for nLDR + n ADD:

2n + 1 cycles,
including n cycles of arithmetic.

Why observed time is higher:
non-consecutive LDRs;
costs of manipulating i.

21

int sum(int *x)

{

int
int

int

result = 0

xy = x + 1

x0,x1,x2,x

x5,x6,x7,X

while (x != y)
O[(vola

x0
x1
X2
x3
x4
X5
X6

1[(vola

S O WD

(vola
(vola
(vola
(vola

(vola

20 21

re n consecutive LDRs int sum(int *x)

-M takes only n+ 1 cycles {

uding (“more multiple LDRs can be int result = O;
er" pipelined together”). int *y = x + 1000;

int x0,x1,x2,x3,x4,

x5,x6,x7,x8,x9;

Can achieve this speed
ds to in other ways (LDRD, LDM)

but nothing seems faster.
while (x != y) {

Lower bound for nLDR 4+ n ADD: x0 = 0[(volatile int
ds 2n + 1 cycles, x1 = 1[(volatile int
including n cycles of arithmetic. x2 = 2[(volatile int

ext . L = 3T - -
Why observed time is higher: x3 = 3l(volatile int

g _ _ - . .
R non-consecutive LDRs; x4 = 4[(volatile int
) costs of manipulating 1. x5 = bl(volatile int
x6 = 6[(volatile int

n consecutive LDRs

takes only n+ 1 cycles
(“more multiple LDRs can be
pipelined together”).

Can achieve this speed
in other ways (LDRD, LDM)
but nothing seems faster.

Lower bound for nLDR 4+ n ADD:
2n + 1 cycles,
including n cycles of arithmetic.

Why observed time is higher:
non-consecutive LDRs;
costs of manipulating i.

21

int sum(int *x)

{

int result = O;
int *y = x + 1000;
int x0,x1,x2,x3,x4,

x5,x6,x7,x8,x9;

while (x != y) {

x0 = O0[(volatile
x1 = 1[(volatile
x2 = 2[(volatile
x3 = 3[(volatile
x4 = 4[(volatile
x5 = 5[(volatile
x6 = 6[(volatile

int
int
int
int
int
int

int

22

utive LDRs

ly n+ 1 cycles
nultiple LDRs can be
| together”).

leve this speed
ways (LDRD, LDM)
\ing seems faster.

ound for nLDR + n ADD:
ycles,
r n cycles of arithmetic.

served time Is higher:
secutive LDRs:
manipulating i.

21

int sum(int *x)

{
int
int

int

result = 0O;

xy = x + 1000;

x0,x1,x2,x3,x4,
x5,x6,x7,x8,x9;

while (x != y) {

x0
x1
X2
X3
x4
X5
X6

= 0[(volatile

=1

I
S 01 S W N

(volatile
(volatile
(volatile
(volatile
(volatile

(volatile

int
int
int
int
int
int

int

22

X7 -
X3
X9 :
res
res
res
res
res
res
res
res
res
res
x0 :
x1 :

S
ycles
DRs can be

N

peed
RD, LDM)
. faster.

LDR + nADD:

of arithmetic.

e is higher:
DRs:

ng i.

21

int sum(int *x)

{

int
int

int

whil
x0
x1
X2
x3
x4
X5
X6

result = 0O;

xy = x + 1000;
x0,x1,x2,x3,x4,
x5,x6,x7,x8,x9;

e (x !'=y) {
= 0[(volatile
= 1[(volatile

(volatile

(volatile

 (volatile

(volatile

Il
S O WD

(volatile

int
int
int
int
int
int

int

22

x7 = 7T[(vola
x8 = 8[(vola
x9 = 9[(vola
result += x0
result += x1
result += x2
result += x3
result += x4
result += x5
result += x6
result += x7
result += x8
result += x9

x0 = 10[(vol
x1 = 11[(vol

IS

ADD:

tic.

21

int sum(int *x)

{

int
int

int

result = O;

xy = x + 1000;

x0,x1,x2,x3,x4,
x5,x6,x7,x8,x9;

while (x != y) {

x0
x1
X2
X3
x4
X5
X6

O[(volatile
1[(volatile
(volatile
(volatile

(volatile

(volatile

S 01 S W N

(volatile

int
int
int
int
int
int

int

22

x7 =71
x8 = 8[
x9 = 9]

result

result
result
result
result
result
result
result
result
result
x0 = 10
x1l = 11

(volatile int

(volatile int

(volatile int
+= x0;
+= x1;
+= x2;
+= x3;
+= x4;
+= x5;
+= X6;
+= X7;
+= x8;
+= x9;

[(volatile int

[(volatile int

22

int sum(int *x) x7 = 7T[(volatile int *)x];

{ x8 = 8[(volatile int *)x];

int result = O; x9 = 9[(volatile int *)x];
int *y = x + 1000; result += x0;
int x0,x1,x2,x3,x4, result += x1;
x5,x6,x7,x8,x9; result += x2;

result += x3;

while (x !'= y) { result += x4;
x0 = O[(volatile int *)x]; result += x5;
x1 = 1[(volatile int *)x]; result += x6;
x2 = 2[(volatile int *)x]; result += x7;
x3 = 3[(volatile int *)x]; result += x8;
x4 = 4[(volatile int *)x]; result += x9;
x5 = 5[(volatile int *)x]; x0 = 10[(volatile int *)x];
x6 = 6[(volatile int *)x]; x1 = 11[(volatile int *)x];

(int *x)

osult = 0O;

y

0,x1,x2,x3,x4,
H,X6,x7,x8,%x9;

(x

x + 1000;

1= y) {

O[(volatile

1

S 01 S W N

(volatile
(volatile
(volatile
(volatile
(volatile

(volatile

int
int
int
int
int
int

int

22

Xl =7
x8 = 8
x9

result
result
result
result
result
result
result
result
result

result

x0 = 10[(volatile int *)x]:

x1 = 11[(volatile int *)x]:

‘(volatile int *)x];:

9[(volatile int *)x];

‘(volatile int *)x];:

+= x0;
+= x1;
+= X2;
+= X3;
+= x4;
+= X5;
+= X6;
+= X7 ;
+= X3;
+= x9;

23

X2 :
X3
x4 :
X5
X6 :
X7 -
X8 :
X9 :
X +;
res
res
res
res
res

resi

000;

3,x4,
8,x9;

tile
tile
tile
tile
tile
tile
tile

int
int
int
int
int
int

int

22

xl =7
x8 = 8
x9

result
result
result
result
result
result
result
result
result

result

x0 = 10[(volatile int *)x]:

x1 = 11[(volatile int *)x]:

(volatile int *)x];

9[(volatile int *)x];

(volatile int *)x];:

+= x0;
+= x1;
+= X2;
+= xX3;
+= x4;
+= x5;
+= X6;
+= X7 ;
+= X8;
+= x9;

23

x2 = 12
x3 = 13
x4 = 14
xb = 15
X6 = 16
x?7 = 17
x8 = 18
x9 = 19
x += 20;
result
result
result
result
result
result

(vol
(vol
(vol
(vol
(vol
(vol
(vol
(vol

+= x0
+= x1
+= X2
+= X3
+= x4

+= x5

22

Xl =71
x8 = 8
x9

result
result
result
result
result
result
result
result
result

result

x0 = 10[(volatile int *)x]:

x1 = 11[(volatile int *)x]:

‘(volatile int *)x];:

9[(volatile int *)x];

‘(volatile int *)x];:

+= x0;
+= x1;
+= X2;
+= X3;
+= x4;
+= X5;
+= X6;
+= X7 ;
+= X3;
+= x9;

23

(volatile

 (volatile
 (volatile
 (volatile
 (volatile
 (volatile

 (volatile

 (volatile

+= x0;
+= x1;
+= X2,
+= X3;

+= x4;

x2 = 12
x3 = 13
x4 = 14
xb = 15
X6 = 16
x7 = 17
x8 = 18
x9 = 19
x += 20;
result
result
result
result
result
result

+= x5;

int
int
int
int
int
int
int

1nt

xl =7
x8 = 8
x9

result
result
result
result
result
result
result
result
result

result

x0 = 10[(volatile int *)x]:

x1 = 11[(volatile int *)x]:

(volatile int *)x];

9[(volatile int *)x];

((volatile int *)x];:

+= x0;
+= x1;
+= X2;
+= xX3;
+= x4;
+= Xx5;
+= X6;
+= X7 ;
+= X8;
+= x9;

23

(volatile

(volatile
(volatile
(volatile
(volatile
(volatile

(volatile

(volatile

+= x0;
+= x1;
+= X2;
+= X3;

+= x4;

x2 = 12
x3 = 13
x4 = 14
xb = 15
x6 = 16[
x7 = 17[
x8 = 18
x9 = 19
x += 20;
result
result
result
result
result
result

+= x5;

int
int
int
int
int
int
int

int

24

= 7
= 3

11t
11t
11t
11t
11t
11t
11t
11t
11t
11t

= 10[(volatile int *)x];

= 11[(volatile int *)x]:

‘(volatile int *)x];:

9[(volatile int *)x];

‘(volatile int *)x];:

+= x0;
+= x1;
+= X2;
+= X3;
+= x4;
+= X5;
+= X6;
+= X7 ;
+= X3;
+= x9;

23

x2 = 12
x3 = 13
x4 = 14
xb = 15
X6 = 16
x7 = 17
x8 = 18
x9 = 19
x += 20;
result
result
result
result
result
result

 (volatile
 (volatile
 (volatile
 (volatile
 (volatile
 (volatile
 (volatile

 (volatile

)
+= x0;
+= x1;
+= x2;
+= x3;
+= x4,
+= xb;

int
int
int
int
int
int
int

int

24

rest

rest

rest

resi

retur:

tile int *)x];

tile int *)x];

tile int *)x];

)
J

)
b

)

)

atile int *)x]:

atile int *)x]:

23

12[(volatile
13[(volatile
14[(volatile
15[(volatile

16 [(volatile
17 [(volatile
18[(volatile
19[(volatile

X2 =

X3 =

x4 =

X5 =

X6 =

X7 =

X8 =

X9 =

x += 20;
result +=
result +=
result +=
result +=
result +=
result +=

x0 ;
x1;
X2 ;
X3
x4 ;
X5 ;

int
int
int
int
int
int
int

int

24

result += x6
result += x7
result += x8

result += x9

return result;

23

12[(volatile
13[(volatile
14[(volatile
15[(volatile
16 [(volatile
17 [(volatile
18[(volatile
19[(volatile

X2 =

X3 =

x4 =

X5 =

X6 =

X7 =

X8 =

X9 =

x += 20;
result +=
result +=
result +=
result +=
result +=
result +=

x0;
x1;
X2 ;
X3;
x4 ;
X0 ;

int
int
int
int
int
int
int

int

24

result +=
result +=
result +=

result +=

X6 ;
X7 ;
X3 ;
x9;

return result;

x2 = 12
x3 = 13
x4 = 14
xb = 15
X6 = 16
X7 = 17[
x8 = 18
x9 = 19
x += 20;
result
result
result
result
result
result

(volatile

(volatile
(volatile
(volatile
(volatile
(volatile

(volatile

(volatile
+= x0;
+= x1;
+= X2;
+= x3;
+= x4;

+= x5;

int
int
int
int
int
int
int

int

24

result +=
result +=
result +=

result +=

X6 ;
>
X3 ;
x9;

return result;

25

x2 = 12
x3 = 13
x4 = 14
xb = 15
X6 = 16
X7 = 17[
x8 = 18
x9 = 19
x += 20;
result
result
result
result
result
result

(volatile

(volatile
(volatile
(volatile
(volatile
(volatile

(volatile

(volatile
+= x0;
+= x1;
+= X2,
+= x3;
+= x4;

+= xb;

int
int
int
int
int
int
int

int

24

result +=
result +=
result +=

result +=

X6 ;
X7 ;
X3 ;
x9;

return result;

2526 cycles. Even better in asm.

