
Advanced

code-based cryptography

Daniel J. Bernstein

University of Illinois at Chicago &

Technische Universiteit Eindhoven

Lattice-basis reduction

Define L = (0; 24)Z + (1; 17)Z

= {(b; 24a + 17b) : a; b ∈ Z}.

What is the shortest

nonzero vector in L?

Advanced

code-based cryptography

Daniel J. Bernstein

University of Illinois at Chicago &

Technische Universiteit Eindhoven

Lattice-basis reduction

Define L = (0; 24)Z + (1; 17)Z

= {(b; 24a + 17b) : a; b ∈ Z}.

What is the shortest

nonzero vector in L?

L = (0; 24)Z + (1; 17)Z

Advanced

code-based cryptography

Daniel J. Bernstein

University of Illinois at Chicago &

Technische Universiteit Eindhoven

Lattice-basis reduction

Define L = (0; 24)Z + (1; 17)Z

= {(b; 24a + 17b) : a; b ∈ Z}.

What is the shortest

nonzero vector in L?

L = (0; 24)Z + (1; 17)Z

= (−1; 7)Z + (1; 17)Z

Advanced

code-based cryptography

Daniel J. Bernstein

University of Illinois at Chicago &

Technische Universiteit Eindhoven

Lattice-basis reduction

Define L = (0; 24)Z + (1; 17)Z

= {(b; 24a + 17b) : a; b ∈ Z}.

What is the shortest

nonzero vector in L?

L = (0; 24)Z + (1; 17)Z

= (−1; 7)Z + (1; 17)Z

= (−1; 7)Z + (3; 3)Z

Advanced

code-based cryptography

Daniel J. Bernstein

University of Illinois at Chicago &

Technische Universiteit Eindhoven

Lattice-basis reduction

Define L = (0; 24)Z + (1; 17)Z

= {(b; 24a + 17b) : a; b ∈ Z}.

What is the shortest

nonzero vector in L?

L = (0; 24)Z + (1; 17)Z

= (−1; 7)Z + (1; 17)Z

= (−1; 7)Z + (3; 3)Z

= (−4; 4)Z + (3; 3)Z.

Advanced

code-based cryptography

Daniel J. Bernstein

University of Illinois at Chicago &

Technische Universiteit Eindhoven

Lattice-basis reduction

Define L = (0; 24)Z + (1; 17)Z

= {(b; 24a + 17b) : a; b ∈ Z}.

What is the shortest

nonzero vector in L?

L = (0; 24)Z + (1; 17)Z

= (−1; 7)Z + (1; 17)Z

= (−1; 7)Z + (3; 3)Z

= (−4; 4)Z + (3; 3)Z.

(−4; 4); (3; 3) are orthogonal.

Shortest vectors in L are

(0; 0), (3; 3), (−3;−3).

Advanced

code-based cryptography

Daniel J. Bernstein

University of Illinois at Chicago &

Technische Universiteit Eindhoven

Lattice-basis reduction

Define L = (0; 24)Z + (1; 17)Z

= {(b; 24a + 17b) : a; b ∈ Z}.

What is the shortest

nonzero vector in L?

L = (0; 24)Z + (1; 17)Z

= (−1; 7)Z + (1; 17)Z

= (−1; 7)Z + (3; 3)Z

= (−4; 4)Z + (3; 3)Z.

(−4; 4); (3; 3) are orthogonal.

Shortest vectors in L are

(0; 0), (3; 3), (−3;−3).

OO

//

•

•

Advanced

code-based cryptography

Daniel J. Bernstein

University of Illinois at Chicago &

Technische Universiteit Eindhoven

Lattice-basis reduction

Define L = (0; 24)Z + (1; 17)Z

= {(b; 24a + 17b) : a; b ∈ Z}.

What is the shortest

nonzero vector in L?

L = (0; 24)Z + (1; 17)Z

= (−1; 7)Z + (1; 17)Z

= (−1; 7)Z + (3; 3)Z

= (−4; 4)Z + (3; 3)Z.

(−4; 4); (3; 3) are orthogonal.

Shortest vectors in L are

(0; 0), (3; 3), (−3;−3).

OO

//

•

•

Advanced

code-based cryptography

Daniel J. Bernstein

University of Illinois at Chicago &

Technische Universiteit Eindhoven

Lattice-basis reduction

Define L = (0; 24)Z + (1; 17)Z

= {(b; 24a + 17b) : a; b ∈ Z}.

What is the shortest

nonzero vector in L?

L = (0; 24)Z + (1; 17)Z

= (−1; 7)Z + (1; 17)Z

= (−1; 7)Z + (3; 3)Z

= (−4; 4)Z + (3; 3)Z.

(−4; 4); (3; 3) are orthogonal.

Shortest vectors in L are

(0; 0), (3; 3), (−3;−3).

OO

//

•

•

Lattice-basis reduction

Define L = (0; 24)Z + (1; 17)Z

= {(b; 24a + 17b) : a; b ∈ Z}.

What is the shortest

nonzero vector in L?

L = (0; 24)Z + (1; 17)Z

= (−1; 7)Z + (1; 17)Z

= (−1; 7)Z + (3; 3)Z

= (−4; 4)Z + (3; 3)Z.

(−4; 4); (3; 3) are orthogonal.

Shortest vectors in L are

(0; 0), (3; 3), (−3;−3).

OO

//

•

•

Lattice-basis reduction

Define L = (0; 24)Z + (1; 17)Z

= {(b; 24a + 17b) : a; b ∈ Z}.

What is the shortest

nonzero vector in L?

L = (0; 24)Z + (1; 17)Z

= (−1; 7)Z + (1; 17)Z

= (−1; 7)Z + (3; 3)Z

= (−4; 4)Z + (3; 3)Z.

(−4; 4); (3; 3) are orthogonal.

Shortest vectors in L are

(0; 0), (3; 3), (−3;−3).

OO

//

•

•

•

Lattice-basis reduction

Define L = (0; 24)Z + (1; 17)Z

= {(b; 24a + 17b) : a; b ∈ Z}.

What is the shortest

nonzero vector in L?

L = (0; 24)Z + (1; 17)Z

= (−1; 7)Z + (1; 17)Z

= (−1; 7)Z + (3; 3)Z

= (−4; 4)Z + (3; 3)Z.

(−4; 4); (3; 3) are orthogonal.

Shortest vectors in L are

(0; 0), (3; 3), (−3;−3).

OO

//

•

•

•
•

Lattice-basis reduction

Define L = (0; 24)Z + (1; 17)Z

= {(b; 24a + 17b) : a; b ∈ Z}.

What is the shortest

nonzero vector in L?

L = (0; 24)Z + (1; 17)Z

= (−1; 7)Z + (1; 17)Z

= (−1; 7)Z + (3; 3)Z

= (−4; 4)Z + (3; 3)Z.

(−4; 4); (3; 3) are orthogonal.

Shortest vectors in L are

(0; 0), (3; 3), (−3;−3).

OO

//

•

•

•
••

Lattice-basis reduction

Define L = (0; 24)Z + (1; 17)Z

= {(b; 24a + 17b) : a; b ∈ Z}.

What is the shortest

nonzero vector in L?

L = (0; 24)Z + (1; 17)Z

= (−1; 7)Z + (1; 17)Z

= (−1; 7)Z + (3; 3)Z

= (−4; 4)Z + (3; 3)Z.

(−4; 4); (3; 3) are orthogonal.

Shortest vectors in L are

(0; 0), (3; 3), (−3;−3).

OO

//

•
•

•
•
•
•

•
•
•
•
•
•
•

•
•
•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•
•

•
•
•
•
•
•

•
•
•
••

Lattice-basis reduction

Define L = (0; 24)Z + (1; 17)Z

= {(b; 24a + 17b) : a; b ∈ Z}.

What is the shortest

nonzero vector in L?

L = (0; 24)Z + (1; 17)Z

= (−1; 7)Z + (1; 17)Z

= (−1; 7)Z + (3; 3)Z

= (−4; 4)Z + (3; 3)Z.

(−4; 4); (3; 3) are orthogonal.

Shortest vectors in L are

(0; 0), (3; 3), (−3;−3).

OO

//

•
•

•
•
•
•

•
•
•
•
•
•
•

•
•
•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•
•

•
•
•
•
•
•

•
•
•
••

Another example:

Define L = (0; 25)Z + (1; 17)Z.

What is the shortest

nonzero vector in L?

Lattice-basis reduction

Define L = (0; 24)Z + (1; 17)Z

= {(b; 24a + 17b) : a; b ∈ Z}.

What is the shortest

nonzero vector in L?

L = (0; 24)Z + (1; 17)Z

= (−1; 7)Z + (1; 17)Z

= (−1; 7)Z + (3; 3)Z

= (−4; 4)Z + (3; 3)Z.

(−4; 4); (3; 3) are orthogonal.

Shortest vectors in L are

(0; 0), (3; 3), (−3;−3).

OO

//

•
•

•
•
•
•

•
•
•
•
•
•
•

•
•
•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•
•

•
•
•
•
•
•

•
•
•
••

Another example:

Define L = (0; 25)Z + (1; 17)Z.

What is the shortest

nonzero vector in L?

Lattice-basis reduction

Define L = (0; 24)Z + (1; 17)Z

= {(b; 24a + 17b) : a; b ∈ Z}.

What is the shortest

nonzero vector in L?

L = (0; 24)Z + (1; 17)Z

= (−1; 7)Z + (1; 17)Z

= (−1; 7)Z + (3; 3)Z

= (−4; 4)Z + (3; 3)Z.

(−4; 4); (3; 3) are orthogonal.

Shortest vectors in L are

(0; 0), (3; 3), (−3;−3).

OO

//

•
•

•
•
•
•

•
•
•
•
•
•
•

•
•
•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•
•

•
•
•
•
•
•

•
•
•
••

Another example:

Define L = (0; 25)Z + (1; 17)Z.

What is the shortest

nonzero vector in L?

OO

//

•
•

•
•
•
•

•
•
•
•
•
•
•

•
•
•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•
•

•
•
•
•
•
•

•
•
•
••

Another example:

Define L = (0; 25)Z + (1; 17)Z.

What is the shortest

nonzero vector in L?

OO

//

•
•

•
•
•
•

•
•
•
•
•
•
•

•
•
•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•
•

•
•
•
•
•
•

•
•
•
••

Another example:

Define L = (0; 25)Z + (1; 17)Z.

What is the shortest

nonzero vector in L?

L = (0; 25)Z + (1; 17)Z

OO

//

•
•

•
•
•
•

•
•
•
•
•
•
•

•
•
•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•
•

•
•
•
•
•
•

•
•
•
••

Another example:

Define L = (0; 25)Z + (1; 17)Z.

What is the shortest

nonzero vector in L?

L = (0; 25)Z + (1; 17)Z

= (−1; 8)Z + (1; 17)Z

OO

//

•
•

•
•
•
•

•
•
•
•
•
•
•

•
•
•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•
•

•
•
•
•
•
•

•
•
•
••

Another example:

Define L = (0; 25)Z + (1; 17)Z.

What is the shortest

nonzero vector in L?

L = (0; 25)Z + (1; 17)Z

= (−1; 8)Z + (1; 17)Z

= (−1; 8)Z + (3; 1)Z.

OO

//

•
•

•
•
•
•

•
•
•
•
•
•
•

•
•
•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•
•

•
•
•
•
•
•

•
•
•
••

Another example:

Define L = (0; 25)Z + (1; 17)Z.

What is the shortest

nonzero vector in L?

L = (0; 25)Z + (1; 17)Z

= (−1; 8)Z + (1; 17)Z

= (−1; 8)Z + (3; 1)Z.

Nearly orthogonal.

Shortest vectors in L are

(0; 0), (3; 1), (−3;−1).

OO

//

•
•

•
•
•
•

•
•
•
•
•
•
•

•
•
•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•
•

•
•
•
•
•
•

•
•
•
••

Another example:

Define L = (0; 25)Z + (1; 17)Z.

What is the shortest

nonzero vector in L?

L = (0; 25)Z + (1; 17)Z

= (−1; 8)Z + (1; 17)Z

= (−1; 8)Z + (3; 1)Z.

Nearly orthogonal.

Shortest vectors in L are

(0; 0), (3; 1), (−3;−1).

OO

//

• •
• •

• •
• •• •

• •
• •

• •
• •• •

• •
• •

• •
•• •

• •
• •

• •
• •• •

• •

OO

//

•
•

•
•
•
•

•
•
•
•
•
•
•

•
•
•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•
•

•
•
•
•
•
•

•
•
•
••

Another example:

Define L = (0; 25)Z + (1; 17)Z.

What is the shortest

nonzero vector in L?

L = (0; 25)Z + (1; 17)Z

= (−1; 8)Z + (1; 17)Z

= (−1; 8)Z + (3; 1)Z.

Nearly orthogonal.

Shortest vectors in L are

(0; 0), (3; 1), (−3;−1).

OO

//

• •
• •

• •
• •• •

• •
• •

• •
• •• •

• •
• •

• •
•• •

• •
• •

• •
• •• •

• •

OO

//

•
•

•
•
•
•

•
•
•
•
•
•
•

•
•
•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•
•

•
•
•
•
•
•

•
•
•
••

Another example:

Define L = (0; 25)Z + (1; 17)Z.

What is the shortest

nonzero vector in L?

L = (0; 25)Z + (1; 17)Z

= (−1; 8)Z + (1; 17)Z

= (−1; 8)Z + (3; 1)Z.

Nearly orthogonal.

Shortest vectors in L are

(0; 0), (3; 1), (−3;−1).

OO

//

• •
• •

• •
• •• •

• •
• •

• •
• •• •

• •
• •

• •
•• •

• •
• •

• •
• •• •

• •

Another example:

Define L = (0; 25)Z + (1; 17)Z.

What is the shortest

nonzero vector in L?

L = (0; 25)Z + (1; 17)Z

= (−1; 8)Z + (1; 17)Z

= (−1; 8)Z + (3; 1)Z.

Nearly orthogonal.

Shortest vectors in L are

(0; 0), (3; 1), (−3;−1).

OO

//

• •
• •

• •
• •• •

• •
• •

• •
• •• •

• •
• •

• •
•• •

• •
• •

• •
• •• •

• •

Another example:

Define L = (0; 25)Z + (1; 17)Z.

What is the shortest

nonzero vector in L?

L = (0; 25)Z + (1; 17)Z

= (−1; 8)Z + (1; 17)Z

= (−1; 8)Z + (3; 1)Z.

Nearly orthogonal.

Shortest vectors in L are

(0; 0), (3; 1), (−3;−1).

OO

//

• •
• •

• •
• •• •

• •
• •

• •
• •• •

• •
• •

• •
•• •

• •
• •

• •
• •• •

• •
Polynomial lattices

Define P = F2[x],

r0 = (101000)x = x5 + x3 ∈ P ,

r1 = (10011)x = x4 + x + 1 ∈ P ,

L = (0; r0)P + (1; r1)P .

What is the shortest

nonzero vector in L?

Another example:

Define L = (0; 25)Z + (1; 17)Z.

What is the shortest

nonzero vector in L?

L = (0; 25)Z + (1; 17)Z

= (−1; 8)Z + (1; 17)Z

= (−1; 8)Z + (3; 1)Z.

Nearly orthogonal.

Shortest vectors in L are

(0; 0), (3; 1), (−3;−1).

OO

//

• •
• •

• •
• •• •

• •
• •

• •
• •• •

• •
• •

• •
•• •

• •
• •

• •
• •• •

• •
Polynomial lattices

Define P = F2[x],

r0 = (101000)x = x5 + x3 ∈ P ,

r1 = (10011)x = x4 + x + 1 ∈ P ,

L = (0; r0)P + (1; r1)P .

What is the shortest

nonzero vector in L?

Another example:

Define L = (0; 25)Z + (1; 17)Z.

What is the shortest

nonzero vector in L?

L = (0; 25)Z + (1; 17)Z

= (−1; 8)Z + (1; 17)Z

= (−1; 8)Z + (3; 1)Z.

Nearly orthogonal.

Shortest vectors in L are

(0; 0), (3; 1), (−3;−1).

OO

//

• •
• •

• •
• •• •

• •
• •

• •
• •• •

• •
• •

• •
•• •

• •
• •

• •
• •• •

• •
Polynomial lattices

Define P = F2[x],

r0 = (101000)x = x5 + x3 ∈ P ,

r1 = (10011)x = x4 + x + 1 ∈ P ,

L = (0; r0)P + (1; r1)P .

What is the shortest

nonzero vector in L?

OO

//

• •
• •

• •
• •• •

• •
• •

• •
• •• •

• •
• •

• •
•• •

• •
• •

• •
• •• •

• •
Polynomial lattices

Define P = F2[x],

r0 = (101000)x = x5 + x3 ∈ P ,

r1 = (10011)x = x4 + x + 1 ∈ P ,

L = (0; r0)P + (1; r1)P .

What is the shortest

nonzero vector in L?

OO

//

• •
• •

• •
• •• •

• •
• •

• •
• •• •

• •
• •

• •
•• •

• •
• •

• •
• •• •

• •
Polynomial lattices

Define P = F2[x],

r0 = (101000)x = x5 + x3 ∈ P ,

r1 = (10011)x = x4 + x + 1 ∈ P ,

L = (0; r0)P + (1; r1)P .

What is the shortest

nonzero vector in L?

L = (0; 101000)P + (1; 10011)P

OO

//

• •
• •

• •
• •• •

• •
• •

• •
• •• •

• •
• •

• •
•• •

• •
• •

• •
• •• •

• •
Polynomial lattices

Define P = F2[x],

r0 = (101000)x = x5 + x3 ∈ P ,

r1 = (10011)x = x4 + x + 1 ∈ P ,

L = (0; r0)P + (1; r1)P .

What is the shortest

nonzero vector in L?

L = (0; 101000)P + (1; 10011)P

= (10; 1110)P + (1; 10011)P

OO

//

• •
• •

• •
• •• •

• •
• •

• •
• •• •

• •
• •

• •
•• •

• •
• •

• •
• •• •

• •
Polynomial lattices

Define P = F2[x],

r0 = (101000)x = x5 + x3 ∈ P ,

r1 = (10011)x = x4 + x + 1 ∈ P ,

L = (0; r0)P + (1; r1)P .

What is the shortest

nonzero vector in L?

L = (0; 101000)P + (1; 10011)P

= (10; 1110)P + (1; 10011)P

= (10; 1110)P + (111; 1)P .

OO

//

• •
• •

• •
• •• •

• •
• •

• •
• •• •

• •
• •

• •
•• •

• •
• •

• •
• •• •

• •
Polynomial lattices

Define P = F2[x],

r0 = (101000)x = x5 + x3 ∈ P ,

r1 = (10011)x = x4 + x + 1 ∈ P ,

L = (0; r0)P + (1; r1)P .

What is the shortest

nonzero vector in L?

L = (0; 101000)P + (1; 10011)P

= (10; 1110)P + (1; 10011)P

= (10; 1110)P + (111; 1)P .

(111; 1): shortest nonzero vector.

(10; 1110): shortest

independent vector.

