Advanced L attice-basis reduction
code-based cryptography

Define L = (0,24)Z + (1,17)Z
Daniel J. Bernstein = {(b,24a+ 17b) : a,b € Z}.

University of lllinois at Chicago & What is the shortest

Technische Universiteit Eindhoven .
nonzero vector in L?

Advanced L attice-basis reduction
code-based cryptography

Define L = (0,24)Z + (1,17)Z
Daniel J. Bernstein = {(b,24a+ 17b) : a,b € Z}.

University of lllinois at Chicago & What is the shortest

Technische Universiteit Eindhoven .
nonzero vector in L?

L =(0,24)Z + (1,17)Z

Advanced L attice-basis reduction
code-based cryptography

Define L = (0,24)Z + (1,17)Z
Daniel J. Bernstein = {(b,24a+ 17b) : a,b € Z}.

University of lllinois at Chicago & What is the shortest

Technische Universiteit Eindhoven .
nonzero vector in L?

L =(0,24)Z + (1,17)Z
— (-1, 7)Z + (1,17)Z

Advanced L attice-basis reduction
code-based cryptography

Define L = (0,24)Z + (1,17)Z
Daniel J. Bernstein = {(b,24a+ 17b) : a,b € Z}.

University of lllinois at Chicago & What is the shortest

Technische Universiteit Eindhoven .
nonzero vector in L?

L =(0,24)Z + (1,17)Z
= (-1,7)Z + (1,17)Z
= (-1,7)Z + (3,3)Z

Advanced | attice-basis reduction

code-based cryptography Define L = (0,24)Z + (1,17)Z

Daniel J. Bernstein = {(b,24a+ 17b) : a,b € Z}.

University of lllinois at Chicago & What is the shortest

Technische Universiteit Eindhoven .
nonzero vector in L?

L = (0,24)Z + (1,17)Z
= (-1,7)Z + (1,17)Z
= (-1,7)Z+(3,3)Z

= (—4,4)Z + (3,3)Z.

Advanced | attice-basis reduction

code-based cryptography Define L = (0,24)Z + (1,17)Z

Daniel J. Bernstein = {(b,24a+ 17b) : a,b € Z}.

University of lllinois at Chicago & What is the shortest

Technische Universiteit Eindhoven .
nonzero vector in L?

L = (0,24)Z + (1,17)Z
= (-1,7)Z + (1,17)Z
= (-1,7)Z+(3,3)Z
= (—4,4)Z + (3,3)Z.

(—4,4),(3,3) are orthogonal.
Shortest vectors in L are
(0,0), (3,3), (=3, -3).

d | attice-basis reduction

ed cryptography Define L = (0,24)Z + (1,17)Z
. Bernstein = {(b,24a+17b) : a,b € Z}.
ty of lllinois at Chicago &

What iIs the shortest

‘he Universiteit Eindhoven .
nonzero vector in L7

L = (0,24)Z + (1,17)Z
=(-1,7)Z2+(1,17)Z
= (-1,7)Z+(3,3)2
= (-4,9Z+(3.3)Z

(—4,4), (3, 3) are orthogonal.
Shortest vectors in L are

(0,0), (3,3), (=3, —3).

| attice-basis reduction

graphy Define L = (0,24)Z + (1,17)Z
0 = {(b,24a+ 17b) : a,b € Z}.
is at Chicago &
siteit Eindhoven

What i1s the shortest

nonzero vector in L7

L =(0,24)Z + (1,17)Z
=(-1,7)Z2+(1,17)Z
= (—-1,7)2+(3,3)Z
= (442 +(3,3)Z

(—4,4),(3,3) are orthogonal.
Shortest vectors in L are
(0,0), (3,3), (=3, -3).

g0 &
hoven

| attice-basis reduction

Define L = (0,24)Z + (1,17)Z
={(b,24a+ 17b) : a,b € Z}.

What i1s the shortest

nonzero vector in L7

L = (0,24)Z + (1,17)Z
=(-1,7)Z2+(1,17)Z
=(-1.7)2+(3,3)Z
= (-44Z+(3,3)Z

(—4,4), (3, 3) are orthogonal.
Shortest vectors in L are

(0,0), (3,3), (=3, —3).

| attice-basis reduction

Define L = (0,24)Z + (1,17)Z
={(b,24a+ 17b) : a,b € Z}.

What is the shortest
nonzero vector in L?

L =(0,24)Z + (1,17)Z
=(-1,7)Z2+(1,17)Z
= (—-1,7)2+(3,3)Z
= (442 +(3,3)Z

(—4,4),(3,3) are orthogonal.
Shortest vectors in L are
(0,0), (3,3), (=3, -3).

| attice-basis reduction

Define L = (0,24)Z + (1,17)Z
={(b,24a+ 17b) : a,b € Z}.

What is the shortest
nonzero vector in L?

L =(0,24)Z + (1,17)Z
=(-1,7)Z2+(1,17)Z
= (—-1,7)2+(3,3)Z
= (442 +(3,3)Z

(—4,4),(3,3) are orthogonal.
Shortest vectors in L are
(0,0), (3,3), (=3, -3).

| attice-basis reduction

Define L = (0,24)Z + (1,17)Z
={(b,24a+ 17b) : a,b € Z}.

What is the shortest
nonzero vector in L?

L =(0,24)Z + (1,17)Z
=(-1,7)Z2+(1,17)Z
= (—-1,7)2+(3,3)Z
= (442 +(3,3)Z

(—4,4),(3,3) are orthogonal.
Shortest vectors in L are
(0,0), (3,3), (=3, -3).

| attice-basis reduction

Define L = (0,24)Z + (1,17)Z
={(b,24a+ 17b) : a,b € Z}.

What is the shortest
nonzero vector in L?

L =(0,24)Z + (1,17)Z
=(-1,7)Z2+(1,17)Z
= (—-1,7)2+(3,3)Z
= (442 +(3,3)Z

(—4,4),(3,3) are orthogonal.
Shortest vectors in L are
(0,0), (3,3), (=3, -3).

| attice-basis reduction

Define L = (0,24)Z + (1,17)Z
={(b,24a+ 17b) : a,b € Z}.

What is the shortest
nonzero vector in L?

L =(0,24)Z + (1,17)Z
=(-1,7)Z2+(1,17)Z
= (-1,7)Z+(3,3)2
= (-4,9Z+(3.3)Z

(—4,4),(3,3) are orthogonal.
Shortest vectors in L are
(0,0), (3,3), (=3, -3).

basis reduction

= (0,24)Z + (1,17)Z
4a+ 17b) :a,b e Z}.

the shortest
vector in L?

24)Z + (1,17)Z

7)Z+(1,17)Z
7)Z+(3,3)Z
L 4)Z +(3,3)Z.

(3, 3) are orthogonal.
vectors in L are

3,3), (—3, —3).

Another
Define L

What is
nonzero

~tion

Z+ (1,17)Z
a,be Z}.

St
L?

17)Z
,17)Z
3)Z

3)Z.

P
)
P
)

orthogonal.
\ L are

_3).

Another example:
Define L = (0, 25)

What is the shorte
nonzero vector In

Another example:
Define L = (0,25)Z + (1, 17

What i1s the shortest
nonzero vector in L?

Another example:
Define L = (0,25)Z + (1,17)Z.

What is the shortest
nonzero vector in L?

Another example:
Define L = (0,25)Z + (1,17)Z.

What is the shortest
nonzero vector in L?

L =(0,25)Z + (1,17)Z

Another example:
Define L = (0,25)Z + (1,17)Z.

What is the shortest
nonzero vector in L?

L =(0,25)Z + (1,17)Z
— (—1,8)Z + (1,17)Z

Another example:
Define L = (0,25)Z + (1,17)Z.

What is the shortest
nonzero vector in L?

L =(0,25)Z + (1,17)Z
= (—1,8)Z + (1,17)Z
—(-1,8)Z+ (3,1)Z.

Another example:
Define L = (0,25)Z + (1,17)Z.

What is the shortest
nonzero vector in L?

L =(0,25)Z + (1,17)Z
= (-1,8)Z +(1,17)Z
—(-1,8)Z+ (3,1)Z.

Nearly orthogonal.
Shortest vectors in L are

(0,0), (3,1), (=3, -1).

Another example:
Define L = (0,25)Z + (1,17)Z.

What i1s the shortest
nonzero vector in L?

L =(0,25)Z + (1,17)Z
= (-1,8)Z + (1,17)Z
—(-1,8)Z + (3,1)Z.

Nearly orthogonal.
Shortest vectors in L are o

(0,0), (3,1), (=3, -1).

Another example:
Define L = (0,25)Z + (1,17)Z.

What is the shortest
nonzero vector in L?

L =(0,25)Z + (1,17)Z
= (-1,8)Z +(1,17)Z
—(-1,8)Z+ (3,1)Z.

Nearly orthogonal.
Shortest vectors in L are

(0,0), (3,1), (=3, -1).

Another example:
Define L = (0,25)Z + (1,17)Z.

What i1s the shortest
nonzero vector in L?

L = (0,25)Z + (1,17)Z
= (—1,8)Z + (1,17)Z
= (-1,8)Z + (3,1)Z.

Nearly orthogonal.
Shortest vectors in L are

(0,0), (3,1), (=3, -1).

Another example:
Define L = (0,25)Z + (1,17)Z.

What is the shortest
nonzero vector in L?

L = (0,25)Z + (1,17)Z
= (—1,8)Z + (1,17)Z
=(-1,8)Z + (3,1)Z

Nearly orthogonal.
Shortest vectors in L are

(0,0), (3,1), (=3, -1).

example:

= (0,25)Z + (1,17)Z.

the shortest
vector in L7

5)Z + (1,17)Z

,8)Z+(1,17)Z
,8)Z+(3,1)Z.
rthogonal.

vectors In L are
3,1), (—3,—1).

Polynom

Detfine F
ro = (10
ri = (10
L = (0,

What is

NONZEro

Z+(1,17)Z.

St

17)Z
,17)Z

' L are

Polynomial lattice

Define P = F»[x],
ro = (101000)x =
ri = (10011), = »
L=(0r)P+(1,

What is the shorte
nonzero vector In

Polynomial lattices

Define P = Fs[x],

ro = (101000)x = x> + x> €
rn = (10011), = x* + x + 1
L=(0r)P+(1,n)P.

What i1s the shortest
nonzero vector in L?

Polynomial lattices

Define P = Fs[x],

ro = (101000)x = x° + x> € P,
rn = (10011)y =x*+x+1€ P,
L=(0,r)P+(1,rn)P.

What i1s the shortest
nonzero vector in L?

Polynomial lattices

Define P = F»|x],

ro = (101000)x = x> + x> € P,
n=(10011)xy =x*+x+1 € P,
L=(0,r)P+(1,rn)P.

What i1s the shortest
nonzero vector in L?

L = (0,101000)P + (1,10011)P

Polynomial lattices

Define P = F»|x],

ro = (101000)x = x> + x> € P,
n=(10011)xy =x*+x+1 € P,
L=(0,r)P+(1,rn)P.

What i1s the shortest
nonzero vector in L?

L = (0,101000)P + (1,10011)P
— (10, 1110)P + (1,10011)P

Polynomial lattices

Define P = F»|x],

ro = (101000)x = x> + x> € P,
n=(10011)xy =x*+x+1 € P,
L=(0,r)P+(1,rn)P.

What i1s the shortest
nonzero vector in L?

L = (0,101000)P + (1,10011)P
(10,1110)P + (1,10011)P
(10,1110)P + (111,1)P.

Polynomial lattices

Define P = F»|x],

ro = (101000)x = x> + x> € P,
n=(10011)xy =x*+x+1 € P,
L=(0,r)P+(1,rn)P.

What i1s the shortest
nonzero vector in L?

L = (0,101000)P + (1,10011)P
(10,1110)P + (1,10011)P
(10,1110)P + (111,1)P.

(111,1): shortest nonzero vector.
(10,1110): shortest
independent vector.

Polynomial lattices

Define P = F»|x],
ro = (101000)x = x° + x> € P,

n=(10011)x =x*+x+1 € P,

L=(0r)P+(1,nn)P.

What iIs the shortest
nonzero vector in L?

L = (0,101000)P + (1,10011)P
= (10, 1110)P + (1,10011)P
= (10, 1110)P + (111, 1)P.

(111,1): shortest nonzero vector.

(10,1110): shortest
independent vector.

Degree «
Is define

Polynomial lattices

Define P = F»|x],
ro = (101000)x = x> + x> € P,

n=(10011)xy =x*+x+1€ P,

L=(0r)P+(1,rn)P.

What i1s the shortest
nonzero vector in L?

L = (0,101000)P + (1,10011)P
(10,1110)P + (1,10011)P
(10,1110)P + (111,1)P.

(111,1): shortest nonzero vector.

(10,1110): shortest
independent vector.

Degree of (g, r) €
is defined as max{

Polynomial lattices

Define P = F»|x],
ro = (101000)x = x° + x> € P,

n=(10011)x =x*+x+1 € P,

L=(0r)P+(1,n)P.

What iIs the shortest
nonzero vector in L?

L = (0,101000)P + (1,10011)P
(10,1110)P + (1,10011)P
(10,1110)P + (111,1)P.

(111,1): shortest nonzero vector.

(10,1110): shortest
independent vector.

Degree of (q,r) € Fo[x] X F
is defined as max{deg g, deg

Polynomial lattices Degree of (g, r) € Fo[x] x Fo[x]

Define P — Fy[x]. is defined as max{deg q,deg r}.

ro = (101000)x = x° + x> € P,
n=(10011)xy =x*+x+1 € P,
L=(0r)P+(1,rn)P.

What i1s the shortest
nonzero vector in L?

L = (0,101000)P + (1,10011)P
(10,1110)P + (1,10011)P
(10,1110)P + (111,1)P.

(111,1): shortest nonzero vector.
(10,1110): shortest
independent vector.

Polynomial lattices

Define P = F»|x],
ro = (101000)x = x° + x> € P,

n=(10011)xy =x*+x+1 € P,

L=(0r)P+(1,rn)P.

What i1s the shortest
nonzero vector in L?

L = (0,101000)P + (1,10011)P
(10,1110)P + (1,10011)P
(10,1110)P + (111,1)P.

(111,1): shortest nonzero vector.

(10,1110): shortest
independent vector.

Degree of (q, r) € Fa[x] x Fo[x]
is defined as max{deg q,deg r}.

Can use other metrics,
or equivalently rescale L.

e.g. Define L C Fy[v/x] x Fao[y/X]
as (0, g/x)P + (1, ri4/x)P.

Polynomial lattices

Define P = F»|x],
ro = (101000)x = x° + x> € P,

n=(10011)xy =x*+x+1 € P,

L=(0r)P+(1,rn)P.

What i1s the shortest
nonzero vector in L?

L = (0,101000)P + (1,10011)P
(10,1110)P + (1,10011)P
(10,1110)P + (111,1)P.

(111,1): shortest nonzero vector.

(10,1110): shortest
independent vector.

Degree of (q, r)

~ F2[X] X FQ[X]

is defined as max{deg q,deg r}.

Can use other metrics,

or equivalently rescale L.

e.g. Define L C

Fo[v/x] x Fo[v/x]

as (0, np/x)P + (1, ri/x)P.

Successive generators for L:
(0,101000+/x), degree 5.5.

(1,10011+/x), c

(10,1110+/%), ¢

egree 4.5.
egree 3.5.