25

24

x2 = 12[(volatile int *)x]; result += x6;

x3 = 13[(volatile int *)x]; result += x7;

x4 = 14[(volatile int *)x]; result += x8;

x5 = 15[(volatile int *)x]; result += x9;

x6 = 16[(volatile int *)x]; }

x7 = 17[(volatile int *)x];

x8 = 18[(volatile int *)x]; return result;

x9 = 19[(volatile int *)x]; }

x += 20;

result += x0: 2526 cycles. Even better in asm.
result += xi; Wikipedia: “By the late 1990s for

N .
result X2; even performance sensitive code,

result += x3; optimizing compilers exceeded the

result += x4; performance of human experts.”

result += xb5;

24

x2 = 12[(volatile int *)x]; result += x6;

x3 = 13[(volatile int *)x]; result += x7;

x4 = 14[(volatile int *)x]; result += x8;

x5 = 15[(volatile int *)x]; result += x9;

x6 = 16[(volatile int *)x]; }

x7 = 17[(volatile int *)x];

x8 = 18[(volatile int *)x]; return result;

x9 = 19[(volatile int *)x]; }

x += 20;

result += x0: 2526 cycles. Even better in asm.
result += xi; Wikipedia: “By the late 1990s for

N .
result X2; even performance sensitive code,

result += x3; optimizing compilers exceeded the

result += x4; performance of human experts.”

result += x5; — [citation needed]

12
13
14
15
16
17
18
19

11t
11t
11t
11t
11t
11t

 (volatile
 (volatile
 (volatile
 (volatile
 (volatile
 (volatile
 (volatile
 (volatile

20;

;
+= x0;
+= x1;
+= X2;
+= X3;
+= x4;
+= xb;

int
int
int
int
int
int
int

int

24

result += x6;
result += x7;
result += x8;
result += x9;

return result;

2526 cycles. Even better in asm.

Wikipedia: "By the late 1990s for
even performance sensitive code,
optimizing compilers exceeded the
performance of human experts.”
— |citation needed]

25

A real e

Salsa20
30.25 cy

Lower b
64 bytes
21 -16 1

20-10 1
so at lea

ARMvV7-
includes
as part «
(Compils

atile
atile
atile
atile
atile
atile
atile

atile

int
int
int
int
int
int
int

int

24

result += x6;
result += x7;
result += x8;

result += x9;

return result;

2526 cycles. Even better in asm.

Wikipedia: "By the late 1990s for
even performance sensitive code,
optimizing compilers exceeded the
performance of human experts.”
— |citation needed]

25

A real example

Salsa20 reference
30.25 cycles/byte

Lower bound for a

64 bytes require

21 - 16 1-cyc
20 - 16 1-cyc

e AD
e XO

so at least 10.25 ¢

ARMv7-M instruc

includes free

rotat

as part of XOR in:
(Compiler knows t

24

result += x6;
result += x7;
result += x8;

result += x9;

return result;

2526 cycles. Even better in asm.

Wikipedia: "By the late 1990s for
even performance sensitive code,
optimizing compilers exceeded the
performance of human experts.”
— |citation needed]

25

A real example

Salsa20 reference software:
30.25 cycles/byte on this CF

| ower bound for arithmetic:

64 bytes require

21 - 16 1-cyc
20 - 16 1-cyc

e ADDs,
e XORs,

so at least 10.25 cycles/byte

ARMv7-M instruction set

includes free

rotation

as part of XOR instruction.

(Compiler knows this.)

result += x6;
result += x7;
result += x8;

result += x9;

return result;

2526 cycles. Even better in asm.

Wikipedia: "By the late 1990s for
even performance sensitive code,
optimizing compilers exceeded the
performance of human experts.”
— |citation needed]

25

26

A real example

Salsa20 reference software:
30.25 cycles/byte on this CPU.

| ower bound for arithmetic:

64 bytes require

21 - 16 1-cyc
20 - 16 1-cyc

e ADDs,
e XORs,

so at least 10.25 cycles/byte.

ARMv7-M instruction set

includes free

rotation

as part of XOR instruction.

(Compiler knows this.)

11t += x6;
nlt += x7;
1lt += x8;
11t += x9;
n result;

“les. Even better in asm.

ia: "By the late 1990s for
formance sensitive code,
ng compilers exceeded the
ance of human experts.”
ion needed]

25

A real example

Salsa20 reference software:

30.25 cycles/byte on this CPU.

Lower bound for arithmetic:
64 bytes require

21 - 16 1-cycle ADDs,

20 - 16 1-cycle XORs,

so at least 10.25 cycles/byte.

ARMv7-M instruction set
includes free rotation

as part of XOR instruction.
(Compiler knows this.)

26

Detailed
several ¢
load 11i-

store 1.

Can repl
(Compils

Then ob

18 cycle

plus b ¢
Still far

better in asm.

e late 1990s for
sensitive code,
rs exceeded the
man experts.”

d]

25

A real example

Salsa20 reference software:

30.25 cycles/byte on this CPU.

Lower bound for arithmetic:
64 bytes require
21 - 16 1-cycle ADDs,

20 - 16 1-cycle XORs,
so at least 10.25 cycles/byte.

ARMv7-M instruction set
includes free rotation

as part of XOR instruction.
(Compiler knows this.)

26

Detailed benchma
several cycles/byte
load littleendia

store_littleendil

Can replace with |
(Compiler doesn't

Then observe 23 ¢
18 cycles/byte for

plus 5 cycles/byte
Still far above 10.;

dSm.

)Os for
ode,

ed the
rts.”

25

A real example

Salsa20 reference software:

30.25 cycles/byte on this CPU.

Lower bound for arithmetic:
64 bytes require

21 - 16 1-cycle ADDs,

20 - 16 1-cycle XORs,

so at least 10.25 cycles/byte.

ARMv7-M instruction set
includes free rotation

as part of XOR instruction.
(Compiler knows this.)

26

Detailed benchmarks show

several cycles/byte spent on

load _littleendian and

store littleendian.

Can replace with LDR and ¢

(Compiler

doesn’t see this.)

Then observe 23 cycles/byte

18 cycles/
plus b cyc

oyte for rounds,

es/byte overhead.

Still far above 10.25 cycles/

A real example

Salsa20 reference software:

30.25 cycles/byte on this CPU.

Lower bound for arithmetic:
64 bytes require
21 - 16 1-cycle ADDs,

20 - 16 1-cycle XORs,
so at least 10.25 cycles/byte.

ARMv7-M instruction set
includes free rotation

as part of XOR instruction.
(Compiler knows this.)

26

Detailed benchmarks show
several cycles/byte spent on
load littleendian and

store littleendian.

Can replace with LDR and STR.
(Compiler doesn't see this.)

Then observe 23 cycles/byte:

18 cycles/byte for rounds,

plus 5 cycles/byte overhead.
Still far above 10.25 cycles/byte.

27

A real example

Salsa20 reference software:

30.25 cycles/byte on this CPU.

Lower bound for arithmetic:
64 bytes require

21 - 16 1-cycle ADDs,

20 - 16 1-cycle XORs,

so at least 10.25 cycles/byte.

ARMv7-M instruction set
includes free rotation

as part of XOR instruction.
(Compiler knows this.)

26

27
Detailed benchmarks show

several cycles/byte spent on
load_littleendian and

store littleendian.

Can replace with LDR and STR.
(Compiler doesn't see this.)

Then observe 23 cycles/byte:

18 cycles/byte for rounds,

plus 5 cycles/byte overhead.

Still far above 10.25 cycles/byte.

Gap is mostly loads, stores.
Minimize load/store cost by

choosing “spills” carefully.

xample

reference software:

cles/byte on this CPU.

ound for arithmetic:
require

-cycle ADDs,

-cycle XORs,

st 10.25 cycles/byte.

M instruction set
free rotation

f XOR instruction.
or knows this.)

26

Detailed benchmarks show
several cycles/byte spent on
load littleendian and

store littleendian.

Can replace with LDR and STR.

(Compiler doesn't see this.)

Then observe 23 cycles/byte:
18 cycles/byte for rounds,

plus 5 cycles/byte overhead.

Still far above 10.25 cycles/byte.

Gap is mostly loads, stores.
Minimize load/store cost by

choosing “spills” carefully.

27

Which o
should b
Don't tr
optimize

Make lo
Don't tr
optimize

Spill to
Don't tr
optimize

On bigg
selecting
IS critica

software:

on this CPU.

rithmetic:

Ds,
Rs,
ycles/byte.

tion set
lon

struction.
his.)

26

Detailed benchmarks show
several cycles/byte spent on
load littleendian and

store littleendian.

Can replace with LDR and STR.

(Compiler doesn't see this.)

Then observe 23 cycles/byte:
18 cycles/byte for rounds,
plus 5 cycles/byte overhead.

Still far above 10.25 cycles/byte.

Gap is mostly loads, stores.
Minimize load/store cost by

choosing “spills” carefully.

21

Which of the 16 S
should be In regist
Don't trust compi
optimize register ¢

Make loads consec
Don't trust compi
optimize Instructic

Spill to FPU inste.

Don't trust compi
optimize Instructic

On bigger CPUs,
selecting vector In
s critical for perfc

°U.

26

Detailed benchmarks show
several cycles/byte spent on
load littleendian and

store littleendian.

Can replace with LDR and STR.

(Compiler doesn’t see this.)

Then observe 23 cycles/byte:
18 cycles/byte for rounds,

plus 5 cycles/byte overhead.

Still far above 10.25 cycles/byte.

Gap is mostly loads, stores.
Minimize load/store cost by

choosing “spills” carefully.

27

Which of the 16 Salsa20 wo
should be in registers?
Don't trust compiler to
optimize register allocation.

Make loads consecutive?
Don't trust compiler to
optimize instruction schedul

Spill to FPU instead of stac
Don't trust compiler to
optimize Instruction selectio

On bigger CPUs,
selecting vector instructions
is critical for performance.

Detailed benchmarks show
several cycles/byte spent on
load littleendian and

store littleendian.

Can replace with LDR and STR.

(Compiler doesn’t see this.)