OO

//

• •
• •

• •
• •• •

• •
• •

• •
• •• •

• •
• •

• •
•• •

• •
• •

• •
• •• •

• •
Polynomial lattices

Define P = F2[x],

r0 = (101000)x = x5 + x3 ∈ P ,

r1 = (10011)x = x4 + x + 1 ∈ P ,

L = (0; r0)P + (1; r1)P .

What is the shortest

nonzero vector in L?

L = (0; 101000)P + (1; 10011)P

= (10; 1110)P + (1; 10011)P

= (10; 1110)P + (111; 1)P .

(111; 1): shortest nonzero vector.

(10; 1110): shortest

independent vector.

Degree of (q; r) ∈ F2[x]× F2[x]

is defined as max{deg q; deg r}.

OO

//

• •
• •

• •
• •• •

• •
• •

• •
• •• •

• •
• •

• •
•• •

• •
• •

• •
• •• •

• •
Polynomial lattices

Define P = F2[x],

r0 = (101000)x = x5 + x3 ∈ P ,

r1 = (10011)x = x4 + x + 1 ∈ P ,

L = (0; r0)P + (1; r1)P .

What is the shortest

nonzero vector in L?

L = (0; 101000)P + (1; 10011)P

= (10; 1110)P + (1; 10011)P

= (10; 1110)P + (111; 1)P .

(111; 1): shortest nonzero vector.

(10; 1110): shortest

independent vector.

Degree of (q; r) ∈ F2[x]× F2[x]

is defined as max{deg q; deg r}.

OO

//

• •
• •

• •
• •• •

• •
• •

• •
• •• •

• •
• •

• •
•• •

• •
• •

• •
• •• •

• •
Polynomial lattices

Define P = F2[x],

r0 = (101000)x = x5 + x3 ∈ P ,

r1 = (10011)x = x4 + x + 1 ∈ P ,

L = (0; r0)P + (1; r1)P .

What is the shortest

nonzero vector in L?

L = (0; 101000)P + (1; 10011)P

= (10; 1110)P + (1; 10011)P

= (10; 1110)P + (111; 1)P .

(111; 1): shortest nonzero vector.

(10; 1110): shortest

independent vector.

Degree of (q; r) ∈ F2[x]× F2[x]

is defined as max{deg q; deg r}.

Polynomial lattices

Define P = F2[x],

r0 = (101000)x = x5 + x3 ∈ P ,

r1 = (10011)x = x4 + x + 1 ∈ P ,

L = (0; r0)P + (1; r1)P .

What is the shortest

nonzero vector in L?

L = (0; 101000)P + (1; 10011)P

= (10; 1110)P + (1; 10011)P

= (10; 1110)P + (111; 1)P .

(111; 1): shortest nonzero vector.

(10; 1110): shortest

independent vector.

Degree of (q; r) ∈ F2[x]× F2[x]

is defined as max{deg q; deg r}.

Polynomial lattices

Define P = F2[x],

r0 = (101000)x = x5 + x3 ∈ P ,

r1 = (10011)x = x4 + x + 1 ∈ P ,

L = (0; r0)P + (1; r1)P .

What is the shortest

nonzero vector in L?

L = (0; 101000)P + (1; 10011)P

= (10; 1110)P + (1; 10011)P

= (10; 1110)P + (111; 1)P .

(111; 1): shortest nonzero vector.

(10; 1110): shortest

independent vector.

Degree of (q; r) ∈ F2[x]× F2[x]

is defined as max{deg q; deg r}.

Can use other metrics,

or equivalently rescale L.

e.g. Define L ⊆ F2[
√
x]× F2[

√
x]

as (0; r0
√
x)P + (1; r1

√
x)P .

Polynomial lattices

Define P = F2[x],

r0 = (101000)x = x5 + x3 ∈ P ,

r1 = (10011)x = x4 + x + 1 ∈ P ,

L = (0; r0)P + (1; r1)P .

What is the shortest

nonzero vector in L?

L = (0; 101000)P + (1; 10011)P

= (10; 1110)P + (1; 10011)P

= (10; 1110)P + (111; 1)P .

(111; 1): shortest nonzero vector.

(10; 1110): shortest

independent vector.

Degree of (q; r) ∈ F2[x]× F2[x]

is defined as max{deg q; deg r}.

Can use other metrics,

or equivalently rescale L.

e.g. Define L ⊆ F2[
√
x]× F2[

√
x]

as (0; r0
√
x)P + (1; r1

√
x)P .

Successive generators for L:

(0; 101000
√
x), degree 5:5.

(1; 10011
√
x), degree 4:5.

(10; 1110
√
x), degree 3:5.

(111; 1
√
x), degree 2.

Polynomial lattices

Define P = F2[x],

r0 = (101000)x = x5 + x3 ∈ P ,

r1 = (10011)x = x4 + x + 1 ∈ P ,

L = (0; r0)P + (1; r1)P .

What is the shortest

nonzero vector in L?

L = (0; 101000)P + (1; 10011)P

= (10; 1110)P + (1; 10011)P

= (10; 1110)P + (111; 1)P .

(111; 1): shortest nonzero vector.

(10; 1110): shortest

independent vector.

Degree of (q; r) ∈ F2[x]× F2[x]

is defined as max{deg q; deg r}.

Can use other metrics,

or equivalently rescale L.

e.g. Define L ⊆ F2[
√
x]× F2[

√
x]

as (0; r0
√
x)P + (1; r1

√
x)P .

Successive generators for L:

(0; 101000
√
x), degree 5:5.

(1; 10011
√
x), degree 4:5.

(10; 1110
√
x), degree 3:5.

(111; 1
√
x), degree 2.

Warning: Sometimes

shortest independent vector is

after shortest nonzero vector.

Polynomial lattices

Define P = F2[x],

r0 = (101000)x = x5 + x3 ∈ P ,

r1 = (10011)x = x4 + x + 1 ∈ P ,

L = (0; r0)P + (1; r1)P .

What is the shortest

nonzero vector in L?

L = (0; 101000)P + (1; 10011)P

= (10; 1110)P + (1; 10011)P

= (10; 1110)P + (111; 1)P .

(111; 1): shortest nonzero vector.

(10; 1110): shortest

independent vector.

Degree of (q; r) ∈ F2[x]× F2[x]

is defined as max{deg q; deg r}.

Can use other metrics,

or equivalently rescale L.

e.g. Define L ⊆ F2[
√
x]× F2[

√
x]

as (0; r0
√
x)P + (1; r1

√
x)P .

Successive generators for L:

(0; 101000
√
x), degree 5:5.

(1; 10011
√
x), degree 4:5.

(10; 1110
√
x), degree 3:5.

(111; 1
√
x), degree 2.

Warning: Sometimes

shortest independent vector is

after shortest nonzero vector.

Polynomial lattices

Define P = F2[x],

r0 = (101000)x = x5 + x3 ∈ P ,

r1 = (10011)x = x4 + x + 1 ∈ P ,

L = (0; r0)P + (1; r1)P .

What is the shortest

nonzero vector in L?

L = (0; 101000)P + (1; 10011)P

= (10; 1110)P + (1; 10011)P

= (10; 1110)P + (111; 1)P .

(111; 1): shortest nonzero vector.

(10; 1110): shortest

independent vector.

Degree of (q; r) ∈ F2[x]× F2[x]

is defined as max{deg q; deg r}.

Can use other metrics,

or equivalently rescale L.

e.g. Define L ⊆ F2[
√
x]× F2[

√
x]

as (0; r0
√
x)P + (1; r1

√
x)P .

Successive generators for L:

(0; 101000
√
x), degree 5:5.

(1; 10011
√
x), degree 4:5.

(10; 1110
√
x), degree 3:5.

(111; 1
√
x), degree 2.

Warning: Sometimes

shortest independent vector is

after shortest nonzero vector.

Degree of (q; r) ∈ F2[x]× F2[x]

is defined as max{deg q; deg r}.

Can use other metrics,

or equivalently rescale L.

e.g. Define L ⊆ F2[
√
x]× F2[

√
x]

as (0; r0
√
x)P + (1; r1

√
x)P .

Successive generators for L:

(0; 101000
√
x), degree 5:5.

(1; 10011
√
x), degree 4:5.

(10; 1110
√
x), degree 3:5.

(111; 1
√
x), degree 2.

Warning: Sometimes

shortest independent vector is

after shortest nonzero vector.

Degree of (q; r) ∈ F2[x]× F2[x]

is defined as max{deg q; deg r}.

Can use other metrics,

or equivalently rescale L.

e.g. Define L ⊆ F2[
√
x]× F2[

√
x]

as (0; r0
√
x)P + (1; r1

√
x)P .

Successive generators for L:

(0; 101000
√
x), degree 5:5.

(1; 10011
√
x), degree 4:5.

(10; 1110
√
x), degree 3:5.

(111; 1
√
x), degree 2.

Warning: Sometimes

shortest independent vector is

after shortest nonzero vector.

e.g. Define

r0 = 101000, r1 = 10111,

L = (0; r0
√
x)P + (1; r1

√
x)P .

Successive generators for L:

(0; 101000
√
x), degree 5:5.

(1; 10111
√
x), degree 4:5.

(10; 110
√
x), degree 2:5.

(1101; 11
√
x), degree 3.

Degree of (q; r) ∈ F2[x]× F2[x]

is defined as max{deg q; deg r}.

Can use other metrics,

or equivalently rescale L.

e.g. Define L ⊆ F2[
√
x]× F2[

√
x]

as (0; r0
√
x)P + (1; r1

√
x)P .

Successive generators for L:

(0; 101000
√
x), degree 5:5.

(1; 10011
√
x), degree 4:5.

(10; 1110
√
x), degree 3:5.

(111; 1
√
x), degree 2.

Warning: Sometimes

shortest independent vector is

after shortest nonzero vector.

e.g. Define

r0 = 101000, r1 = 10111,

L = (0; r0
√
x)P + (1; r1

√
x)P .

Successive generators for L:

(0; 101000
√
x), degree 5:5.

(1; 10111
√
x), degree 4:5.

(10; 110
√
x), degree 2:5.

(1101; 11
√
x), degree 3.

For any field k, any r0; r1
in P = k[x] with deg r0 > deg r1:

Euclid/Stevin computation:

Define r2 = r0 mod r1,

r3 = r1 mod r2, etc.

Degree of (q; r) ∈ F2[x]× F2[x]

is defined as max{deg q; deg r}.

Can use other metrics,

or equivalently rescale L.

e.g. Define L ⊆ F2[
√
x]× F2[

√
x]

as (0; r0
√
x)P + (1; r1

√
x)P .

Successive generators for L:

(0; 101000
√
x), degree 5:5.

(1; 10011
√
x), degree 4:5.

(10; 1110
√
x), degree 3:5.

(111; 1
√
x), degree 2.

Warning: Sometimes

shortest independent vector is

after shortest nonzero vector.

e.g. Define

r0 = 101000, r1 = 10111,

L = (0; r0
√
x)P + (1; r1

√
x)P .

Successive generators for L:

(0; 101000
√
x), degree 5:5.

(1; 10111
√
x), degree 4:5.

(10; 110
√
x), degree 2:5.

(1101; 11
√
x), degree 3.

For any field k, any r0; r1
in P = k[x] with deg r0 > deg r1:

Euclid/Stevin computation:

Define r2 = r0 mod r1,

r3 = r1 mod r2, etc.

Degree of (q; r) ∈ F2[x]× F2[x]

is defined as max{deg q; deg r}.

Can use other metrics,

or equivalently rescale L.

e.g. Define L ⊆ F2[
√
x]× F2[

√
x]

as (0; r0
√
x)P + (1; r1

√
x)P .

Successive generators for L:

(0; 101000
√
x), degree 5:5.

(1; 10011
√
x), degree 4:5.

(10; 1110
√
x), degree 3:5.

(111; 1
√
x), degree 2.

Warning: Sometimes

shortest independent vector is

after shortest nonzero vector.

e.g. Define

r0 = 101000, r1 = 10111,

L = (0; r0
√
x)P + (1; r1

√
x)P .

Successive generators for L:

(0; 101000
√
x), degree 5:5.

(1; 10111
√
x), degree 4:5.

(10; 110
√
x), degree 2:5.

(1101; 11
√
x), degree 3.

For any field k, any r0; r1
in P = k[x] with deg r0 > deg r1:

Euclid/Stevin computation:

Define r2 = r0 mod r1,

r3 = r1 mod r2, etc.

Warning: Sometimes

shortest independent vector is

after shortest nonzero vector.

e.g. Define

r0 = 101000, r1 = 10111,

L = (0; r0
√
x)P + (1; r1

√
x)P .

Successive generators for L:

(0; 101000
√
x), degree 5:5.

(1; 10111
√
x), degree 4:5.

(10; 110
√
x), degree 2:5.

(1101; 11
√
x), degree 3.

For any field k, any r0; r1
in P = k[x] with deg r0 > deg r1:

Euclid/Stevin computation:

Define r2 = r0 mod r1,

r3 = r1 mod r2, etc.

Warning: Sometimes

shortest independent vector is

after shortest nonzero vector.

e.g. Define

r0 = 101000, r1 = 10111,

L = (0; r0
√
x)P + (1; r1

√
x)P .

Successive generators for L:

(0; 101000
√
x), degree 5:5.

(1; 10111
√
x), degree 4:5.

(10; 110
√
x), degree 2:5.

(1101; 11
√
x), degree 3.

For any field k, any r0; r1
in P = k[x] with deg r0 > deg r1:

Euclid/Stevin computation:

Define r2 = r0 mod r1,

r3 = r1 mod r2, etc.

Extended: q0 = 0; q1 = 1;

qi+2 = qi − bri=ri+1c qi+1.

Then qi r1 ≡ ri (mod r0).

Warning: Sometimes

shortest independent vector is

after shortest nonzero vector.

e.g. Define

r0 = 101000, r1 = 10111,

L = (0; r0
√
x)P + (1; r1

√
x)P .

Successive generators for L:

(0; 101000
√
x), degree 5:5.

(1; 10111
√
x), degree 4:5.

(10; 110
√
x), degree 2:5.

(1101; 11
√
x), degree 3.

For any field k, any r0; r1
in P = k[x] with deg r0 > deg r1:

Euclid/Stevin computation:

Define r2 = r0 mod r1,

r3 = r1 mod r2, etc.

Extended: q0 = 0; q1 = 1;

qi+2 = qi − bri=ri+1c qi+1.

Then qi r1 ≡ ri (mod r0).

Lattice view: Have

(0; r0
√
x)P + (1; r1

√
x)P =

(qi ; ri
√
x)P + (qi+1; ri+1

√
x)P .

Warning: Sometimes

shortest independent vector is

after shortest nonzero vector.

e.g. Define

r0 = 101000, r1 = 10111,

L = (0; r0
√
x)P + (1; r1

√
x)P .

Successive generators for L:

(0; 101000
√
x), degree 5:5.

(1; 10111
√
x), degree 4:5.

(10; 110
√
x), degree 2:5.

(1101; 11
√
x), degree 3.

For any field k, any r0; r1
in P = k[x] with deg r0 > deg r1:

Euclid/Stevin computation:

Define r2 = r0 mod r1,

r3 = r1 mod r2, etc.

Extended: q0 = 0; q1 = 1;

qi+2 = qi − bri=ri+1c qi+1.

Then qi r1 ≡ ri (mod r0).

Lattice view: Have

(0; r0
√
x)P + (1; r1

√
x)P =

(qi ; ri
√
x)P + (qi+1; ri+1

√
x)P .

Can continue until ri+1 = 0.

gcd{r0; r1} = ri= leadcoeff ri .

Warning: Sometimes

shortest independent vector is

after shortest nonzero vector.

e.g. Define

r0 = 101000, r1 = 10111,

L = (0; r0
√
x)P + (1; r1

√
x)P .

Successive generators for L:

(0; 101000
√
x), degree 5:5.

(1; 10111
√
x), degree 4:5.

(10; 110
√
x), degree 2:5.

(1101; 11
√
x), degree 3.

For any field k, any r0; r1
in P = k[x] with deg r0 > deg r1:

Euclid/Stevin computation:

Define r2 = r0 mod r1,

r3 = r1 mod r2, etc.

Extended: q0 = 0; q1 = 1;

qi+2 = qi − bri=ri+1c qi+1.

Then qi r1 ≡ ri (mod r0).

Lattice view: Have

(0; r0
√
x)P + (1; r1

√
x)P =

(qi ; ri
√
x)P + (qi+1; ri+1

√
x)P .

Can continue until ri+1 = 0.

gcd{r0; r1} = ri= leadcoeff ri .

Reducing lattice basis for L

is a “half gcd” computation,

stopping halfway to the gcd.

Warning: Sometimes

shortest independent vector is

after shortest nonzero vector.

e.g. Define

r0 = 101000, r1 = 10111,

L = (0; r0
√
x)P + (1; r1

√
x)P .

Successive generators for L:

(0; 101000
√
x), degree 5:5.

(1; 10111
√
x), degree 4:5.

(10; 110
√
x), degree 2:5.

(1101; 11
√
x), degree 3.

For any field k, any r0; r1
in P = k[x] with deg r0 > deg r1:

Euclid/Stevin computation:

Define r2 = r0 mod r1,

r3 = r1 mod r2, etc.

Extended: q0 = 0; q1 = 1;

qi+2 = qi − bri=ri+1c qi+1.

Then qi r1 ≡ ri (mod r0).

Lattice view: Have

(0; r0
√
x)P + (1; r1

√
x)P =

(qi ; ri
√
x)P + (qi+1; ri+1

√
x)P .

Can continue until ri+1 = 0.

gcd{r0; r1} = ri= leadcoeff ri .

Reducing lattice basis for L

is a “half gcd” computation,

stopping halfway to the gcd.

Warning: Sometimes

shortest independent vector is

after shortest nonzero vector.

e.g. Define

r0 = 101000, r1 = 10111,

L = (0; r0
√
x)P + (1; r1

√
x)P .

Successive generators for L:

(0; 101000
√
x), degree 5:5.

(1; 10111
√
x), degree 4:5.

(10; 110
√
x), degree 2:5.

(1101; 11
√
x), degree 3.

For any field k, any r0; r1
in P = k[x] with deg r0 > deg r1:

Euclid/Stevin computation:

Define r2 = r0 mod r1,

r3 = r1 mod r2, etc.

Extended: q0 = 0; q1 = 1;

qi+2 = qi − bri=ri+1c qi+1.

Then qi r1 ≡ ri (mod r0).

Lattice view: Have

(0; r0
√
x)P + (1; r1

√
x)P =

(qi ; ri
√
x)P + (qi+1; ri+1

√
x)P .

Can continue until ri+1 = 0.

gcd{r0; r1} = ri= leadcoeff ri .

Reducing lattice basis for L

is a “half gcd” computation,

stopping halfway to the gcd.

For any field k, any r0; r1
in P = k[x] with deg r0 > deg r1:

Euclid/Stevin computation:

Define r2 = r0 mod r1,

r3 = r1 mod r2, etc.

Extended: q0 = 0; q1 = 1;

qi+2 = qi − bri=ri+1c qi+1.

Then qi r1 ≡ ri (mod r0).

Lattice view: Have

(0; r0
√
x)P + (1; r1

√
x)P =

(qi ; ri
√
x)P + (qi+1; ri+1

√
x)P .