(111, 14/x), degree 2.

nal lattice

S

> = Fp|x],

011)x =x*+x+1€ P,

r’o)P -+ (1,

x° 4+ x3 ¢ P,

rn)P.

the shortest

vector In

101000) P
1110)P -

L?

+(1,10011)P
- (1,10011)P

'1110)P -

shortest

- (111, 1)P.

nonzero vector.

0): shortest
lent vector.

Degree of (q, r)

~ FQ[X] X FQ[X]

is defined as max{deg q,deg r}.

Can use other metrics,

or equivalently rescale L.

e.g. Define L C

Fo[v/x] x Fo[y/X]

as (0, g/x)P + (1, ri/x)P.

Successive generators for L:
(0,101000+/x), degree 5.5.

1,100114/x), c

(
(10,11104/x), ¢
(

egree 4.5.
egree 3.5.

111, 1/x), degree 2.

Warning
shortest
after she

X2+ x3 € P

AL x+1eP,

rn)P.

st
L?

+(1,10011)P
- (1,10011)P
(111, 1)P.

nonzero vector.

St

r.

Degree of (q, r)

~ F2[X] X FQ[X]

is defined as max{deg q,deg r}.

Can use other metrics,

or equivalently rescale L.

e.g. Define L C

Fo[v/x] x Fo[y/X]

as (0, g/x)P + (1, ri/x)P.

Successive generators for L:

(0,101000+/x),
(1,10011+/x), c

(10,11104/x), ¢

degree 5.5.
egree 4.5.
egree 3.5.

(111, 1/x), degree 2.

Warning: Sometin
shortest independe
after shortest non

Degree of (q, r)

~ FQ[X] X FQ[X]

is defined as max{deg q,deg r}.

Can use other metrics,

or equivalently rescale L.

e.g. Define L C

Fo[v/x] x Fa[v/X]

as (0, rp/x)P + (1, ri/x)P.

Successive generators for L:
(0,101000+/x), degree 5.5.

1,100114/x), ¢

(
(10, 11104/x), c
(

egree 4.5.
egree 3.5.

111, 1/x), degree 2.

Warning: Sometimes
shortest independent vector
after shortest nonzero vecto

Degree of (q, r)

~ F2[X] X FQ[X]

is defined as max{deg q,deg r}.

Can use other metrics,

or equivalently rescale L.

e.g. Define L C

Fo[v/x] x Fo[v/x]

as (0, np/x)P + (1, ri/x)P.

Successive generators for L:
(0,101000+/x), degree 5.5.

(1,10011+/x), c

(10,1110+/%), ¢

egree 4.5.
egree 3.5.

(111, 14/x), degree 2.

Warning: Sometimes
shortest independent vector Is
after shortest nonzero vector.

Degree of (q, r) € Fa[x] x Fo[x]
is defined as max{deg q,deg r}.

Can use other metrics,
or equivalently rescale L.

e.g. Define L C Fy[v/x] x Fao[y/X]
as (0, g/x)P + (1, ri4/x)P.

Successive generators for L:
(0,101000+/x), degree 5.5.
(1,10011+/x), degree 4.5.
(10,11104/x), degree 3.5.
(111, 14/x), degree 2.

Warning: Sometimes
shortest independent vector Is
after shortest nonzero vector.

e.g. Define
ro = 101000, = 10111,

L = (0, ro/X)P + (1, r1+/X)P.

Successive generators for L:
(0,1010004/x), degree 5.5.
(1,101114/x), degree 4.5.
(10,1104/x), degree 2.5.
(1101, 11./x), degree 3.

Hf (q, I’) - FQ[X] X FQ[X]
d as max{deg q,degr}.

other metrics,
alently rescale L.

ne L C FQ[\/;] X FQ[\/)_(]
VX)P + (1, riv/x)P.

ve generators for L:

00+/x), degree 5.5.
1./x), degree 4.5.
04/x), degree 3.5.
'x), degree 2.

Warning: Sometimes
shortest independent vector Is
after shortest nonzero vector.

e.g. Define
ro = 101000, = 10111,

L = (0, ro/X)P + (1, r1+/X)P.

Successive generators for L:
(0,1010004/x), degree 5.5.
(1,101114/x), degree 4.5.
(10,1104/x), degree 2.5.
(1101, 11,/x), degree 3.

For any
in P =1

Euclid/S
Define r

r3=ryt

FQ[X] X FQ[X]
deg g,deg r}.

TICS,
cale L.

[v/x] x Fa[y/x]
L, ri/x)P.

ors for L:
gree 5.5.
ree 4.5.
ree 3.5.

e 2.

Warning: Sometimes
shortest independent vector Is
after shortest nonzero vector.

e.g. Define
ro = 101000, = 10111,

L = (0, ro/X)P + (1, r1+/X)P.

Successive generators for L:
(0,1010004/x), degree 5.5.
(1,101114/x), degree 4.5.
(10,110+/x), degree 2.5.
(1101, 114/x), degree 3.

For any field k, ar
in P = k|[x] with

Euclid/Stevin com
Define n = rp mo
r3 = rp mod ry, et

Warning: Sometimes
shortest independent vector iIs
after shortest nonzero vector.

e.g. Define
ro = 101000, = 10111,

L = (0, ro/X)P + (1, r1+/X)P.

Successive generators for L:
(0,1010004/x), degree 5.5.
(1,101114/x), degree 4.5.
(10,1104/x), degree 2.5.
(1101, 114/x), degree 3.

For any field k, any rg,
in P = k[x] with deg g > di

Euclid/Stevin computation:
Define rn = rp mod rq,
r3 = rp mod ry, etc.

Warning: Sometimes
shortest independent vector Is
after shortest nonzero vector.

e.g. Define
ro = 101000, r = 10111,

L = (0, ro/X)P + (1, r1+/X)P.

Successive generators for L:
(0,1010004/x), degree 5.5.
(1,101114/x), degree 4.5.
(10,110+/x), degree 2.5.
(1101, 114/x), degree 3.

For any field k, any rg, i
in P = k[x] with degrg > deg r;:

Euclid/Stevin computation:
Define rn = rp mod rq,
r3 = r1 mod ry, etc.

Warning: Sometimes
shortest independent vector Is
after shortest nonzero vector.

e.g. Define
ro = 101000, r = 10111,

L = (0, ro/X)P + (1, r1+/X)P.

Successive generators for L:
(0,1010004/x), degree 5.5.
(1,101114/x), degree 4.5.
(10,110+/x), degree 2.5.
(1101, 114/x), degree 3.

For any field k, any rg, i
in P = k[x] with degrg > deg r;:

Euclid/Stevin computation:
Define rn = rp mod rq,
r3 = r1 mod ry, etc.

Extended: g9 = 0; g1 = 1;

qi+2 = qi — [ri/ri+1] Git1.
Then gjrp = r; (mod ry).

Warning: Sometimes
shortest independent vector Is
after shortest nonzero vector.

e.g. Define
ro = 101000, r = 10111,

L = (0, rg/X)P + (1, rp+/X)P.

Successive generators for L:
(0,1010004/x), degree 5.5.
(1,101114/x), degree 4.5.
(10,110+/x), degree 2.5.
(1101, 114/x), degree 3.

For any field k, any rg, i
in P = k[x] with degrg > deg r;:

Euclid/Stevin computation:
Define rn = rp mod rq,
r3 = r1 mod ry, etc.

Extended: gp = 0; g1 = 1;
Gi+2 = qi — |fi/ri+1] gi+1-
Then gjrp = r; (mod ry).

| attice view: Have

(0, ov/x)P + (1, n+/x)P =
(gi, riv/x)P + (qit1. rix1v/Xx)P.

Warning: Sometimes
shortest independent vector Is
after shortest nonzero vector.

e.g. Define
ro = 101000, r = 10111,

L = (0, ro/X)P + (1, r1+/X)P.

Successive generators for L:
(0,1010004/x), degree 5.5.
(1,101114/x), degree 4.5.
(10,110+/x), degree 2.5.
(1101, 114/x), degree 3.

For any field k, any rg, i
in P = k[x] with degrg > deg r;:

Euclid/Stevin computation:
Define rn = rp mod rq,
r3 = r1 mod ry, etc.

Extended: gp = 0; g1 = 1;
Gi+2 = qi — |fi/ri+1] gi+1-
Then gjrp = r; (mod ry).

| attice view: Have

(0, ov/x)P + (1, n+/x)P =
(gi, riv/x)P + (qit1. rix1v/Xx)P.

Can continue until rj, 7 = 0.
gcd{rg, 1} = r;/ leadcoeff r;.

- Sometimes
independent vector Is
ortest nonzero vector.
ne

000, n = 10111,

0vX)P + (1, nv/x)P.

ve generators for L:
00+/x), degree 5.5.
1./x), degree 4.5.

v/ x), degree 2.5.
1./x), degree 3.

For any field k, any rg, i

in P = k|x] with deg rp > deg r1:

Euclid/Stevin computation:
Define rn = rp mod ry,
r3 = r; mod ry, etc.

Extended: g9 =0; g1 = 1;
Gi+2 = qi — |fi/ri+1] gi+1.
Then gjrp = r; (mod ry).

| attice view: Have

(0, ov/x)P + (1, n4/x)P =

(gi, riv/x)P + (Gix1, rix1vV/x)P.

Can continue until ri; 1 = 0.
gcd{rg, 1} = r;/ leadcoeff r;.

Reducin;
Is a "hal

stopping

nes
nt vector iIs
Zero vector.

10111,

(1, ri+/x)P.

ors for L:
gree 5.5.
ree 4.5.
ce 2.5,

ree 3.

For any field k, any rg,

in P = k|x] with deg ry > deg ry:

Euclid/Stevin computation:
Define rn = rp mod rq,
r3 = r; mod ry, etc.

Extended: gp = 0; g1 = 1;
Gi+2 = qi — |fi/ri+1] gi+1-
Then gjrp = r; (mod ry).

| attice view: Have

(0, ov/x)P + (1, n+/x)P =
(gi, rivX)P + (Git1. rit1v/x) P

Can continue until rj, 1 = 0.
gcd{rg, 1} = r;/ leadcoeff r;.

Reducing lattice b
is a “half gcd” col
stopping halfway t

1S

For any field k, any rg,

in P = k|x] with deg rp > deg r1:

Euclid/Stevin computation:
Define rn = rp mod ry,
r3 = r; mod ry, etc.

Extended: g9 =0; g1 = 1;
Gi+2 = qi — |fi/ri+1]) gi+1.
Then gjrp = r; (mod ry).

| attice view: Have

(0, ov/x)P + (1, n/x)P =
(gi, riv/X)P + (qi+1, rix1v/Xx)P.

Can continue until ri; 1 = 0.
gcd{rg, 1} = r;/ leadcoeff r;.

Reducing lattice basis for L
is a “half gcd” computation
stopping halfway to the gcd

For any field k, any rgy,

in P = k|x] with deg ry > deg ry:

Euclid/Stevin computation:
Define rn = rp mod rq,
r3 = rp mod ry, etc.

Extended: gp = 0; g1 = 1;
Gi+2 = qi — |fi/ri+1] gi+1-
Then gjrp = r; (mod ry).

| attice view: Have

(0, ov/x)P + (1, n/x)P =
(qi, riv/x)P + (gi+1, rig1v/x)P.

Can continue until rj, 1 = 0.
gcd{rg, 1} = r;/ leadcoeff r;.

Reducing lattice basis for L
is a “half gcd” computation,
stopping halfway to the gcd.

For any field k, any rgy,

in P = k|x] with deg ry > deg ry:

Euclid/Stevin computation:
Define rn = rp mod rq,
r3 = rp mod ry, etc.

Extended: gp = 0; g1 = 1;
Gi+2 = qi — |fi/ri+1] gi+1-
Then gjrp = r; (mod ry).

| attice view: Have

(0, ov/x)P + (1, n/x)P =
(qi, riv/x)P + (gi+1, rig1v/x)P.

Can continue until rj, 1 = 0.
gcd{rg, 1} = r;/ leadcoeff r;.

Reducing lattice basis for L

is a “half gcd” computation,

stopping halfway to the gcd.

C

C

eg r; decreases; deg g; increases;
eg gir1 + degri = degrp.

For any field k, any rgy,

in P = k|x] with deg ry > deg ry:

Euclid/Stevin computation:
Define rn = rp mod rq,
r3 = rp mod ry, etc.

Extended: gp = 0; g1 = 1;
Gi+2 = qi — |fi/ri+1] gi+1-
Then gjrp = r; (mod ry).

| attice view: Have

(0, ov/x)P + (1, n/x)P =
(qi, riv/x)P + (gi+1, rig1v/x)P.

Can continue until rj, 1 = 0.
gcd{rg, 1} = r;/ leadcoeff r;.

Reducing lattice basis for L

is a “half gcd” computation,

stopping halfway to the gcd.

C

C

eg r; decreases; deg g; increases;
eg gir1 + degri = degrp.

Say j is minimal with

deg ri/x < (degrg)/2.
Then deg q; < (degrp)/2 so

deg(qj, rjv/x) < (degrp)/2.
Shortest nonzero vector.

For any field k, any rgy,

in P = k|x] with deg ry > deg ry:

Euclid/Stevin computation:
Define rn = rp mod rq,
r3 = rp mod ry, etc.

Extended: gp = 0; g1 = 1;
Gi+2 = qi — |fi/ri+1] gi+1-
Then gjrp = r; (mod ry).

| attice view: Have

(0, ov/x)P + (1, n/x)P =
(qi, riv/x)P + (gi+1, rig1v/x)P.

Can continue until rj, 1 = 0.
gcd{rg, 1} = r;/ leadcoeff r;.

Reducing lattice basis for L
is a “half gcd” computation,
stopping halfway to the gcd.

deg r; decreases; deg g; increases;
deg q;11 +degri = degn.

Say j is minimal with
deg ri/x < (degrg)/2.
Then deg q; < (degrp)/2 so

deg(qj, rjv/x) < (degrp)/2.
Shortest nonzero vector.

(qj+e1 rj+e\/)_<) has degree
deg ro/x — deg(qj, rj/x)
for some e € {—1,1}.
Shortest independent vector.

field k, any g, n

¢|x] with deg rp > deg ry:

tevin computation:
> —) mod r1,
nod r, etc.

d: go =0; g1 = 1;

i — Lri/riv1] gig1-
rr =r; (mod rp).

fiew: Have
:)P + (1, rl\/§)P =
)P+ (gix1, riv1v/x)P.

tinue until rj; 1 = 0.
1} = r;/ leadcoeff r;.

Reducing lattice basis for L
is a “half gcd” computation,
stopping halfway to the gcd.

deg r; decreases; deg g; increases;
deg q;.1 +degri = degn.

Say j is minimal with
deg ri/x < (degrg)/2.
Then deg q; < (degrp)/2 so

deg(qj, rjv/x) < (degry)/2.
Shortest nonzero vector.

(Gjter ri+ev/x) has degree

deg ro+/x — deg(q;, rjv/x)
for some e € {—1,1}.
Shortest independent vector.

Proof of
Take an

y 10, 1

leg rgp > deg r:

putation:
d rq,
C.

g1 = 1,
+1J di+1-
mod rp).

1V/X)P =
1, Fip1v/X)P.

| Fi11 = 0.
radcoeff r;.

Reducing lattice basis for L
is a “half gcd” computation,
stopping halfway to the gcd.

deg r; decreases; deg g; increases;
deg qj11 +degri = degn.

Say j is minimal with
deg ri/x < (degrg)/2.
Then deg q; < (degrp)/2 so

deg(qj, rjv/x) < (degrp)/2.
Shortest nonzero vector.