Then observe 23 cycles/byte:
18 cycles/byte for rounds,
plus 5 cycles/byte overhead.

Still far above 10.25 cycles/byte.

Gap is mostly loads, stores.
Minimize load/store cost by

choosing “spills” carefully.

21

Which of the 16 Salsa20 words
should be in registers?

Don't trust compiler to
optimize register allocation.

Make loads consecutive?
Don't trust compiler to

optimize Instruction scheduling.

Spill to FPU instead of stack?
Don't trust compiler to

optimize instruction selection.

On bigger CPUs,
selecting vector instructions

s critical for performance.

23

benchmarks show
ycles/byte spent on
ttleendian and

1ttleendian.

ace with LDR and STR.

er doesn't see this.)

serve 23 cycles/byte:
s /byte for rounds,

ycles /byte overhead.

above 10.25 cycles/byte.

10stly loads, stores.
e load /store cost by

- “spills” carefully.

>

27

Which of the 16 Salsa20 words
should be in registers?

Don't trust compiler to
optimize register allocation.

Make loads consecutive?
Don't trust compiler to

optimize instruction scheduling.

Spill to FPU instead of stack?
Don't trust compiler to
optimize instruction selection.

On bigger CPUs,
selecting vector instructions

s critical for performance.

28

The big

CPUs ar
farther

from nai

rks show
> spent on
n and

all.

DR and STR.

see this.)

ycles /byte:
rounds,
overhead.

25 cycles/byte.

s, stores.
re cost by
arefully.

21

Which of the 16 Salsa20 words
should be in registers?

Don't trust compiler to
optimize register allocation.

Make loads consecutive?
Don't trust compiler to

optimize Instruction scheduling.

Spill to FPU instead of stack?
Don't trust compiler to
optimize instruction selection.

On bigger CPUs,
selecting vector instructions

s critical for performance.

23

The big picture

CPUs are evolving
farther and farthet
from naive models

> TR.

byte.

27

Which of the 16 Salsa20 words
should be in registers?

Don't trust compiler to
optimize register allocation.

Make loads consecutive?
Don't trust compiler to

optimize instruction scheduling.

Spill to FPU instead of stack?
Don't trust compiler to
optimize instruction selection.

On bigger CPUs,
selecting vector instructions

s critical for performance.

28

The big picture

CPUs are evolving
farther and farther away
from naive models of CPUs.

Which of the 16 Salsa20 words
should be in registers?

Don't trust compiler to
optimize register allocation.

Make loads consecutive?
Don't trust compiler to

optimize Instruction scheduling.

Spill to FPU instead of stack?
Don't trust compiler to

optimize instruction selection.

On bigger CPUs,
selecting vector instructions

s critical for performance.

23

The big picture

CPUs are evolving
farther and farther away
from naive models of CPUs.

29

Which of the 16 Salsa20 words
should be in registers?

Don't trust compiler to
optimize register allocation.

Make loads consecutive?
Don't trust compiler to

optimize Instruction scheduling.

Spill to FPU instead of stack?
Don't trust compiler to
optimize instruction selection.

On bigger CPUs,
selecting vector instructions
is critical for performance.

23

The big picture

CPUs are evolving

farther and farther away

from naive models of CPUs.

Minor optimization challenges:
e Pipelining.

e Superscalar processing.

Major optimization challenges:

e \Vectorization.

e Many threads; many cores.

e [he memory hierarchy;

the ring; t
e Larger-sca
e Larger-sca

N€ MESN.

e parallelism.

e networking.

29

f the 16 Salsa20 words
e in registers?

ust compiler to

' register allocation.

ads consecutive?
ust compiler to

Instruction scheduling.

FPU instead of stack?

ust compiler to
' Instruction selection.

er CPUs,

- vector Instructions
| for performance.

28

The big picture

CPUs are evolving

farther and farther away

from naive models of CPUs.

Minor optimization challenges:
e Pipelining.

e Superscalar processing.

Major optimization challenges:

e \Vectorization.

e Many threads; many cores.

e [he memory hierarchy;

the ring; t
e Larger-sca
e Larger-sca

NE€ MESN.

e parallelism.

e networking.

29

CPU des
fo 8
F X
A 7
| 2
7 7

Gates &
product
of intege

alsa20 words
ers?

ler to
llocation.

utive?
ler to

n scheduling.

ad of stack?
ler to
)n selection.

structions

FMance.

23

The big picture

CPUs are evolving
farther and farther away
from naive models of CPUs.

Minor optimization challenges:

e Pipelining.
e Superscalar processing.

Major optimization challenges:

e \ectorization.

e Many threads; many cores.

e [he memory hierarchy;
the ring; the mesh.

e Larger-scale parallelism.

e Larger-scale networking.

29

CPU design in a n

&0

X

Y

fo
i
!

> <= >
V2 NN

\
ho

Y
h3

5€H¢>Iw<>l¢>l

Gates x:a,b— 1
product hg + 2hy -
of integers fo + 2f

rds

Ing.

K7

28

The big picture

CPUs are evolving

farther and farther away

from naive models of CPUs.

Minor optimization challenges:
e Pipelining.

e Superscalar processing.

Major optimization challenges:

e \Vectorization.

e Many threads; many cores.

e [he memory hierarchy;

the ring; t
e Larger-sca
e L arger-sca

NE€ MeESN.

e parallelism.

e networking.

29

CPU design in a nutshell

¢>&><m

NS

hp h1 h3 h

> <= >

N

/NN

i

Y V

Gates ~:a, b— 1 — ab com
product hg + 2hy +4hy + 8
of integers fo + 2f1, g0 + 2g

29
The big picture

CPUs are evolving
farther and farther away
from naive models of CPUs.

Minor optimization challenges:
e Pipelining.
e Superscalar processing.

Major optimization challenges:
e \ectorization.
e Many threads; many cores.
e [he memory hierarchy;

the ring; the mesh.

e Larger-scale parallelism.

e Larger-scale networking.

CPU design in a nutshell

Exgoxglxil
T
v
W/\Q\ﬁ
\ \
ol

Gates = : a, b— 1 — ab computing
product hg + 2h1 + 4hy + 8h3
of integers fy + 2f1, go + 2g1.-

picture

e evolving

nd farther away
ve models of CPUs.

otimization challenges:

1ng.
scalar processing.

otimization challenges:

1zation.
threads; many cores.
iemory hierarchy;

g, the mesh.

-scale parallelism.

-scale networking.

29

CPU design in a nutshell

¢>&><m

NS

ho hi hy ho

> <= >

N

/NN

o

/ V

Gates = : a, b— 1 — ab computing
product hg + 2h1 + 4hy + 8h3
of integers fo + 2f1, go + 2g41.

30

Electrici
percolat
It fo, A1,
then ho,

a few m

- away

- of CPUs.

n challenges:

essing.
1 challenges:
nany cores.

rarchy;
sh.

yllelism.

yvorking.

29

CPU design in a nutshell

K/
W/\Q\ﬁ

! !
A A

of integers fy + 2f1, go + 2g1.

Gates = : a, b— 1 — ab computing
product hg + 2h1 + 4hy + 8h3

30

Electricity takes ti
percolate through

|t fo, fl,go,gl are
then ho, hi, ho, h3

a few moments la1

CS.

eS.

29

CPU design in a nutshell

¢>@ﬁ>< ;ﬁi
AN !

A
hp h1 h3 h

> <= >

N

Q
Y

/NN

Q
V

Gates = : a, b— 1 — ab computing
product hg + 2h1 + 4hy + 8h3
of integers fy + 2f1, go + 2g41.

30

Electricity takes time to
percolate through wires and
If fo, f1, g0, g1 are stable
then hg, h1, ho, h3 are stable
a few moments later.

CPU design in a nutshell

Exgoxglxil
N
ﬁ/
2
! !
A

Gates = : a, b— 1 — ab computing
product hg + 2h1 + 4hy + 8h3
of integers fy + 2f1, go + 2g1.

30

Electricity takes time to
percolate through wires and gates.
If fo, f1, g0, g1 are stable

then hg, hy1, ho, h3 are stable
a few moments later.

31

CPU design in a nutshell

K/
W/\Q\ﬁ
! !
A
ho hi hs ho

Gates = : a, b— 1 — ab computing
product hg + 2h1 + 4hy + 8h3
of integers fy + 2f1, go + 2g1.

30

Electricity takes time to
percolate through wires and gates.
If fo, f1, g0, g1 are stable

then hg, hy1, ho, h3 are stable
a few moments later.

Build circuit with more gates
to multiply (e.g.) 32-bit integers:

(Details omitted.)

31

S1gn In a nutshell

0 g1 N
> X
A

I
A

Y

hs ho

> <= >

Q
V

XS
AN

- a,br— 1— ab computing
hg + 2h1 + 4hy 4 8h3
rs fo + 2f1, g0 + 2471.

30

Electricity takes time to

percolate through wires and gates.

If fo, f1, g0, g1 are stable
then hg, h1, ho, h3 are stable
a few moments later.

Build circuit with more gates
to multiply (e.g.) 32-bit integers:

(Details omitted.)

31

Build cit
32-bit in
given 4-
and 32-I

reg
ré

utshell

— ab computing
+ 4hy + 8h3

1,80 + 241

30

Electricity takes time to

percolate through wires and gates.

If fo, f1, g0, g1 are stable
then hg, hy1, ho, h3 are stable
a few moments later.

Build circuit with more gates
to multiply (e.g.) 32-bit integers:

(Details omitted.)

31

Build circuit to co
32-bit integer r;

given 4-bit integer
and 32-bit integer

registet
read

puting

30 31
Electricity takes time to

percolate through wires and gates.

If fo, f1, g0, g1 are stable
then hg, h1, ho, h3 are stable
a few moments later.

Build circuit with more gates
to multiply (e.g.) 32-bit integers:

(Details omitted.)

Build circuit to compute
32-bit Integer r;
given 4-bit integer |

and 32-bit integers rg, r1, . ..

register
read

Electricity takes time to

percolate through wires and gates.

If fo, f1, g0, g1 are stable
then hg, hy, ho, h3 are stable
a few moments later.

Build circuit with more gates
to multiply (e.g.) 32-bit integers:

(Details omitted.)

31

Build circuit to compute
32-bit integer r;
given 4-bit integer |

and 32-bit integers rg, 1, ..., r15:

register
read

32

Electricity takes time to

percolate through wires and gates.

If fo, f1, g0, g1 are stable
then hg, hy, ho, h3 are stable
a few moments later.

Build circuit with more gates
to multiply (e.g.) 32-bit integers:

(Details omitted.)

31

32
Build circuit to compute

32-bit integer r;
given 4-bit integer |
and 32-bit integers rg, 1, ..., r15:

register
read

Build circuit for “register write":

M0, -1 115, S, [+ £y, ..., I1c
I, I __
where ri = rj except r; =s.

Electricity takes time to

percolate through wires and gates.

If fo, f1, g0, g1 are stable
then hg, hy, ho, h3 are stable
a few moments later.