Can continue until ri+1 = 0.

gcd{r0; r1} = ri= leadcoeff ri .

Reducing lattice basis for L

is a “half gcd” computation,

stopping halfway to the gcd.

For any field k, any r0; r1
in P = k[x] with deg r0 > deg r1:

Euclid/Stevin computation:

Define r2 = r0 mod r1,

r3 = r1 mod r2, etc.

Extended: q0 = 0; q1 = 1;

qi+2 = qi − bri=ri+1c qi+1.

Then qi r1 ≡ ri (mod r0).

Lattice view: Have

(0; r0
√
x)P + (1; r1

√
x)P =

(qi ; ri
√
x)P + (qi+1; ri+1

√
x)P .

Can continue until ri+1 = 0.

gcd{r0; r1} = ri= leadcoeff ri .

Reducing lattice basis for L

is a “half gcd” computation,

stopping halfway to the gcd.

deg ri decreases; deg qi increases;

deg qi+1 + deg ri = deg r0.

For any field k, any r0; r1
in P = k[x] with deg r0 > deg r1:

Euclid/Stevin computation:

Define r2 = r0 mod r1,

r3 = r1 mod r2, etc.

Extended: q0 = 0; q1 = 1;

qi+2 = qi − bri=ri+1c qi+1.

Then qi r1 ≡ ri (mod r0).

Lattice view: Have

(0; r0
√
x)P + (1; r1

√
x)P =

(qi ; ri
√
x)P + (qi+1; ri+1

√
x)P .

Can continue until ri+1 = 0.

gcd{r0; r1} = ri= leadcoeff ri .

Reducing lattice basis for L

is a “half gcd” computation,

stopping halfway to the gcd.

deg ri decreases; deg qi increases;

deg qi+1 + deg ri = deg r0.

Say j is minimal with

deg rj
√
x ≤ (deg r0)=2.

Then deg qj ≤ (deg r0)=2 so

deg(qj ; rj
√
x) ≤ (deg r0)=2.

Shortest nonzero vector.

For any field k, any r0; r1
in P = k[x] with deg r0 > deg r1:

Euclid/Stevin computation:

Define r2 = r0 mod r1,

r3 = r1 mod r2, etc.

Extended: q0 = 0; q1 = 1;

qi+2 = qi − bri=ri+1c qi+1.

Then qi r1 ≡ ri (mod r0).

Lattice view: Have

(0; r0
√
x)P + (1; r1

√
x)P =

(qi ; ri
√
x)P + (qi+1; ri+1

√
x)P .

Can continue until ri+1 = 0.

gcd{r0; r1} = ri= leadcoeff ri .

Reducing lattice basis for L

is a “half gcd” computation,

stopping halfway to the gcd.

deg ri decreases; deg qi increases;

deg qi+1 + deg ri = deg r0.

Say j is minimal with

deg rj
√
x ≤ (deg r0)=2.

Then deg qj ≤ (deg r0)=2 so

deg(qj ; rj
√
x) ≤ (deg r0)=2.

Shortest nonzero vector.

(qj+›; rj+›
√
x) has degree

deg r0
√
x − deg(qj ; rj

√
x)

for some › ∈ {−1; 1}.
Shortest independent vector.

For any field k, any r0; r1
in P = k[x] with deg r0 > deg r1:

Euclid/Stevin computation:

Define r2 = r0 mod r1,

r3 = r1 mod r2, etc.

Extended: q0 = 0; q1 = 1;

qi+2 = qi − bri=ri+1c qi+1.

Then qi r1 ≡ ri (mod r0).

Lattice view: Have

(0; r0
√
x)P + (1; r1

√
x)P =

(qi ; ri
√
x)P + (qi+1; ri+1

√
x)P .

Can continue until ri+1 = 0.

gcd{r0; r1} = ri= leadcoeff ri .

Reducing lattice basis for L

is a “half gcd” computation,

stopping halfway to the gcd.

deg ri decreases; deg qi increases;

deg qi+1 + deg ri = deg r0.

Say j is minimal with

deg rj
√
x ≤ (deg r0)=2.

Then deg qj ≤ (deg r0)=2 so

deg(qj ; rj
√
x) ≤ (deg r0)=2.

Shortest nonzero vector.

(qj+›; rj+›
√
x) has degree

deg r0
√
x − deg(qj ; rj

√
x)

for some › ∈ {−1; 1}.
Shortest independent vector.

Proof of “shortest”:

Take any (q; r
√
x) in lattice.

For any field k , any r0; r1
in P = k[x] with deg r0 > deg r1:

Euclid/Stevin computation:

Define r2 = r0 mod r1,

r3 = r1 mod r2, etc.

Extended: q0 = 0; q1 = 1;

qi+2 = qi − bri=ri+1c qi+1.

Then qi r1 ≡ ri (mod r0).

Lattice view: Have

(0; r0
√
x)P + (1; r1

√
x)P =

(qi ; ri
√
x)P + (qi+1; ri+1

√
x)P .

Can continue until ri+1 = 0.

gcd{r0; r1} = ri= leadcoeff ri .

Reducing lattice basis for L

is a “half gcd” computation,

stopping halfway to the gcd.

deg ri decreases; deg qi increases;

deg qi+1 + deg ri = deg r0.

Say j is minimal with

deg rj
√
x ≤ (deg r0)=2.

Then deg qj ≤ (deg r0)=2 so

deg(qj ; rj
√
x) ≤ (deg r0)=2.

Shortest nonzero vector.

(qj+›; rj+›
√
x) has degree

deg r0
√
x − deg(qj ; rj

√
x)

for some › ∈ {−1; 1}.
Shortest independent vector.

Proof of “shortest”:

Take any (q; r
√
x) in lattice.

For any field k, any r0; r1
in P = k[x] with deg r0 > deg r1:

Euclid/Stevin computation:

Define r2 = r0 mod r1,

r3 = r1 mod r2, etc.

Extended: q0 = 0; q1 = 1;

qi+2 = qi − bri=ri+1c qi+1.

Then qi r1 ≡ ri (mod r0).

Lattice view: Have

(0; r0
√
x)P + (1; r1

√
x)P =

(qi ; ri
√
x)P + (qi+1; ri+1

√
x)P .

Can continue until ri+1 = 0.

gcd{r0; r1} = ri= leadcoeff ri .

Reducing lattice basis for L

is a “half gcd” computation,

stopping halfway to the gcd.

deg ri decreases; deg qi increases;

deg qi+1 + deg ri = deg r0.

Say j is minimal with

deg rj
√
x ≤ (deg r0)=2.

Then deg qj ≤ (deg r0)=2 so

deg(qj ; rj
√
x) ≤ (deg r0)=2.

Shortest nonzero vector.

(qj+›; rj+›
√
x) has degree

deg r0
√
x − deg(qj ; rj

√
x)

for some › ∈ {−1; 1}.
Shortest independent vector.

Proof of “shortest”:

Take any (q; r
√
x) in lattice.

Reducing lattice basis for L

is a “half gcd” computation,

stopping halfway to the gcd.

deg ri decreases; deg qi increases;

deg qi+1 + deg ri = deg r0.

Say j is minimal with

deg rj
√
x ≤ (deg r0)=2.

Then deg qj ≤ (deg r0)=2 so

deg(qj ; rj
√
x) ≤ (deg r0)=2.

Shortest nonzero vector.

(qj+›; rj+›
√
x) has degree

deg r0
√
x − deg(qj ; rj

√
x)

for some › ∈ {−1; 1}.
Shortest independent vector.

Proof of “shortest”:

Take any (q; r
√
x) in lattice.

Reducing lattice basis for L

is a “half gcd” computation,

stopping halfway to the gcd.

deg ri decreases; deg qi increases;

deg qi+1 + deg ri = deg r0.

Say j is minimal with

deg rj
√
x ≤ (deg r0)=2.

Then deg qj ≤ (deg r0)=2 so

deg(qj ; rj
√
x) ≤ (deg r0)=2.

Shortest nonzero vector.

(qj+›; rj+›
√
x) has degree

deg r0
√
x − deg(qj ; rj

√
x)

for some › ∈ {−1; 1}.
Shortest independent vector.

Proof of “shortest”:

Take any (q; r
√
x) in lattice.

(q; r
√
x) = u(qj ; rj

√
x)

+ v(qj+›; rj+›
√
x)

for some u; v ∈ P .

Reducing lattice basis for L

is a “half gcd” computation,

stopping halfway to the gcd.

deg ri decreases; deg qi increases;

deg qi+1 + deg ri = deg r0.

Say j is minimal with

deg rj
√
x ≤ (deg r0)=2.

Then deg qj ≤ (deg r0)=2 so

deg(qj ; rj
√
x) ≤ (deg r0)=2.

Shortest nonzero vector.

(qj+›; rj+›
√
x) has degree

deg r0
√
x − deg(qj ; rj

√
x)

for some › ∈ {−1; 1}.
Shortest independent vector.

Proof of “shortest”:

Take any (q; r
√
x) in lattice.

(q; r
√
x) = u(qj ; rj

√
x)

+ v(qj+›; rj+›
√
x)

for some u; v ∈ P .

qj rj+› − qj+›rj = ±r0
so v = ±(rqj − qrj)=r0
and u = ±(qrj+› − rqj+›)=r0.

Reducing lattice basis for L

is a “half gcd” computation,

stopping halfway to the gcd.

deg ri decreases; deg qi increases;

deg qi+1 + deg ri = deg r0.

Say j is minimal with

deg rj
√
x ≤ (deg r0)=2.

Then deg qj ≤ (deg r0)=2 so

deg(qj ; rj
√
x) ≤ (deg r0)=2.

Shortest nonzero vector.

(qj+›; rj+›
√
x) has degree

deg r0
√
x − deg(qj ; rj

√
x)

for some › ∈ {−1; 1}.
Shortest independent vector.

Proof of “shortest”:

Take any (q; r
√
x) in lattice.

(q; r
√
x) = u(qj ; rj

√
x)

+ v(qj+›; rj+›
√
x)

for some u; v ∈ P .

qj rj+› − qj+›rj = ±r0
so v = ±(rqj − qrj)=r0
and u = ±(qrj+› − rqj+›)=r0.

If deg(q; r
√
x)

< deg(qj+›; rj+›
√
x)

then deg v < 0 so v = 0;

i.e., any vector in lattice

shorter than (qj+›; rj+›
√
x)

is a multiple of (qj ; rj
√
x).

Reducing lattice basis for L

is a “half gcd” computation,

stopping halfway to the gcd.

deg ri decreases; deg qi increases;

deg qi+1 + deg ri = deg r0.

Say j is minimal with

deg rj
√
x ≤ (deg r0)=2.

Then deg qj ≤ (deg r0)=2 so

deg(qj ; rj
√
x) ≤ (deg r0)=2.

Shortest nonzero vector.

(qj+›; rj+›
√
x) has degree

deg r0
√
x − deg(qj ; rj

√
x)

for some › ∈ {−1; 1}.
Shortest independent vector.

Proof of “shortest”:

Take any (q; r
√
x) in lattice.

(q; r
√
x) = u(qj ; rj

√
x)

+ v(qj+›; rj+›
√
x)

for some u; v ∈ P .

qj rj+› − qj+›rj = ±r0
so v = ±(rqj − qrj)=r0
and u = ±(qrj+› − rqj+›)=r0.

If deg(q; r
√
x)

< deg(qj+›; rj+›
√
x)

then deg v < 0 so v = 0;

i.e., any vector in lattice

shorter than (qj+›; rj+›
√
x)

is a multiple of (qj ; rj
√
x).

Classical binary Goppa codes

Fix integer n ≥ 0;

integer m ≥ 1 with 2m ≥ n;

integer t ≥ 0;

distinct a1; : : : ; an ∈ F2m ;

monic g ∈ F2m [x] of degree t

with g(a1) · · · g(an) 6= 0.

Reducing lattice basis for L

is a “half gcd” computation,

stopping halfway to the gcd.

deg ri decreases; deg qi increases;

deg qi+1 + deg ri = deg r0.

Say j is minimal with

deg rj
√
x ≤ (deg r0)=2.

Then deg qj ≤ (deg r0)=2 so

deg(qj ; rj
√
x) ≤ (deg r0)=2.

Shortest nonzero vector.

(qj+›; rj+›
√
x) has degree

deg r0
√
x − deg(qj ; rj

√
x)

for some › ∈ {−1; 1}.
Shortest independent vector.

Proof of “shortest”:

Take any (q; r
√
x) in lattice.

(q; r
√
x) = u(qj ; rj

√
x)

+ v(qj+›; rj+›
√
x)

for some u; v ∈ P .

qj rj+› − qj+›rj = ±r0
so v = ±(rqj − qrj)=r0
and u = ±(qrj+› − rqj+›)=r0.

If deg(q; r
√
x)

< deg(qj+›; rj+›
√
x)

then deg v < 0 so v = 0;

i.e., any vector in lattice

shorter than (qj+›; rj+›
√
x)

is a multiple of (qj ; rj
√
x).

Classical binary Goppa codes

Fix integer n ≥ 0;

integer m ≥ 1 with 2m ≥ n;

integer t ≥ 0;

distinct a1; : : : ; an ∈ F2m ;

monic g ∈ F2m [x] of degree t

with g(a1) · · · g(an) 6= 0.

Reducing lattice basis for L

is a “half gcd” computation,

stopping halfway to the gcd.

deg ri decreases; deg qi increases;

deg qi+1 + deg ri = deg r0.

Say j is minimal with

deg rj
√
x ≤ (deg r0)=2.

Then deg qj ≤ (deg r0)=2 so

deg(qj ; rj
√
x) ≤ (deg r0)=2.

Shortest nonzero vector.

(qj+›; rj+›
√
x) has degree

deg r0
√
x − deg(qj ; rj

√
x)

for some › ∈ {−1; 1}.
Shortest independent vector.

Proof of “shortest”:

Take any (q; r
√
x) in lattice.

(q; r
√
x) = u(qj ; rj

√
x)

+ v(qj+›; rj+›
√
x)

for some u; v ∈ P .

qj rj+› − qj+›rj = ±r0
so v = ±(rqj − qrj)=r0
and u = ±(qrj+› − rqj+›)=r0.

If deg(q; r
√
x)

< deg(qj+›; rj+›
√
x)

then deg v < 0 so v = 0;

i.e., any vector in lattice

shorter than (qj+›; rj+›
√
x)

is a multiple of (qj ; rj
√
x).

Classical binary Goppa codes

Fix integer n ≥ 0;

integer m ≥ 1 with 2m ≥ n;

integer t ≥ 0;

distinct a1; : : : ; an ∈ F2m ;

monic g ∈ F2m [x] of degree t

with g(a1) · · · g(an) 6= 0.

Proof of “shortest”:

Take any (q; r
√
x) in lattice.

(q; r
√
x) = u(qj ; rj

√
x)

+ v(qj+›; rj+›
√
x)

for some u; v ∈ P .

qj rj+› − qj+›rj = ±r0
so v = ±(rqj − qrj)=r0
and u = ±(qrj+› − rqj+›)=r0.

If deg(q; r
√
x)

< deg(qj+›; rj+›
√
x)

then deg v < 0 so v = 0;

i.e., any vector in lattice

shorter than (qj+›; rj+›
√
x)

is a multiple of (qj ; rj
√
x).

Classical binary Goppa codes

Fix integer n ≥ 0;

integer m ≥ 1 with 2m ≥ n;

integer t ≥ 0;

distinct a1; : : : ; an ∈ F2m ;

monic g ∈ F2m [x] of degree t

with g(a1) · · · g(an) 6= 0.

Proof of “shortest”:

Take any (q; r
√
x) in lattice.

(q; r
√
x) = u(qj ; rj

√
x)

+ v(qj+›; rj+›
√
x)

for some u; v ∈ P .

qj rj+› − qj+›rj = ±r0
so v = ±(rqj − qrj)=r0
and u = ±(qrj+› − rqj+›)=r0.

If deg(q; r
√
x)

< deg(qj+›; rj+›
√
x)

then deg v < 0 so v = 0;

i.e., any vector in lattice

shorter than (qj+›; rj+›
√
x)

is a multiple of (qj ; rj
√
x).

Classical binary Goppa codes

Fix integer n ≥ 0;

integer m ≥ 1 with 2m ≥ n;

integer t ≥ 0;

distinct a1; : : : ; an ∈ F2m ;

monic g ∈ F2m [x] of degree t

with g(a1) · · · g(an) 6= 0.

Note that x − ai
has a reciprocal in F2m [x]=g .

Proof of “shortest”:

Take any (q; r
√
x) in lattice.

(q; r
√
x) = u(qj ; rj

√
x)

+ v(qj+›; rj+›
√
x)

for some u; v ∈ P .

qj rj+› − qj+›rj = ±r0
so v = ±(rqj − qrj)=r0
and u = ±(qrj+› − rqj+›)=r0.

If deg(q; r
√
x)

< deg(qj+›; rj+›
√
x)

then deg v < 0 so v = 0;

i.e., any vector in lattice

shorter than (qj+›; rj+›
√
x)

is a multiple of (qj ; rj
√
x).

Classical binary Goppa codes

Fix integer n ≥ 0;

integer m ≥ 1 with 2m ≥ n;

integer t ≥ 0;

distinct a1; : : : ; an ∈ F2m ;

monic g ∈ F2m [x] of degree t

with g(a1) · · · g(an) 6= 0.

Note that x − ai
has a reciprocal in F2m [x]=g .

Define linear subspace Γ ⊆ Fn2
as set of (c1; : : : ; cn) withP
i ci=(x − ai) = 0 in F2m [x]=g .

Then #Γ ≥ 2n−mt .

Proof of “shortest”:

Take any (q; r
√
x) in lattice.

(q; r
√
x) = u(qj ; rj

√
x)

+ v(qj+›; rj+›
√
x)

for some u; v ∈ P .

qj rj+› − qj+›rj = ±r0
so v = ±(rqj − qrj)=r0
and u = ±(qrj+› − rqj+›)=r0.

If deg(q; r
√
x)

< deg(qj+›; rj+›
√
x)

then deg v < 0 so v = 0;

i.e., any vector in lattice

shorter than (qj+›; rj+›
√
x)

is a multiple of (qj ; rj
√
x).

Classical binary Goppa codes

Fix integer n ≥ 0;

integer m ≥ 1 with 2m ≥ n;

integer t ≥ 0;

distinct a1; : : : ; an ∈ F2m ;

monic g ∈ F2m [x] of degree t

with g(a1) · · · g(an) 6= 0.

Note that x − ai
has a reciprocal in F2m [x]=g .

Define linear subspace Γ ⊆ Fn2
as set of (c1; : : : ; cn) withP
i ci=(x − ai) = 0 in F2m [x]=g .

Then #Γ ≥ 2n−mt .

Goal: Find c ∈ Γ given

v = c + e, assuming |e| ≤ t=2.

Proof of “shortest”:

Take any (q; r
√
x) in lattice.

(q; r
√
x) = u(qj ; rj

√
x)

+ v(qj+›; rj+›
√
x)

for some u; v ∈ P .

qj rj+› − qj+›rj = ±r0
so v = ±(rqj − qrj)=r0
and u = ±(qrj+› − rqj+›)=r0.