(qj+e1 rj+e\/)_<) has degree
deg ro/x — deg(qj, rj/x)
for some e € {—1,1}.
Shortest independent vector.

Proof of “shortest
Take any (q, ry/x

Reducing lattice basis for L Proof of “shortest”:
g is a “half gcd” computation, Take any (g, ri/x) in lattice
stopping halfway to the gcd.

deg r; decreases; deg g; increases;
deg q;.1 +degri = degn.

Say j is minimal with
deg ri/x < (degrg)/2.
Then deg q; < (degrp)/2 so

deg(qgj, rjv/x) < (degrp)/2.
Shortest nonzero vector.

)P. (Gjter ri+ev/x) has degree
deg ro/x — deg(g;, rjv/x)
for some € € {—1, 1}.

Shortest independent vector.

Reducing lattice basis for L Proof of “shortest”:
is a “half gcd” computation, Take any (g, ri/x) in lattice.
stopping halfway to the gcd.

deg r; decreases; deg g; increases;
deg q;11 +degri = degn.

Say j is minimal with
deg ri/x < (degrg)/2.
Then deg q; < (degrp)/2 so

deg(qj, rjv/x) < (degry)/2.
Shortest nonzero vector.

(qj+e1 rj+e\/)_<) has degree
deg ro/x — deg(qj, rj/x)
for some e € {—1,1}.
Shortest independent vector.

Reducing lattice basis for L
is a “half gcd” computation,
stopping halfway to the gcd.

deg r; decreases; deg g; increases;
deg q;11 +degri = degn.

Say j is minimal with

deg ri/x < (degrg)/2.
Then deg q; < (degrp)/2 so

deg(qj, rjv/x) < (degry)/2.
Shortest nonzero vector.

(qj+e1 rj+e\/)_<) has degree
deg ro/x — deg(qj, rj/x)
for some e € {—1,1}.
Shortest independent vector.

Proof of “shortest™:
Take any (g, ri/x) in lattice.

(g, rv/x) = u(qj, rjv/x)
+ V(Gjte Fjtev/X)
for some u, v € P.

Reducing lattice basis for L
is a “half gcd” computation,
stopping halfway to the gcd.

deg r; decreases; deg g; increases;
deg q;11 +degri = degn.

Say j is minimal with
deg ri/x < (degrg)/2.
Then deg q; < (degrp)/2 so

deg(qj, rjv/x) < (degry)/2.
Shortest nonzero vector.

(qj+e1 rj+e\/)_<) has degree
deg ro/x — deg(qj, rj/x)
for some e € {—1,1}.
Shortest independent vector.

Proof of “shortest™:
Take any (g, ri/x) in lattice.

(g, rv/x) = u(qj, rjv/x)
+ V(Gjte Fjtev/X)
for some u, v € P.

djlji+e — dj+elfj = =10
so v =*£(rq; —qrj)/r
and u = :(lej+e — fClj+e)/f0-

Reducing lattice basis for L
is a “half gcd” computation,
stopping halfway to the gcd.

deg r; decreases; deg g; increases;
deg q;11 +degri = degn.

Say j is minimal with
deg ri/x < (degrg)/2.
Then deg q; < (degrp)/2 so

deg(qj, rjv/x) < (degry)/2.
Shortest nonzero vector.

(qj+e1 rj+e\/)_<) has degree
deg ro/x — deg(qj, rj/x)
for some e € {—1,1}.
Shortest independent vector.

Proof of “shortest™:
Take any (g, ri/x) in lattice.

(g, rv/x) = u(qj, rjv/x)
+ V(Gjte Fjtev/X)
for some u, v € P.

djlji+e — dj+elfj = =10
so v =*£(rq; —qrj)/r
and u = :(lej+e — fClj+e)/f0-

If deg(q, rv/x)

< deg(qure rj+e\/})
then degv < 0 so v = 0;

l.e., any vector In lattice

shorter than (gjte, fjt+ev/X)
is a multiple of (q;, rj/x).

o |attice basis for L
f gcd” computation,
halfway to the gcd.

creases; deg g; Increases;
+ deg r; = deg ny.

minimal with
« < (degnry)/2.
gq; < (degry)/2 so

jv/x) < (degry)/2.

nonzero vector.

Le1/X) has degree

x — deg(qj, rjv/x)

e c{—1,1}.
independent vector.

Proof of “shortest”:
Take any (g, ry/x) in lattice.

(g, rv/x) = u(qj, rj/x)
+ V(qj er Iy eV X)
for some u, v € P.

dilj+e — 9j+elj = =10
so v =*£(rq; —qrj)/rn

and u = :(lej+e — fClj+e)/f0-

If deg(q, rv/x)

< deg(qj+€v rj+€\/)_<)
then degv < 0 so v =0;

l.e., any vector In lattice

shorter than (gjte, ri+ev/X)
is a multiple of (q;, rj/x).

Classical

Fix integ
Integer |
Integer 1
distinct
monic g
with g(s

asis for L
mputation,
o the gcd.

eg g; Increases;
— deg -

/ith

)/ 2.

g rp)/2 so

leg ry) /2.
/ector.

5 degree
L v/ X)
1}.

ent vector.

Proof of “shortest™:
Take any (g, ri/x) in lattice.

(g, rv/x) = u(qj, rjv/x)
+ V(Gjte: Fi+eVX)
for some u,v € P.

djlji+e — dj+elfj = =10
so v =*£(rq; —qrj)/rn

and u = :(lej+e — fClj+e)/f0-

If deg(q, rv/x)

< deg(qure rj+e\/})
then degv < 0 so v = 0;

l.e., any vector In lattice

shorter than (gjte, fjt+ev/X)
is a multiple of (q;, rj/x).

Classical binary G

Fix integer n > 0;
integer m > 1 witl
integer t > 0;

distinct a1, ..., an
monic g € FQm[X]
with g(a1) - - g(a,

2dSES,

Proof of “shortest”:
Take any (g, r1/x) in lattice.

(g, rv/x) = u(qj, rjv/x)
+ V(qj er Iy eV X)
for some u,v € P.

dilji+e — 9j+elj = =10
so v =*£(rq; —qrj)/rn

and u = :(lej+e — fClj+e)/f0-

If deg(q, rv/x)

< deg(qj+€v rj+€\/)_<)
then degv < 0 so v =0;

l.e., any vector In lattice

shorter than (gjte, ri+ev/X)
is a multiple of (q;, rj/x).

Classical binary Goppa code

Fix integer n > 0;

integer m > 1 with 2™ > p;
integer t > 0;

distinct ay, ..., an € Fom;
monic g € Fom|x] of degree
with g(a1)---g(an) # 0.

Proof of “shortest™:
Take any (g, ri/x) in lattice.

(g, rv/x) = u(qj, rjv/x)
+ V(Gjte Fjtev/X)
for some u,v € P.

dilj+e — dj+elj = =10
so v =*£(rq; —qrj)/rn

and u = :(lej+e — fClj+e)/f0-

If deg(q, rv/x)

< deg(qure rj+e\/})
then degv < 0 so v = 0;

l.e., any vector In lattice

shorter than (gjte, fjt+ev/X)
is a multiple of (q;, rj/x).

Classical binary Goppa codes

Fix integer n > 0;

integer m > 1 with 2™ > p;
integer t > 0;

distinct ay, ..., an € Fom;
monic g € Fom|[x]| of degree t
with g(a1) - - - g(an) # 0.

Proof of “shortest™:
Take any (g, ri/x) in lattice.

(g, rv/x) = u(qj, rjv/x)
+ V(Gjte Fjtev/X)
for some u,v € P.

dilj+e — dj+elj = =10
so v =*£(rq; —qrj)/rn

and u = :(lej+e — fClj+e)/f0-

If deg(q, rv/x)

< deg(qure rj+e\/})
then degv < 0 so v = 0;

l.e., any vector In lattice

shorter than (gjte, fjt+ev/X)
is a multiple of (q;, rj/x).

Classical binary Goppa codes

Fix integer n > 0;

integer m > 1 with 2™ > p;
integer t > 0;

distinct ay, ..., an € Fom;
monic g € Fom|[x]| of degree t
with g(a1) - - - g(an) # 0.

Note that x — a;
nas a reciprocal in Fom|x|/g.

Proof of “shortest™:
Take any (g, ri/x) in lattice.

(g, rv/x) = u(qj, rjv/x)
+ V(Gjte Fjtev/X)
for some u,v € P.

dilj+e — dj+elj = =10
so v =*£(rq; —qrj)/rn

and u = :(lej+e — fClj+e)/f0-

If deg(q, rv/x)

< deg(qure rj+e\/})
then degv < 0 so v = 0;

l.e., any vector In lattice

shorter than (gjte, fjt+ev/X)
is a multiple of (q;, rj/x).

Classical binary Goppa codes

Fix integer n > 0;

integer m > 1 with 2™ > p;
integer t > 0;

distinct ay, ..., an € Fom;
monic g € Fom|[x]| of degree t
with g(a1) - - - g(an) # 0.

Note that x — a;
nas a reciprocal in Fom|x|/g.

Define linear subspace I' C FJ
as set of (cy,...,cn) with

Zi C,'/(X — a,-) — 0 In F2m[X]/g.
Then #£[> 2n—mt,

" “shortest”
v (g, ry/x) in lattice.

_I_V(qj er Iy eV X)

di+elj = 10
E(rq; — qrj)/ro

 Fa/X)

deg(qj+€1 rj+€\/)_<)
v < 0sov=0;
vector in lattice

han (qj+€v rj+€\/;)
tiple of (g, riv/x).

Classical binary Goppa codes

+(qrjte — rqj+e)/ ro-

Fix integer n > 0;

integer m > 1 with 2™ > p;
integer t > 0;

distinct ay, ..., an € Fom;
monic g € Fom|[x| of degree t
with g(a1)---g(an) # 0.

Note that x — a;
nas a reciprocal in Fom|x]/g.

Define linear subspace I' C F7J
as set of (cy,...,cn) with

2 Ci/(x—aj) =0inFom[x]/g.

Then 4 > 2n—mt,

Goal: Fi
V = C +

| In lattice.

jv/X)
er I e\/;)

my f§

i)/ 1o

~ rqj+€)/r0-

rj+€\/;)
v = 0;
lattice
,’:/'Jre\/)_()
2 1v/X).

Classical binary Goppa codes

Fix integer n > 0;

integer m > 1 with 2™ > p;
integer t > 0;

distinct ay, ..., an € Fom;
monic g € Fom|[x]| of degree t
with g(a1) - --g(an) # 0.

Note that x — a;
nas a reciprocal in Fom|x|/g.

Define linear subspace I' C FJ
as set of (cq,...,cn) with

2 Ci/(x—aj)=0inFom[x]/g.

Then #I > 2n—mt,

Goal: Find c el
v = C -+ e, assumi

Classical binary Goppa codes

Fix integer n > 0;

integer m > 1 with 2™ > p;
integer t > 0;

distinct ay, ..., an € Fom;
monic g € Fom|[x| of degree t
with g(a1)---g(an) # 0.

Note that x — a;
nas a reciprocal in Fom|x]/g.

Define linear subspace I' C F7J
as set of (cy,...,cn) with

2 Ci/(x —aj) =0in Fom[x]/g.

Then 4 > 2n—mt,

Goal: Find c €T given
v =+ e, assuming |e| < t

Classical binary Goppa codes

Fix integer n > 0;

integer m > 1 with 2™ > p;
integer t > 0;

distinct ay, ..., an € Fom;
monic g € Fom|[x]| of degree t
with g(a1) - - - g(an) # 0.

Note that x — a;
nas a reciprocal in Fom|x|/g.

Define linear subspace I' C FJ
as set of (cy,...,cn) with

2 Ci/(x—aj)=0inFom[x]/g.

Then #I > 2n—mt,

Goal: Find c €T given
v = c + e, assuming |e| < t/2.

Classical binary Goppa codes

Fix integer n > 0;

integer m > 1 with 2™ > p;
integer t > 0;

distinct ay, ..., an € Fom;
monic g € Fom|[x]| of degree t
with g(a1) - - - g(an) # 0.

Note that x — a;
nas a reciprocal in Fom|x|/g.

Define linear subspace I' C FJ
as set of (cy,..., Cp) with

Then #I > 2n—mt,

Goal: Find c €T given
v = c + e, assuming |e| < t/2.

Lift > ;- vi/(x — aj) from Fom|x]/g
to s € Fom|x] with degs < t.

Find shortest nonzero

(gj. rj+/x) in the lattice L =

(0, gv/x)Fom|x] + (1, s4/x)Fom[x].

Classical binary Goppa codes

Fix integer n > 0;

integer m > 1 with 2™ > p;
integer t > 0;

distinct ay, ..., an € Fom;
monic g € Fom|[x]| of degree t
with g(a1) - - - g(an) # 0.

Note that x — a;
nas a reciprocal in Fom|x|/g.

Define linear subspace I' C FJ
as set of (cy,..., Cp) with

Then 4 > 2n—mt,

Goal: Find c €T given
v = c + e, assuming |e| < t/2.

Lift > ;- vi/(x — aj) from Fom|x]/g
to s € Fom|[x| with degs < t.
Find shortest nonzero

(gj. rj+/x) in the lattice L =

(0, gv/X)Fam[x] + (1, s¢/x)Fam][x].
Define E, F € Fom|[x] by
F=1l;.e+0(x —aj) and
E=>;Fei/(x— a).

Fact: E/F = rj/qj SO

F is monic denominator of rj/qj_

Classical binary Goppa codes

Fix integer n > 0;

integer m > 1 with 2™ > p;
integer t > 0;

distinct ay, ..., an € Fom;
monic g € Fom|[x]| of degree t
with g(a1) - - - g(an) # 0.

Note that x — a;
nas a reciprocal in Fom|x|/g.

Define linear subspace I' C FJ
as set of (cy,..., Cp) with

Then 4 > 2n—mt,

Goal: Find c €T given
v = c + e, assuming |e| < t/2.

Lift > ;- vi/(x — aj) from Fom|x]/g
to s € Fom|[x| with degs < t.
Find shortest nonzero

(gj. rj+/x) in the lattice L =

(0, gv/X)Fam[x] + (1, s¢/x)Fam][x].
Define E, F € Fom|[x] by
F=1l;.e+0(x —aj) and
E=>;Fei/(x— a).

Fact: E/F = rj/qj SO

F is monic denominator of rj/qj_

e — 0 if F(a,-) 75 0.
e — E(a,-)/F'(a,-) if F(a,-) = 0.

binary Goppa codes

rer n > 0;
n > 1 with 2™ > n;

€ Fom|x| of degree t
1) -+ g(an) # 0.

At X — g
ciprocal in Fom|x]/g.

near subspace [C FJ
: (C]_ Cn) W|th

Goal: Find c €T given
v = c + e, assuming |e| < t/2.

Lift > ;v;i/(x — aj) from Fom|x]/g
to s € Fom|[x| with degs < t.
Find shortest nonzero

(gj. rjv/x) in the lattice L =

(0, gv/X)Fam[x] + (1, s¢/x)Fam][x].
Define E, F € Fom|x] by
F=11;.e0(x —ai) and
E=2;Fei/(x—aj)

Fact: E/F =r;/q; so

F is monic denominator of rj/qj_

€ = 0 if F(a,-) # 0.
€ — E(a,-)/F'(a,-) if F(a,-) = 0.

This dec
“correct:

Why do

> i€/(
> i¢i/(
so s =1I
so (F, E

bppa codes

n 2M > n;

c Fom;
of degree t

) # 0.