Build circuit with more gates
to multiply (e.g.) 32-bit integers:

(Details omitted.)

31

32
Build circuit to compute

32-bit integer r;
given 4-bit integer |
and 32-bit integers rg, 1, ..., r15:

register
read

Build circuit for “register write":

M0, -1 115, S, [+ £y, ..., I1c
I, I __
where ri = rj except r; =s.

Build circuit for addition. Etc.

ty takes time to

e through wires and gates.

0y, g1 are stable
hi, ho, h3 are stable
oments later.

cult with more gates
ply (e.g.) 32-bit integers:

omitted.)

31

Build circuit to compute
32-bit Integer r;
given 4-bit integer |

and 32-bit integers ry, 1, ..., r5:

register
read

Build circuit for “register write":

M0, ..., 15,5, 1+ 1y, ..., I1c
I, I _

where ri = rj except r; = s.

Build circuit for addition. Etc.

32
o,...,r

where ré

regils
rea

me to

wires and gates.

stable
are stable

er.

more gates
32-bit integers:

31

Build circuit to compute
32-bit integer r;
given 4-bit integer |

and 32-bit integers rg, r1, ..., rs:

register
read

Build circuit for “register write":

n, ..., rs,S, i1y, ..., e
I, I
where ri = rj except r; = s.

Build circuit for addition. Etc.

32

where r, = rp exce

register|reg
read | r

registe
write

gates.

gers:

31

Build circuit to compute

32-bit Integer r;

given 4-bit integer |

and 32-bit integers rg, r1, . . ., rs:

register
read

Build circuit for “register write":

n, ..., M5, S, 0 — 1y, ..., e
I . I
where ri = rj except r; = s.

Build circuit for addition. Etc.

32

n, ..., rs, i, j, k—rg, ..., r
) I .
where r, = ry except r; = r;.

registerregister
read | read

register
write

Build circuit to compute
32-bit integer r;
given 4-bit integer |

and 32-bit integers rg, r1, ..., rs:

register
read

Build circuit for “register write":

n, ..., rs,S, i1y, ..., e
I, I __
where ri = rj except r; = s.

Build circuit for addition. Etc.

32

n, ..., rs, i j, k—ry, ..., e
r_ I
where r, = ry except r; = rjry:

registerjregister
read | read

register
write

33

cult to compute
teger r;
DIt Integer |

oIt Integers rg, 1, .. ., rs:

|1ster
2ad

cuit for “register write":

15, S, 0 — Iy, ..., e
o r_
= rj except r; =s.

cuit for addition. Etc.

32

n, ..., rs, i, j, k—ry, ..., e
I I
where r, = ry except r; = rjr:

registerregister
read | read

register
write

33

Add mo

More ari
replace |

egister write';

/ /
Qe e
pt rl =s.

1dition. Etc.

32
n, ..., rs, i j, k—ry, ..., e

/ / .
where r, = ry except r; = rjry:

registerjregister
read | read

register
write

33

Add more flexibilit

More arithmetic:

replace (i, J, k) wil
(“x",1i,J, k) anc
(“4+",1,j, k) and r

ite”:

LC.

32

n, ..., rs, i, j, k—ry, ..., e
I I
where r, = ry except r; = rjr:

registerregister
read | read

register
write

33

Add more flexibility.

More arithmetic:

replace (1, j, k) with

(“x",1i,Jj, k) ana

(“4",1,J, k) anc

more optio

n, ..., rs, i j, k—ry, ..., e
r_ I
where r, = ry except r; = rjry:

registerjregister
read | read

register
write

33

Add more flexibility.

More arithmetic:

replace (1, J, k) with

(“x",1i,Jj, k) anc
(“4",1,J, k) anc

more options.

34

n, ..., rs, i j, k—ry, ..., e
r_ I
where r, = ry except r; = rjry:

registerjregister
read | read

register
write

33

Add more flexibility.

More arithmetic:
replace (1, J, k) with
(“x",1i,Jj, k) anc

(“4",1,j, k) and more options.

“Instruction fetch™:
p > 0p, ip, jp, kp, P

34

n, ..., rs, i j, k—ry, ..., e
r_ I
where r, = ry except r; = rjry:

registerjregister
read | read

register
write

33

Add more flexibility.

More arithmetic:
replace (1, J, k) with
(“x",1i,Jj, k) anc

(“4",1,j, k) and more options.

“Instruction fetch™:
p > 0p, ip, jp, kp, P

“Instruction decode”:

decompression of compressed
" . /

format for op, Ip, jp, kp, P’

34

n, ..., rs, i j, k—ry, ..., e
r_ I
where r, = ry except r; = rjry:

registerjregister
read | read

register
write

33

34
Add more flexibility.

More arithmetic:
replace (1, J, k) with
(“x",1i,Jj, k) anc

(“4",1,j, k) and more options.

“Instruction fetch":
- - /
P Op,ip, Jp, Kp, P .

“Instruction decode”:

decompression of compressed
" . /

format for op, Ip, jp, kp, P’

More (but slower) storage:
“load” from and “store” to
larger "RAM" arrays.

, - /
15,/,./,ka0 I’15
= ry except ri = rjry:

terregister
d | read

egister
write

33

Add more flexibility.

More arithmetic:
replace (1, j, k) with
(“x",1i,Jj, k) ana

(“4",1,j, k) and more options.

“Instruction fetch":
" " ,
P Op,ip, Jp, Kp, P

“Instruction decode”:

decompression of compressed
. /

format for op, Ip, jp, kp, P’

More (but slower) storage:
“load” from and “store” to
larger "RAM" arrays.

34

Build “fl
storing (

Hook (f
flip-flops

Hook oL
Into the

At each
flip-flops
with the

Clock ne
for elect
all the w
from flig

> Iy s
pt rl = rjry:
rister
ead

1

33

Add more flexibility.

More arithmetic:
replace (7, J, k) with
(“x",1i,Jj, k) anc

(“4",1i,j, k) and more options.

“Instruction fetch”:

p > Op, ip, jp, kp, P

“Instruction decode”:

decompression of compressed
" " /

format for op, Ip, jp, kp, P’

More (but slower) storage:
“load” from and “store” to
larger "RAM" arrays.

34

Build “flip-flops”
storing (p, ro, . . .,

Hook (p, o, ..., N
flip-flops into circt

Hook outputs (p,
into the same flip-

At each “clock tic
flip-tlops are overv
with the outputs.

Clock needs to be
for electricity to p
all the way throug
from flip-flops to f

15

33

Add more flexibility.

More arithmetic:
replace (1, J, k) with
(“x",1i,Jj, k) ana

(“4",1,j, k) and more options.

“Instruction fetch":
" " ,
P Op,ip, Jp, Kp, P .

“Instruction decode”:

decompression of compressed
. /

format for op, Ip, jp, kp, P’

More (but slower) storage:
“load” from and “store” to
larger "RAM" arrays.

34

Build “flip-flops”
storing (p, rg, ..., 5).

Hook (p, n, ..., r15)
flip-tlops into circuit inputs.

Hook outputs (p, r, .. ., 11
into the same flip-flops.

At each “clock tick”,
flip-tlops are overwritten
with the outputs.

Clock needs to be slow enol
for electricity to percolate
all the way through the circ
from flip-flops to flip-flops.

Add more flexibility.

More arithmetic:
replace (1, Jj, k) with
(“x",1i,Jj, k) anc

(“4",1,j, k) and more options.

“Instruction fetch”:

p > 0p, ip, jp, kp, P

“Instruction decode”:

decompression of compressed
" " /

format for op, Ip, jp, kp, P’

More (but slower) storage:
“load” from and “store” to
larger "RAM" arrays.

34

35

Build “flip-flops”
storing (p, ro, ..., s5).
Hook (p, n, ..., r15)

flip-tlops into circuit inputs.

Hook outputs (p, 1, ..., ris)

into the same flip-flops.

At each “clock tick™,
flip-tlops are overwritten
with the outputs.

Clock needs to be slow enough
for electricity to percolate
all the way through the circuit,
from flip-flops to flip-flops.

re flexibility.
thmetic:

i, J, k) with
j, k) anc

j, k) and more options.

tion fetch™:

ip, Jp, kp, P’

tion decode™:

ession of compressed
or 0p, ip, jp, kp, P’

ut slower) storage:

rom and ‘‘store’ to
RAM™ arrays.

34

Build “flip-flops”
storing (p, rg, ..., 5).

Hook (p, n, ..., r15)
flip-tlops into circuit inputs.

Hook outputs (p', 1, . .., ris)
into the same flip-flops.

At each “clock tick™,
flip-tlops are overwritten
with the outputs.

Clock needs to be slow enough
for electricity to percolate
all the way through the circuit,
from flip-flops to flip-flops.

35

Now ha\

regist
reac

/

Ié

\

Further
e.g., rot

34 35

V. Build “flip-flops” Now have semi-fle
storing (p, rg, ..., r15). flip-flops
Insn
h Hook (p, rg, ..., rs) fatch
flip-tlops into circuit inputs. |
nore options. ;o | dmsré
Hook outputs (p', o - - - r15) ecode
b into the same flip-flops. registerlregister
o y Do read | read
At each “clock tick’, .
e : flip-tlops are overwritten >< _
compressed with the outputs. .
ky D' register
01 Kpr P Clock needs to be slow enough write
storage: for electricity to percolate
store” to all the way through the circuit, Further flexibility |

S, from flip-flops to flip-flops. e.g., rotation instr

35

Build “flip-flops” Now have semi-flexible CPU
storing (p, rg, ..., r5). flip-flops
Hook (p, n, ..., r15) flentinh
flip-tlops into circuit inputs. |
Insn
Hook outputs (p', 1, . .., ris) decode
into the same flip-flops. register|register
_ read | read
At each “clock tick"”,

flip-flops are overwritten ><

with the outputs.

register
Clock needs to be slow enough write

for electricity to percolate
all the way through the circuit, Further flexibility is useful:
from flip-flops to flip-flops. e.g., rotation instructions.

Build “flip-flops”
storing (p, rg, ..., 5).

Hook (p, n, ..., r15)
flip-tlops into circuit inputs.

Hook outputs (p, 1y, ..., ris)
into the same flip-flops.

At each “clock tick™,
flip-flops are overwritten
with the outputs.

Clock needs to be slow enough
for electricity to percolate
all the way through the circuit,
from flip-flops to flip-flops.

35

Now have semi-flexible CPU:

flip-flops

INsn
fetch

Insn
decode

registerjregister
read | read

X

register
write

Further flexibility is useful:
e.g., rotation instructions.

36

ip-flops”
P, 1, ..., H5).
, 10y - -y 115)

 Into circuit inputs.

tputs (p', ry, ..., 1{s)

same flip-flops.

“clock tick’,
, are overwritten
outputs.

eds to be slow enough
ricity to percolate
/ay through the circult,
-flops to flip-flops.

35

Now have semi-flexible CPU:

flip-flops

INsn
fetch

Insn
decode

registerjregister
read | read

X

register
write

Further flexibility is useful:
e.g., rotation instructions.