If deg(q; r
√
x)

< deg(qj+›; rj+›
√
x)

then deg v < 0 so v = 0;

i.e., any vector in lattice

shorter than (qj+›; rj+›
√
x)

is a multiple of (qj ; rj
√
x).

Classical binary Goppa codes

Fix integer n ≥ 0;

integer m ≥ 1 with 2m ≥ n;

integer t ≥ 0;

distinct a1; : : : ; an ∈ F2m ;

monic g ∈ F2m [x] of degree t

with g(a1) · · · g(an) 6= 0.

Note that x − ai
has a reciprocal in F2m [x]=g .

Define linear subspace Γ ⊆ Fn2
as set of (c1; : : : ; cn) withP
i ci=(x − ai) = 0 in F2m [x]=g .

Then #Γ ≥ 2n−mt .

Goal: Find c ∈ Γ given

v = c + e, assuming |e| ≤ t=2.

Proof of “shortest”:

Take any (q; r
√
x) in lattice.

(q; r
√
x) = u(qj ; rj

√
x)

+ v(qj+›; rj+›
√
x)

for some u; v ∈ P .

qj rj+› − qj+›rj = ±r0
so v = ±(rqj − qrj)=r0
and u = ±(qrj+› − rqj+›)=r0.

If deg(q; r
√
x)

< deg(qj+›; rj+›
√
x)

then deg v < 0 so v = 0;

i.e., any vector in lattice

shorter than (qj+›; rj+›
√
x)

is a multiple of (qj ; rj
√
x).

Classical binary Goppa codes

Fix integer n ≥ 0;

integer m ≥ 1 with 2m ≥ n;

integer t ≥ 0;

distinct a1; : : : ; an ∈ F2m ;

monic g ∈ F2m [x] of degree t

with g(a1) · · · g(an) 6= 0.

Note that x − ai
has a reciprocal in F2m [x]=g .

Define linear subspace Γ ⊆ Fn2
as set of (c1; : : : ; cn) withP
i ci=(x − ai) = 0 in F2m [x]=g .

Then #Γ ≥ 2n−mt .

Goal: Find c ∈ Γ given

v = c + e, assuming |e| ≤ t=2.

Classical binary Goppa codes

Fix integer n ≥ 0;

integer m ≥ 1 with 2m ≥ n;

integer t ≥ 0;

distinct a1; : : : ; an ∈ F2m ;

monic g ∈ F2m [x] of degree t

with g(a1) · · · g(an) 6= 0.

Note that x − ai
has a reciprocal in F2m [x]=g .

Define linear subspace Γ ⊆ Fn2
as set of (c1; : : : ; cn) withP
i ci=(x − ai) = 0 in F2m [x]=g .

Then #Γ ≥ 2n−mt .

Goal: Find c ∈ Γ given

v = c + e, assuming |e| ≤ t=2.

Classical binary Goppa codes

Fix integer n ≥ 0;

integer m ≥ 1 with 2m ≥ n;

integer t ≥ 0;

distinct a1; : : : ; an ∈ F2m ;

monic g ∈ F2m [x] of degree t

with g(a1) · · · g(an) 6= 0.

Note that x − ai
has a reciprocal in F2m [x]=g .

Define linear subspace Γ ⊆ Fn2
as set of (c1; : : : ; cn) withP
i ci=(x − ai) = 0 in F2m [x]=g .

Then #Γ ≥ 2n−mt .

Goal: Find c ∈ Γ given

v = c + e, assuming |e| ≤ t=2.

Lift
P
i vi=(x − ai) from F2m [x]=g

to s ∈ F2m [x] with deg s < t.

Find shortest nonzero

(qj ; rj
√
x) in the lattice L =

(0; g
√
x)F2m [x] + (1; s

√
x)F2m [x].

Classical binary Goppa codes

Fix integer n ≥ 0;

integer m ≥ 1 with 2m ≥ n;

integer t ≥ 0;

distinct a1; : : : ; an ∈ F2m ;

monic g ∈ F2m [x] of degree t

with g(a1) · · · g(an) 6= 0.

Note that x − ai
has a reciprocal in F2m [x]=g .

Define linear subspace Γ ⊆ Fn2
as set of (c1; : : : ; cn) withP
i ci=(x − ai) = 0 in F2m [x]=g .

Then #Γ ≥ 2n−mt .

Goal: Find c ∈ Γ given

v = c + e, assuming |e| ≤ t=2.

Lift
P
i vi=(x − ai) from F2m [x]=g

to s ∈ F2m [x] with deg s < t.

Find shortest nonzero

(qj ; rj
√
x) in the lattice L =

(0; g
√
x)F2m [x] + (1; s

√
x)F2m [x].

Define E; F ∈ F2m [x] by

F =
Q
i :ei 6=0(x − ai) and

E =
P
i Fei=(x − ai).

Fact: E=F = rj=qj so

F is monic denominator of rj=qj .

Classical binary Goppa codes

Fix integer n ≥ 0;

integer m ≥ 1 with 2m ≥ n;

integer t ≥ 0;

distinct a1; : : : ; an ∈ F2m ;

monic g ∈ F2m [x] of degree t

with g(a1) · · · g(an) 6= 0.

Note that x − ai
has a reciprocal in F2m [x]=g .

Define linear subspace Γ ⊆ Fn2
as set of (c1; : : : ; cn) withP
i ci=(x − ai) = 0 in F2m [x]=g .

Then #Γ ≥ 2n−mt .

Goal: Find c ∈ Γ given

v = c + e, assuming |e| ≤ t=2.

Lift
P
i vi=(x − ai) from F2m [x]=g

to s ∈ F2m [x] with deg s < t.

Find shortest nonzero

(qj ; rj
√
x) in the lattice L =

(0; g
√
x)F2m [x] + (1; s

√
x)F2m [x].

Define E; F ∈ F2m [x] by

F =
Q
i :ei 6=0(x − ai) and

E =
P
i Fei=(x − ai).

Fact: E=F = rj=qj so

F is monic denominator of rj=qj .

ei = 0 if F (ai) 6= 0.

ei = E(ai)=F
′(ai) if F (ai) = 0.

Classical binary Goppa codes

Fix integer n ≥ 0;

integer m ≥ 1 with 2m ≥ n;

integer t ≥ 0;

distinct a1; : : : ; an ∈ F2m ;

monic g ∈ F2m [x] of degree t

with g(a1) · · · g(an) 6= 0.

Note that x − ai
has a reciprocal in F2m [x]=g .

Define linear subspace Γ ⊆ Fn2
as set of (c1; : : : ; cn) withP
i ci=(x − ai) = 0 in F2m [x]=g .

Then #Γ ≥ 2n−mt .

Goal: Find c ∈ Γ given

v = c + e, assuming |e| ≤ t=2.

Lift
P
i vi=(x − ai) from F2m [x]=g

to s ∈ F2m [x] with deg s < t.

Find shortest nonzero

(qj ; rj
√
x) in the lattice L =

(0; g
√
x)F2m [x] + (1; s

√
x)F2m [x].

Define E; F ∈ F2m [x] by

F =
Q
i :ei 6=0(x − ai) and

E =
P
i Fei=(x − ai).

Fact: E=F = rj=qj so

F is monic denominator of rj=qj .

ei = 0 if F (ai) 6= 0.

ei = E(ai)=F
′(ai) if F (ai) = 0.

This decoder

“corrects bt=2c errors for Γ”.

Why does this work?P
i ei=(x − ai) = E=F andP
i ci=(x − ai) = 0 in F2m [x]=g

so s = E=F in F2m [x]=g

so (F; E
√
x) ∈ L.

Classical binary Goppa codes

Fix integer n ≥ 0;

integer m ≥ 1 with 2m ≥ n;

integer t ≥ 0;

distinct a1; : : : ; an ∈ F2m ;

monic g ∈ F2m [x] of degree t

with g(a1) · · · g(an) 6= 0.

Note that x − ai
has a reciprocal in F2m [x]=g .

Define linear subspace Γ ⊆ Fn2
as set of (c1; : : : ; cn) withP
i ci=(x − ai) = 0 in F2m [x]=g .

Then #Γ ≥ 2n−mt .

Goal: Find c ∈ Γ given

v = c + e, assuming |e| ≤ t=2.

Lift
P
i vi=(x − ai) from F2m [x]=g

to s ∈ F2m [x] with deg s < t.

Find shortest nonzero

(qj ; rj
√
x) in the lattice L =

(0; g
√
x)F2m [x] + (1; s

√
x)F2m [x].

Define E; F ∈ F2m [x] by

F =
Q
i :ei 6=0(x − ai) and

E =
P
i Fei=(x − ai).

Fact: E=F = rj=qj so

F is monic denominator of rj=qj .

ei = 0 if F (ai) 6= 0.

ei = E(ai)=F
′(ai) if F (ai) = 0.

This decoder

“corrects bt=2c errors for Γ”.

Why does this work?P
i ei=(x − ai) = E=F andP
i ci=(x − ai) = 0 in F2m [x]=g

so s = E=F in F2m [x]=g

so (F; E
√
x) ∈ L.

Classical binary Goppa codes

Fix integer n ≥ 0;

integer m ≥ 1 with 2m ≥ n;

integer t ≥ 0;

distinct a1; : : : ; an ∈ F2m ;

monic g ∈ F2m [x] of degree t

with g(a1) · · · g(an) 6= 0.

Note that x − ai
has a reciprocal in F2m [x]=g .

Define linear subspace Γ ⊆ Fn2
as set of (c1; : : : ; cn) withP
i ci=(x − ai) = 0 in F2m [x]=g .

Then #Γ ≥ 2n−mt .

Goal: Find c ∈ Γ given

v = c + e, assuming |e| ≤ t=2.

Lift
P
i vi=(x − ai) from F2m [x]=g

to s ∈ F2m [x] with deg s < t.

Find shortest nonzero

(qj ; rj
√
x) in the lattice L =

(0; g
√
x)F2m [x] + (1; s

√
x)F2m [x].

Define E; F ∈ F2m [x] by

F =
Q
i :ei 6=0(x − ai) and

E =
P
i Fei=(x − ai).

Fact: E=F = rj=qj so

F is monic denominator of rj=qj .

ei = 0 if F (ai) 6= 0.

ei = E(ai)=F
′(ai) if F (ai) = 0.

This decoder

“corrects bt=2c errors for Γ”.

Why does this work?P
i ei=(x − ai) = E=F andP
i ci=(x − ai) = 0 in F2m [x]=g

so s = E=F in F2m [x]=g

so (F; E
√
x) ∈ L.

Goal: Find c ∈ Γ given

v = c + e, assuming |e| ≤ t=2.

Lift
P
i vi=(x − ai) from F2m [x]=g

to s ∈ F2m [x] with deg s < t.

Find shortest nonzero

(qj ; rj
√
x) in the lattice L =

(0; g
√
x)F2m [x] + (1; s

√
x)F2m [x].

Define E; F ∈ F2m [x] by

F =
Q
i :ei 6=0(x − ai) and

E =
P
i Fei=(x − ai).

Fact: E=F = rj=qj so

F is monic denominator of rj=qj .

ei = 0 if F (ai) 6= 0.

ei = E(ai)=F
′(ai) if F (ai) = 0.

This decoder

“corrects bt=2c errors for Γ”.

Why does this work?P
i ei=(x − ai) = E=F andP
i ci=(x − ai) = 0 in F2m [x]=g

so s = E=F in F2m [x]=g

so (F; E
√
x) ∈ L.

Goal: Find c ∈ Γ given

v = c + e, assuming |e| ≤ t=2.

Lift
P
i vi=(x − ai) from F2m [x]=g

to s ∈ F2m [x] with deg s < t.

Find shortest nonzero

(qj ; rj
√
x) in the lattice L =

(0; g
√
x)F2m [x] + (1; s

√
x)F2m [x].

Define E; F ∈ F2m [x] by

F =
Q
i :ei 6=0(x − ai) and

E =
P
i Fei=(x − ai).

Fact: E=F = rj=qj so

F is monic denominator of rj=qj .

ei = 0 if F (ai) 6= 0.

ei = E(ai)=F
′(ai) if F (ai) = 0.

This decoder

“corrects bt=2c errors for Γ”.

Why does this work?P
i ei=(x − ai) = E=F andP
i ci=(x − ai) = 0 in F2m [x]=g

so s = E=F in F2m [x]=g

so (F; E
√
x) ∈ L.

(F; E
√
x) is a short vector:

deg(F; E
√
x) ≤ |e| ≤ t=2

< t + 1=2− deg(qj ; rj
√
x).

Goal: Find c ∈ Γ given

v = c + e, assuming |e| ≤ t=2.

Lift
P
i vi=(x − ai) from F2m [x]=g

to s ∈ F2m [x] with deg s < t.

Find shortest nonzero

(qj ; rj
√
x) in the lattice L =

(0; g
√
x)F2m [x] + (1; s

√
x)F2m [x].

Define E; F ∈ F2m [x] by

F =
Q
i :ei 6=0(x − ai) and

E =
P
i Fei=(x − ai).

Fact: E=F = rj=qj so

F is monic denominator of rj=qj .

ei = 0 if F (ai) 6= 0.

ei = E(ai)=F
′(ai) if F (ai) = 0.

This decoder

“corrects bt=2c errors for Γ”.

Why does this work?P
i ei=(x − ai) = E=F andP
i ci=(x − ai) = 0 in F2m [x]=g

so s = E=F in F2m [x]=g

so (F; E
√
x) ∈ L.

(F; E
√
x) is a short vector:

deg(F; E
√
x) ≤ |e| ≤ t=2

< t + 1=2− deg(qj ; rj
√
x).

Recall proof of “shortest”:

(F; E
√
x) ∈ (qj ; rj

√
x)F2m [x],

so E=F = rj=qj . Done!

Goal: Find c ∈ Γ given

v = c + e, assuming |e| ≤ t=2.

Lift
P
i vi=(x − ai) from F2m [x]=g

to s ∈ F2m [x] with deg s < t.

Find shortest nonzero

(qj ; rj
√
x) in the lattice L =

(0; g
√
x)F2m [x] + (1; s

√
x)F2m [x].

Define E; F ∈ F2m [x] by

F =
Q
i :ei 6=0(x − ai) and

E =
P
i Fei=(x − ai).

Fact: E=F = rj=qj so

F is monic denominator of rj=qj .

ei = 0 if F (ai) 6= 0.

ei = E(ai)=F
′(ai) if F (ai) = 0.

This decoder

“corrects bt=2c errors for Γ”.

Why does this work?P
i ei=(x − ai) = E=F andP
i ci=(x − ai) = 0 in F2m [x]=g

so s = E=F in F2m [x]=g

so (F; E
√
x) ∈ L.

(F; E
√
x) is a short vector:

deg(F; E
√
x) ≤ |e| ≤ t=2

< t + 1=2− deg(qj ; rj
√
x).

Recall proof of “shortest”:

(F; E
√
x) ∈ (qj ; rj

√
x)F2m [x],

so E=F = rj=qj . Done!

The squarefree case

Γ(g) contains Γ(g2):P
i ci=(x − ai) = 0 in F2m [x]=g ifP
i ci=(x − ai) = 0 in F2m [x]=g2.

Goal: Find c ∈ Γ given

v = c + e, assuming |e| ≤ t=2.

Lift
P
i vi=(x − ai) from F2m [x]=g

to s ∈ F2m [x] with deg s < t.

Find shortest nonzero

(qj ; rj
√
x) in the lattice L =

(0; g
√
x)F2m [x] + (1; s

√
x)F2m [x].

Define E; F ∈ F2m [x] by

F =
Q
i :ei 6=0(x − ai) and

E =
P
i Fei=(x − ai).

Fact: E=F = rj=qj so

F is monic denominator of rj=qj .

ei = 0 if F (ai) 6= 0.

ei = E(ai)=F
′(ai) if F (ai) = 0.

This decoder

“corrects bt=2c errors for Γ”.

Why does this work?P
i ei=(x − ai) = E=F andP
i ci=(x − ai) = 0 in F2m [x]=g

so s = E=F in F2m [x]=g

so (F; E
√
x) ∈ L.

(F; E
√
x) is a short vector:

deg(F; E
√
x) ≤ |e| ≤ t=2

< t + 1=2− deg(qj ; rj
√
x).

Recall proof of “shortest”:

(F; E
√
x) ∈ (qj ; rj

√
x)F2m [x],

so E=F = rj=qj . Done!

The squarefree case

Γ(g) contains Γ(g2):P
i ci=(x − ai) = 0 in F2m [x]=g ifP
i ci=(x − ai) = 0 in F2m [x]=g2.

Goal: Find c ∈ Γ given

v = c + e, assuming |e| ≤ t=2.

Lift
P
i vi=(x − ai) from F2m [x]=g

to s ∈ F2m [x] with deg s < t.

Find shortest nonzero

(qj ; rj
√
x) in the lattice L =

(0; g
√
x)F2m [x] + (1; s

√
x)F2m [x].

Define E; F ∈ F2m [x] by

F =
Q
i :ei 6=0(x − ai) and

E =
P
i Fei=(x − ai).

Fact: E=F = rj=qj so

F is monic denominator of rj=qj .

ei = 0 if F (ai) 6= 0.

ei = E(ai)=F
′(ai) if F (ai) = 0.

This decoder

“corrects bt=2c errors for Γ”.

Why does this work?P
i ei=(x − ai) = E=F andP
i ci=(x − ai) = 0 in F2m [x]=g

so s = E=F in F2m [x]=g

so (F; E
√
x) ∈ L.

(F; E
√
x) is a short vector:

deg(F; E
√
x) ≤ |e| ≤ t=2

< t + 1=2− deg(qj ; rj
√
x).

Recall proof of “shortest”:

(F; E
√
x) ∈ (qj ; rj

√
x)F2m [x],

so E=F = rj=qj . Done!

The squarefree case

Γ(g) contains Γ(g2):P
i ci=(x − ai) = 0 in F2m [x]=g ifP
i ci=(x − ai) = 0 in F2m [x]=g2.

This decoder

“corrects bt=2c errors for Γ”.

Why does this work?P
i ei=(x − ai) = E=F andP
i ci=(x − ai) = 0 in F2m [x]=g

so s = E=F in F2m [x]=g

so (F; E
√
x) ∈ L.

(F; E
√
x) is a short vector:

deg(F; E
√
x) ≤ |e| ≤ t=2

< t + 1=2− deg(qj ; rj
√
x).

Recall proof of “shortest”:

(F; E
√
x) ∈ (qj ; rj

√
x)F2m [x],

so E=F = rj=qj . Done!

The squarefree case

Γ(g) contains Γ(g2):P
i ci=(x − ai) = 0 in F2m [x]=g ifP
i ci=(x − ai) = 0 in F2m [x]=g2.

This decoder

“corrects bt=2c errors for Γ”.

Why does this work?P
i ei=(x − ai) = E=F andP
i ci=(x − ai) = 0 in F2m [x]=g

so s = E=F in F2m [x]=g

so (F; E
√
x) ∈ L.

(F; E
√
x) is a short vector:

deg(F; E
√
x) ≤ |e| ≤ t=2

< t + 1=2− deg(qj ; rj
√
x).