Fom[x]/g.

bace [C FJ
“n) with

0 in Fom[x]/g.

’.

Goal: Find c €T given
v = c + e, assuming |e| < t/2.

Lift 3 ; vi/(x — a;) from Fom([x]/g
to s € Fom|[x| with degs < t.
Find shortest nonzero

(gj. rj+/x) in the lattice L =

(0, gv/X)Fom[x] + (1, s/x)Fom[x].
Define E, F € Fom|x] by

F = Hi;eﬁ,go(x — a;) and

E=2 ;Fei/(x—a)

Fact: E/F =rj/q; so

F is monic denominator of r;/g;.

e — 0 if F(a,-) 75 0.
e — E(a,-)/F'(a,-) if F(a,-) = 0.

This decoder
“corrects |t/2] er

Why does this wol

> i€/(x—aj) =
> ici/(x—aj)=
so s =E/F in Fy
so (F, Ey/x) € L.

|U)

=N

1/g.

Goal: Find c €T given
v = c + e, assuming |e| < t/2.

Lift > ; vi/(x — a;) from Fom([x]/g
to s € Fom|[x| with degs < t.
Find shortest nonzero

(gj. rjv/x) in the lattice L =

(0, gv/X)Fom[x] + (1, s/x)Fom[x].
Define E, F € Fom|x] by
F=11;.e0(x —aj) and
E=>;Fe/(x—3a)

Fact: E/F =r;/q; so

F is monic denominator of rj/qj_

€ = 0 if F(a,-) # 0.
€ — E(a,-)/F'(a,-) if F(a,-) = 0.

This decoder
“corrects |t/2] errors for "

Why does this work?

> iei/(x—aj)=E/F and
Z,-c,-/(x—a,-):0 In Fzm[)
sos=E/F in Fom|[x]/g

so (F, Ey/x) € L.

Goal: Find c €T given
v = c + e, assuming |e| < t/2.

Lift 3 ; vi/(x — a;) from Fom([x]/g
to s € Fom|[x| with degs < t.
Find shortest nonzero

(gj. rj+/x) in the lattice L =

(0, g/x)Fom[x] + (1, s1/x)Fam[x].
Define E, F € Fom|[x] by
F=1l;.e+0(x—aj) and

E=2 ;Fei/(x—a)

Fact: E/F =rj/q; so

F is monic denominator of rj/qj_

e — 0 if F(a,-) 75 0.
e — E(a,-)/F'(a,-) if F(a,-) = 0.

This decoder
“corrects | t/2] errors for [

Why does this work?

> iei/(x—aj)=E/F and

> ;Ci/(x—aj)=0inFam|x]/g
sos=E/F in Fom|x]|/g

so (F, E4/x) € L.

Goal: Find c €T given
v = c + e, assuming |e| < t/2.

Lift > ;- vi/(x — aj) from Fom|x]/g
to s € Fom|x] with degs < t.

Find shortest nonzero

(gj. rj+/x) in the lattice L =

(0. gv/x)Fam|x] + (1, s/x)Fom|[x].
Define E, F € Fzm[X] by
F=1lj.¢0(x —aj) and

E = Zi Fe,-/(x — a,-).

Fact: E/F = r;/q; so

F is monic denominator of r;/g;.

e — 0 if F(a,-) 75 0.
e — E(a,-)/F'(a,-) if F(a,-) = 0.

This decoder
“corrects | t/2] errors for [

Why does this work?

> jei/(x—aj)=E/F and

> i ¢i/(x —aj) =0in Fam|x]/g
sos=E/F in Fom|x]|/g

so (F, E\/x) € L.

(F, E+/x) is a short vector:
deg(F, Ev/x) < |e| < t/2

< t+1/2 —deg(q;, riv/x).

Goal: Find c €T given
v = c + e, assuming |e| < t/2.

Lift 3 ; vi/(x — a;) from Fom([x]/g
to s € Fom|[x| with degs < t.
Find shortest nonzero

(gj. rj+/x) in the lattice L =

(0, g/x)Fom[x] + (1, s1/x)Fam[x].
Define E, F € Fom|[x] by
F=1l;.e+0(x—aj) and

E=2 ;Fei/(x—a)

Fact: E/F =rj/q; so

F is monic denominator of rj/qj_

e — 0 if F(a,-) 75 0.
e — E(a,-)/F'(a,-) if F(a,-) = 0.

This decoder
“corrects | t/2] errors for [

Why does this work?

> iei/(x—aj)=E/F and

> ;Ci/(x—aj)=0inFam|x]/g
sos=E/F in Fom|x]|/g

so (F, E4/x) € L.

(F, E+/x) is a short vector:
deg(F, Ev/x) < |e| < t/2
< t+1/2 —deg(q;, riv/x).

Recall proof of “shortest’:

(F. Ev/x) € (gj, rjv/x)Fam|x],
so E/F = r;/q;. Done!

nd c € given
e, assuming |e| < t/2.

vi/(x — aj) from Fom[x]/g
om|[x] with degs < t.
rtest nonzero

<) in the lattice L =

JFom[x] 4 (1, s/x)Fom|x].
- F € Fgm[X] by

e,-;éO(X — aj) and

Fei/(x — aj).

/F = rj/qj so

nic denominator of r;/q;.

F(aj) # 0.
)/ F'(ai) if F(a;) = 0.

This decoder
“corrects | t/2] errors for [

Why does this work?

> iei/(x—aj)=E/F and

> i ¢i/(x —aj) =0in Fom|x]/g
sos=E/F in Fom|x]|/g

so (F, E\/x) € L.

(F, E4/x) is a short vector:
deg(F, Ev/x) < |e] < t/2

< t+1/2 —deg(q;, riv/x).

Recall proof of “shortest":

(F. Ev/x) € (gj, rjv/x)Fam|x],
so E/F = r;/q;. Done!

The squ

[(g) cor
Zi CI'/("
2 i¢Gi/(

olven
ng le| < t/2.

) from Fom|x]/g
1 degs < t.

ero

qttice L =

(1,5\/)?)F2m[X].
r[X] by

;) and

a,-).

j S0

inator of r;/q;.

).
if F(a,-) = 0.

This decoder
“corrects | t/2] errors for [

Why does this work?

> iei/(x—aj)=E/F and

> ;Ci/(x—aj)=0inFam|x]/g
sos=E/F in Fom|x]|/g

so (F, E4/x) € L.

(F, E4/x) is a short vector:
deg(F, Ev/x) < |e| < t/2
< t+1/2 —deg(q;, riv/x).

Recall proof of “shortest’:

(F. Ev/x) € (qj, rjv/x)Fam[x],
so E/F = r;/q;. Done!

The squarefree ca:

[(g) contains (g
> iGi/(x—aj)=
> ici/(x—aj)=

This decoder
“corrects | t/2] errors for .

Why does this work?

> iei/(x—aj)=E/F and

> i ¢i/(x —aj) =0in Fom|x]/g
sos=E/F in Fom|x]|/g

so (F, E\/x) € L.

(F, E4/x) is a short vector:
deg(F, Ev/x) < |e] < t/2

< t+1/2 —deg(q;, riv/x).

Recall proof of “shortest”:

(F, Ev/x) € (g, rjiv/x)Fom|[x],
so E/F = r;/q;. Done!

The squarefree case

[(g) contains [(g?):

Zi Ci/(X — 3,‘)
> i¢i/(x— aj)

=0
=0

N Fzm:
N Fzm:

This decoder
“corrects | t/2] errors for [

Why does this work?

> jei/(x—aj)=E/F and

> i ¢i/(x —aj) =0in Fom|x]/g
sos=E/F in Fom|x]|/g

so (F, E\/x) € L.

(F, E+/x) is a short vector:
deg(F, Ev/x) < |e| < t/2

< t+1/2 —deg(q;, riv/x).

Recall proof of “shortest’:

(F, Ev/x) € (qj, rjv/x)Fam[x],
so E/F = r;/q;. Done!

The squarefree case

[(g) contains I'(g?):

> ici/(x—aj)=0in Fom[x
> ici/(x—aj)=0in Fom[x

This decoder The squarefree case

corrects | t/2| errors for [M(g) contains I'(g2):

Why does this work? > .ci/(x—aj) =0in Fom|x|/g if
e l(x —a) — 0 in Eamlx]/e2

S .e/(x —a;) = E/F and d . ci/(x—a;)=0in Fom|x]/g”.

> iGi/(x—a;)=0in Fom[x]/g Amazing fact:

sos=E/F in Fom|x]/g [(g) =T(g?) if g is squarefree.

so (F, E\/x) € L.

(F, E+/x) is a short vector:
deg(F, Ev/x) < |e| < t/2
< t+1/2 —deg(q;, riv/x).

Recall proof of “shortest’:

(F. Ev/x) € (qj, rjv/x)Fam][x],
so E/F = r;/q;. Done!

This decoder
“corrects | t/2] errors for [

Why does this work?

> jei/(x—aj)=E/F and

> i ¢i/(x —aj) =0in Fom|x]/g
sos=E/F in Fom|x]|/g

so (F, E\/x) € L.

(F, E+/x) is a short vector:
deg(F, Ev/x) < |e| < t/2

< t+1/2 —deg(q;, riv/x).

Recall proof of “shortest’:

(F, Ev/x) € (qj, rjv/x)Fam[x],
so E/F = r;/q;. Done!

The squarefree case

[(g) contains F(gz):
> ici/(x—aj)=0in Fym[x]/g if
S .ci/(x —a;) =0in Fam[x]/g*.

Amazing fact:

[(g) =T(g?) if g is squarefree.

Previous decoder for g2
corrects t errors for '(g?),
hence corrects t errors for ['(g).

This decoder
“corrects | t/2] errors for [

Why does this work?

> jei/(x—aj)=E/F and

> i ¢i/(x —aj) =0in Fom|x]/g
sos=E/F in Fom|x]|/g

so (F, E\/x) € L.

(F, E+/x) is a short vector:
deg(F, Ev/x) < |e| < t/2

< t+1/2 —deg(q;, riv/x).

Recall proof of “shortest’:

(F, Ev/x) € (qj, rjv/x)Fam[x],
so E/F = r;/q;. Done!

The squarefree case

[(g) contains I'(g?):

> ;ci/(x—a;j) =0in Fam|
> ici/(x—aj) =0in Fom]

Amazing fact:

|/g if
/g

[(g) =T(g?) if g is squarefree.

Previous decoder for g2

corrects t errors for '(g?),

hence corrects t errors for ['(g).

(Not covered in this talk:

correcting ~ t + t%/n errors.

See, e.g., “jet list decoding”.)

oder
s |t/2] errors for [,

s this work?
«—a;)=E/F and
«—a;j) =0in Fom|x]/g
:/F In F2m[X]/g

vXx) € L.

) is a short vector:
Vx) < le| < t/2

2 — deg(q;, rjv/x).

roof of “shortest’:

) € (g, rjv/x)Fom[x],

= r;/q;. Done!

The squarefree case

[(g) contains [(g?):
> .ci/(x—aj) =0in Fom|x|/g if
> :ci/(x—a;) =0in Faom :X:/g2_

Amazing fact:

[(g) =T(g?) if g is squarefree.

Previous decoder for g2
corrects t errors for (g?),
hence corrects t errors for [(g).

(Not covered in this talk:
correcting &~ t + t%/n errors.
See, e.g., “jet list decoding”.)

Proof: /
Zi ci/(:

rors for [
k?

E/F and
0 In Fzm[X]/g
n[x]/g

1ortest’ :

vx)Fom([x],

Jonel

The squarefree case

[(g) contains [(g?):
Zi Ci/(X — 3/) =0 in Fom X/g if
> ici/(x—a;))=0in Fam[x]/g°.

Amazing fact:

[(g) =T(g?) if g is squarefree.

Previous decoder for g2
corrects t errors for '(g?),
hence corrects t errors for [(g).

(Not covered in this talk:
correcting ~ t + t°/n errors.
See, e.g., “jet list decoding”.)

Proof: Assume

2 ici/(x—a;)=

1/

The squarefree case

[(g) contains I'(g?):

Zi Ci/(X — 3,‘)
> i¢i/(x— aj)

Amazing fact:

=0
=0

N F2m_

x|/g if

N Fzm: :/g2.

[(g) =T(g?) if g is squarefree.

Previous decoder for g2

corrects t errors for (g?),

hence corrects t errors for [(g).

(Not covered in this talk:

correcting ~ t + t°/n errors.

See, e.g., “jet list decoding”.)

Proof: Assume
Zi C,'/(X — a,-) — O N F2m[)<

The squarefree case

[(g) contains I'(g?):

> ;ci/(x—a;j) =0in Fam|
> ici/(x—aj) =0in Fom]

Amazing fact:

|/g if
/g

[(g) =T(g?) if g is squarefree.

Previous decoder for g2
corrects t errors for '(g?),

hence corrects t errors for [(g).

(Not covered in this talk:

correcting ~ t + t°/n errors.

See, e.g., “jet list decoding”.)

Proof: Assume
> ;ci/(x—aj)=0in Fom[x]/g.

The squarefree case

[(g) contains I'(g?):

> ;ci/(x—a;j) =0in Fam|
> ici/(x—aj) =0in Fom]

Amazing fact:

|/g if
/g

[(g) =T(g?) if g is squarefree.

Previous decoder for g2
corrects t errors for '(g?),

hence corrects t errors for [(g).

(Not covered in this talk:

correcting ~ t + t°/n errors.

See, e.g., “jet list decoding”.)

Proof: Assume
> ;ci/(x—aj)=0in Fom[x]/g.

Write F = ﬂi:ci#O(X — a,-).
Then F//F = > re 1o 1/(x —)
so F'/F =% ci/(x — a)

so F'/F =0in Fom|[x]/g

so g divides F' in Fom[x].

The squarefree case

[(g) contains [(g?):
Zi Ci/(X — 3/) =0 1n Fom X/g if
> ici/(x—a;)=0in Fam :X:/g2_

Amazing fact:
[(g) =T(g?) if g is squarefree.

Previous decoder for g2
corrects t errors for '(g?),
hence corrects t errors for [(g).

(Not covered in this talk:
correcting ~ t + t°/n errors.
See, e.g., “jet list decoding”.)

Proof: Assume
> ;ci/(x—aj)=0in Fom[x]/g.

Write F = ﬂi:ci#O(X — a,-).
Then F//F = > re 1o 1/(x —)
so F'/F =% ci/(x — a)

so F'/F =0in Fom|[x]/g

so g divides F' in Fom[x].

F' is a square:
if F =Y : Fjx/ then
. _1
Fr=2 b
=2 je142z FiX

= (Ejerroz VIFXUD2)2

arefree case

1tains [(g?):

<~ aj) =

<~ a)

r fact:

N F2m_

x|/g if

N Fzm: :/g2.

"(g?) if g is squarefree.

- decoder for g2
t errors for [(g?),

rrects t errors for ['(g).

/ered In this talk:
g & t + t°/n errors.

, “jet list decoding”.)

Proof: Assume
> ;ci/(x—aj)=0in Fom[x]/g.

Write F = [];.c zo(x — aj).
Then F'/F = 310 4o 1/(x — a)
so F'/F =Y ¢i/(x — a;)

SO FI/F — 0 In F2m[X]/g

so g divides F’ in Fom|[x].