36

"Pipelin
fli

r15)-

5)

11t inputs.

ry, - -1 1s)

flops.

kll |
vritten

slow enough
ercolate
h the circuit,
lip-flops.

35

Now have semi-flexible CPU:

flip-flops

INsn
fetch

Insn
decode

registerjregister
read | read

X

register
write

Further flexibility is useful:
e.g., rotation instructions.

36

“Pipelining” allow

thip-flops

Insn
fetch
flip-flops

Insn
decode

flip-flops

registerjregister
read | read

flip-flops

|-

flip-flops

register
write

1igh

It,

35

Now have semi-flexible CPU:

flip-flops

INsn
fetch

Insn
decode

registerjregister
read | read

X

register
write

Further flexibility is useful:
e.g., rotation instructions.

36

“Pipelining” allows faster cls

f

Ip-tlops

INsn
fetch

lip-flops

Insn
decode

f

lip-flops

register
read

register
read

lip-tlops

Pl

tlip-flops

register
write

stag

stag

stage

stag

stag

36

Now have semi-flexible CPU: "Pipelining” allows faster clock:
flip-flops flip-flops
Insn insn
fetch fatch stage 1
e flip-flops

registerlregister

read | read flip-flops

registerlregister

stage 3
>< read | read &
flip-flops
register tage 4
write

flip-flops
Further flexibility is useful: register g 5
e.g., rotation instructions. write

/e semi-flexible CPU:
p-flops

INsn
fetch

Insn
ecode

erregister
I | read

gister
write

flexibility is useful:

ation instructions.

36

tlip-tlops

INsn
fetch

flip-flops

Insn
decode

flip-flops

register
read

register
read

flip-

lops

Pl

tlip-flops

regi

write

ster

"Pipelining” allows faster clock:

stage 1

stage 2

stage 3

stage 4

stage 5

37

Goal: St
one tick

Instructi
reads ne

feeds p’

After ne
Instructi
uncompl
while ins

reads an

Some ex
Also ext
preserve
e.g., sta

xible CPU:

s useful:
uctions.

36

“Pipelining” allows faster clock:

thip-flops

INsn
fetch

flip-flops

Insn
decode

flip-flops

registerjregister
read | read

flip-flops

X

flip-flops

register
write

stage 1

stage 2

stage 3

stage 4

stage 5

37

Goal: Stage n har
one tick after stag

Instruction fetch
reads next Instruci

feeds p’ back, sen

After next clock ti
Instruction decode

uncompresses this
while instruction f
reads another inst

Some extra flip-flc
Also extra area to
preserve Instructio
e.g., stall on read-

36

“Pipelining” allows faster clock:

f

Ip-tlops

INsn
fetch

lip-flops

Insn
decode

f

lip-flops

register
read

register
read

lip-tlops

Pl

tlip-flops

register
write

stage 1

stage 2

stage 3

stage 4

stage 5

37

Goal: Stage n handles instri
one tick after stage n — 1.

Instruction fetch
reads next instruction,

feeds p’ back, sends instruct

After next clock tick,
Instruction decode

uncompresses this instructio
while instruction fetch
reads another instruction.

Some extra flip-flop area.
Also extra area to

preserve Instruction semanti
e.g., stall on read-after-write

“Pipelining” allows faster clock:

thip-flops

INsn
fetch

flip-flops

Insn
decode

flip-flops

registerjregister
read | read

flip-flops

X

flip-flops

register
write

stage 1

stage 2

stage 3

stage 4

stage 5

37

38
Goal: Stage n handles instruction

one tick after stage n — 1.

Instruction fetch
reads next instruction,

feeds p’ back, sends instruction.

After next clock tick,
Instruction decode

uncompresses this instruction,
while instruction fetch
reads another instruction.

Some extra flip-flop area.

Also extra area to

preserve Instruction semantics:
e.g., stall on read-after-write.

ing" allows faster clock:

p-flops

INsn
fetch

p-flops

Insn
ecode

p-flops

er|register
read

p-flops

X

p-flops

gister
write

stage 1

stage 2

stage 3

stage 4

stage 5

37

Goal: Stage n handles instruction
one tick after stage n — 1.

Instruction fetch
reads next instruction,

feeds p’ back, sends instruction.

After next clock tick,
Instruction decode

uncompresses this instruction,
while instruction fetch
reads another instruction.

Some extra flip-flop area.

Also extra area to

preserve Iinstruction semantics:
e.g., stall on read-after-write.

38

“Supers

register
read

Ié€

s faster clock:

stage 1

stage 2

stage 3

stage 4

stage 5

37

Goal: Stage n handles instruction
one tick after stage n — 1.

Instruction fetch
reads next instruction,

feeds p’ back, sends instruction.

After next clock tick,
Instruction decode

uncompresses this instruction,
while instruction fetch
reads another instruction.

Some extra flip-flop area.

Also extra area to

preserve Instruction semantics:
e.g., stall on read-after-write.

38

“Superscalar” prot

flip-flops

INsn
fetch

INSI
fetc

flip-1

lops

Insn
decode

INSI
deco

flip-

lops

register
read

register
read

regis
rea

flip-

lops

>< |

flip-

flops

register
write

regis

writ

ock:

37

Goal: Stage n handles instruction
one tick after stage n — 1.

Instruction fetch
reads next instruction,

feeds p’ back, sends instruction.

After next clock tick,

Instruction decode

uncompresses this instruction,
while instruction fetch
reads another instruction.

Some extra flip-flop area.

Also extra area to

preserve instruction semantics:
e.g., stall on read-after-write.

38

“Superscalar” processing:

thip-t

ops

INsn
fetch

Insn
fetch

flip-

lops

Insn
decode

Insn
decode

flip-

lops

register
read

register
read

register
read

register
read

flip-

lops

Pt

flip-flops

register
write

register
write

Goal: Stage n handles instruction
one tick after stage n — 1.

Instruction fetch
reads next instruction,

feeds p’ back, sends instruction.

After next clock tick,
Instruction decode

uncompresses this instruction,
while instruction fetch
reads another instruction.

Some extra flip-flop area.

Also extra area to

preserve Instruction semantics:
e.g., stall on read-after-write.

38

“Superscalar’ processing:

tlip-tlops

INsn
fetch

INsn
fetch

flip-1

lops

Insn
decode

Insn
decode

flip-

lops

register
read

register
read

register
read

register
read

flip-

lops

X

flip-

flops

register
write

register
write

39

age n handles instruction
after stage n — 1.

on fetch
xt Instruction,
back, sends instruction.

xt clock tick,

on decode

esses this instruction,
truction fetch

other instruction.

tra flip-flop area.

ra area to

Instruction semantics:
| on read-after-write.

38

“Superscalar” processing:

thip-t

ops

INsn
fetch

Insn
fetch

flip-

lops

Insn
decode

Insn
decode

flip-

lops

register
read

register
read

register
read

register
read

flip-

lops

Pt

flip-flops

register
write

register
write

39

“Vector

Expand

INtO N-V¢
ARM “|

Inte
Inte

AN
AN

GPUs h:

dles instruction

en—1.

jon,
ds instruction.

ck,

Instruction,
etch
ruction.

p area.

n semantics:
after-write.

38

“Superscalar’ processing:

tlip-tlops

INsn
fetch

INsn
fetch

flip-1

lops

Insn
decode

Insn
decode

flip-

lops

register
read

register
read

register
read

register
read

flip-

lops

X

flip-

flops

register

register
write

write

39

“Vector” processir

Expand each 32-b
Into n-vector of 3.
ARM “NEON" ha

Inte
Inte

"AVX2" has
"AVX-512" |

GPUs have larger

Iction

on.

CS.

\v

38

“Superscalar’ processing:

thip-t

ops

INsn
fetch

Insn
fetch

flip-

lops

Insn
decode

Insn
decode

flip-

lops

register
read

register
read

register
read

register
read

flip-

lops

Pl

flip-flops

register
write

register

write

39

“Vector’ processing:

Expand each 32-bit integer

into n-vector of 32-bit integ
ARM “NEON" has n = 4;

Inte
Inte

"AVX2" has n = 8;
"AVX-512" has n =16

GPUs have larger n.

“Superscalar’ processing:

tlip-tlops

INsn
fetch

INsn
fetch

flip-1

lops

Insn
decode

Insn
decode

flip-

lops

register
read

register
read

register
read

register
read

flip-

lops

X

flip-

flops

register
write

register
write

39

“Vector’ processing:

Expand each 32-bit integer

into n-vector of 32-bit integers.

ARM “NEON" has n = 4;

Inte
Inte

"AVX2" has n = 3;
"AVX-512" has n = 16;

GPUs have larger n.

40

“Superscalar’ processing:

tlip-tlops

INsn
fetch

INsn
fetch

flip-1

lops

Insn
decode

Insn
decode

flip-

lops

register
read

register
read

register
read

register
read

flip-

lops

X

flip-

flops

register
write

register

write

39

40
“Vector’ processing:

Expand each 32-bit integer
into n-vector of 32-bit integers.
ARM “NEON" has n = 4;
"AVX2" has n = 8;
"AVX-512" has n = 16;

GPUs have larger n.

Inte

Inte

nx speedup if

nx arithmetic circuits,

nx read/write circuits.

Benefit: Amortizes insn circuits.

“Superscalar’ processing:

tlip-tlops

INsn
fetch

INsn
fetch

flip-1

lops

Insn
decode

Insn
decode

flip-

lops

register
read

register
read

register
read

register
read

flip-

lops

X

flip-

flops

register
write

register

write

39

40
“Vector' processing:

Expand each 32-bit integer
into n-vector of 32-bit integers.
ARM “NEON" has n = 4;
"AVX2" has n = 8;
"AVX-512" has n = 16;

GPUs have larger n.

Inte

Inte

nx speedup if

nx arithmetic circuits,

nx read/write circuits.

Benefit: Amortizes insn circuits.

Huge effect on higher-level
algorithms and data structures.

calar” processing:

~ flip-flops

INsn
fetch

Insn
fetch

~ flip-

lops

Insn
ecode

Insn
decode

~ flip-

lops

gister
read

register
read

register
read

~ flip-

lops

| X

flip-flops

gister
write

register
write

40
“Vector’ processing:

Expand each 32-bit integer
into n-vector of 32-bit integers.
ARM “NEON" has n = 4;

Intel “AVX2" has n = 8;

Intel “AVX-512" has n = 16;

GPUs have larger n.

nx speedup if

nx arithmetic circuits,

nx read/write circuits.

Benefit: Amortizes insn circuits.

Huge effect on higher-level
algorithms and data structures.

Network

How exf

Input: a
Each nu

represen

Output:
IN INCrea
represen
same mi

Cessing:

register
read

Ler

“Vector’ processing:

Expand each 32-bit integer
into n-vector of 32-bit integers.
ARM “NEON" has n = 4;

Intel “AVX2" has n = 8;

Intel “AVX-512" has n = 16;

GPUs have larger n.

nx speedup if

nx arithmetic circuits,

nx read/write circuits.