Recall proof of “shortest”:

(F; E
√
x) ∈ (qj ; rj

√
x)F2m [x],

so E=F = rj=qj . Done!

The squarefree case

Γ(g) contains Γ(g2):P
i ci=(x − ai) = 0 in F2m [x]=g ifP
i ci=(x − ai) = 0 in F2m [x]=g2.

Amazing fact:

Γ(g) = Γ(g2) if g is squarefree.

This decoder

“corrects bt=2c errors for Γ”.

Why does this work?P
i ei=(x − ai) = E=F andP
i ci=(x − ai) = 0 in F2m [x]=g

so s = E=F in F2m [x]=g

so (F; E
√
x) ∈ L.

(F; E
√
x) is a short vector:

deg(F; E
√
x) ≤ |e| ≤ t=2

< t + 1=2− deg(qj ; rj
√
x).

Recall proof of “shortest”:

(F; E
√
x) ∈ (qj ; rj

√
x)F2m [x],

so E=F = rj=qj . Done!

The squarefree case

Γ(g) contains Γ(g2):P
i ci=(x − ai) = 0 in F2m [x]=g ifP
i ci=(x − ai) = 0 in F2m [x]=g2.

Amazing fact:

Γ(g) = Γ(g2) if g is squarefree.

Previous decoder for g2

corrects t errors for Γ(g2),

hence corrects t errors for Γ(g).

This decoder

“corrects bt=2c errors for Γ”.

Why does this work?P
i ei=(x − ai) = E=F andP
i ci=(x − ai) = 0 in F2m [x]=g

so s = E=F in F2m [x]=g

so (F; E
√
x) ∈ L.

(F; E
√
x) is a short vector:

deg(F; E
√
x) ≤ |e| ≤ t=2

< t + 1=2− deg(qj ; rj
√
x).

Recall proof of “shortest”:

(F; E
√
x) ∈ (qj ; rj

√
x)F2m [x],

so E=F = rj=qj . Done!

The squarefree case

Γ(g) contains Γ(g2):P
i ci=(x − ai) = 0 in F2m [x]=g ifP
i ci=(x − ai) = 0 in F2m [x]=g2.

Amazing fact:

Γ(g) = Γ(g2) if g is squarefree.

Previous decoder for g2

corrects t errors for Γ(g2),

hence corrects t errors for Γ(g).

(Not covered in this talk:

correcting ≈ t + t2=n errors.

See, e.g., “jet list decoding”.)

This decoder

“corrects bt=2c errors for Γ”.

Why does this work?P
i ei=(x − ai) = E=F andP
i ci=(x − ai) = 0 in F2m [x]=g

so s = E=F in F2m [x]=g

so (F; E
√
x) ∈ L.

(F; E
√
x) is a short vector:

deg(F; E
√
x) ≤ |e| ≤ t=2

< t + 1=2− deg(qj ; rj
√
x).

Recall proof of “shortest”:

(F; E
√
x) ∈ (qj ; rj

√
x)F2m [x],

so E=F = rj=qj . Done!

The squarefree case

Γ(g) contains Γ(g2):P
i ci=(x − ai) = 0 in F2m [x]=g ifP
i ci=(x − ai) = 0 in F2m [x]=g2.

Amazing fact:

Γ(g) = Γ(g2) if g is squarefree.

Previous decoder for g2

corrects t errors for Γ(g2),

hence corrects t errors for Γ(g).

(Not covered in this talk:

correcting ≈ t + t2=n errors.

See, e.g., “jet list decoding”.)

Proof: AssumeP
i ci=(x − ai) = 0 in F2m [x]=g .

This decoder

“corrects bt=2c errors for Γ”.

Why does this work?P
i ei=(x − ai) = E=F andP
i ci=(x − ai) = 0 in F2m [x]=g

so s = E=F in F2m [x]=g

so (F; E
√
x) ∈ L.

(F; E
√
x) is a short vector:

deg(F; E
√
x) ≤ |e| ≤ t=2

< t + 1=2− deg(qj ; rj
√
x).

Recall proof of “shortest”:

(F; E
√
x) ∈ (qj ; rj

√
x)F2m [x],

so E=F = rj=qj . Done!

The squarefree case

Γ(g) contains Γ(g2):P
i ci=(x − ai) = 0 in F2m [x]=g ifP
i ci=(x − ai) = 0 in F2m [x]=g2.

Amazing fact:

Γ(g) = Γ(g2) if g is squarefree.

Previous decoder for g2

corrects t errors for Γ(g2),

hence corrects t errors for Γ(g).

(Not covered in this talk:

correcting ≈ t + t2=n errors.

See, e.g., “jet list decoding”.)

Proof: AssumeP
i ci=(x − ai) = 0 in F2m [x]=g .

This decoder

“corrects bt=2c errors for Γ”.

Why does this work?P
i ei=(x − ai) = E=F andP
i ci=(x − ai) = 0 in F2m [x]=g

so s = E=F in F2m [x]=g

so (F; E
√
x) ∈ L.

(F; E
√
x) is a short vector:

deg(F; E
√
x) ≤ |e| ≤ t=2

< t + 1=2− deg(qj ; rj
√
x).

Recall proof of “shortest”:

(F; E
√
x) ∈ (qj ; rj

√
x)F2m [x],

so E=F = rj=qj . Done!

The squarefree case

Γ(g) contains Γ(g2):P
i ci=(x − ai) = 0 in F2m [x]=g ifP
i ci=(x − ai) = 0 in F2m [x]=g2.

Amazing fact:

Γ(g) = Γ(g2) if g is squarefree.

Previous decoder for g2

corrects t errors for Γ(g2),

hence corrects t errors for Γ(g).

(Not covered in this talk:

correcting ≈ t + t2=n errors.

See, e.g., “jet list decoding”.)

Proof: AssumeP
i ci=(x − ai) = 0 in F2m [x]=g .

The squarefree case

Γ(g) contains Γ(g2):P
i ci=(x − ai) = 0 in F2m [x]=g ifP
i ci=(x − ai) = 0 in F2m [x]=g2.

Amazing fact:

Γ(g) = Γ(g2) if g is squarefree.

Previous decoder for g2

corrects t errors for Γ(g2),

hence corrects t errors for Γ(g).

(Not covered in this talk:

correcting ≈ t + t2=n errors.

See, e.g., “jet list decoding”.)

Proof: AssumeP
i ci=(x − ai) = 0 in F2m [x]=g .

The squarefree case

Γ(g) contains Γ(g2):P
i ci=(x − ai) = 0 in F2m [x]=g ifP
i ci=(x − ai) = 0 in F2m [x]=g2.

Amazing fact:

Γ(g) = Γ(g2) if g is squarefree.

Previous decoder for g2

corrects t errors for Γ(g2),

hence corrects t errors for Γ(g).

(Not covered in this talk:

correcting ≈ t + t2=n errors.

See, e.g., “jet list decoding”.)

Proof: AssumeP
i ci=(x − ai) = 0 in F2m [x]=g .

Write F =
Q
i :ci 6=0(x − ai).

Then F ′=F =
P
i :ci 6=0 1=(x − ai)

so F ′=F =
P
ci=(x − ai)

so F ′=F = 0 in F2m [x]=g

so g divides F ′ in F2m [x].

The squarefree case

Γ(g) contains Γ(g2):P
i ci=(x − ai) = 0 in F2m [x]=g ifP
i ci=(x − ai) = 0 in F2m [x]=g2.

Amazing fact:

Γ(g) = Γ(g2) if g is squarefree.

Previous decoder for g2

corrects t errors for Γ(g2),

hence corrects t errors for Γ(g).

(Not covered in this talk:

correcting ≈ t + t2=n errors.

See, e.g., “jet list decoding”.)

Proof: AssumeP
i ci=(x − ai) = 0 in F2m [x]=g .

Write F =
Q
i :ci 6=0(x − ai).

Then F ′=F =
P
i :ci 6=0 1=(x − ai)

so F ′=F =
P
ci=(x − ai)

so F ′=F = 0 in F2m [x]=g

so g divides F ′ in F2m [x].

F ′ is a square:

if F =
P
j Fjx

j then

F ′ =
P
j jFjx

j−1

=
P
j∈1+2Z jFjx

j−1

= (
P
j∈1+2Z

p
jFjx

(j−1)=2)2.

The squarefree case

Γ(g) contains Γ(g2):P
i ci=(x − ai) = 0 in F2m [x]=g ifP
i ci=(x − ai) = 0 in F2m [x]=g2.

Amazing fact:

Γ(g) = Γ(g2) if g is squarefree.

Previous decoder for g2

corrects t errors for Γ(g2),

hence corrects t errors for Γ(g).

(Not covered in this talk:

correcting ≈ t + t2=n errors.

See, e.g., “jet list decoding”.)

Proof: AssumeP
i ci=(x − ai) = 0 in F2m [x]=g .

Write F =
Q
i :ci 6=0(x − ai).

Then F ′=F =
P
i :ci 6=0 1=(x − ai)

so F ′=F =
P
ci=(x − ai)

so F ′=F = 0 in F2m [x]=g

so g divides F ′ in F2m [x].

F ′ is a square:

if F =
P
j Fjx

j then

F ′ =
P
j jFjx

j−1

=
P
j∈1+2Z jFjx

j−1

= (
P
j∈1+2Z

p
jFjx

(j−1)=2)2.

The McEliece cryptosystem

Standardize integers n ≥ 0;

t ≥ 2; m ≥ 1 with 2m ≥ n.

1978 McEliece example:

n = 1024, m = 10, t = 50.

This is too small:

≈260 pre-quantum security.

The squarefree case

Γ(g) contains Γ(g2):P
i ci=(x − ai) = 0 in F2m [x]=g ifP
i ci=(x − ai) = 0 in F2m [x]=g2.

Amazing fact:

Γ(g) = Γ(g2) if g is squarefree.

Previous decoder for g2

corrects t errors for Γ(g2),

hence corrects t errors for Γ(g).

(Not covered in this talk:

correcting ≈ t + t2=n errors.

See, e.g., “jet list decoding”.)

Proof: AssumeP
i ci=(x − ai) = 0 in F2m [x]=g .

Write F =
Q
i :ci 6=0(x − ai).

Then F ′=F =
P
i :ci 6=0 1=(x − ai)

so F ′=F =
P
ci=(x − ai)

so F ′=F = 0 in F2m [x]=g

so g divides F ′ in F2m [x].

F ′ is a square:

if F =
P
j Fjx

j then

F ′ =
P
j jFjx

j−1

=
P
j∈1+2Z jFjx

j−1

= (
P
j∈1+2Z

p
jFjx

(j−1)=2)2.

The McEliece cryptosystem

Standardize integers n ≥ 0;

t ≥ 2; m ≥ 1 with 2m ≥ n.

1978 McEliece example:

n = 1024, m = 10, t = 50.

This is too small:

≈260 pre-quantum security.

The squarefree case

Γ(g) contains Γ(g2):P
i ci=(x − ai) = 0 in F2m [x]=g ifP
i ci=(x − ai) = 0 in F2m [x]=g2.

Amazing fact:

Γ(g) = Γ(g2) if g is squarefree.

Previous decoder for g2

corrects t errors for Γ(g2),

hence corrects t errors for Γ(g).

(Not covered in this talk:

correcting ≈ t + t2=n errors.

See, e.g., “jet list decoding”.)

Proof: AssumeP
i ci=(x − ai) = 0 in F2m [x]=g .

Write F =
Q
i :ci 6=0(x − ai).

Then F ′=F =
P
i :ci 6=0 1=(x − ai)

so F ′=F =
P
ci=(x − ai)

so F ′=F = 0 in F2m [x]=g

so g divides F ′ in F2m [x].

F ′ is a square:

if F =
P
j Fjx

j then

F ′ =
P
j jFjx

j−1

=
P
j∈1+2Z jFjx

j−1

= (
P
j∈1+2Z

p
jFjx

(j−1)=2)2.

The McEliece cryptosystem

Standardize integers n ≥ 0;

t ≥ 2; m ≥ 1 with 2m ≥ n.

1978 McEliece example:

n = 1024, m = 10, t = 50.

This is too small:

≈260 pre-quantum security.

Proof: AssumeP
i ci=(x − ai) = 0 in F2m [x]=g .

Write F =
Q
i :ci 6=0(x − ai).

Then F ′=F =
P
i :ci 6=0 1=(x − ai)

so F ′=F =
P
ci=(x − ai)

so F ′=F = 0 in F2m [x]=g

so g divides F ′ in F2m [x].

F ′ is a square:

if F =
P
j Fjx

j then

F ′ =
P
j jFjx

j−1

=
P
j∈1+2Z jFjx

j−1

= (
P
j∈1+2Z

p
jFjx

(j−1)=2)2.

The McEliece cryptosystem

Standardize integers n ≥ 0;

t ≥ 2; m ≥ 1 with 2m ≥ n.

1978 McEliece example:

n = 1024, m = 10, t = 50.

This is too small:

≈260 pre-quantum security.

Proof: AssumeP
i ci=(x − ai) = 0 in F2m [x]=g .

Write F =
Q
i :ci 6=0(x − ai).

Then F ′=F =
P
i :ci 6=0 1=(x − ai)

so F ′=F =
P
ci=(x − ai)

so F ′=F = 0 in F2m [x]=g

so g divides F ′ in F2m [x].

F ′ is a square:

if F =
P
j Fjx

j then

F ′ =
P
j jFjx

j−1

=
P
j∈1+2Z jFjx

j−1

= (
P
j∈1+2Z

p
jFjx

(j−1)=2)2.

The McEliece cryptosystem

Standardize integers n ≥ 0;

t ≥ 2; m ≥ 1 with 2m ≥ n.

1978 McEliece example:

n = 1024, m = 10, t = 50.

This is too small:

≈260 pre-quantum security.

n = 2048, m = 11, t = 32:

≈287 pre-quantum security.

Proof: AssumeP
i ci=(x − ai) = 0 in F2m [x]=g .

Write F =
Q
i :ci 6=0(x − ai).

Then F ′=F =
P
i :ci 6=0 1=(x − ai)

so F ′=F =
P
ci=(x − ai)

so F ′=F = 0 in F2m [x]=g

so g divides F ′ in F2m [x].

F ′ is a square:

if F =
P
j Fjx

j then

F ′ =
P
j jFjx

j−1

=
P
j∈1+2Z jFjx

j−1

= (
P
j∈1+2Z

p
jFjx

(j−1)=2)2.

The McEliece cryptosystem

Standardize integers n ≥ 0;

t ≥ 2; m ≥ 1 with 2m ≥ n.

1978 McEliece example:

n = 1024, m = 10, t = 50.

This is too small:

≈260 pre-quantum security.

n = 2048, m = 11, t = 32:

≈287 pre-quantum security.

n = 3408, m = 12, t = 67:

≈2146 pre-quantum security.

Proof: AssumeP
i ci=(x − ai) = 0 in F2m [x]=g .

Write F =
Q
i :ci 6=0(x − ai).

Then F ′=F =
P
i :ci 6=0 1=(x − ai)

so F ′=F =
P
ci=(x − ai)

so F ′=F = 0 in F2m [x]=g

so g divides F ′ in F2m [x].

F ′ is a square:

if F =
P
j Fjx

j then

F ′ =
P
j jFjx

j−1

=
P
j∈1+2Z jFjx

j−1

= (
P
j∈1+2Z

p
jFjx

(j−1)=2)2.

The McEliece cryptosystem

Standardize integers n ≥ 0;

t ≥ 2; m ≥ 1 with 2m ≥ n.

1978 McEliece example:

n = 1024, m = 10, t = 50.

This is too small:

≈260 pre-quantum security.

n = 2048, m = 11, t = 32:

≈287 pre-quantum security.

n = 3408, m = 12, t = 67:

≈2146 pre-quantum security.

n = 6960, m = 13, t = 119:

≈2263 pre-quantum security.

Proof: AssumeP
i ci=(x − ai) = 0 in F2m [x]=g .

Write F =
Q
i :ci 6=0(x − ai).

Then F ′=F =
P
i :ci 6=0 1=(x − ai)

so F ′=F =
P
ci=(x − ai)

so F ′=F = 0 in F2m [x]=g

so g divides F ′ in F2m [x].

F ′ is a square:

if F =
P
j Fjx

j then

F ′ =
P
j jFjx

j−1

=
P
j∈1+2Z jFjx

j−1

= (
P
j∈1+2Z

p
jFjx

(j−1)=2)2.

The McEliece cryptosystem

Standardize integers n ≥ 0;

t ≥ 2; m ≥ 1 with 2m ≥ n.

1978 McEliece example:

n = 1024, m = 10, t = 50.

This is too small:

≈260 pre-quantum security.

n = 2048, m = 11, t = 32:

≈287 pre-quantum security.

n = 3408, m = 12, t = 67:

≈2146 pre-quantum security.

n = 6960, m = 13, t = 119:

≈2263 pre-quantum security.

Alice’s secrets: monic irreducible

g ∈ F2m [x] with deg g = t;

distinct a1; : : : ; an ∈ F2m .

Proof: AssumeP
i ci=(x − ai) = 0 in F2m [x]=g .

Write F =
Q
i :ci 6=0(x − ai).

Then F ′=F =
P
i :ci 6=0 1=(x − ai)

so F ′=F =
P
ci=(x − ai)

so F ′=F = 0 in F2m [x]=g

so g divides F ′ in F2m [x].

F ′ is a square:

if F =
P
j Fjx

j then

F ′ =
P
j jFjx

j−1

=
P
j∈1+2Z jFjx

j−1

= (
P
j∈1+2Z

p
jFjx

(j−1)=2)2.

The McEliece cryptosystem

Standardize integers n ≥ 0;

t ≥ 2; m ≥ 1 with 2m ≥ n.

1978 McEliece example:

n = 1024, m = 10, t = 50.

This is too small:

≈260 pre-quantum security.

n = 2048, m = 11, t = 32:

≈287 pre-quantum security.

n = 3408, m = 12, t = 67:

≈2146 pre-quantum security.

n = 6960, m = 13, t = 119:

≈2263 pre-quantum security.

Alice’s secrets: monic irreducible

g ∈ F2m [x] with deg g = t;

distinct a1; : : : ; an ∈ F2m .

Proof: AssumeP
i ci=(x − ai) = 0 in F2m [x]=g .

Write F =
Q
i :ci 6=0(x − ai).

Then F ′=F =
P
i :ci 6=0 1=(x − ai)

so F ′=F =
P
ci=(x − ai)

so F ′=F = 0 in F2m [x]=g

so g divides F ′ in F2m [x].

F ′ is a square:

if F =
P
j Fjx

j then

F ′ =
P
j jFjx

j−1

=
P
j∈1+2Z jFjx

j−1

= (
P
j∈1+2Z

p
jFjx

(j−1)=2)2.

The McEliece cryptosystem

Standardize integers n ≥ 0;

t ≥ 2; m ≥ 1 with 2m ≥ n.

1978 McEliece example:

n = 1024, m = 10, t = 50.

This is too small:

≈260 pre-quantum security.

n = 2048, m = 11, t = 32:

≈287 pre-quantum security.

n = 3408, m = 12, t = 67:

≈2146 pre-quantum security.

n = 6960, m = 13, t = 119:

≈2263 pre-quantum security.