F' is a square:

if F =Y : Fjx/ then

F' = ij/:jxj_l

_ -1
= 2_je1y2z JFiX

= (2 je142z \F’:jx(j_l)p)z-

The Mc

Standarce
t >2:n

1978 Mc
n =102
This st
~250 pr

>€

2):

0 In Fzm:
0 In F2m:

|/g if
/g

IS squarefree.

or g?

r I_(gz),

rrors for ['(g).

1s talk:

2 /n errors.

decoding” .)

Proof: Assume
> ;ci/(x—aj)=0in Fom[x]/g.

Write F =]_[IC,#O(X — a,)
Then F//F — ZI.ZC,'#O 1/(X — a,)
so F'/F =3 ci/(x— aj)

SO F//F =0 1n Fzm[X]/g

so g divides F' in Fom|[x].

F' is a square:

if F =Y : Fjx/ then

F' = ij/:jxj_l

_ r.j—1
= 2_je1+2z FjX

= (Xje1i0z VIFXU2)2

The McEliece cryg

Standardize intege
t > 2: m>1 with

1978 McEliece ex:
n=1024, m = 10
This Is too small:
~200 pre-quantur

Proof: Assume The McEliece cryptosystem

2;ci/(x—aj)=0inFymlx|/g. Standardize integers n > 0;
/g if Write F = [];.c zo(x — aj). t >2; m>1with 2™ > n.
/gz_ Then F'/F = Zi:c,-yéO 1/(x — ai) 1978 McEliece example:

so FI/F =% ci/(x = ai) n = 1024, m = 10, t = 50.
ree. so F1/F =0in Fom[x]/g This iIs to’o small: |

.] -
so g divides £ in Fom|x]. ~2%0 pre-quantum security.

F' is a square:

if F =Y Fjx/ then

Fl=3%jiFx~t 1
= 2 je142z FiX™

= (2 je1422 \F’:jx(j_l)p)z-

Proof: Assume
> ;ci/(x—aj)=0in Fom[x]/g.

Write F = ﬂi:ci#O(X — a,-).
Then F'/F =% ;.. 101/(x — a))
so F'/F =3 ci/(x— aj)

so F/'/F =0 in Fym[x]/g

so g divides F' in Fom[x].

F' is a square:
if F =Y : Fjx/ then
. _1
Fr=2 b
=2 je142z FiX

= (Xjeri0z VIFXUD2)2

The McEliece cryptosystem

Standardize integers n > 0;
t >2: m>1with 2™ > n.

1978 McEliece example:
n=1024 m = 10, t = 50.
This 1s too small:

~200 pre-quantum security.

Proof: Assume
> ;ci/(x—aj)=0in Fom[x]/g.

Write F = ﬂi:ci#O(X — a,-).
Then F'/F =% ;.. 101/(x — a))
so F'/F =3 ci/(x— aj)

so F/'/F =0 in Fym[x]/g

so g divides F' in Fom[x].

F' is a square:
if F =Y : Fjx/ then
. _1
Fr=2 b
=2 je142z FiX

= (Xjeri0z VIFXUD2)2

The McEliece cryptosystem

Standardize integers n > 0;
t >2: m>1with 2™ > n.

1978 McEliece example:
n=1024 m = 10, t = 50.
This 1s too small:

~200 pre-quantum security.

n= 2048, m=11, t = 32:
~287 pre-quantum security.

Proof: Assume
> ;ci/(x—aj)=0in Fom[x]/g.

Write F = ﬂi:ci#O(X — a,-).
Then F'/F =% ;.. 101/(x — a))
so F'/F =3 ci/(x— aj)

so F/'/F =0 in Fym[x]/g

so g divides F' in Fom[x].

F' is a square:
if F =Y : Fjx/ then
. _1
Fr=2 b
=2 je142z FiX

= (Xjeri0z VIFXUD2)2

The McEliece cryptosystem

Standardize integers n > 0;
t >2: m>1with 2™ > n.

1978 McEliece example:
n=1024 m = 10, t = 50.
This 1s too small:

~200 pre-quantum security.

n= 2048, m=11, t = 32:
~287 pre-quantum security.

n=34038, m =12, t = 67:
~2140 pre-quantum security.

Proof: Assume
> ;ci/(x—aj)=0in Fom[x]/g.

Write F = ﬂi:ci#O(X — a,-).
Then F'/F =% ;.. 101/(x — a))
so F'/F =3 ci/(x— aj)

so F/'/F =0 in Fym[x]/g

so g divides F' in Fom[x].

F' is a square:
if F =Y : Fjx/ then
. _1
Fr=2 b
=2 je142z FiX

= (Xjeri0z VIFXUD2)2

The McEliece cryptosystem

Standardize integers n > 0;
t >2: m>1with 2™ > n.

1978 McEliece example:
n=1024 m = 10, t = 50.
This 1s too small:

~200 pre-quantum security.

n= 2048, m=11, t = 32:
~287 pre-quantum security.

n=34038, m =12, t = 67:
~2140 pre-quantum security.

n=6960, m=13, t =1109:
~2203 pre-quantum security.

\ssume
X — a,-) =01In Fzm[X]/g.

— Hi:cﬁéO(X — aj).

[F =2 ic+0l/(x—aj)
=2 ¢i/(x — aj)

= 0in Fom[x]/g

ides F'" in Fom[x].

quare'

i FJXJ then

JFXJ 1

161+2ZJFX

ic140Z JFX(J 1)/2)2_

The McEliece cryptosystem

Standardize integers n > 0;
t>2: m>1with 2™ > n.

1978 McEliece example:
n—=1024, m = 10, t = 50.
This 1s too small:

~260 pre-quantum security.

n= 2048, m=11, t = 32:
~287 pre-quantum security.

n=3408, m=12, t = 67:
232146

n=6960, m=13, t =1109:

232263

pre-quantum security.

pre-quantum security.

Alice's s
g'€E|:2n7
distinct

The McEliece cryptosystem Alice’s secrets: me
g < F2m[X] with d

Standardize integers n > 0;

)(x a) >0 m>1with 2™ > n. distinct ag, ..., an
¢; 70 1/(x = ai) 1978 McEliece example:
X~ ai) n = 1024, m = 10, t = 50.
z[X]/g This I1s too small:

2m[x] ~2%0 pre-quantum security.

n=2048, m=11, t = 32

a ~287 pre-quantum security.
xJ—1 n=3408, m =12, t = 67:
/jfjx(j_l)/z)Q. ~2146 pre-quantum security.

n=6960, m=13, t =1109:
~2203 pre-quantum security.

’2)2_

The McEliece cryptosystem

Standardize integers n > O;
t>2: m>1with 2™ > n.

1978 McEliece example:
n—=1024, m = 10, t = 50.
This 1s too small:

~260 pre-quantum security.

n= 2048, m=11, t = 32:
~287 pre-quantum security.

n=3403, m =12, t = 67:
~2140 pre-quantum security.

n=6960, m=13, t =1109:

~2203 pre-quantum security.

Alice’s secrets: monic irredu

g € Fom|x] with deg g = t;

distinct ayg, ..

., an € Fom.

The McEliece cryptosystem Alice's secrets: monic irreducible

Standardize integers n > 0; g € Fam|x| with degg = t;

- distinct a1, ..., an € Fom.
t >2; m>1with 2™ > n. 1 n € Fom

1978 McEliece example:
n—=1024, m = 10, t = 50.
This 1s too small:

~200 pre-quantum security.

n= 2048, m=11, t = 32:
~287 pre-quantum security.

n=3403, m =12, t = 67:
~2140 pre-quantum security.

n=06960, m=13, t =1109:

~2203 pre-quantum security.

The McEliece cryptosystem

Standardize integers n > 0;
t >2: m>1with 2™ > n.

1978 McEliece example:
n—=1024, m = 10, t = 50.
This 1s too small:

~200 pre-quantum security.

n= 2048, m=11, t = 32:
~287 pre-quantum security.

n=3403, m =12, t = 67:
~2140 pre-quantum security.

n=06960, m=13, t =1109:

~2203 pre-quantum security.

Alice's secrets: monic irreducible
g € Fom[x]| with degg = t;
distinct a1,...,a, € Fom.

Note that g(a1)---g(an) # 0.
Define [as before.

The McEliece cryptosystem

Standardize integers n > 0;
t >2: m>1with 2™ > n.

1978 McEliece example:
n—=1024, m = 10, t = 50.
This 1s too small:

~200 pre-quantum security.

n= 2048, m=11, t = 32:
~287 pre-quantum security.

n=3403, m =12, t = 67:
~2140 pre-quantum security.

n=06960, m=13, t =1109:

~2203 pre-quantum security.

Alice's secrets: monic irreducible
g € Fom[x]| with degg = t;
distinct a1,...,a, € Fom.

Note that g(a1)---g(an) # 0.
Define [as before.

Alice's public key:
mt X n matrix K over F»
such that I = Ker K.

The McEliece cryptosystem

Standardize integers n > 0;
t >2: m>1with 2™ > n.

1978 McEliece example:
n—=1024, m = 10, t = 50.
This 1s too small:

~200 pre-quantum security.

n= 2048, m=11, t = 32:
~287 pre-quantum security.

n=3403, m =12, t = 67:
~2140 pre-quantum security.

n=06960, m=13, t =1109:

~2203 pre-quantum security.

Alice's secrets: monic irreducible
g € Fom[x]| with degg = t;
distinct a1,...,a, € Fom.

Note that g(a1)---g(an) # 0.
Define [as before.

Alice's public key:
mt X n matrix K over F»
such that I = Ker K.

Bob chooses random e € F'27

with |e| = t; sends Ke.

The McEliece cryptosystem

Standardize integers n > 0;
t >2: m>1with 2™ > n.

1978 McEliece example:
n—=1024, m = 10, t = 50.
This 1s too small:

~200 pre-quantum security.

n= 2048, m=11, t = 32:
~287 pre-quantum security.

n=3403, m =12, t = 67:
~2140 pre-quantum security.

n=06960, m=13, t =1109:

~2203 pre-quantum security.

Alice's secrets: monic irreducible
g € Fom[x]| with degg = t;
distinct a1,...,a, € Fom.

Note that g(a1)---g(an) # 0.
Define [as before.

Alice's public key:
mt X n matrix K over F»
such that I = Ker K.

Bob chooses random e € F'27

with |e| = t; sends Ke.

Alice receives Ke,
finds v € F; with Kv = Ke,
decodes v to find v — e.

Fliece cryptosystem

lize integers n > 0;
1 > 1 with 2™ > n.

“Eliece example:

4, m =10, t = 50.
0o small:
>-quantum security.

3 m=11 t = 32:
o-quantum security.

3 m=12, t = 67:
re-quantum security.

0, m=13, t =119:
re-quantum security.

Alice's secrets: monic irreducible
g € Fom|x] with deg g = t;
distinct a1,...,a, € Fom.

Note that g(a1)---g(an) # 0.
Define [as before.

Alice's public key:
mt X n matrix K over F»
such that [= Ker K.

Bob chooses random e € Fg

with |e| = t; sends Ke.

Alice receives Ke,
finds v € FJ with Kv = Ke,
decodes v to find v — e.

1978 Mc

Bob cho

and ranc
with |e]

tosystem

| security.

t = 32:
| security.

t=067:

N security.

.t =119:
N security.

Alice's secrets: monic irreducible
g € Fom[x] with degg = t;
distinct a1,...,a, € Fom.

Note that g(a1)---g(an) # 0.
Define [as before.

Alice's public key:
mt X n matrix K over F»
such that I = Ker K.

Bob chooses random e &€ F'27

with |e| = t; sends Ke.

Alice receives Ke,
finds v € F; with Kv = Ke,
decodes v to find v — e.

1978 McEliece +

Bob chooses rand:
and random e € F
with |e| = t; send:

Alice's secrets: monic irreducible
g € Fom|x] with deg g = t;
distinct a1,...,a, € Fom.

Note that g(a1)---g(an) # 0.
Define [as before.

Alice's public key:
mt X n matrix K over F»
such that [= Ker K.

Bob chooses random e € Fg

with |e| = t; sends Ke.

Alice receives Ke,
finds v € F5J with Kv = Ke,
decodes v to find v — e.

1978 McEliece + randomiza

Bob chooses random c €
and random e € F’27
with |e| = t; sends ¢ + e.

Alice's secrets: monic irreducible
g € Fom[x] with degg = t;
distinct a1,...,a, € Fom.

Note that g(a1)---g(an) # 0.
Define [as before.

Alice's public key:
mt X n matrix K over F»
such that I = Ker K.

Bob chooses random e € F'27

with |e| = t; sends Ke.

Alice receives Ke,
finds v € F; with Kv = Ke,
decodes v to find v — e.

1978 McEliece + randomization:

Bob chooses random c €1
and random e € Fg
with |e| = t; sends ¢ + e.

Alice's secrets: monic irreducible
g € Fom[x] with degg = t;
distinct a1,...,a, € Fom.

Note that g(a1)---g(an) # 0.
Define [as before.

Alice's public key:
mt X n matrix K over F»
such that I = Ker K.

Bob chooses random e € F'27

with |e| = t; sends Ke.

Alice receives Ke,
finds v € F; with Kv = Ke,
decodes v to find v — e.

1978 McEliece + randomization:

Bob chooses random c €1
and random e € Fg
with |e| = t; sends ¢ + e.

Publicly specity [by an
(n — mt) x n generator matrix G.

Alice's secrets: monic irreducible
g € Fom[x] with degg = t;
distinct a1,...,a, € Fom.

Note that g(a1)---g(an) # 0.
Define [as before.

Alice's public key:
mt X n matrix K over F»
such that I = Ker K.

Bob chooses random e € F'27

with |e| = t; sends Ke.

Alice receives Ke,
finds v € F; with Kv = Ke,
decodes v to find v — e.

1978 McEliece + randomization:

Bob chooses random c €1
and random e € Fg
with |e| = t; sends ¢ + e.

Publicly specity [by an
(n — mt) x n generator matrix G.

1986 Niederreiter improvements:

Send Ke instead of ¢ + e.

Alice's secrets: monic irreducible
g € Fom[x] with degg = t;
distinct a1,...,a, € Fom.

Note that g(a1)---g(an) # 0.
Define [as before.

Alice's public key:
mt X n matrix K over F»
such that I = Ker K.

Bob chooses random e € F'27

with |e| = t; sends Ke.

Alice receives Ke,
finds v € F; with Kv = Ke,
decodes v to find v — e.

1978 McEliece + randomization:

Bob chooses random c €1
and random e € Fg
with |e| = t; sends ¢ + e.

Publicly specity [by an
(n — mt) x n generator matrix G.

1986 Niederreiter improvements:

Send Ke instead of ¢ + e.

K is smaller than G

whenever mt < n — mt.
Compress K to mt(n — mt) bits
by requiring systematic form.

ecrets: monic irreducible
(x| with deg g = t;
ai,...,an € Fom.

it g(a1) - g(an) # 0.
~as before.

ublic key:
matrix K over F»
t [= Ker K.

oses random e &€ Fg

— t: sends Ke.

elves Ke,
- F5 with Kv = Ke,

—

v to find v — e.

1978 McEliece + randomization:

Bob chooses random c €
and random e € F’27
with |e| = t; sends ¢ + e.

Publicly specity [by an

(n — mt) X n generator matrix G.

1986 Niederreiter improvements:

Send Ke instead of ¢ + e.

K is smaller than G

whenever mt < n — mt.
Compress K to mt(n — mt) bits
by requiring systematic form.

Does str
help att:
e.g., cor

ynic irreducible

eg g = t;
c Fom.

-g(an) # 0.

over F»r

m eEF'27
s Ke.