Benefit: Amortizes insn circuits.

Huge effect on higher-level
algorithms and data structures.

40

Network on chip:

How expensive Is

Input: array of nr
Each number in {
represented In bin;

Output: array of 1
In Increasing order
represented In bin:
same multiset as |

39

“Vector’ processing:

Expand each 32-bit integer
into n-vector of 32-bit integers.
ARM “NEON" has n = 4;

Intel “AVX2" has n = 8;

Intel “AVX-512" has n = 16;

GPUs have larger n.

nx speedup if

nx arithmetic circuits,

nx read/write circuits.

Benefit: Amortizes insn circuits.

Huge effect on higher-level
algorithms and data structures.

40

Network on chip: the mesh

How expensive is sorting?

Input: array of n numbers.
Each number In {1, 2.....nN
represented in binary.

Output: array of n numbers
in Increasing order,
represented In binary:;

same multiset as input.

40 41
“Vector' processing: Network on chip: the mesh

Expand each 32-bit integer How expensive is sorting?
into n-vector of 32-bit integers.
ARM “NEON" has n = 4;

Intel “"AVX2" has n = 8;

Intel “AVX-512" has n = 16;
GPUs have larger n. Output: array of n numbers,
In Increasing order,

Input: array of n numbers.
Each number In {1, 2. ..., n2},
represented in binary.

nx speedup if represented In binary;

nx arithmetic circuits, . .
S same multiset as input.
nx read/write circuits.

Benefit: Amortizes insn circuits.

Huge effect on higher-level
algorithms and data structures.

“Vector’ processing:

Expand each 32-bit integer
into n-vector of 32-bit integers.
ARM “NEON" has n = 4;
"AVX2" has n = 8;
"AVX-512" has n = 16;

GPUs have larger n.

Inte

Inte

nx speedup if
nx arithmetic circuits,
nx read/write circuits.

Benefit: Amortizes insn circuits.

Huge effect on higher-level
algorithms and data structures.

40

41
Network on chip: the mesh

How expensive is sorting?

Input: array of n numbers.
Each number In {1, 2. ..., n2},
represented in binary.

Output: array of n numbers,
In Increasing order,
represented In binary;

same multiset as input.

Metric: seconds used by
circuit of area nito(l),

For simplicity assume n = 4k

" processing:

each 32-bit integer
actor of 32-bit integers.
\[EON" has n = 4;
VX2" has n = 8;
VX-512" has n = 16;

e larger n.

dup if
metic circults,
/write circuits.

Amortizes insnh circuits.

ect on higher-level
ns and data structures.

40

Network on chip: the mesh

How expensive is sorting?

Input: array of n numbers.
Each number In {1, 2. ..., nz},
represented in binary.

Output: array of n numbers,
In Increasing order,
represented In binary;

same multiset as input.

Metric: seconds used by
circuit of area nito(l),

For simplicity assume n = 4k

41

Spread ¢
square n
each of
with nec

K —X—X—X—X—X—X—X—X—X
K —X—X—X—X—X—X—X—X—X

X
X
X
X
X
X
X
X
X
X

g

t Integer
-bit integers.
s n=4;

n = 8;

as n = 16;

n.

uits,
“ults.

S INSN CIrcults.

her-level
ta structures.

40

Network on chip: the mesh

How expensive is sorting?

Input: array of n numbers.
Each number In {1, 2. ..., nz},
represented in binary.

Output: array of n numbers,
In Increasing order,
represented In binary;

same multiset as input.

Metric: seconds used by
circuit of area nito(l),

For simplicity assume n = 4k

41

Spread array acros
square mesh of n :
each of area n°()
with near-neighbo

X—X—X

X
X

K —X—X—X—X—X—X—X—X—X
X —X—X—X—X—X—X—X—X—X

>
>
>
>
>
>
>
>
>
>

X—X—X—X—XK—X—X—X—X
X—X—X—X—X—X—X—X
K—X—X—X—X—X—X—X

40 41
Network on chip: the mesh Spread array across

How expensive is sorting? square mesh of n small cells

each of area n°(1),

ers.
Input: array of n numbers. with near-neighbor wiring:
; 2
Each number in {1,2,...,n°}, VARV VIV VIV
'_ represented in binary. e S S S S Ne s
Output: array of n numbers, XXX X X XXX
In Increasing order, XXX X X X X=X
represented In binary; X=X ——X——X——X—X—X—X—
same multiset as input. XXX X=X X X=X
. XX — X —X—X—X—X—X—
uits. Metric: seconds used by
circuit of area n .
XX —— X —X—X—X—X—X—
es. For simplicity assume n = 4k S Y Y S

41
Network on chip: the mesh Spread array across

How expensive is sorting? square mesh of n small cells,

each of area n°1),
Input: array of n numbers. with near-neighbor wiring:

Each number iIn {1, 2. ..., nz},
represented in binary.

K—X—X—X—X—X

K—X—X—X—X

Output: array of n numbers,

In Increasing order,

represented In binary;

same multiset as input.

Metric: seconds used by

circuit of area nlto(l).

K —X—X—X—X—X—X—X—X—X
X—X—X—X—X—X—X—X—X—X
X—X—X—X—XK—X—X—X—X
X—X—X—X—X—X—X—X
K—X—X—X—X—X—X—X
K—X—X—X—X—X—X—X
X—X—X—X—X—X—X—X
K—X—X—X—X—X—X—X
HX—X—X—X—X—X—X—X—X—X

For simplicity assume n = 4k

K —X—X—X— XK —X—X—X—X—X

~on chip: the mesh

ensive Is sorting?

rray of n numbers.
mber in {1,2,..., nz},
ted in binary.

array of n numbers,
sing order,

ted in binary;

iltiset as input.

seconds used by
f area nito(l)

licity assume n = 4.

41

Spread array across

square mesh of n small cells,

each of area no(l),

with near-neighbor wiring:

X

X

K —X—X—X—X—X

X

X

X

X —X—X—X—X—X—X—X—X—X
K —X—X—X—X—X—X—X—X—X

X—X—X—X—X—X—X—X—X
K—X—X—X—X—X—X—X

X—X—X—X—X—X—X—X

X—X—X—X—X—X—X—X

K—X—X—X—X—X—X—X

X—X—X—X—X—X—X—X

K —X—X—X—X—X—X—X—X—X

X —X—X—X—X—X—X—X—X—X

42

Sort row

i n0.5—|—<

e Sort e
314
131

e Sort a
131,
113

e Repea
equals

the mesh

sorting?
yumbers.
1,2,...,n°},
ary.

1 numbers,

Ary;
nput.

sed by
o(1)

me n = 4K

41

Spread array across

square mesh of n small cells,

each of area no(l),

with near-neighbor wiring:

K—X—X—X—X—X

X

X

X

X

X

K —X— X —X— X —X—X—X—X—X
X —X—X—X—X—X—X—X—X—X
K—X—X—X—XK—X—X—X—X
X—X—X—X—X—X—X—X

K—X—X—X—X—X—X—X

X—X—X—X—X—X—X—X

X—X—X—X—X—X—X—X

K —X—X—X—X—X—X—X

HX—X—X—X—X—X—X—X—X—X

K —X— X —X—X—X—X—X—X—X

42

0.5 ¢

Sort row of n ¢

in n0-5To(1) secon

e Sort each pair ir
31415926
13145926

e Sort alternate p:
13145926
113452906

e Repeat until nur
equals row lengt

41

Spread array across

square mesh of n small cells,
each of area no(l),

with near-neighbor wiring:

K—X—X—X—X—X

X—X—X—X—X

X —X—X—X—X—X—X—X—X—X
K —X—X—X—X—X—X—X—X—X
X—X—X—X—X—X—X—X—X
HX—X—X—X—X—X—X—X
X—X—X—X—X—X—X—X
X—X—X—X—X—X—X—X
K—X—X—X—X—X—X—X
X—X—X—X—X—X—X—X

K —X—X—X—X—X—X—X—X—X

X—X—X—X—X—X—X—X—X—X

42

Sort row of n®> cells

0.5+0(1)

N N seconds:

e Sort each pair in parallel.
31415926 +—
13145926

e Sort alternate pairs in par
13145926 +—

11345296

e Repeat until number of st
equals row length.

Spread array across

square mesh of n small cells,

each of area no(l),

with near-neighbor wiring:

K —X—X—X—X—X—X—X

X

K—X—X—X—X—X—X—X

X

X

X

X

X

X

X—X—X—X—X—X—X—X—X

K—X—X—X—X—X—X—X

X—X—X—X—X—X—X—X

X—X—X—X—X—X—X—X

X—X—X—X—X—X—X—X

X—X—X—X—X—X—X—X

K —X—X—X—X—X—X—X

HX—X—X—X—X—X—X—X—X—X

K —X— XK —X—X—X—X—X—X—X

42

Sort row of n%> cells
in n0-5to(1) seconds:

e Sort each pair in parallel.
31415926+
131459026

e Sort alternate pairs in parallel.

1314592606 +—
113452906

e Repeat until number of steps
equals row length.

43

Spread array across

square mesh of n small cells,

each of area no(l),

with near-neighbor wiring:

K —X—X—X—XK—X—X—X—X
X—X—X—X— XK —X—X—X—X
K —X—X—X—XK—X—X—X—X
X—X—X—X—XK—X—X—X—X
K —X—X—X—XK—X—X—X—X
X—X—X—X—XK—X—X—X—X
X —X—X—X—XK—X—XK—X—X
K—X—X—X—XK—X—X—X—X
X—X—X—X— XK —X—X—X—X
K —X—X—X—XK—X—X—X—X

K —X— XK —X—X—X—X—X—X—X

42

Sort row of n%> cells
in n0-5to(1) seconds:

e Sort each pair in parallel.
31415926+
131459026

e Sort alternate pairs in parallel.

1314592606 +—
113452906

e Repeat until number of steps
equals row length.

Sort each row, in parallel,

0.540(1)

In a total of n seconds.

43

Irray across

1esh of n small cells,

area no(l),

r-neighbor wiring:

K—X—X—X—X

X

X

X

X

X

X—X—X—X—X—X—X—X

X—X—X—X—X—X—X—X

X—X—X—X—X—X—X—X

K—X—X—X—X—X—X—X

X—X—X—X—X—X—X—X

K —X—X—X—X—X—X—X—X—X

X —X—X—X—X—X—X—X—X—X

42

Sort row of n®> cells

0.5+0(1)

N N seconds:

e Sort each pair in parallel.
31415926 +—
13145926

e Sort alternate pairs in parallel.

13145926 +—
11345296

e Repeat until number of steps
equals row length.

Sort each row, in parallel,

0.54+0(

In a total of n 1) seconds.