Alice’s secrets: monic irreducible

g ∈ F2m [x] with deg g = t;

distinct a1; : : : ; an ∈ F2m .

The McEliece cryptosystem

Standardize integers n ≥ 0;

t ≥ 2; m ≥ 1 with 2m ≥ n.

1978 McEliece example:

n = 1024, m = 10, t = 50.

This is too small:

≈260 pre-quantum security.

n = 2048, m = 11, t = 32:

≈287 pre-quantum security.

n = 3408, m = 12, t = 67:

≈2146 pre-quantum security.

n = 6960, m = 13, t = 119:

≈2263 pre-quantum security.

Alice’s secrets: monic irreducible

g ∈ F2m [x] with deg g = t;

distinct a1; : : : ; an ∈ F2m .

The McEliece cryptosystem

Standardize integers n ≥ 0;

t ≥ 2; m ≥ 1 with 2m ≥ n.

1978 McEliece example:

n = 1024, m = 10, t = 50.

This is too small:

≈260 pre-quantum security.

n = 2048, m = 11, t = 32:

≈287 pre-quantum security.

n = 3408, m = 12, t = 67:

≈2146 pre-quantum security.

n = 6960, m = 13, t = 119:

≈2263 pre-quantum security.

Alice’s secrets: monic irreducible

g ∈ F2m [x] with deg g = t;

distinct a1; : : : ; an ∈ F2m .

Note that g(a1) · · · g(an) 6= 0.

Define Γ as before.

The McEliece cryptosystem

Standardize integers n ≥ 0;

t ≥ 2; m ≥ 1 with 2m ≥ n.

1978 McEliece example:

n = 1024, m = 10, t = 50.

This is too small:

≈260 pre-quantum security.

n = 2048, m = 11, t = 32:

≈287 pre-quantum security.

n = 3408, m = 12, t = 67:

≈2146 pre-quantum security.

n = 6960, m = 13, t = 119:

≈2263 pre-quantum security.

Alice’s secrets: monic irreducible

g ∈ F2m [x] with deg g = t;

distinct a1; : : : ; an ∈ F2m .

Note that g(a1) · · · g(an) 6= 0.

Define Γ as before.

Alice’s public key:

mt × n matrix K over F2

such that Γ = KerK.

The McEliece cryptosystem

Standardize integers n ≥ 0;

t ≥ 2; m ≥ 1 with 2m ≥ n.

1978 McEliece example:

n = 1024, m = 10, t = 50.

This is too small:

≈260 pre-quantum security.

n = 2048, m = 11, t = 32:

≈287 pre-quantum security.

n = 3408, m = 12, t = 67:

≈2146 pre-quantum security.

n = 6960, m = 13, t = 119:

≈2263 pre-quantum security.

Alice’s secrets: monic irreducible

g ∈ F2m [x] with deg g = t;

distinct a1; : : : ; an ∈ F2m .

Note that g(a1) · · · g(an) 6= 0.

Define Γ as before.

Alice’s public key:

mt × n matrix K over F2

such that Γ = KerK.

Bob chooses random e ∈ Fn2
with |e| = t; sends Ke.

The McEliece cryptosystem

Standardize integers n ≥ 0;

t ≥ 2; m ≥ 1 with 2m ≥ n.

1978 McEliece example:

n = 1024, m = 10, t = 50.

This is too small:

≈260 pre-quantum security.

n = 2048, m = 11, t = 32:

≈287 pre-quantum security.

n = 3408, m = 12, t = 67:

≈2146 pre-quantum security.

n = 6960, m = 13, t = 119:

≈2263 pre-quantum security.

Alice’s secrets: monic irreducible

g ∈ F2m [x] with deg g = t;

distinct a1; : : : ; an ∈ F2m .

Note that g(a1) · · · g(an) 6= 0.

Define Γ as before.

Alice’s public key:

mt × n matrix K over F2

such that Γ = KerK.

Bob chooses random e ∈ Fn2
with |e| = t; sends Ke.

Alice receives Ke,

finds v ∈ Fn2 with Kv = Ke,

decodes v to find v − e.

The McEliece cryptosystem

Standardize integers n ≥ 0;

t ≥ 2; m ≥ 1 with 2m ≥ n.

1978 McEliece example:

n = 1024, m = 10, t = 50.

This is too small:

≈260 pre-quantum security.

n = 2048, m = 11, t = 32:

≈287 pre-quantum security.

n = 3408, m = 12, t = 67:

≈2146 pre-quantum security.

n = 6960, m = 13, t = 119:

≈2263 pre-quantum security.

Alice’s secrets: monic irreducible

g ∈ F2m [x] with deg g = t;

distinct a1; : : : ; an ∈ F2m .

Note that g(a1) · · · g(an) 6= 0.

Define Γ as before.

Alice’s public key:

mt × n matrix K over F2

such that Γ = KerK.

Bob chooses random e ∈ Fn2
with |e| = t; sends Ke.

Alice receives Ke,

finds v ∈ Fn2 with Kv = Ke,

decodes v to find v − e.

1978 McEliece + randomization:

Bob chooses random c ∈ Γ

and random e ∈ Fn2
with |e| = t; sends c + e.

The McEliece cryptosystem

Standardize integers n ≥ 0;

t ≥ 2; m ≥ 1 with 2m ≥ n.

1978 McEliece example:

n = 1024, m = 10, t = 50.

This is too small:

≈260 pre-quantum security.

n = 2048, m = 11, t = 32:

≈287 pre-quantum security.

n = 3408, m = 12, t = 67:

≈2146 pre-quantum security.

n = 6960, m = 13, t = 119:

≈2263 pre-quantum security.

Alice’s secrets: monic irreducible

g ∈ F2m [x] with deg g = t;

distinct a1; : : : ; an ∈ F2m .

Note that g(a1) · · · g(an) 6= 0.

Define Γ as before.

Alice’s public key:

mt × n matrix K over F2

such that Γ = KerK.

Bob chooses random e ∈ Fn2
with |e| = t; sends Ke.

Alice receives Ke,

finds v ∈ Fn2 with Kv = Ke,

decodes v to find v − e.

1978 McEliece + randomization:

Bob chooses random c ∈ Γ

and random e ∈ Fn2
with |e| = t; sends c + e.

The McEliece cryptosystem

Standardize integers n ≥ 0;

t ≥ 2; m ≥ 1 with 2m ≥ n.

1978 McEliece example:

n = 1024, m = 10, t = 50.

This is too small:

≈260 pre-quantum security.

n = 2048, m = 11, t = 32:

≈287 pre-quantum security.

n = 3408, m = 12, t = 67:

≈2146 pre-quantum security.

n = 6960, m = 13, t = 119:

≈2263 pre-quantum security.

Alice’s secrets: monic irreducible

g ∈ F2m [x] with deg g = t;

distinct a1; : : : ; an ∈ F2m .

Note that g(a1) · · · g(an) 6= 0.

Define Γ as before.

Alice’s public key:

mt × n matrix K over F2

such that Γ = KerK.

Bob chooses random e ∈ Fn2
with |e| = t; sends Ke.

Alice receives Ke,

finds v ∈ Fn2 with Kv = Ke,

decodes v to find v − e.

1978 McEliece + randomization:

Bob chooses random c ∈ Γ

and random e ∈ Fn2
with |e| = t; sends c + e.

Alice’s secrets: monic irreducible

g ∈ F2m [x] with deg g = t;

distinct a1; : : : ; an ∈ F2m .

Note that g(a1) · · · g(an) 6= 0.

Define Γ as before.

Alice’s public key:

mt × n matrix K over F2

such that Γ = KerK.

Bob chooses random e ∈ Fn2
with |e| = t; sends Ke.

Alice receives Ke,

finds v ∈ Fn2 with Kv = Ke,

decodes v to find v − e.

1978 McEliece + randomization:

Bob chooses random c ∈ Γ

and random e ∈ Fn2
with |e| = t; sends c + e.

Alice’s secrets: monic irreducible

g ∈ F2m [x] with deg g = t;

distinct a1; : : : ; an ∈ F2m .

Note that g(a1) · · · g(an) 6= 0.

Define Γ as before.

Alice’s public key:

mt × n matrix K over F2

such that Γ = KerK.

Bob chooses random e ∈ Fn2
with |e| = t; sends Ke.

Alice receives Ke,

finds v ∈ Fn2 with Kv = Ke,

decodes v to find v − e.

1978 McEliece + randomization:

Bob chooses random c ∈ Γ

and random e ∈ Fn2
with |e| = t; sends c + e.

Publicly specify Γ by an

(n −mt)× n generator matrix G.

Alice’s secrets: monic irreducible

g ∈ F2m [x] with deg g = t;

distinct a1; : : : ; an ∈ F2m .

Note that g(a1) · · · g(an) 6= 0.

Define Γ as before.

Alice’s public key:

mt × n matrix K over F2

such that Γ = KerK.

Bob chooses random e ∈ Fn2
with |e| = t; sends Ke.

Alice receives Ke,

finds v ∈ Fn2 with Kv = Ke,

decodes v to find v − e.

1978 McEliece + randomization:

Bob chooses random c ∈ Γ

and random e ∈ Fn2
with |e| = t; sends c + e.

Publicly specify Γ by an

(n −mt)× n generator matrix G.

1986 Niederreiter improvements:

Send Ke instead of c + e.

Alice’s secrets: monic irreducible

g ∈ F2m [x] with deg g = t;

distinct a1; : : : ; an ∈ F2m .

Note that g(a1) · · · g(an) 6= 0.

Define Γ as before.

Alice’s public key:

mt × n matrix K over F2

such that Γ = KerK.

Bob chooses random e ∈ Fn2
with |e| = t; sends Ke.

Alice receives Ke,

finds v ∈ Fn2 with Kv = Ke,

decodes v to find v − e.

1978 McEliece + randomization:

Bob chooses random c ∈ Γ

and random e ∈ Fn2
with |e| = t; sends c + e.

Publicly specify Γ by an

(n −mt)× n generator matrix G.

1986 Niederreiter improvements:

Send Ke instead of c + e.

K is smaller than G

whenever mt < n −mt.
Compress K to mt(n −mt) bits

by requiring systematic form.

Alice’s secrets: monic irreducible

g ∈ F2m [x] with deg g = t;

distinct a1; : : : ; an ∈ F2m .

Note that g(a1) · · · g(an) 6= 0.

Define Γ as before.

Alice’s public key:

mt × n matrix K over F2

such that Γ = KerK.

Bob chooses random e ∈ Fn2
with |e| = t; sends Ke.

Alice receives Ke,

finds v ∈ Fn2 with Kv = Ke,

decodes v to find v − e.

1978 McEliece + randomization:

Bob chooses random c ∈ Γ

and random e ∈ Fn2
with |e| = t; sends c + e.

Publicly specify Γ by an

(n −mt)× n generator matrix G.

1986 Niederreiter improvements:

Send Ke instead of c + e.

K is smaller than G

whenever mt < n −mt.
Compress K to mt(n −mt) bits

by requiring systematic form.

Does structure of Γ

help attacker decrypt—

e.g., compute g; a1; : : : ; an?

Alice’s secrets: monic irreducible

g ∈ F2m [x] with deg g = t;

distinct a1; : : : ; an ∈ F2m .

Note that g(a1) · · · g(an) 6= 0.

Define Γ as before.

Alice’s public key:

mt × n matrix K over F2

such that Γ = KerK.

Bob chooses random e ∈ Fn2
with |e| = t; sends Ke.

Alice receives Ke,

finds v ∈ Fn2 with Kv = Ke,

decodes v to find v − e.

1978 McEliece + randomization:

Bob chooses random c ∈ Γ

and random e ∈ Fn2
with |e| = t; sends c + e.

Publicly specify Γ by an

(n −mt)× n generator matrix G.

1986 Niederreiter improvements:

Send Ke instead of c + e.

K is smaller than G

whenever mt < n −mt.
Compress K to mt(n −mt) bits

by requiring systematic form.

Does structure of Γ

help attacker decrypt—

e.g., compute g; a1; : : : ; an?

Alice’s secrets: monic irreducible

g ∈ F2m [x] with deg g = t;

distinct a1; : : : ; an ∈ F2m .

Note that g(a1) · · · g(an) 6= 0.

Define Γ as before.

Alice’s public key:

mt × n matrix K over F2

such that Γ = KerK.

Bob chooses random e ∈ Fn2
with |e| = t; sends Ke.

Alice receives Ke,

finds v ∈ Fn2 with Kv = Ke,

decodes v to find v − e.

1978 McEliece + randomization:

Bob chooses random c ∈ Γ

and random e ∈ Fn2
with |e| = t; sends c + e.

Publicly specify Γ by an

(n −mt)× n generator matrix G.

1986 Niederreiter improvements:

Send Ke instead of c + e.

K is smaller than G

whenever mt < n −mt.
Compress K to mt(n −mt) bits

by requiring systematic form.

Does structure of Γ

help attacker decrypt—

e.g., compute g; a1; : : : ; an?

1978 McEliece + randomization:

Bob chooses random c ∈ Γ

and random e ∈ Fn2
with |e| = t; sends c + e.

Publicly specify Γ by an

(n −mt)× n generator matrix G.

1986 Niederreiter improvements:

Send Ke instead of c + e.

K is smaller than G

whenever mt < n −mt.
Compress K to mt(n −mt) bits

by requiring systematic form.

Does structure of Γ

help attacker decrypt—

e.g., compute g; a1; : : : ; an?

1978 McEliece + randomization:

Bob chooses random c ∈ Γ

and random e ∈ Fn2
with |e| = t; sends c + e.

Publicly specify Γ by an

(n −mt)× n generator matrix G.

1986 Niederreiter improvements:

Send Ke instead of c + e.

K is smaller than G

whenever mt < n −mt.
Compress K to mt(n −mt) bits

by requiring systematic form.

Does structure of Γ

help attacker decrypt—

e.g., compute g; a1; : : : ; an?

All known “structural attacks”

are much slower than

information-set decoding.

(Less conservative variants of

McEliece encourage research.)

1978 McEliece + randomization:

Bob chooses random c ∈ Γ

and random e ∈ Fn2
with |e| = t; sends c + e.

Publicly specify Γ by an

(n −mt)× n generator matrix G.

1986 Niederreiter improvements:

Send Ke instead of c + e.

K is smaller than G

whenever mt < n −mt.
Compress K to mt(n −mt) bits

by requiring systematic form.

Does structure of Γ

help attacker decrypt—

e.g., compute g; a1; : : : ; an?

All known “structural attacks”

are much slower than

information-set decoding.

(Less conservative variants of

McEliece encourage research.)

Does K leak more than Γ?

1978 McEliece + randomization:

Bob chooses random c ∈ Γ

and random e ∈ Fn2
with |e| = t; sends c + e.

Publicly specify Γ by an

(n −mt)× n generator matrix G.

1986 Niederreiter improvements:

Send Ke instead of c + e.

K is smaller than G

whenever mt < n −mt.
Compress K to mt(n −mt) bits

by requiring systematic form.

Does structure of Γ

help attacker decrypt—

e.g., compute g; a1; : : : ; an?

All known “structural attacks”

are much slower than

information-set decoding.

(Less conservative variants of

McEliece encourage research.)

Does K leak more than Γ?

No with 1978 McEliece:

matrix is explicitly randomized.

1978 McEliece + randomization:

Bob chooses random c ∈ Γ

and random e ∈ Fn2
with |e| = t; sends c + e.

Publicly specify Γ by an

(n −mt)× n generator matrix G.

1986 Niederreiter improvements:

Send Ke instead of c + e.

K is smaller than G

whenever mt < n −mt.
Compress K to mt(n −mt) bits

by requiring systematic form.

Does structure of Γ

help attacker decrypt—

e.g., compute g; a1; : : : ; an?

All known “structural attacks”

are much slower than

information-set decoding.

(Less conservative variants of

McEliece encourage research.)

Does K leak more than Γ?

No with 1978 McEliece:

matrix is explicitly randomized.

No with 1986 Niederreiter:

matrix has systematic form.

1978 McEliece + randomization:

Bob chooses random c ∈ Γ

and random e ∈ Fn2
with |e| = t; sends c + e.

Publicly specify Γ by an

(n −mt)× n generator matrix G.

1986 Niederreiter improvements:

Send Ke instead of c + e.

K is smaller than G

whenever mt < n −mt.
Compress K to mt(n −mt) bits

by requiring systematic form.

Does structure of Γ

help attacker decrypt—

e.g., compute g; a1; : : : ; an?

All known “structural attacks”

are much slower than

information-set decoding.

(Less conservative variants of

McEliece encourage research.)

Does K leak more than Γ?

No with 1978 McEliece:

matrix is explicitly randomized.

No with 1986 Niederreiter:

matrix has systematic form.

Better throughput than ECC

Rest of this talk (joint work

with Chou and Schwabe, 2013):

some details of how to make

McEliece run really fast.

1978 McEliece + randomization:

Bob chooses random c ∈ Γ

and random e ∈ Fn2
with |e| = t; sends c + e.

Publicly specify Γ by an

(n −mt)× n generator matrix G.

1986 Niederreiter improvements:

Send Ke instead of c + e.

K is smaller than G

whenever mt < n −mt.
Compress K to mt(n −mt) bits

by requiring systematic form.

Does structure of Γ

help attacker decrypt—

e.g., compute g; a1; : : : ; an?

All known “structural attacks”

are much slower than

information-set decoding.

(Less conservative variants of

McEliece encourage research.)

Does K leak more than Γ?

No with 1978 McEliece:

matrix is explicitly randomized.

No with 1986 Niederreiter:

matrix has systematic form.

Better throughput than ECC

Rest of this talk (joint work

with Chou and Schwabe, 2013):

some details of how to make

McEliece run really fast.

1978 McEliece + randomization:

Bob chooses random c ∈ Γ

and random e ∈ Fn2
with |e| = t; sends c + e.

Publicly specify Γ by an

(n −mt)× n generator matrix G.

1986 Niederreiter improvements:

Send Ke instead of c + e.

K is smaller than G

whenever mt < n −mt.
Compress K to mt(n −mt) bits

by requiring systematic form.

Does structure of Γ

help attacker decrypt—

e.g., compute g; a1; : : : ; an?

All known “structural attacks”

are much slower than

information-set decoding.

(Less conservative variants of

McEliece encourage research.)

Does K leak more than Γ?

No with 1978 McEliece:

matrix is explicitly randomized.

No with 1986 Niederreiter:

matrix has systematic form.

Better throughput than ECC

Rest of this talk (joint work

with Chou and Schwabe, 2013):

some details of how to make

McEliece run really fast.

Does structure of Γ

help attacker decrypt—

e.g., compute g; a1; : : : ; an?

All known “structural attacks”

are much slower than

information-set decoding.

(Less conservative variants of

McEliece encourage research.)

Does K leak more than Γ?

No with 1978 McEliece:

matrix is explicitly randomized.

No with 1986 Niederreiter:

matrix has systematic form.

Better throughput than ECC

Rest of this talk (joint work

with Chou and Schwabe, 2013):

some details of how to make

McEliece run really fast.