Kv = Ke,

v — €.

1978 McEliece + randomization:

Bob chooses random c €T
and random e € Fg
with |e| = t; sends ¢ + e.

Publicly specity [by an

(n — mt) x n generator matrix G.

1986 Niederreiter improvements:

Send Ke instead of ¢ + e.

K is smaller than G

whenever mt < n — mt.
Compress K to mt(n — mt) bits
by requiring systematic form.

Does structure of
help attacker decr
e.g., compute g, a

cible

1978 McEliece + randomization:

Bob chooses random c €T
and random e € F’27
with |e| = t; sends ¢ + e.

Publicly specity [by an

(n — mt) X n generator matrix G.

1986 Niederreiter improvements:

Send Ke instead of ¢ + e.

K is smaller than G

whenever mt < n — mt.
Compress K to mt(n — mt) bits
by requiring systematic form.

Does structure of I
help attacker decrypt—
e.g., compute g,4a1,...,an’

1978 McEliece + randomization:

Bob chooses random c €T
and random e € Fg
with |e| = t; sends ¢ + e.

Publicly specity [by an

(n — mt) x n generator matrix G.

1986 Niederreiter improvements:

Send Ke instead of ¢ + e.

K is smaller than G

whenever mt < n — mt.
Compress K to mt(n — mt) bits
by requiring systematic form.

Does structure of I
help attacker decrypt—
e.g., compute g,4a1,...,an’

1978 McEliece + randomization:

Bob chooses random c €T
and random e € Fg
with |e| = t; sends ¢ + e.

Publicly specity [by an

(n — mt) x n generator matrix G.

1986 Niederreiter improvements:

Send Ke instead of ¢ + e.

K is smaller than G

whenever mt < n — mt.
Compress K to mt(n — mt) bits
by requiring systematic form.

Does structure of I
help attacker decrypt—
e.g., compute g,4a1,...,an’

All known “structural attacks’
are much slower than
information-set decoding.
(Less conservative variants of
McEliece encourage research.)

1978 McEliece + randomization:

Bob chooses random c €T
and random e € Fg
with |e| = t; sends ¢ + e.

Publicly specity [by an

(n — mt) x n generator matrix G.

1986 Niederreiter improvements:

Send Ke instead of ¢ + e.

K is smaller than G

whenever mt < n — mt.
Compress K to mt(n — mt) bits
by requiring systematic form.

Does structure of I
help attacker decrypt—
e.g., compute g,4a1,...,an’

All known “structural attacks’
are much slower than
information-set decoding.
(Less conservative variants of
McEliece encourage research.)

Does K leak more than 7

1978 McEliece + randomization:

Bob chooses random c €T
and random e € Fg
with |e| = t; sends ¢ + e.

Publicly specity [by an

(n — mt) x n generator matrix G.

1986 Niederreiter improvements:

Send Ke instead of ¢ + e.

K is smaller than G

whenever mt < n — mt.
Compress K to mt(n — mt) bits
by requiring systematic form.

Does structure of I
help attacker decrypt—
e.g., compute g,4a1,...,an’

All known “structural attacks”
are much slower than
information-set decoding.
(Less conservative variants of
McEliece encourage research.)

Does K leak more than 7

No with 1978 McEliece:
matrix is explicitly randomized.

1978 McEliece + randomization:

Bob chooses random c €T
and random e € Fg
with |e| = t; sends ¢ + e.

Publicly specity [by an

(n — mt) x n generator matrix G.

1986 Niederreiter improvements:

Send Ke instead of ¢ + e.

K is smaller than G

whenever mt < n — mt.
Compress K to mt(n — mt) bits
by requiring systematic form.

Does structure of I
help attacker decrypt—
e.g., compute g,4a1,...,an’

All known “structural attacks”
are much slower than
information-set decoding.
(Less conservative variants of
McEliece encourage research.)

Does K leak more than 7

No with 1978 McEliece:
matrix is explicitly randomized.

No with 1986 Niederreiter:
matrix has systematic form.

“Eliece + randomization:

oses random c € [

Jom e € F'27

— t: sends ¢ + e.

specify [by an
) X n generator matrix G.

aderreiter improvements:

> Instead of ¢

yller than G

r mt < n— mt.

e.

s K to mt(n — mt) bits
ring systematic form.

Does structure of I
help attacker decrypt—
e.g., compute g,4a1,...,an’

All known “structural attacks”
are much slower than
information-set decoding.
(Less conservative variants of
McEliece encourage research.)

Does K leak more than [?

No with 1978 MckEliece:

matrix is explicitly randomized.

No with 1986 Niederreiter:
matrix has systematic form.

Better t

Rest of -
with Ch

some de
McEliec

randomization:

m c €[

n
2

5 C + e.

by an

srator matrix G.

Improvements:

f ¢ + e.

G

— mt.
t(n — mt) bits
natic form.

Does structure of I
help attacker decrypt—
e.g., compute g,4a1,...,an’

All known “structural attacks”
are much slower than
information-set decoding.
(Less conservative variants of
McEliece encourage research.)

Does K leak more than 7

No with 1978 McEliece:

matrix is explicitly randomized.

No with 1986 Niederreiter:
matrix has systematic form.

Better throughput

Rest of this talk (]
with Chou and Sc
some details of ho

McEliece run reall

tion:

rx G.

oNts:

bits

Does structure of I
help attacker decrypt—
e.g., compute g,4a1,...,an’

All known “structural attacks”
are much slower than
information-set decoding.
(Less conservative variants of
McEliece encourage research.)

Does K leak more than ['?

No with 1978 MckEliece:

matrix is explicitly randomized.

No with 1986 Niederreiter:
matrix has systematic form.

Better throughput than EC(

Rest of this talk (joint work

with Chou and Schwabe, 20
some details of how to make

McEliece run really fast.

Does structure of I
help attacker decrypt—
e.g., compute g,4a1,...,an’

All known “structural attacks”
are much slower than
information-set decoding.
(Less conservative variants of
McEliece encourage research.)

Does K leak more than 7

No with 1978 McEliece:

matrix is explicitly randomized.

No with 1986 Niederreiter:
matrix has systematic form.

Better throughput than ECC

Rest of this talk (joint work

with Chou and Schwabe, 2013):
some details of how to make

McEliece run really fast.

Does structure of I
help attacker decrypt—
e.g., compute g, ay, ..., an?

All known “structural attacks”
are much slower than
information-set decoding.
(Less conservative variants of
McEliece encourage research.)

Does K leak more than 7

No with 1978 McEliece:

matrix is explicitly randomized.

No with 1986 Niederreiter:
matrix has systematic form.

Better throughput than ECC

Rest of this talk (joint work

with Chou and Schwabe, 2013):
some details of how to make

McEliece run really fast.

Our constant-time software
for batches of 256 decodings:

26544 vy Bridge cycles for
(n, t) = (2048, 32); ~287.

79715 lvy Bridge cycles for
(n, t) = (3408, 67); ~214°,

306102 Ivy Bridge cycles for
(n, t) = (6960, 119); ~2203.

ucture of [
1cker decrypt—
npute g, a1, ..., an?

/n “structural attacks”
h slower than

1on-set decoding.
nservative variants of
> encourage research.)

leak more than 7

1978 McEliece:

5 explicitly randomized.

1986 Niederreliter:
as systematic form.

Better throughput than ECC

Rest of this talk (joint work

with Chou and Schwabe, 2013):

some details of how to make
McEliece run really fast.

Our constant-time software
for batches of 256 decodings:

26544 vy Bridge cycles for
(n, t) = (2048, 32); ~287.

79715 lvy Bridge cycles for
(n, t) = (3408, 67); ~214°,

306102 Ivy Bridge cycles for
(n, t) = (6960, 119); ~2203.

The add

Fix n =

Big final
IS to finc
of F = |

For eackh

compute
41 adds,

aral attacks”
1an

coding.
variants of
re research.)

than 7

-liece:

‘randomized.

Jerreiter:
atic form.

Better throughput than ECC

Rest of this talk (joint work

with Chou and Schwabe, 2013):

some details of how to make
McEliece run really fast.

Our constant-time software
for batches of 256 decodings:

26544 vy Bridge cycles for
(n, t) = (2048, 32); ~287.

79715 lvy Bridge cycles for
(n, t) = (3408, 67); ~214°,

306102 Ivy Bridge cycles for
(n, t) = (6960, 119); ~2203.

The additive FFT

Fix n = 4096 = 2!

Big final decoding
is to find all roots
of F = Fapx* +.

For each a € F212
compute F(a) by
41 adds, 41 mults

(S”

T

Better throughput than ECC

Rest of this talk (joint work

with Chou and Schwabe, 2013):

some details of how to make
McEliece run really fast.

Our constant-time software
for batches of 256 decodings:

26544 vy Bridge cycles for
(n, t) = (2048, 32); ~287.

79715 lvy Bridge cycles for
(n, t) = (3408, 67); ~214°,

306102 Ivy Bridge cycles for
(n, t) = (6960, 119); ~2203.

The additive FFT

Fix n = 4096 = 212 + =41

Big final decoding step
is to find all roots in F,1»
of F = Fpix* + -+ 4+ FyxY

For each o € F212,

compute F(a) by Horner's
41 adds, 41 mults.

Better throughput than ECC

Rest of this talk (joint work

with Chou and Schwabe, 2013):

some details of how to make
McEliece run really fast.

Our constant-time software
for batches of 256 decodings:

26544 vy Bridge cycles for
(n, t) = (2048, 32); ~28"

79715 lvy Bridge cycles for
(n, t) = (3408, 67); ~214°,

306102 Ivy Bridge cycles for
(n, t) = (6960, 119); ~2203.

The additive FFT

Fix n = 4096 = 212 + =41

Big final decoding step
is to find all roots in F,12
of F = Fapx™ + -+ Fpx".

For each o € F212,
compute F(a) by Horner's rule:
41 adds, 41 mults.

Better throughput than ECC

Rest of this talk (joint work

with Chou and Schwabe, 2013):

some details of how to make
McEliece run really fast.

Our constant-time software
for batches of 256 decodings:

26544 vy Bridge cycles for
(n, t) = (2048, 32); ~28"

79715 lvy Bridge cycles for
(n, t) = (3408, 67); ~214°,

306102 Ivy Bridge cycles for
(n, t) = (6960, 119); ~2203.

The additive FFT

Fix n = 4096 = 212 + =41

Big final decoding step
is to find all roots in F,12
of F = Fapx™ + -+ Fpx".

For each o € F212,

compute F(a) by Horner's rule:
41 adds, 41 mults.

Or use “Chien search”: compute
Fay', Fiy?', Fiy3', etc. Cost per
point: again 41 adds, 41 mults.

Better throughput than ECC

Rest of this talk (joint work

with Chou and Schwabe, 2013):
some details of how to make

McEliece run really fast.

Our constant-time software
for batches of 256 decodings:

26544 vy Bridge cycles for
(n, t) = (2048, 32); ~28"

79715 lvy Bridge cycles for
(n, t) = (3408, 67); ~214°,

306102 Ivy Bridge cycles for
(n, t) = (6960, 119); ~2203.

The additive FFT

Fix n = 4096 = 212 + =41

Big final decoding step
is to find all roots in F,12
of F = Fapx™ + -+ Fpx".

For each o € F212,

compute F(a) by Horner's rule:
41 adds, 41 mults.

Or use “Chien search”: compute
Fay', Fiy?', Fiy3', etc. Cost per
point: again 41 adds, 41 mults.

Our cost: 6.01 adds, 2.09 mults.

hroughput than ECC

this ta

OuU and

k (joint work
Schwabe, 2013):

tails of how to make

= run really fast.

stant-time software

1es of 256 decodings:

vy Bridge cycles for
(2048, 32); ~28.

vy Bridge cycles for
(3408, 67); ~2%4°.

lvy Bridge cycles for
(6960, 119); ~2253,

The additive FFT

Fix n = 4096 = 212 + =41

Big final decoding step
is to find all roots in F,1»
of F = Fpix* + - 4+ FpxY.

For each o € F212,

compute F(a) by Horner's rule:
41 adds, 41 mults.

Or use “Chien search”: compute
Fay', Fin?', Fiy3', etc. Cost per
point: again 41 adds, 41 mults.

Our cost: 6.01 adds, 2.09 mults.

Asymptc
normally
so Horne

O(nt) =

“than ECC

oint work
hwabe, 2013):
w to make

y fast.

- software
decodings:

cycles for
: %287_

cycles for
: 232146

= cycles for
,). %2263_

The additive FFT

Fix n = 4096 = 212 + =41

Big final decoding step
is to find all roots in F,12
of F = Fapx™ + -+ Fpx".

For each o € F212,

compute F(a) by Horner's rule:
41 adds, 41 mults.

Or use “Chien search”: compute
Fay', Fiy?', Fiy3', etc. Cost per
point: again 41 adds, 41 mults.

Our cost: 6.01 adds, 2.09 mults.

Asymptotics:
normally t € ©(n/
so Horner's rule cc

O(nt) = O(n?/Ig

13):

\v

V)

The additive FFT

Fix n = 4096 = 212 + =41

Big final decoding step
is to find all roots in F,1»
of F = Fpix* + - 4+ FpxY.

For each o € F212,

compute F(a) by Horner's rule:
41 adds, 41 mults.

Or use “Chien search”: compute
Fay', Fiy?', Fiy3', etc. Cost per
point: again 41 adds, 41 mults.

Our cost: 6.01 adds, 2.09 mults.

Asymptotics:
normally t € ©(n/Ig n),
so Horner's rule costs

©(nt) = ©(n?/Ign).

The additive FFT

Fix n = 4096 = 212 + =41

Big final decoding step
is to find all roots in F,12
of F = Fapx™ + -+ Fpx’.

For each a € F212,

compute F(a) by Horner's rule:
41 adds, 41 mults.

Or use “Chien search”: compute
Fay', Fiy?', Fiy3', etc. Cost per
point: again 41 adds, 41 mults.

Our cost: 6.01 adds, 2.09 mults.

Asymptotics:
normally t € ©(n/Ig n),
so Horner's rule costs

O(nt) = ©(n?/Ign).

The additive FFT

Fix n = 4096 = 212 + =41

Big final decoding step
is to find all roots in F,12
of F = Fapx™ + -+ Fpx’.

For each a € F212,

compute F(a) by Horner's rule:
41 adds, 41 mults.

Or use “Chien search”: compute
Fay', Fiy?', Fiy3', etc. Cost per
point: again 41 adds, 41 mults.

Our cost: 6.01 adds, 2.09 mults.

Asymptotics:
normally t € ©(n/Ig n),
so Horner's rule costs

O(nt) = ©(n?/Ign).

Wait a minute.
Didn't we learn in school
that FFT evaluates

an n-coeff polynomial

at n points
using nt1t°(1) operations?
Isn’t this better than n?/Ig n?

itive FFT

4006 = 212 + =41

decoding step
1 all roots in Fy10
- 41 o = 0
41X T T + X"

NeoAS F212,
 F(a) by Horner's rule:
41 mults.

‘Chien search”: compute
v2! Fix3! etc. Cost per
gain 41 adds, 41 mults.

- 6.01 adds, 2.09 mults.

Asymptotics:
normally t € ©(n/Ig n),
so Horner's rule costs

©(nt) = ©(n?/Ign).

Wait a minute.

Didn't we learn in school
that FFT evaluates

an n-coeff polynomial

at n points
using nt1t°(1) operations?
Isn’t this better than n?/Ig n?