43

Sort all

i n0.5—|—<

e Recur:

In par:
e Sort e
e Sort e
e Sort e
e Sort e

With pre
left-to-ri
for each
that this

S
small cells,

r WIring:

(—X—X

X
X

KX—X—X—X—X—X—X—X
K —X—X—X—X—X—X—X
X—X—X—X—X—X—X—X—X—X

K —X— XK —X— XK —X—X—X—X—X

42

Sort row of n%> cells
in n0-5to(1) seconds:

e Sort each pair in parallel.
31415926+~
131459026

e Sort alternate pairs in parallel.

1314592606 +—
11345296

e Repeat until number of steps
equals row length.

Sort each row, in parallel,

0.540(1)

In a total of n seconds.

43

Sort all n cells

in n0-5to(1) secon

e Recursively sort

in parallel, if n>

e Sort eac
e Sort eac
e Sort eac
e Sort eac

N colum
N row In

N colum

N row In

With proper choic
left-to-right /right-
for each row, can

that this sorts whe

42

Sort row of n%> cells

0.540(1)

N N seconds:

e Sort each pair in parallel.
31415926 —
13145926

e Sort alternate pairs in parallel.

13145926 +—
11345296

e Repeat until number of steps
equals row length.

Sort each row, in parallel,

0.54+0(

In a total of n 1) seconds.

43

Sort all n cells

0.5+0(1)

N N seconds:

e Recursively sort quadrants
in parallel, if n > 1.

e Sort each column in parall

e Sort each row in parallel.

e Sort each column in parall

e Sort each row in parallel.

With proper choice of
left-to-right /right-to-left
for each row, can prove
that this sorts whole array.

Sort row of n%> cells
in n0-5to(1) seconds:

e Sort each pair in parallel.
31415926+~
131459026

e Sort alternate pairs in parallel.

1314592606 +—
11345296

e Repeat until number of steps
equals row length.

Sort each row, in parallel,

0.540(1)

In a total of n seconds.

43

Sort all n cells
in n0-5to(1) seconds:

e Recursively sort quadrants
in parallel, if n > 1.

e Sort each column in parallel.

e Sort each row in parallel.

e Sort each column in parallel.

e Sort each row in parallel.

With proper choice of
left-to-right /right-to-left
for each row, can prove
that this sorts whole array.

44

of n%° cells
(1) seconds:

ach pair in parallel.
15926 +—
415926

lternate pairs in parallel.

415926 +—
415296

t until number of steps
row length.

h row, In parallel,

0.54+0(

[of n 1) seconds.

43

Sort all n cells

N n

0.5+0(1)

seconds:

e Recursively sort quadrants

in parallel, if n > 1.

e Sort eac
e Sort eac
e Sort eac
e Sort eac

n column in parallel.

n row In parallel.

n column in parallel.

n row In parallel.

With proper choice of
left-to-right /right-to-left
for each row, can prove

that this sorts whole array.

44

For exar
this 8 X

¢

~N O m O W N O W
~ B OO DD W W W =
P Ny TN

| N

o||s
1s:

' parallel.
—

airs In parallel.

—

nber of steps
h.

parallel,
o(1) seconds.

43

Sort all n cells
in n0-5to(1) seconds:

e Recursively sort quadrants
in parallel, if n > 1.

e Sort each column in parallel.

e Sort each row in parallel.

e Sort each column in parallel.

e Sort each row in parallel.

With proper choice of
left-to-right /right-to-left
for each row, can prove
that this sorts whole array.

44

For example, assu
this 8 x 8 array Is

5

~N OO0 = O W N 61 W
~ B O DD W W W =
© O © OO o o O H
~ 1 W OO W H OO ¥
~ O O H N O O

0
i
2
7
1
0
2
5

43 44

Sort all n cells For example, assume that
in n9-50(1) seconds: this 8 x 8 array Is in cells:
e Recursively sort quadrants 31 415 9 26
in parallel, it n > 1. 5 35 8 0 7 O 3
e Sort each column in parallel. > 38 46 2 6 4
el e Sort each row in p.araIIeI. 1383027095
e Sort each column in parallel.
. 0 2 8 8 41 9 7
e Sort each row in parallel.
1 6 9 3 9 9 3 7
DS With pr.oper c-hoice of 5 1058920 0
left-to-right /right-to-left
{4 9 4 4 5 9 2
for each row, can prove

that this sorts whole array.

44

Sort all n cells For example, assume that
in n9-5t0(1) seconds: this 8 x 8 array Is in cells:
e Recursively sort quadrants 31 415 9 2 6
in parallel, it n > 1. 5 35 8 0 7 O 3
e Sort each column in parallel. > 38 46 2 6 4
t | llel.
e Sort each row in p.ara e 338130270 5
e Sort each column in parallel.
. 0 2 8 8 41 9 7
e Sort each row in parallel.
1 6 9 3 9 9 3 7
With pr?per c.hoice of 5 1058920 0
left-to-right /right-to-left
{4 9 4 4 5 9 2
for each row, can prove

that this sorts whole array.

n cells

(1) seconds:

sively sort quadrants
allel, if n > 1.

dC
dC
dC
dC

n row In parallel.

n row In parallel.

bper choice of
ght /right-to-left
row, can prove

, sorts whole array.

n column in parallel.

n column in parallel.

44

For example, assume that
this 8 x 8 array Is in cells:

31 415 9 26
5 353 9 7 9 3
2 3 3 46 2 6 4
33 8 3 2 7 95
0 2 8 3 4 1 9 7
1 6 9 3 99 3 7
51 05 8 2009
(4 9 4 45 9 2

45

Recursiv
top —,

N DY |

) N | oD TN

(¢

O ~N A RO W W =
O O Hh R |IO0O A W =

]s:

quadrants
> 1.

n in parallel.

 parallel.

n in parallel.

 parallel.

e of
to-left
prove

le array.

44

For example, assume that
this 8 x 8 array Is in cells:

31 415 9 26
b 353 9 7 9 3
2 3 3 4606 2 6 4
33 83 2 7 95
0 2 8 3 41 9 7
1 6 9 3 9 9 37
5 1 05 8 2009
4 9 4 45 9 2

45

Recursively sort gt
top —, bottom «+

1 1 2 3[2 2
3 3 3 3|4 5
3 4 4 5|6 6
5 8 8 8|9 0
1 10 0|2 2
4 4 3 2|5 4
7 6 5 5|9 8
0 9 8 8|9 ¢

S,
= M O ~ OO O ~ O
(qv]
= N IO~ O|lH S ~ O
(QV]
cH
> | |V 1o o oo+ o o
Mm N < © Ol 1O O O

o
(Vp)
VJﬁ M M IO 00| O AN IO o
= 0
2 i & 0|l o 1o ©
E T |l m + 0| <+ © o
-
O
O a
L o= mmwld < ~ O
4

LO)

4
o s
T 2 o O < 1~ N~ O
S
v o |N OV oo Mmoo o
mm O~ N N~ 4 O N O
25 Y
T 2| oo N o o <
.

QO g |H 0o < ™M o m o <
2
& <+ WO 00 00 0O O O O
g X
5 0 |H O o N O — <
w U
O c | L AN ™M O —= O I~
L o

44

el.

el.

46

S,
= M O ~ Ol o ~ o
(@]

s N O~ O+ < ~ O

@V

cH

> |l | o ola & © o

Mm N < © ol O O O
O

(Vp)

VJH.. M M O 00| N 1 o

= 0O

P29 i & 0|0 ®» b ®©

z

= — N < 0|+ < ©O© o

O

O o

L o7 ®m®mw~ < ~ O
4

LO)

0
o s
" 2 o o 9 O~~~ O
me
v o |N O Voo Mmoo o
E o o~ A ~ 4 o & o
> Y
T 2| oo N o o <
1r
D K |- 0o F ™ 0o 0 w1 <
o

00
mx <t O 00 0O 0O O O O
(V]
5 0 |—=H M M o N © — <
. U»
O _c M IO AN M O —-H IO I~
L o

O =
O @©
V' 5 |7 4 o o © 0o o
© a
%wn11334579
O
4
p
- M O ~ OO0 O ~ O
(qv]
- N O~ O|H < ~ O
(QV]
®
> |l | © o ola o0 o
Mm N < © Ol 1O O O
o
(Vp)
VJﬁ M M IO 00| O AN IO o
= 0
29 i & 0|l o 1o ©
=
W% — N <t 0O - < O O
O o
Dn_mo — M M WO H < N~ O
4
LO)
4
o s
T 2 |l o < 1~ N~ O
S
em29699309
E o~ A~ 4 & & 1
5 v
T 2| oo N o o <
o S
QO g |H 0o < ™ o m 1o <
2 o

L

)
3
3
3
)
)
)

— N (N < O ©O 00 Oy O) |
m N N OO OO O
O O N M ™M IO O 0O
S L o o o < 1O 0 ©
U (O
V5 | = oo & & © 0o o
Y o
nwn11334579

O

©
p
- M O ~ Ol ™ ~ O
(O
s N O~ O+ < ~ O
Q]
cH
> |l | o ola § ©o o
Mm N < © ol IO O O

o
wn
S DM MmO 0O N 1 ©
= 0
929 i & 0|0 ®» b ®©
N
= M <+ ©O|H < © O
O
O o
L o|r ®m®mw~ < ~ O
4

LO)

<
o s
T = O O < 1O~ N~ O
S
v O |l o © o o m o o
mn

O M M O~ N~ O O
— AN S O~ N~ O O
- N AN O © 0O O
m N AN OO OO O
O O N M M 1 IO 0O
S 2L o m »m < 10 o ©
U (O
V' 5 |7 4 o o ¢ © 0o o
Y a
%wn11334579
O
4
¥
= M © ~ OO M ~ O
Qv
- N O~ O|H < ~ O
Qv
T
> |l |V o ol v ©o o
Mm N < © Ol IO O O
O
Vp]
VJﬁ M M IO 00| O AN IO o
= 0O
2 i & 0w|lo o 1o ©
D
U% — N < O H <t O O
O o
Dn_mo — M M WO H < N~ O
4

45

47

O M MO O~ N~ O O
— AN < OO~ N~ O O
- N N < 1O © 0 O O
m N N O O OO O
O O N M ™M IO O 0O
S L o o o S 1O 0 ©
U (O
V5 | = oo & & © 0o o
P a
nwn11334579
O
O
u
= M O ~ OO0 O ~ O
Qv
s N O~ O+ < ~ O
Qv
®
> L | o ol ¥ © O
Mm N < © ol IO O O
O
Vg
S DM MmO 0O N 1 ©
= 0
P9 i & 0|0 » b ®©
F o
u% — M < O |H < © O
O o
Damo — N M OO <~ O
4

O 5 ~— | AN (A Rk N P SN D)
W @©
V ¢ loladd|lm|wo|<|o|o|o
£ 0O
O = ol |t ||~
V) @©
N
4
O M M O~ N~ O O
— AN IO~ N~ O O
- N AN < 1O © 0 o O
m N AN < 1O © O o O
O O N M M 1 IO 0O
S 2L o m »m <+ 10 o ©
C @©
V' 5 |7 4 o - ¢ © 0o o
© a
%wn11334579
@)
4
4
= M O ~ OO0 ™ ~ O
Q0]
- N O~ O|H < ~ O
O
T .
> | | w o ol & © O
Mm N < © Ol IO O O
O
(Vp)
Y M M IO 00| O AN IO o
> 0
D o