Does structure of Γ

help attacker decrypt—

e.g., compute g; a1; : : : ; an?

All known “structural attacks”

are much slower than

information-set decoding.

(Less conservative variants of

McEliece encourage research.)

Does K leak more than Γ?

No with 1978 McEliece:

matrix is explicitly randomized.

No with 1986 Niederreiter:

matrix has systematic form.

Better throughput than ECC

Rest of this talk (joint work

with Chou and Schwabe, 2013):

some details of how to make

McEliece run really fast.

Our constant-time software

for batches of 256 decodings:

26544 Ivy Bridge cycles for

(n; t) = (2048; 32); ≈287.

79715 Ivy Bridge cycles for

(n; t) = (3408; 67); ≈2146.

306102 Ivy Bridge cycles for

(n; t) = (6960; 119); ≈2263.

Does structure of Γ

help attacker decrypt—

e.g., compute g; a1; : : : ; an?

All known “structural attacks”

are much slower than

information-set decoding.

(Less conservative variants of

McEliece encourage research.)

Does K leak more than Γ?

No with 1978 McEliece:

matrix is explicitly randomized.

No with 1986 Niederreiter:

matrix has systematic form.

Better throughput than ECC

Rest of this talk (joint work

with Chou and Schwabe, 2013):

some details of how to make

McEliece run really fast.

Our constant-time software

for batches of 256 decodings:

26544 Ivy Bridge cycles for

(n; t) = (2048; 32); ≈287.

79715 Ivy Bridge cycles for

(n; t) = (3408; 67); ≈2146.

306102 Ivy Bridge cycles for

(n; t) = (6960; 119); ≈2263.

The additive FFT

Fix n = 4096 = 212, t = 41.

Big final decoding step

is to find all roots in F212

of F = F41x
41 + · · ·+ F0x

0.

For each ¸ ∈ F212 ,

compute F (¸) by Horner’s rule:

41 adds, 41 mults.

Does structure of Γ

help attacker decrypt—

e.g., compute g; a1; : : : ; an?

All known “structural attacks”

are much slower than

information-set decoding.

(Less conservative variants of

McEliece encourage research.)

Does K leak more than Γ?

No with 1978 McEliece:

matrix is explicitly randomized.

No with 1986 Niederreiter:

matrix has systematic form.

Better throughput than ECC

Rest of this talk (joint work

with Chou and Schwabe, 2013):

some details of how to make

McEliece run really fast.

Our constant-time software

for batches of 256 decodings:

26544 Ivy Bridge cycles for

(n; t) = (2048; 32); ≈287.

79715 Ivy Bridge cycles for

(n; t) = (3408; 67); ≈2146.

306102 Ivy Bridge cycles for

(n; t) = (6960; 119); ≈2263.

The additive FFT

Fix n = 4096 = 212, t = 41.

Big final decoding step

is to find all roots in F212

of F = F41x
41 + · · ·+ F0x

0.

For each ¸ ∈ F212 ,

compute F (¸) by Horner’s rule:

41 adds, 41 mults.

Does structure of Γ

help attacker decrypt—

e.g., compute g; a1; : : : ; an?

All known “structural attacks”

are much slower than

information-set decoding.

(Less conservative variants of

McEliece encourage research.)

Does K leak more than Γ?

No with 1978 McEliece:

matrix is explicitly randomized.

No with 1986 Niederreiter:

matrix has systematic form.

Better throughput than ECC

Rest of this talk (joint work

with Chou and Schwabe, 2013):

some details of how to make

McEliece run really fast.

Our constant-time software

for batches of 256 decodings:

26544 Ivy Bridge cycles for

(n; t) = (2048; 32); ≈287.

79715 Ivy Bridge cycles for

(n; t) = (3408; 67); ≈2146.

306102 Ivy Bridge cycles for

(n; t) = (6960; 119); ≈2263.

The additive FFT

Fix n = 4096 = 212, t = 41.

Big final decoding step

is to find all roots in F212

of F = F41x
41 + · · ·+ F0x

0.

For each ¸ ∈ F212 ,

compute F (¸) by Horner’s rule:

41 adds, 41 mults.

Better throughput than ECC

Rest of this talk (joint work

with Chou and Schwabe, 2013):

some details of how to make

McEliece run really fast.

Our constant-time software

for batches of 256 decodings:

26544 Ivy Bridge cycles for

(n; t) = (2048; 32); ≈287.

79715 Ivy Bridge cycles for

(n; t) = (3408; 67); ≈2146.

306102 Ivy Bridge cycles for

(n; t) = (6960; 119); ≈2263.

The additive FFT

Fix n = 4096 = 212, t = 41.

Big final decoding step

is to find all roots in F212

of F = F41x
41 + · · ·+ F0x

0.

For each ¸ ∈ F212 ,

compute F (¸) by Horner’s rule:

41 adds, 41 mults.

Better throughput than ECC

Rest of this talk (joint work

with Chou and Schwabe, 2013):

some details of how to make

McEliece run really fast.

Our constant-time software

for batches of 256 decodings:

26544 Ivy Bridge cycles for

(n; t) = (2048; 32); ≈287.

79715 Ivy Bridge cycles for

(n; t) = (3408; 67); ≈2146.

306102 Ivy Bridge cycles for

(n; t) = (6960; 119); ≈2263.

The additive FFT

Fix n = 4096 = 212, t = 41.

Big final decoding step

is to find all roots in F212

of F = F41x
41 + · · ·+ F0x

0.

For each ¸ ∈ F212 ,

compute F (¸) by Horner’s rule:

41 adds, 41 mults.

Or use “Chien search”: compute

Fi‚
i , Fi‚

2i , Fi‚
3i , etc. Cost per

point: again 41 adds, 41 mults.

Better throughput than ECC

Rest of this talk (joint work

with Chou and Schwabe, 2013):

some details of how to make

McEliece run really fast.

Our constant-time software

for batches of 256 decodings:

26544 Ivy Bridge cycles for

(n; t) = (2048; 32); ≈287.

79715 Ivy Bridge cycles for

(n; t) = (3408; 67); ≈2146.

306102 Ivy Bridge cycles for

(n; t) = (6960; 119); ≈2263.

The additive FFT

Fix n = 4096 = 212, t = 41.

Big final decoding step

is to find all roots in F212

of F = F41x
41 + · · ·+ F0x

0.

For each ¸ ∈ F212 ,

compute F (¸) by Horner’s rule:

41 adds, 41 mults.

Or use “Chien search”: compute

Fi‚
i , Fi‚

2i , Fi‚
3i , etc. Cost per

point: again 41 adds, 41 mults.

Our cost: 6.01 adds, 2.09 mults.

Better throughput than ECC

Rest of this talk (joint work

with Chou and Schwabe, 2013):

some details of how to make

McEliece run really fast.

Our constant-time software

for batches of 256 decodings:

26544 Ivy Bridge cycles for

(n; t) = (2048; 32); ≈287.

79715 Ivy Bridge cycles for

(n; t) = (3408; 67); ≈2146.

306102 Ivy Bridge cycles for

(n; t) = (6960; 119); ≈2263.

The additive FFT

Fix n = 4096 = 212, t = 41.

Big final decoding step

is to find all roots in F212

of F = F41x
41 + · · ·+ F0x

0.

For each ¸ ∈ F212 ,

compute F (¸) by Horner’s rule:

41 adds, 41 mults.

Or use “Chien search”: compute

Fi‚
i , Fi‚

2i , Fi‚
3i , etc. Cost per

point: again 41 adds, 41 mults.

Our cost: 6.01 adds, 2.09 mults.

Asymptotics:

normally t ∈ Θ(n= lg n),

so Horner’s rule costs

Θ(nt) = Θ(n2= lg n).

Better throughput than ECC

Rest of this talk (joint work

with Chou and Schwabe, 2013):

some details of how to make

McEliece run really fast.

Our constant-time software

for batches of 256 decodings:

26544 Ivy Bridge cycles for

(n; t) = (2048; 32); ≈287.

79715 Ivy Bridge cycles for

(n; t) = (3408; 67); ≈2146.

306102 Ivy Bridge cycles for

(n; t) = (6960; 119); ≈2263.

The additive FFT

Fix n = 4096 = 212, t = 41.

Big final decoding step

is to find all roots in F212

of F = F41x
41 + · · ·+ F0x

0.

For each ¸ ∈ F212 ,

compute F (¸) by Horner’s rule:

41 adds, 41 mults.

Or use “Chien search”: compute

Fi‚
i , Fi‚

2i , Fi‚
3i , etc. Cost per

point: again 41 adds, 41 mults.

Our cost: 6.01 adds, 2.09 mults.

Asymptotics:

normally t ∈ Θ(n= lg n),

so Horner’s rule costs

Θ(nt) = Θ(n2= lg n).

Better throughput than ECC

Rest of this talk (joint work

with Chou and Schwabe, 2013):

some details of how to make

McEliece run really fast.

Our constant-time software

for batches of 256 decodings:

26544 Ivy Bridge cycles for

(n; t) = (2048; 32); ≈287.

79715 Ivy Bridge cycles for

(n; t) = (3408; 67); ≈2146.

306102 Ivy Bridge cycles for

(n; t) = (6960; 119); ≈2263.

The additive FFT

Fix n = 4096 = 212, t = 41.

Big final decoding step

is to find all roots in F212

of F = F41x
41 + · · ·+ F0x

0.

For each ¸ ∈ F212 ,

compute F (¸) by Horner’s rule:

41 adds, 41 mults.

Or use “Chien search”: compute

Fi‚
i , Fi‚

2i , Fi‚
3i , etc. Cost per

point: again 41 adds, 41 mults.

Our cost: 6.01 adds, 2.09 mults.

Asymptotics:

normally t ∈ Θ(n= lg n),

so Horner’s rule costs

Θ(nt) = Θ(n2= lg n).

The additive FFT

Fix n = 4096 = 212, t = 41.

Big final decoding step

is to find all roots in F212

of F = F41x
41 + · · ·+ F0x

0.

For each ¸ ∈ F212 ,

compute F (¸) by Horner’s rule:

41 adds, 41 mults.

Or use “Chien search”: compute

Fi‚
i , Fi‚

2i , Fi‚
3i , etc. Cost per

point: again 41 adds, 41 mults.

Our cost: 6.01 adds, 2.09 mults.

Asymptotics:

normally t ∈ Θ(n= lg n),

so Horner’s rule costs

Θ(nt) = Θ(n2= lg n).

The additive FFT

Fix n = 4096 = 212, t = 41.

Big final decoding step

is to find all roots in F212

of F = F41x
41 + · · ·+ F0x

0.

For each ¸ ∈ F212 ,

compute F (¸) by Horner’s rule:

41 adds, 41 mults.

Or use “Chien search”: compute

Fi‚
i , Fi‚

2i , Fi‚
3i , etc. Cost per

point: again 41 adds, 41 mults.

Our cost: 6.01 adds, 2.09 mults.

Asymptotics:

normally t ∈ Θ(n= lg n),

so Horner’s rule costs

Θ(nt) = Θ(n2= lg n).

Wait a minute.

Didn’t we learn in school

that FFT evaluates

an n-coeff polynomial

at n points

using n1+o(1) operations?

Isn’t this better than n2= lg n?

The additive FFT

Fix n = 4096 = 212, t = 41.

Big final decoding step

is to find all roots in F212

of F = F41x
41 + · · ·+ F0x

0.

For each ¸ ∈ F212 ,

compute F (¸) by Horner’s rule:

41 adds, 41 mults.

Or use “Chien search”: compute

Fi‚
i , Fi‚

2i , Fi‚
3i , etc. Cost per

point: again 41 adds, 41 mults.

Our cost: 6.01 adds, 2.09 mults.

Asymptotics:

normally t ∈ Θ(n= lg n),

so Horner’s rule costs

Θ(nt) = Θ(n2= lg n).

Wait a minute.

Didn’t we learn in school

that FFT evaluates

an n-coeff polynomial

at n points

using n1+o(1) operations?

Isn’t this better than n2= lg n?

Standard radix-2 FFT:

Want to evaluate

F = F0 + F1x + · · ·+ Fn−1x
n−1

at all the nth roots of 1.

Write F as F0(x2) + xF1(x2).

Observe big overlap between

F (¸) = F0(¸2) + ¸F1(¸2),

F (−¸) = F0(¸2)− ¸F1(¸2).

F0 has n=2 coeffs;

evaluate at (n=2)nd roots of 1

by same idea recursively.

Similarly F1.

The additive FFT

Fix n = 4096 = 212, t = 41.

Big final decoding step

is to find all roots in F212

of F = F41x
41 + · · ·+ F0x

0.

For each ¸ ∈ F212 ,

compute F (¸) by Horner’s rule:

41 adds, 41 mults.

Or use “Chien search”: compute

Fi‚
i , Fi‚

2i , Fi‚
3i , etc. Cost per

point: again 41 adds, 41 mults.

Our cost: 6.01 adds, 2.09 mults.

Asymptotics:

normally t ∈ Θ(n= lg n),

so Horner’s rule costs

Θ(nt) = Θ(n2= lg n).

Wait a minute.

Didn’t we learn in school

that FFT evaluates

an n-coeff polynomial

at n points

using n1+o(1) operations?

Isn’t this better than n2= lg n?

Standard radix-2 FFT:

Want to evaluate

F = F0 + F1x + · · ·+ Fn−1x
n−1

at all the nth roots of 1.

Write F as F0(x2) + xF1(x2).

Observe big overlap between

F (¸) = F0(¸2) + ¸F1(¸2),

F (−¸) = F0(¸2)− ¸F1(¸2).

F0 has n=2 coeffs;

evaluate at (n=2)nd roots of 1

by same idea recursively.

Similarly F1.

The additive FFT

Fix n = 4096 = 212, t = 41.

Big final decoding step

is to find all roots in F212

of F = F41x
41 + · · ·+ F0x

0.

For each ¸ ∈ F212 ,

compute F (¸) by Horner’s rule:

41 adds, 41 mults.

Or use “Chien search”: compute

Fi‚
i , Fi‚

2i , Fi‚
3i , etc. Cost per

point: again 41 adds, 41 mults.

Our cost: 6.01 adds, 2.09 mults.

Asymptotics:

normally t ∈ Θ(n= lg n),

so Horner’s rule costs

Θ(nt) = Θ(n2= lg n).

Wait a minute.

Didn’t we learn in school

that FFT evaluates

an n-coeff polynomial

at n points

using n1+o(1) operations?

Isn’t this better than n2= lg n?

Standard radix-2 FFT:

Want to evaluate

F = F0 + F1x + · · ·+ Fn−1x
n−1

at all the nth roots of 1.

Write F as F0(x2) + xF1(x2).

Observe big overlap between

F (¸) = F0(¸2) + ¸F1(¸2),

F (−¸) = F0(¸2)− ¸F1(¸2).

F0 has n=2 coeffs;

evaluate at (n=2)nd roots of 1

by same idea recursively.

Similarly F1.

Asymptotics:

normally t ∈ Θ(n= lg n),

so Horner’s rule costs

Θ(nt) = Θ(n2= lg n).

Wait a minute.

Didn’t we learn in school

that FFT evaluates

an n-coeff polynomial

at n points

using n1+o(1) operations?

Isn’t this better than n2= lg n?

Standard radix-2 FFT:

Want to evaluate

F = F0 + F1x + · · ·+ Fn−1x
n−1

at all the nth roots of 1.

Write F as F0(x2) + xF1(x2).

Observe big overlap between

F (¸) = F0(¸2) + ¸F1(¸2),

F (−¸) = F0(¸2)− ¸F1(¸2).

F0 has n=2 coeffs;

evaluate at (n=2)nd roots of 1

by same idea recursively.

Similarly F1.

Asymptotics:

normally t ∈ Θ(n= lg n),

so Horner’s rule costs

Θ(nt) = Θ(n2= lg n).

Wait a minute.

Didn’t we learn in school

that FFT evaluates

an n-coeff polynomial

at n points

using n1+o(1) operations?

Isn’t this better than n2= lg n?

Standard radix-2 FFT:

Want to evaluate

F = F0 + F1x + · · ·+ Fn−1x
n−1

at all the nth roots of 1.

Write F as F0(x2) + xF1(x2).

Observe big overlap between

F (¸) = F0(¸2) + ¸F1(¸2),

F (−¸) = F0(¸2)− ¸F1(¸2).

F0 has n=2 coeffs;

evaluate at (n=2)nd roots of 1

by same idea recursively.

Similarly F1.

Useless in char 2: ¸ = −¸.

Standard workarounds are painful.

FFT considered impractical.

1988 Wang–Zhu,

independently 1989 Cantor:

“additive FFT” in char 2.

Still quite expensive.

1996 von zur Gathen–Gerhard:

some improvements.

2010 Gao–Mateer:

much better additive FFT.

We use Gao–Mateer,

plus some new improvements.

Asymptotics:

normally t ∈ Θ(n= lg n),

so Horner’s rule costs

Θ(nt) = Θ(n2= lg n).

Wait a minute.

Didn’t we learn in school

that FFT evaluates

an n-coeff polynomial

at n points

using n1+o(1) operations?

Isn’t this better than n2= lg n?

Standard radix-2 FFT:

Want to evaluate

F = F0 + F1x + · · ·+ Fn−1x
n−1

at all the nth roots of 1.

Write F as F0(x2) + xF1(x2).

Observe big overlap between

F (¸) = F0(¸2) + ¸F1(¸2),

F (−¸) = F0(¸2)− ¸F1(¸2).

F0 has n=2 coeffs;

evaluate at (n=2)nd roots of 1

by same idea recursively.

Similarly F1.

Useless in char 2: ¸ = −¸.

Standard workarounds are painful.

FFT considered impractical.

1988 Wang–Zhu,

independently 1989 Cantor:

“additive FFT” in char 2.

Still quite expensive.

1996 von zur Gathen–Gerhard:

some improvements.

2010 Gao–Mateer:

much better additive FFT.

We use Gao–Mateer,

plus some new improvements.

Asymptotics:

normally t ∈ Θ(n= lg n),

so Horner’s rule costs

Θ(nt) = Θ(n2= lg n).

Wait a minute.

Didn’t we learn in school

that FFT evaluates

an n-coeff polynomial

at n points

using n1+o(1) operations?

Isn’t this better than n2= lg n?

Standard radix-2 FFT:

Want to evaluate

F = F0 + F1x + · · ·+ Fn−1x
n−1

at all the nth roots of 1.

Write F as F0(x2) + xF1(x2).

Observe big overlap between

F (¸) = F0(¸2) + ¸F1(¸2),

F (−¸) = F0(¸2)− ¸F1(¸2).

F0 has n=2 coeffs;

evaluate at (n=2)nd roots of 1

by same idea recursively.

Similarly F1.

Useless in char 2: ¸ = −¸.

Standard workarounds are painful.

FFT considered impractical.

1988 Wang–Zhu,

independently 1989 Cantor:

“additive FFT” in char 2.

Still quite expensive.

1996 von zur Gathen–Gerhard:

some improvements.

2010 Gao–Mateer:

much better additive FFT.

We use Gao–Mateer,

plus some new improvements.