Standarce

Want to
F=Fp-
at all th

Write F
Observe
Fla) =
F(—a) -

FO 1as r

evaluate
by same
Similarly

2+ — 41

step
T F()XO.

Horner's rule:

rch”: compute

etc. Cost per
lds, 41 mults.

ds, 2.09 mults.

Asymptotics:
normally t € ©(n/Ig n),
so Horner's rule costs

O(nt) = ©(n?/Ign).

Wait a minute.

Didn't we learn in school
that FFT evaluates

an n-coeff polynomial

at n points
using nt1t°(1) operations?
Isn’t this better than n?/Ig n?

Standard radix-2 |

Want to evaluate
F=F)+ Fix+-
at all the nth root

Write F as Fo(x?)
Observe big overl:
F(a) = Fo(a?)
F(—a) = Fo(a?)-

Fo has n/2 coeffs;

evaluate at (n/2)r
by same idea recu
Similarly Fq.

ule:

pute
. per
11ts.

nults.

Asymptotics:
normally t € ©(n/Ig n),
so Horner's rule costs

©(nt) = ©(n?/Ign).

Wait a minute.

Didn't we learn in school
that FFT evaluates

an n-coeff polynomial

at n points
using nt1t°(1) operations?
Isn’t this better than n?/Ig n?

Standard radix-2 FFT:

Want to evaluate
F:Fo—l—le—l—---—l—Fn_l)
at all the nth roots of 1.

Write F as Fo(x?) + xFp(x?
Observe big overlap betweer
F(a) = Fo(a?) + afi(a?),
F(-a) = Fo(@®) — aFi(a®

Fo has n/2 coeffs;

evaluate at (n/2)nd roots of
by same idea recursively.
Similarly Fq.

Asymptotics: Standard radix-2 FFT:
normally t € ©(n/Ig n),
so Horner's rule costs

O(nt) = ©(n?/Ign).

Want to evaluate
F=Fy+Fx+- 4 F,_1x"1
at all the nth roots of 1.

Wait a minute. Write F as F()(Xz) —|—XF1(X2).

Observe big overlap between
F(a) = Fo(a®) + aFi(a?),
F(—a) = Fo(a?) — aFi(a?).

Didn't we learn in school
that FFT evaluates
an n-coeff polynomial

at n points
using plto(l) operations? Fo has n/2 coeffs;
Isn't this better than n°/lg n? evaluate at (n/2)nd roots of 1

by same idea recursively.
Similarly Fq.

tICs:

't € O(n/lgn),
or's rule costs

- O(n?/Ign).

ninute.

/e learn in school

[eva
ff po

Nts
+o0(1)

uates
ynomial

operations?

5 better than n?/Ig n?

Standard radix-2 FFT:

Want to evaluate
F=Fo+ Fix+-+ Fp1x"1
at all the nth roots of 1.

Write F as Fo(x?) + xFy(x?).
Observe big overlap between
F(a) = Fo(a?) + afi(a?),
F(—a) = Fo(a®) — aFi(a®).

Fo has n/2 coeffs;

evaluate at (n/2)nd roots of 1
by same idea recursively.
Similarly Fq.

Useless |
Standarc
FFT cor

19388 W.

indepenc
“additivi
Still quit

1996 vo

some Im

2010 Ga
much be

We use
plus son

g n),
)StES

n).

school
S

nial

ations?
an n°/lgn?

Standard radix-2 FFT:

Want to evaluate

F=Fy+Fx+- -+ F,_1x"1
at all the nth roots of 1.

Write F as Fo(x?) + xF1(x?).
Observe big overlap between

F(a) = Fo(a?)
F(—a) = Fo(a®) — aFi(a®).

Fo
evd

nas n/2 coeffs;

Similarly Fq.

ozFl(ozz),

uate at (n/2)nd roots of 1
by same idea recursively.

Useless in char 2:

Standard workarot
FFT considered in

1988 Wang—Zhu,
independently 198
“additive FFT" In

Still quite expensi

1996 von zur Gatl
some Improvemen

2010 Gao—Mateer:
much better addit

We use Gao—Mate

plus some new Im

Standard radix-2 FFT:

Want to evaluate

F=Fo+ Fix+-+ Fp1x"1

at all the nth roots of 1.

Write F as Fo(x?) + xFy(x?).

Observe big overlap between
F(a) = Fo(a®) + aFi(a?),

F(—a) = Fo(a?) — aF(a®).

Fo has n/2 coeffs;

evaluate at (n/2)nd roots of 1

by same idea recursively.
Similarly Fq.

Useless in char 2: o = —«.
Standard workarounds are p
FFT considered impractical.

1988 Wang—Zhu,
independently 1989 Cantor:
“additive FFT" In char 2.

Still quite expensive.

1996 von zur Gathen—Gerha
some Improvements.

2010 Gao—Mateer:
much better additive FFT.

We use Gao—Mateer,
plus some new improvement

Standard radix-2 FFT:

Want to evaluate
F=Fy+Fx+- -+ F,_1x"1
at all the nth roots of 1.

Write F as Fo(x?) + xF1(x?).
Observe big overlap between
F(a) = Fo(a?) + afi(a?),
F(—a) = Fo(a®) — aFi(a®).

Fo has n/2 coeffs;

evaluate at (n/2)nd roots of 1
by same idea recursively.
Similarly Fq.

Useless in char 2: o = —a.
Standard workarounds are painful.
FFT considered impractical.

1988 Wang—Zhu,
independently 1989 Cantor:
“additive FFT" In char 2.

Still quite expensive.

1996 von zur Gathen—Gerhard:
some Improvements.

2010 Gao—Mateer:
much better additive FFT.

We use Gao—Mateer,
plus some new improvements.

1 radix-2 FFT:

“evaluate
+ Fx+ -+ Fn_lx”_1
e nth roots of 1.

as Fo(x?) + xF1(x?).
big overlap between
Fo(a?) + aFi(a?),

= Fo(a®) — aF(a?).

/2 coeffs;
at (n/2)nd roots of 1

idea recursively.
' Fy

Useless in char 2: o = —o.

Standard workarounds are painful.

FFT considered impractical.

1988 Wang—Zhu,
independently 1989 Cantor:
“additive FFT" In char 2.

Still quite expensive.

1996 von zur Gathen—Gerhard:
some Improvements.

2010 Gao—Mateer:
much better additive FFT.

We use Gao—Mateer,
plus some new improvements.

Gao and
F=Fp-
on a Size
Main ide
Fo(x* +

Big over

-FT:

.- . _|_ Fn—]_Xn_l
s of 1.

+ xF1(x?).
p between
aF1(a?),

— aFi(a?).

\d roots of 1
rsively.

Useless in char 2: o = —o.

Standard workarounds are painful.

FFT considered impractical.

1988 Wang—Zhu,
independently 1989 Cantor:
“additive FFT" In char 2.

Still quite expensive.

1996 von zur Gathen—Gerhard:
some Improvements.

2010 Gao—Mateer:
much better additive FFT.

We use Gao—Mateer,
plus some new improvements.

Gao and Mateer e
F=F)+ F1x+-
on a size-n Fo-line

Main idea: Write
F()(x2 x) + xF(

Big overlap betwe:
Fo(a® + a) + aF
and Fla+1) =

Fo(a? +) + (a-

“Twist” to ensure
Then {oz2 + oz} 1S
size-(n/2) Fo-line:
Apply same idea r

1

Useless in char 2: o = —o.

Standard workarounds are painful.

FFT considered impractical.

1988 Wang—Zhu,
independently 1989 Cantor:
“additive FFT" In char 2.

Still quite expensive.

1996 von zur Gathen—Gerhard:
some Improvements.

2010 Gao—Mateer:
much better additive FFT.

We use Gao—Mateer,
plus some new improvements.

Gao and Mateer evaluate
F:F0-|-F1X—|-"'—|-Fn_1)
on a size-n Fo-linear space.

Main idea: Write F as
FO(X2 + x) + ><F1(X2 + X).

Big overlap between F(a) =
Fo(a?® + a) + aFi(a? + o)
and Fla+1) =

Fo(a” + @) + (a + 1) Fi(e

“Twist” to ensure 1 € space
Then {a® + a} is a
size-(n/2) Fo-linear space.
Apply same idea recursively.

Useless in char 2: o = —o.

Standard workarounds are painful.

FFT considered impractical.

1988 Wang—Zhu,
independently 1989 Cantor:
“additive FFT" In char 2.

Still quite expensive.

1996 von zur Gathen—Gerhard:
some Improvements.

2010 Gao—Mateer:
much better additive FFT.

We use Gao—Mateer,
plus some new improvements.

Gao and Mateer evaluate
F=F+Fx+-+ F1x"1
on a size-n Fo-linear space.

Main idea: Write F as
F()(x2 + x) 4+ xFq (x2 + X).

Big overlap between F(a) =
Fo(a?® + a) + aFi(a® + a)
and Fla+1) =

Fo(a® + o) + (a+ 1)Fi(a? + a).

“Twist” to ensure 1 € space.
Then {a® + a} is a
size-(n/2) Fo-linear space.
Apply same idea recursively.

n char 2: oo = —a.

1 workarounds are painful.

isidered impractical.

ang—/hu,
lently 1989 Cantor:
= FFT" in char 2.

e expensive.

n zur Gathen—Gerhard:
provements.

o—Mateer:
tter additive FFT.

Gao—Mateer,

1e new Improvements.

Gao and Mateer evaluate
F=Fy+ Fix+- -+ Fp1x"1
on a size-n Fo-linear space.

Main idea: Write F as
FO(X2 + x) + ><F1(X2 + X).

Big overlap between F(a) =
Fo(a? + a) + aFi(a? + o)

and Fla+1) =

Fo(a? + o) + (a+ 1)Fi(a? + a).

“Twist” to ensure 1 € space.
Then {a® + a} is a
size-(n/2) Fo-linear space.
Apply same idea recursively.

We gene
F=Fp-
for any ;

= sever
not all o
by simpl

For t =

For t €
F1is ac
Instead
this con:
multiply

dNa CoIr

o — —O.

Inds are painful.

\practical.

O Cantor:
char 2.

/€.

1en—Gerhard:
LS.

ive FFT.

er,

provements.

Gao and Mateer evaluate
F=F+Fx+-+ F1x"1
on a size-n Fo-linear space.

Main idea: Write F as
F()(x2 + x) 4+ xFq (x2 + X).

Big overlap between F(a) =
Fo(a?® + a) + aFi(a® + a)

and Fla+1) =

Fo(a® + a) + (o + 1) F(a® +).

“Twist” to ensure 1 € space.
Then {a® + a} is a
size-(n/2) Fo-linear space.
Apply same idea recursively.

We generalize to
F=F)+ F1x+-
for any t < n.

= several optimiz
not all of which ar
by simply tracking

For t = 0: copy F

For t € {1, 2}:
F1 I1s a constant.
Instead of multiph

this constant by e
multiply only by g

and compute subs

qinful.

rd:

Gao and Mateer evaluate
F=Fy+ Fix+- -+ Fpo1x"1
on a size-n Fo-linear space.

Main idea: Write F as
FO(X2 + x) + ><F1(X2 + X).

Big overlap between F(a) =
Fo(a? + a) + aFi(a? + o)

and Fla+1) =

Fo(a® + o) + (a+ 1)Fi(a? + a).

“Twist” to ensure 1 € space.
Then {a® + a} is a
size-(n/2) Fo-linear space.
Apply same idea recursively.

We generalize to
F=Fy+ Fix+-- 4 Fxt
for any t < n.

= several optimizations,
not all of which are automas
by simply tracking zeros.

For t = 0: copy Fy.

For t € {1,2}:
F1 I1s a constant.
Instead of multiplying

this constant by each «,
multiply only by generators

and compute subset sums.

Gao and Mateer evaluate We generalize to

F=Fy+Fix+- -+ F_1x" 1 F=Fy+ Fix+- -+ Fixt
on a size-n Fo-linear space. for any t < n.

Main idea: Write F as = several optimizations,
Fo(x? + x) + xF1(x* + x). not all of which are automated

Big overlap between F(a) = by simply tracking zeros.

Fo(a?® + a) + aF(a® + a) For t = 0: copy Fp.
and Fla+1) =
Fo(a® + a) + (o + 1) F(a® +).

For t € {1, 2}:
F1 I1s a constant.

“Twist” to ensure 1 € space. Instead of multiplying
Then {a® + a} is a this constant by each a,
size-(n/2) Fo-linear space. multiply only by generators

Apply same idea recursively. and compute subset sums.

Mateer evaluate
+ Fix+ -+ Fn_lx”_1
>-n Fo-linear space.

a: Write F as
x) + xF1(x? + x).

lap between F(a) =

a) + aF(a’ + a)

'+ 1) =

a)+ (e + 1)F(a® + a).

to ensure 1 € space.
x° + a}is a

2) Fo-linear space.
ime idea recursively.

We generalize to
F=Fy+ Fix+-- 4 Fxt
for any t < n.

= several optimizations,

not all of which are automated

by simply tracking zeros.
For t = 0: copy Fy.

For t € {1,2}:
F1 I1s a constant.
Instead of multiplying

this constant by each «,
multiply only by generators

and compute subset sums.

Syndron

Initial de
SO — N -
51 — o
5 = no

St — NG

r, r,..
scaled b
Typically
mapping
Not as s
still n>™

valuate
o _|_ Fn—an_l
ar space.

F1)Fi(a? + o).

1 € space.
a

Ir space.
ecursively.

We generalize to
F=Fy+ Fix+ -+ Fix*
for any t < n.

= several optimizations,
not all of which are automated
by simply tracking zeros.

For t = 0: copy Fy.

For t € {1, 2}:
F1 I1s a constant.
Instead of multiplying

this constant by each «,
multiply only by generators

and compute subset sums.

Syndrome comput

Initial decoding st
so=n-—+nmn-4+---
S] = nag +— Ray -

55 = rloz% T rga% -

st = naj + mnas -

i, rN,..., I are re¢
scaled by Goppa c
Typically precomp
mapping bits to sy
Not as slow as Ch
still n2t°(1) and h

We generalize to
F=Fy+ Fix+-- 4 Fxt
for any t < n.

= several optimizations,
not all of which are automated
by simply tracking zeros.

For t = 0: copy Fy.

For t € {1,2}:
F1 I1s a constant.
Instead of multiplying

this constant by each «,
multiply only by generators

and compute subset sums.

Syndrome computation

Initial decoding step: compt
So =r +rn-—+---+rn

51 = N1 +— hoo s 1 Iy
5O = rloz% T FQCX% 71 Fp

St = rnaj + mob+ -+ rp

r, r, ..., are received bit
scaled by Goppa constants.
Typically precompute matrix
mapping bits to syndrome.
Not as slow as Chien search
still n21°(1) and huge secret

We generalize to Syndrome computation
F = F Fix+---+ Fext .. .
; 0+ X+ Initial decoding step: compute
or any t < n.

Y So =11 +rn-—+- -+ rn
— several optimizations, S1 = a1+ noao + -+ rpop,
not all of which are automated Sy = rloz% + rgoz% + -+ rna%,
by simply tracking zeros.
For t = 0: copy Fp. st = rnaj + nob+ -+ o,
For t € {1,2}: r,r, ..., I, are received bits
F1 is a constant. scaled by Goppa constants.
Instead of multiplying Typically precompute matrix
this constant by each «, mapping bits to syndrome.
multiply only by generators Not as slow as Chien search but
and compute subset sums. still n21°(1) and huge secret key.

ralize to
+ Fix 4+ -+ Fixt
F < n.

al optimizations,
f which are automated
y tracking zeros.