)
5
|
3
)
3
)
3

= | NSO) OY [O
= T
= ||| |o|lo oo
s |
O — N[O ||~ O
>,
Mm olN|m|wv|gt|~]|o|o
Q)
VY o lojlad|mm || |00]|
£ o
O £ |olm|lm|lo|d|o|~|o
V) @
Ne
<
O M M O ~ ~ O O
— N < O~ N~ O O
n N N S 1O © 0 O O
m N N OO OO O
O O N M ™M IO O 0O
S L o o o S 1O 0 ©
© (v
V5 | = oo & & © 0o o
Y o
nwn11334579
O
<
p
- M O ~ OO ™M ~ O
(O
-5 N O~ O+ < ~ O
Q]
—_—

= N ||| ~|wO|l |0
m N | |||~ |]|
(@]
(-
W N ||l |o o
O ¥ N O|O|[O|N~|0 |
>
M Y ol |||~ 0|
(O
V c lolcd|lm|wvo| |0 |0 | o
£ o
O £ lolm|lm|lo|ldgd|lo|~|oo
V) O
Ne
4
O M M O~~~ O O
— AN OO~ N~ O O
- AN N < 1O © 0 O O
m N N < 1O © O o O
S O N M M 1 IO 0O
S 2L o m »m <+ 10 o ©
C (T
V' 5 |7 4 o o © 0o o
© o
%w I= — = N MM < O M~ O

46

43

—= N lH |t | O~ |
ﬂra N[l || | ~|WO | |00
(@]
o - |dH|lN|IS | n|lo|lov| oo
C
W |l N gt |O|lO ||
O Y |l N|O| 1| |~]0 |
>
M O ol |m|w||~]o|o
(O
V o ol |v||0 |0 |
£ O
o X Ol || T ||~
V) (O
Ne
<
O M M O© ~~ I~ O O
— AN <t O~ N~ O O
- N N < OO 0 O O
m N N OO O O O
O O N M ™M IO O 0O
S L o o o S 1O 0 ©
T (T
V5 |m = oo & & © 0o o
© o
%W = —N = N M T O M~ O

O =
W (©
V 5 o oo - 0o 0o o o
© o
%n03346799
(00)
4
—= Nl |~ |0
m N | |||~ ||
(O
0O - |H|lN|lIFT | Ol ||
= 7T
= | HlN|| gt |O|lO ||
= |
O — | AN | (O[O |~]|00 |
>
Mm ol | wv| g |~]|00]| o
(O
V c lolcd|lmm || |0 |0 | o
£ O
o X Ol ||t ||~
V) O
Ne
4
O M M O© ~~ I~ O O
— N < O~ N~ O O
— N N < OO 0 O O
m N N OO OO O O
O O N M M O IO 0O ©
C

ol

)
)
5
5
:

)
3
3

— |— (N 06 <5 KO O Oy O |
m — N MO < © O O O
O — N ™M O WO N~ 00 O
S L o o < 1O~ 0 o
G (0
Vv 5 o o s 0 0o o o
T a
%un03346799

0 0)

=
—= Nl |||~ |w|O |00
© N[|||~ | |©
gV
0O - |H|N|F | |l || lo|o
-
.W,12346699
O ¥ Il N|O| 1| |~]|]0 |

>
Mm oln|m|w|t|~]0]|o
Q)
V o lolnn|mm|w|<|w|w|o
£ o
O £ |lolnlm|jOo|lg |~
V) @@
Ne
<
O M M O ~ ~ O O
— AN S O~ N~ O O

— N M < IO~ 0O O
— N M < IO~ 00 O
_ — N M < OO O O
m — N M < O O O O
O — N ™M 1O 1O N~ 0 O
S L o »m s 10~ 0 o
C (O
V 5 o o s 0o 0o o o
© o
S c|omm<s o~ o O
(00)
4
= N ||| ~|w|lo |0
m N | |||~ |]|
@V
-
W N ||l |o o
O ¥ N O|O[O|N~|0 |
>
M Y ol |||~ 0|
(O
V c lolcdd|lm|wvo| |0 |0 |
£ o
O £ lolm|lm|lo|ldgd|lo|~|oo
V) (O

47

49

— N M < O N~ 0 O
— N N < O M~ 0 O
n — N N OO O O
m — N MO < © O O O
O — N ™M O WO N~ 00 O
S L o o < 1O~ 0 o
G (0
Vv 5 o o s 0 0o o o
Y a
%un O M MO < O© &~ O O
0 0)
<
= Nl |||~ | |00
© N[|||~ | |©
gV
0O - |H|lN|lF | |l || lo|o
-
W N |n |t |lo|lo oo
O ¥ |l N|O| 1|~]0 |
>
Mm oln|m|w|t|~]0]|o
Q)
V o lolnn|mm|w|<t |0 |o
£ o
O £ |lolnlmjOo|lg|O~|O
V) @@

C \—/ —r’ (N \") N =) | ™= NS \
(@]
VD v ol | |wv|o|o |
+ @)
O O|lN M |<T | |©O© |00 | D
A

(@)

4

— AN M <t O N~ 00 O
— AN M <t IO~ 00 O

n — AN Nt OO O O
m — AN Nt O O O O
O — N ™M 1O 1O N~ 0 O
S L o »m 1~ 0 o
W (©
V 5 o o s 0 o o o
© o
%W c |[© MO O < O ~ O O

(00)

4
= Nl || | ~|WO | |00
m N | | gt~ |]|
(O
-
W — N |t Ol ||
m g — ([N | [N | O
C

)
)
5
)
l

3
)

Sort each row in

(— or — as desire(

00011 1

2 2 2 2 2 9

3 3 3 3 3 3

4 4 4 4 4 4

5 55 5 5 5
6 6 7 7 7 T

8 8 8 8 8 9

0 999 9 ¢

49

Sort each column

in parallel:

0001|1111

3122221222

31313133333

4044|544]4]4
6(5|5|5|6|5[5|5
718|7|7|6|6|7]|7
0(8(8/8/9/9(8(8
0(9]/9]/9]/9[9(9|9

43

arallel,

3

3

9
8

9
8

= — || v ol | oo
m — N Mt O~
X o
o 8% Wl ||~ |o
cC .=
T Y AN |||~ O
s o
O v ||| |0 N~ |00 |
ha
S ol | g ||~ |o
“a
VD v ol | |wv|o|o |
._HO
O O|lN| M |<T | |©O© |00 | D
A
(@)
4
— AN M < IO~ 00 O
— AN M <t IO~ 00 O
n — AN M S 1O O O
m — AN M S O O O O
O — N ™M 1O 1O N~ 0 O
S L o »m 10~ 0 o
MW (v
V 5 o o - 0o 0o o o
© o
S c|omm<s o~ o O

43

50

= — || v|lo|lo|o|o
© — N M| T |O |~ O
8 ©

o 9 |HlN|om|s | wv|~lo o
c .=

T Y | H N ||~ |0 o
S o

O v |V |||~ |
ha

4 oOolNMm || wv|~]|0 |
(O

V L ol || wv|lo ||
+ O

) ol |t | v | |o
»n 4
(@)
<

— N O < O~ 0 O
— N O < O~ 0 O

n — N N OO O O
m — N O © O O O
O — N M 1O W N~ 0 O
S L o o < 1O~ 0 O
U (O

Vv 5 o o - 10 0o o o
Y o

%un O M MO < O© &~ O O

[

| WV = ee
S e 25 3
c 3 0 0O = 0
O o0 o U 0O =2
(@)
LO)
d, — N ol ool |lo|o
m — AN Mt O~
S S
Q5P |mV|lN |t |o|~lO0 O
cC .=
.W% — | N[| O~ | O
=<
O ,H, |H|N| |||~]00]|OD
ha
O Ol N M| | O|N~|[00 | O
s 1
VD v ol | |wv|o|0 |
._HO
%e O|lN| M |<T | |©O© |00 | D
(@)
4
— AN M < IO M~ 00 O
— AN 0N < IO~ 00 O
— — AN 0N < OO O O
m — AN 0Nt O O O O
O — N ™M 1O 1O N~ 0 O
hd V. U _ U YV _ U B B U QU Y U

© o N 61 B W N =

© o N 61 B W DN =

49

Sort each row in parallel,

< or — as desired:

00011111
2 2 2 2 2 2 2 3
333 3 3 3 33
4 4 4 4 4 4 4 5
b 55 5 5 5 6 6
6 6 7 7 7 (7 7 8
8 833 3 8 9 99
99 99 9 9 99

50

Chips are in fact €
towards having thi
parallelism and co

GPUs: parallel 4

Old Xeon Phi: pa
New Xeon Phi: pa

50

Sort each row in parallel, Chips are in fact evolving
< or — as desired: towards having this much
00071111 1 parallelism and communicat
2 2 2 2. 2 2 2 3 GPUs: parallel + global RA
33 3 3 3 3 3 3 Old Xeon Phi: parallel + rir
4 4 4 4 4 4 4 5 New Xeon Phi: parallel 4 n
5 55 5 5 5 6 6

6 6 7 7 7 7T 7 8

8 8 88 38 9 9 9

9 9 9 9 9 9 9 9

50

Sort each row in parallel, Chips are in fact evolving

< or — as desired: towards having this much
00011111 parallelism and communication.
2 2 2 2 2 2 2 3 GPUs: parallel + global RAM.
33 33 3 3 3 3 Old Xeon Phi: parallel + ring.
4 4 4 4 4 4 4 5 New Xeon Phi: parallel + mesh.
b 55 5 5 5 6 6

6 6 7 7 7 7 [8

8 38 838 9 9 9

99 99 9 9 99

50 51

Sort each row in parallel, Chips are in fact evolving

< or — as desired: towards having this much
00011111 parallelism and communication.

2 2 2 2 2 2 2 3 GPUs: parallel + global RAM.

3 3 3 3 3 3 3 3 Old Xeon Pf\i:. parallel + ring.

A 4 4 4 4 4 4 5 New Xeon Phi: parallel + mesh.
5 5 5 5 5 5 6 6 Algorithm designers

6 6 7 7 7 7 7 8 dc?n't even get thé r.ight exponent
3 8 888 9 09 0 without taking this into account.
9 99 9 9 9 9 9

50 51

Sort each row in parallel, Chips are in fact evolving

< or — as desired: towards having this much
00011111 parallelism and communication.

2 2 2 2 2 2 2 3 GPUs: parallel + global RAM.

3 3 3 3 3 3 3 3 Old Xeon Phi: parallel + ring.

A 4 4 4 4 4 4 5 New Xeon Phi: parallel + mesh.
5 5 5 5 5 5 6 6 Algorithm designers

6 6 7 7 7 7 7 8 don't even get the right exponent
3 8 888 9 09 0 without taking this into account.
O 999909 909 Shock waves from subroutines

into high-level algorithm design.