0: copy Fop.

{1,2}:
onstant.
of multiplying

stant by each «,
only by generators
pute subset sums.

Syndrome computation

Initial decoding step: compute
So =r +rn-—+---+rn

S1 = rnaj + mnas+ -+ rpapy,
SR SR S
) — r]_al I’20£2 I’nOtn,

st = naj + nob+ -+ o,

r, ,..., L are received bits
scaled by Goppa constants.
Typically precompute matrix
mapping bits to syndrome.

Not as slow as Chien search but
still n21°(1) and huge secret key.

Compare

F(ai)

F(ao) =

F(an)

"—|—FtXt

ations,
e automated
Zeros.

/INg
ach o,
enerators

et sums.

Syndrome computation

Initial decoding step: compute
So =11 +rn-—+- -+ rn

S1 = naj + nas+ -+ rpay,
SR SR S
) — I’10£1 I’20£2 I’nOén,

st = raj + nob+ -+ o,

r, , ..., L are received bits
scaled by Goppa constants.
Typically precompute matrix
mapping bits to syndrome.

Not as slow as Chien search but
still n21°(1) and huge secret key.

Compare to multij
F(on) = Fo + Fic
F(a2) = Fo + Fic

F(Ozn) = Fo + F1c

ed

Syndrome computation

Initial decoding step: compute
So =r +rn-—+---+rn

S1 = naj + nas+ -+ rpapy,
SR R S
) — r]_al I’20£2 rnan,

St = rlozf - rgaé + - 4 rpal,

r, ,..., L are received bits
scaled by Goppa constants.
Typically precompute matrix
mapping bits to syndrome.

Not as slow as Chien search but
still n21°(1) and huge secret key.

Compare to multipoint evall
Fla1) = Fo+ Fron + -+ +
Flag) = Fo+ Flag+ -+

Flan) = Fy+ Fran+ -+

Syndrome computation

Initial decoding step: compute
So =1 +rn-—+- -+ rn

S| = nNoyp + nap + - -+ manp,
Sy = rloz% + rgoz% + -+ o,

St = rlozi - r2a§ + -+ rpal,

r, , ..., Iy are received bits
scaled by Goppa constants.
Typically precompute matrix
mapping bits to syndrome.

Not as slow as Chien search but
still n21°(1) and huge secret key.

Compare to multipoint evaluation:
F(a1) = Fo+ Fiog + - -+ + Fraf,
F(az) = Fo + Frop + - - + Fras,

Flan) = Fp + Fiop + - - - + Frat.

Syndrome computation

Initial decoding step: compute
So =1 +rn-—+- -+ rn

S| = nNoyp + nap + - -+ manp,
Sy = rloz% + rgoz% + -+ o,

St = rlozi - r2a§ + -+ rpal,

r, , ..., Iy are received bits
scaled by Goppa constants.
Typically precompute matrix
mapping bits to syndrome.

Not as slow as Chien search but
still n21°(1) and huge secret key.

Compare to multipoint evaluation:
F(a1) = Fo+ Fiog + - -+ + Fraf,
F(az) = Fo + Frop + - - + Fras,

Flan) = Fp + Fiop + - - - + Frat.

Matrix for syndrome computation
IS transpose of
matrix for multipoint evaluation.

Syndrome computation

Initial decoding step: compute
So =1 +rn-—+- -+ rn

S1 = naj + nas+ -+ rpay,
SR SR S
) — I’10£1 I’20£2 I’nOén,

St = rlozi - r2a§ + -+ rpal,

r, , ..., Iy are received bits
scaled by Goppa constants.
Typically precompute matrix
mapping bits to syndrome.

Not as slow as Chien search but
still n21°(1) and huge secret key.

Compare to multipoint evaluation:
F(a1) = Fo+ Fiog + - -+ + Fraf,
F(az) = Fo + Frop + - - + Fras,

Flan) = Fp + Fiop + - - - + Frat.

Matrix for syndrome computation
IS transpose of
matrix for multipoint evaluation.

Amazing consequence:
syndrome computation is as few
ops as multipoint evaluation.
Eliminate precomputed matrix.

1e computation

coding step: compute

1+ Pag + -+ + rmap,
z% + rga% + -+ o,

L+ nal 4+ -+ mal.

., I'n are received bits

vy Goppa constants.

/ precompute matrix

- bits to syndrome.

low as Chien search but
°(1) and huge secret key.

Compare to multipoint evaluation:
Fla1) = Fo + Fron + - + Frag,
F(ao) = Fo + Frap + - + Fra,

Fla,) = Fg + Frap + -+ - + Frat.

Matrix for syndrome computation
Is transpose of
matrix for multipoint evaluation.

Amazing consequence:
syndrome computation is as few
ops as multipoint evaluation.
Eliminate precomputed matrix.

Transpo
If a line:
compute
then rev
exchang
compute

1956 Bo
Indepen

for Bool

1973 Fic
Dreserve
Dreserve

number

ation

ep: compute

T rnan,

s rna%’

b+ rpat

celved bits
onstants.

ute matrix
/ndrome.

len search but
uge secret key.

Compare to multipoint evaluation:

F(a1) = Fo+ Fiog + - -+ + Fraf,
F(an) = Fo + Fiop + - - - + Frab,

Flan) = Fp + Fiop + - -+ + Frat.

Matrix for syndrome computation
IS transpose of
matrix for multipoint evaluation.

Amazing consequence:
syndrome computation is as few
ops as multipoint evaluation.
Eliminate precomputed matrix.

Transposition prin
If a linear algorithi
computes a matrp
then reversing edg
exchanging inputs
computes the tran

1956 Bordewijk;
independently 195
for Boolean matric

1973 Fiduccia ana
reserves number
reserves number

number of nontriv

but

key.

Compare to multipoint evaluation:

F(a1) = Fo + Fiog + -+ + Fraf,
F(az) = Fo+ Frap + -+ + Fray,

Fla,) = Fg + Frap + -+ - + Frat.

Matrix for syndrome computation
Is transpose of
matrix for multipoint evaluation.

Amazing consequence:
syndrome computation is as few
ops as multipoint evaluation.
Eliminate precomputed matrix.

Transposition principle:

If a linear algorithm
computes a matrix M

then reversing edges and
exchanging inputs/outputs
computes the transpose of /

1956 Bordewijk;
independently 1957 Lupanoy
for Boolean matrices.

1973 Fiduccia analysis:
reserves number of mults;

oreserves number of adds pl
number of nontrivial output:

Compare to multipoint evaluation:

F(a1) = Fo+ Fiog + - -+ + Fraf,
F(an) = Fo + Fiop + - - - + Frab,

Flan) = Fp + Fiop + - - - + Frat.

Matrix for syndrome computation
IS transpose of
matrix for multipoint evaluation.

Amazing consequence:
syndrome computation is as few
ops as multipoint evaluation.
Eliminate precomputed matrix.

Transposition principle:

If a linear algorithm

computes a matrix M

then reversing edges and
exchanging inputs/outputs
computes the transpose of M.

1956 Bordewijk;
independently 1957 Lupanov
for Boolean matrices.

1973 Fiduccia analysis:
reserves number of mults;

oreserves number of adds plus
number of nontrivial outputs.

> to multipoint evaluation:

o+ Fog+ -+ Frad
- Fo + Frap + - - - + Fras,

- Fo + Fran + - - + Fra,.

or syndrome computation
ose of
or multipoint evaluation.

T consequence:

e computation is as few
wltipoint evaluation.

e precomputed matrix.

Transposition principle:

If a linear algorithm

computes a matrix M

then reversing edges and
exchanging inputs/outputs
computes the transpose of M.

1956 Bordewijk;
independently 1957 Lupanov
for Boolean matrices.

1973 Fiduccia analysis:
reserves number of mults;

oreserves number of adds plus
number of nontrivial outputs.

We built
producir

Too mai

gcc ran

yoint evaluation:

o+ Fral,
o+ -+ Frab,
tp+ -+ Frap,.

ne computation

int evaluation.

nce:
ytion is as few
evaluation.
yuted matrix.

Transposition principle:

If a linear algorithm

computes a matrix M

then reversing edges and
exchanging inputs/outputs
computes the transpose of M.

1956 Bordewijk;
independently 1957 Lupanov
for Boolean matrices.

1973 Fiduccia analysis:
reserves number of mults;

oreserves number of adds plus
number of nontrivial outputs.

We built transposi

producing C code.
Too many variable
gcc ran out of me

1ation:

FtOli,
FtO{S,

few

1X.

Transposition principle:

If a linear algorithm

computes a matrix M

then reversing edges and
exchanging inputs/outputs
computes the transpose of M.

1956 Bordewijk;
independently 1957 Lupanov
for Boolean matrices.

1973 Fiduccia analysis:
reserves number of mults;

oreserves number of adds plus
number of nontrivial outputs.

We built transposing compll

producing C code.
Too many variables for m =
gcc ran out of memory.

Transposition principle:

If a linear algorithm

computes a matrix M

then reversing edges and
exchanging inputs/outputs
computes the transpose of M.

1956 Bordewijk;
independently 1957 Lupanov
for Boolean matrices.

1973 Fiduccia analysis:
reserves number of mults;

oreserves number of adds plus
number of nontrivial outputs.

We built transposing compiler

producing C code.
Too many variables for m = 13;
gcc ran out of memory.

Transposition principle:

If a linear algorithm

computes a matrix M

then reversing edges and
exchanging inputs/outputs
computes the transpose of M.

1956 Bordewijk;
independently 1957 Lupanov
for Boolean matrices.

1973 Fiduccia analysis:
reserves number of mults;

oreserves number of adds plus
number of nontrivial outputs.

We built transposing compiler

producing C code.
Too many variables for m = 13;
gcc ran out of memory.

Used ghasm register allocator

to optimize the variables.
Worked, but not very quickly.

Transposition principle:

If a linear algorithm

computes a matrix M

then reversing edges and
exchanging inputs/outputs
computes the transpose of M.

1956 Bordewijk;
independently 1957 Lupanov
for Boolean matrices.

1973 Fiduccia analysis:
reserves number of mults;

oreserves number of adds plus
number of nontrivial outputs.

We built transposing compiler

producing C code.
Too many variables for m = 13;
gcc ran out of memory.

Used ghasm register allocator

to optimize the variables.
Worked, but not very quickly.

Wrote faster register allocator.
Still excessive code size.

Transposition principle:

If a linear algorithm

computes a matrix M

then reversing edges and
exchanging inputs/outputs
computes the transpose of M.

1956 Bordewijk;
independently 1957 Lupanov
for Boolean matrices.

1973 Fiduccia analysis:
reserves number of mults;

oreserves number of adds plus
number of nontrivial outputs.

We built transposing compiler

producing C code.
Too many variables for m = 13;
gcc ran out of memory.

Used ghasm register allocator

to optimize the variables.
Worked, but not very quickly.

Wrote faster register allocator.
Still excessive code size.

Built new interpreter,
allowing some code compression.
Still big; still some overhead.

sition principle:

ir algorithm

s a matrix M

ersing edges and

ing inputs/outputs

s the transpose of M.

rdewijk;
lently 1957 Lupanov
ean matrices.

luccia analysis:

s number of mults:

s number of adds plus
of nontrivial outputs.

We built transposing compiler

producing C code.

Too many variables for m = 13;

gcc ran out of memory.

Used ghasm register a
to optimize the variab

locator
es.

Worked, but not very quickly.

Worote faster register allocator.

Still excessive code size.

Built new interpreter,

allowing some code compression.

Still big; still some overhead.

Better s
stared a
wrote dc
with san

Small cc

Speedug
translate
to transj

Further
merged
scaling |

ciple:

m

« M

es and
/outputs
spose of M.

{ Lupanov
“€es.

lysis:

of mults;

of adds plus
lal outputs.

We built transposing compiler

producing C code.
Too many variables for m = 13;
gcc ran out of memory.

Used ghasm register allocator

to optimize the variables.
Worked, but not very quickly.

Wrote faster register allocator.
Still excessive code size.

Built new interpreter,

allowing some code compression.

Still big; still some overhead.

Better solution:
stared at additive

wrote down transg

with same loops e

Small code, no ov

Speedups of addit

translate easi
to transposed

y
algc

Further savings:

merged first stage

scaling by Goppa

We built transposing compiler

producing C code.
Too many variables for m = 13;
gcc ran out of memory.

Used ghasm register allocator

to optimize the variables.
Worked, but not very quickly.

Worote faster register allocator.
Still excessive code size.

Built new interpreter,
allowing some code compression.
Still big; still some overhead.

Better solution:
stared at additive FF T,
wrote down transposition

with same loops etc.

Small code, no overhead.

Speedups of additive FFT

translate easi
to transposed

y
algorithm.

Further savings:

merged first stage with

scaling by Goppa constants.

We built transposing compiler Better solution:

producing C code. stared at additive FFT,
Too many variables for m = 13; wrote down transposition
gcc ran out of memory. with same loops etc.
Used ghasm register allocator Small code, no overhead.

to optimize the variables. Speedups of additive FFT

Worked, but not very quickly. translate easily

Wrote faster register allocator. to transposed algorithm.

Still excessive code size. .
Further savings:

Built new interpreter, merged first stage with
allowing some code compression. scaling by Goppa constants.
Still big; still some overhead.

- transposing compiler
g C code.

1y variables for m = 13;
out of memory.

asm register allocator

11ze the variables.
but not very quickly.

yster register allocator.
ossive code size.

w Interpreter,
some code compression.
still some overhead.

Better solution:
stared at additive FF T,
wrote down transposition

with same loops etc.

Small code, no overhead.

Speedups of additive FFT

translate easi

to transposed

y
algorithm.

Further savings:

merged first stage with

scaling by Goppa constants.

Results

60493 |\

8622 fc
20846 fc
7714 fc
14794 fc
8520 fc

Code wi
We're st

More Inf
Cr.yp.t

ng compiler

s for m = 13;
mory.

er allocator

riables.
ery quickly.

ter allocator.
e g|Ze.

ter,
e compression.
> overhead.

Better solution:
stared at additive FF T,
wrote down transposition

with same loops etc.

Small code, no overhead.

Speedups of additive FFT

translate easi

to transposed

y
algorithm.

Further savings:

merged first stage with

scaling by Goppa constants.

Results

60493 lvy Bridge «

8622 for permuts
20846 for syndron

7714 for BM.
14794 for roots.

8520 for permutz

Code will be publi
We're still speedin

More information:

cr.yp.to/paper:

13:

I

Or.

slon.

Better solution:

stared at additive FFT,
wrote down transposition
with same loops etc.

Small code, no overhead.

Speedups of additive FFT
translate easily

to transposed algorithm.

Further savings:
merged first stage with

scaling by Goppa constants.

Results

60493 lvy Bridge cycles:

8622 for permutation.
20846 for syndrome.
7714 for BM.

14794 for roots.
8520 for permutation.

Code will be public domain.
We're still speeding it up.

More information:
cr.yp.to/papers.html#m

Better solution:

stared at additive FFT,
wrote down transposition
with same loops etc.

Small code, no overhead.

Speedups of additive FFT
translate easily

to transposed algorithm.

Further savings:
merged first stage with

scaling by Goppa constants.

Results

60493 lvy Bridge cycles:

8622 for permutation.
20846 for syndrome.
7714 for BM.

14794 for roots.
8520 for permutation.

Code will be public domain.
We're still speeding it up.

More information:
cr.yp.to/papers.html#mcbits