Standard radix-2 FFT:

Want to evaluate

F = F0 + F1x + · · ·+ Fn−1x
n−1

at all the nth roots of 1.

Write F as F0(x2) + xF1(x2).

Observe big overlap between

F (¸) = F0(¸2) + ¸F1(¸2),

F (−¸) = F0(¸2)− ¸F1(¸2).

F0 has n=2 coeffs;

evaluate at (n=2)nd roots of 1

by same idea recursively.

Similarly F1.

Useless in char 2: ¸ = −¸.

Standard workarounds are painful.

FFT considered impractical.

1988 Wang–Zhu,

independently 1989 Cantor:

“additive FFT” in char 2.

Still quite expensive.

1996 von zur Gathen–Gerhard:

some improvements.

2010 Gao–Mateer:

much better additive FFT.

We use Gao–Mateer,

plus some new improvements.

Standard radix-2 FFT:

Want to evaluate

F = F0 + F1x + · · ·+ Fn−1x
n−1

at all the nth roots of 1.

Write F as F0(x2) + xF1(x2).

Observe big overlap between

F (¸) = F0(¸2) + ¸F1(¸2),

F (−¸) = F0(¸2)− ¸F1(¸2).

F0 has n=2 coeffs;

evaluate at (n=2)nd roots of 1

by same idea recursively.

Similarly F1.

Useless in char 2: ¸ = −¸.

Standard workarounds are painful.

FFT considered impractical.

1988 Wang–Zhu,

independently 1989 Cantor:

“additive FFT” in char 2.

Still quite expensive.

1996 von zur Gathen–Gerhard:

some improvements.

2010 Gao–Mateer:

much better additive FFT.

We use Gao–Mateer,

plus some new improvements.

Gao and Mateer evaluate

F = F0 + F1x + · · ·+ Fn−1x
n−1

on a size-n F2-linear space.

Main idea: Write F as

F0(x2 + x) + xF1(x2 + x).

Big overlap between F (¸) =

F0(¸2 + ¸) + ¸F1(¸2 + ¸)

and F (¸+ 1) =

F0(¸2 + ¸) + (¸+ 1)F1(¸2 + ¸).

“Twist” to ensure 1 ∈ space.

Then
˘
¸2 + ¸

¯
is a

size-(n=2) F2-linear space.

Apply same idea recursively.

Standard radix-2 FFT:

Want to evaluate

F = F0 + F1x + · · ·+ Fn−1x
n−1

at all the nth roots of 1.

Write F as F0(x2) + xF1(x2).

Observe big overlap between

F (¸) = F0(¸2) + ¸F1(¸2),

F (−¸) = F0(¸2)− ¸F1(¸2).

F0 has n=2 coeffs;

evaluate at (n=2)nd roots of 1

by same idea recursively.

Similarly F1.

Useless in char 2: ¸ = −¸.

Standard workarounds are painful.

FFT considered impractical.

1988 Wang–Zhu,

independently 1989 Cantor:

“additive FFT” in char 2.

Still quite expensive.

1996 von zur Gathen–Gerhard:

some improvements.

2010 Gao–Mateer:

much better additive FFT.

We use Gao–Mateer,

plus some new improvements.

Gao and Mateer evaluate

F = F0 + F1x + · · ·+ Fn−1x
n−1

on a size-n F2-linear space.

Main idea: Write F as

F0(x2 + x) + xF1(x2 + x).

Big overlap between F (¸) =

F0(¸2 + ¸) + ¸F1(¸2 + ¸)

and F (¸+ 1) =

F0(¸2 + ¸) + (¸+ 1)F1(¸2 + ¸).

“Twist” to ensure 1 ∈ space.

Then
˘
¸2 + ¸

¯
is a

size-(n=2) F2-linear space.

Apply same idea recursively.

Standard radix-2 FFT:

Want to evaluate

F = F0 + F1x + · · ·+ Fn−1x
n−1

at all the nth roots of 1.

Write F as F0(x2) + xF1(x2).

Observe big overlap between

F (¸) = F0(¸2) + ¸F1(¸2),

F (−¸) = F0(¸2)− ¸F1(¸2).

F0 has n=2 coeffs;

evaluate at (n=2)nd roots of 1

by same idea recursively.

Similarly F1.

Useless in char 2: ¸ = −¸.

Standard workarounds are painful.

FFT considered impractical.

1988 Wang–Zhu,

independently 1989 Cantor:

“additive FFT” in char 2.

Still quite expensive.

1996 von zur Gathen–Gerhard:

some improvements.

2010 Gao–Mateer:

much better additive FFT.

We use Gao–Mateer,

plus some new improvements.

Gao and Mateer evaluate

F = F0 + F1x + · · ·+ Fn−1x
n−1

on a size-n F2-linear space.

Main idea: Write F as

F0(x2 + x) + xF1(x2 + x).

Big overlap between F (¸) =

F0(¸2 + ¸) + ¸F1(¸2 + ¸)

and F (¸+ 1) =

F0(¸2 + ¸) + (¸+ 1)F1(¸2 + ¸).

“Twist” to ensure 1 ∈ space.

Then
˘
¸2 + ¸

¯
is a

size-(n=2) F2-linear space.

Apply same idea recursively.

Useless in char 2: ¸ = −¸.

Standard workarounds are painful.

FFT considered impractical.

1988 Wang–Zhu,

independently 1989 Cantor:

“additive FFT” in char 2.

Still quite expensive.

1996 von zur Gathen–Gerhard:

some improvements.

2010 Gao–Mateer:

much better additive FFT.

We use Gao–Mateer,

plus some new improvements.

Gao and Mateer evaluate

F = F0 + F1x + · · ·+ Fn−1x
n−1

on a size-n F2-linear space.

Main idea: Write F as

F0(x2 + x) + xF1(x2 + x).

Big overlap between F (¸) =

F0(¸2 + ¸) + ¸F1(¸2 + ¸)

and F (¸+ 1) =

F0(¸2 + ¸) + (¸+ 1)F1(¸2 + ¸).

“Twist” to ensure 1 ∈ space.

Then
˘
¸2 + ¸

¯
is a

size-(n=2) F2-linear space.

Apply same idea recursively.

Useless in char 2: ¸ = −¸.

Standard workarounds are painful.

FFT considered impractical.

1988 Wang–Zhu,

independently 1989 Cantor:

“additive FFT” in char 2.

Still quite expensive.

1996 von zur Gathen–Gerhard:

some improvements.

2010 Gao–Mateer:

much better additive FFT.

We use Gao–Mateer,

plus some new improvements.

Gao and Mateer evaluate

F = F0 + F1x + · · ·+ Fn−1x
n−1

on a size-n F2-linear space.

Main idea: Write F as

F0(x2 + x) + xF1(x2 + x).

Big overlap between F (¸) =

F0(¸2 + ¸) + ¸F1(¸2 + ¸)

and F (¸+ 1) =

F0(¸2 + ¸) + (¸+ 1)F1(¸2 + ¸).

“Twist” to ensure 1 ∈ space.

Then
˘
¸2 + ¸

¯
is a

size-(n=2) F2-linear space.

Apply same idea recursively.

We generalize to

F = F0 + F1x + · · ·+ Ftx
t

for any t < n.

⇒ several optimizations,

not all of which are automated

by simply tracking zeros.

For t = 0: copy F0.

For t ∈ {1; 2}:
F1 is a constant.

Instead of multiplying

this constant by each ¸,

multiply only by generators

and compute subset sums.

Useless in char 2: ¸ = −¸.

Standard workarounds are painful.

FFT considered impractical.

1988 Wang–Zhu,

independently 1989 Cantor:

“additive FFT” in char 2.

Still quite expensive.

1996 von zur Gathen–Gerhard:

some improvements.

2010 Gao–Mateer:

much better additive FFT.

We use Gao–Mateer,

plus some new improvements.

Gao and Mateer evaluate

F = F0 + F1x + · · ·+ Fn−1x
n−1

on a size-n F2-linear space.

Main idea: Write F as

F0(x2 + x) + xF1(x2 + x).

Big overlap between F (¸) =

F0(¸2 + ¸) + ¸F1(¸2 + ¸)

and F (¸+ 1) =

F0(¸2 + ¸) + (¸+ 1)F1(¸2 + ¸).

“Twist” to ensure 1 ∈ space.

Then
˘
¸2 + ¸

¯
is a

size-(n=2) F2-linear space.

Apply same idea recursively.

We generalize to

F = F0 + F1x + · · ·+ Ftx
t

for any t < n.

⇒ several optimizations,

not all of which are automated

by simply tracking zeros.

For t = 0: copy F0.

For t ∈ {1; 2}:
F1 is a constant.

Instead of multiplying

this constant by each ¸,

multiply only by generators

and compute subset sums.

Useless in char 2: ¸ = −¸.

Standard workarounds are painful.

FFT considered impractical.

1988 Wang–Zhu,

independently 1989 Cantor:

“additive FFT” in char 2.

Still quite expensive.

1996 von zur Gathen–Gerhard:

some improvements.

2010 Gao–Mateer:

much better additive FFT.

We use Gao–Mateer,

plus some new improvements.

Gao and Mateer evaluate

F = F0 + F1x + · · ·+ Fn−1x
n−1

on a size-n F2-linear space.

Main idea: Write F as

F0(x2 + x) + xF1(x2 + x).

Big overlap between F (¸) =

F0(¸2 + ¸) + ¸F1(¸2 + ¸)

and F (¸+ 1) =

F0(¸2 + ¸) + (¸+ 1)F1(¸2 + ¸).

“Twist” to ensure 1 ∈ space.

Then
˘
¸2 + ¸

¯
is a

size-(n=2) F2-linear space.

Apply same idea recursively.

We generalize to

F = F0 + F1x + · · ·+ Ftx
t

for any t < n.

⇒ several optimizations,

not all of which are automated

by simply tracking zeros.

For t = 0: copy F0.

For t ∈ {1; 2}:
F1 is a constant.

Instead of multiplying

this constant by each ¸,

multiply only by generators

and compute subset sums.

Gao and Mateer evaluate

F = F0 + F1x + · · ·+ Fn−1x
n−1

on a size-n F2-linear space.

Main idea: Write F as

F0(x2 + x) + xF1(x2 + x).

Big overlap between F (¸) =

F0(¸2 + ¸) + ¸F1(¸2 + ¸)

and F (¸+ 1) =

F0(¸2 + ¸) + (¸+ 1)F1(¸2 + ¸).

“Twist” to ensure 1 ∈ space.

Then
˘
¸2 + ¸

¯
is a

size-(n=2) F2-linear space.

Apply same idea recursively.

We generalize to

F = F0 + F1x + · · ·+ Ftx
t

for any t < n.

⇒ several optimizations,

not all of which are automated

by simply tracking zeros.

For t = 0: copy F0.

For t ∈ {1; 2}:
F1 is a constant.

Instead of multiplying

this constant by each ¸,

multiply only by generators

and compute subset sums.

Gao and Mateer evaluate

F = F0 + F1x + · · ·+ Fn−1x
n−1

on a size-n F2-linear space.

Main idea: Write F as

F0(x2 + x) + xF1(x2 + x).

Big overlap between F (¸) =

F0(¸2 + ¸) + ¸F1(¸2 + ¸)

and F (¸+ 1) =

F0(¸2 + ¸) + (¸+ 1)F1(¸2 + ¸).

“Twist” to ensure 1 ∈ space.

Then
˘
¸2 + ¸

¯
is a

size-(n=2) F2-linear space.

Apply same idea recursively.

We generalize to

F = F0 + F1x + · · ·+ Ftx
t

for any t < n.

⇒ several optimizations,

not all of which are automated

by simply tracking zeros.

For t = 0: copy F0.

For t ∈ {1; 2}:
F1 is a constant.

Instead of multiplying

this constant by each ¸,

multiply only by generators

and compute subset sums.

Syndrome computation

Initial decoding step: compute

s0 = r1 + r2 + · · ·+ rn,

s1 = r1¸1 + r2¸2 + · · ·+ rn¸n,

s2 = r1¸
2
1 + r2¸

2
2 + · · ·+ rn¸

2
n,

...,

st = r1¸
t
1 + r2¸

t
2 + · · ·+ rn¸

t
n.

r1; r2; : : : ; rn are received bits

scaled by Goppa constants.

Typically precompute matrix

mapping bits to syndrome.

Not as slow as Chien search but

still n2+o(1) and huge secret key.

Gao and Mateer evaluate

F = F0 + F1x + · · ·+ Fn−1x
n−1

on a size-n F2-linear space.

Main idea: Write F as

F0(x2 + x) + xF1(x2 + x).

Big overlap between F (¸) =

F0(¸2 + ¸) + ¸F1(¸2 + ¸)

and F (¸+ 1) =

F0(¸2 + ¸) + (¸+ 1)F1(¸2 + ¸).

“Twist” to ensure 1 ∈ space.

Then
˘
¸2 + ¸

¯
is a

size-(n=2) F2-linear space.

Apply same idea recursively.

We generalize to

F = F0 + F1x + · · ·+ Ftx
t

for any t < n.

⇒ several optimizations,

not all of which are automated

by simply tracking zeros.

For t = 0: copy F0.

For t ∈ {1; 2}:
F1 is a constant.

Instead of multiplying

this constant by each ¸,

multiply only by generators

and compute subset sums.

Syndrome computation

Initial decoding step: compute

s0 = r1 + r2 + · · ·+ rn,

s1 = r1¸1 + r2¸2 + · · ·+ rn¸n,

s2 = r1¸
2
1 + r2¸

2
2 + · · ·+ rn¸

2
n,

...,

st = r1¸
t
1 + r2¸

t
2 + · · ·+ rn¸

t
n.

r1; r2; : : : ; rn are received bits

scaled by Goppa constants.

Typically precompute matrix

mapping bits to syndrome.

Not as slow as Chien search but

still n2+o(1) and huge secret key.

Gao and Mateer evaluate

F = F0 + F1x + · · ·+ Fn−1x
n−1

on a size-n F2-linear space.

Main idea: Write F as

F0(x2 + x) + xF1(x2 + x).

Big overlap between F (¸) =

F0(¸2 + ¸) + ¸F1(¸2 + ¸)

and F (¸+ 1) =

F0(¸2 + ¸) + (¸+ 1)F1(¸2 + ¸).

“Twist” to ensure 1 ∈ space.

Then
˘
¸2 + ¸

¯
is a

size-(n=2) F2-linear space.

Apply same idea recursively.

We generalize to

F = F0 + F1x + · · ·+ Ftx
t

for any t < n.

⇒ several optimizations,

not all of which are automated

by simply tracking zeros.

For t = 0: copy F0.

For t ∈ {1; 2}:
F1 is a constant.

Instead of multiplying

this constant by each ¸,

multiply only by generators

and compute subset sums.

Syndrome computation

Initial decoding step: compute

s0 = r1 + r2 + · · ·+ rn,

s1 = r1¸1 + r2¸2 + · · ·+ rn¸n,

s2 = r1¸
2
1 + r2¸

2
2 + · · ·+ rn¸

2
n,

...,

st = r1¸
t
1 + r2¸

t
2 + · · ·+ rn¸

t
n.

r1; r2; : : : ; rn are received bits

scaled by Goppa constants.

Typically precompute matrix

mapping bits to syndrome.

Not as slow as Chien search but

still n2+o(1) and huge secret key.

We generalize to

F = F0 + F1x + · · ·+ Ftx
t

for any t < n.

⇒ several optimizations,

not all of which are automated

by simply tracking zeros.

For t = 0: copy F0.

For t ∈ {1; 2}:
F1 is a constant.

Instead of multiplying

this constant by each ¸,

multiply only by generators

and compute subset sums.

Syndrome computation

Initial decoding step: compute

s0 = r1 + r2 + · · ·+ rn,

s1 = r1¸1 + r2¸2 + · · ·+ rn¸n,

s2 = r1¸
2
1 + r2¸

2
2 + · · ·+ rn¸

2
n,

...,

st = r1¸
t
1 + r2¸

t
2 + · · ·+ rn¸

t
n.

r1; r2; : : : ; rn are received bits

scaled by Goppa constants.

Typically precompute matrix

mapping bits to syndrome.

Not as slow as Chien search but

still n2+o(1) and huge secret key.

We generalize to

F = F0 + F1x + · · ·+ Ftx
t

for any t < n.

⇒ several optimizations,

not all of which are automated

by simply tracking zeros.

For t = 0: copy F0.

For t ∈ {1; 2}:
F1 is a constant.

Instead of multiplying

this constant by each ¸,

multiply only by generators

and compute subset sums.

Syndrome computation

Initial decoding step: compute

s0 = r1 + r2 + · · ·+ rn,

s1 = r1¸1 + r2¸2 + · · ·+ rn¸n,

s2 = r1¸
2
1 + r2¸

2
2 + · · ·+ rn¸

2
n,

...,

st = r1¸
t
1 + r2¸

t
2 + · · ·+ rn¸

t
n.

r1; r2; : : : ; rn are received bits

scaled by Goppa constants.

Typically precompute matrix

mapping bits to syndrome.

Not as slow as Chien search but

still n2+o(1) and huge secret key.

Compare to multipoint evaluation:

F (¸1) = F0 + F1¸1 + · · ·+ Ft¸
t
1,

F (¸2) = F0 + F1¸2 + · · ·+ Ft¸
t
2,

...,

F (¸n) = F0 + F1¸n + · · ·+ Ft¸
t
n.

We generalize to

F = F0 + F1x + · · ·+ Ftx
t

for any t < n.

⇒ several optimizations,

not all of which are automated

by simply tracking zeros.

For t = 0: copy F0.

For t ∈ {1; 2}:
F1 is a constant.

Instead of multiplying

this constant by each ¸,

multiply only by generators

and compute subset sums.

Syndrome computation

Initial decoding step: compute

s0 = r1 + r2 + · · ·+ rn,

s1 = r1¸1 + r2¸2 + · · ·+ rn¸n,

s2 = r1¸
2
1 + r2¸

2
2 + · · ·+ rn¸

2
n,

...,

st = r1¸
t
1 + r2¸

t
2 + · · ·+ rn¸

t
n.

r1; r2; : : : ; rn are received bits

scaled by Goppa constants.

Typically precompute matrix

mapping bits to syndrome.

Not as slow as Chien search but

still n2+o(1) and huge secret key.

Compare to multipoint evaluation:

F (¸1) = F0 + F1¸1 + · · ·+ Ft¸
t
1,

F (¸2) = F0 + F1¸2 + · · ·+ Ft¸
t
2,

...,

F (¸n) = F0 + F1¸n + · · ·+ Ft¸
t
n.

We generalize to

F = F0 + F1x + · · ·+ Ftx
t

for any t < n.

⇒ several optimizations,

not all of which are automated

by simply tracking zeros.

For t = 0: copy F0.

For t ∈ {1; 2}:
F1 is a constant.

Instead of multiplying

this constant by each ¸,

multiply only by generators

and compute subset sums.

Syndrome computation

Initial decoding step: compute

s0 = r1 + r2 + · · ·+ rn,

s1 = r1¸1 + r2¸2 + · · ·+ rn¸n,

s2 = r1¸
2
1 + r2¸

2
2 + · · ·+ rn¸

2
n,

...,

st = r1¸
t
1 + r2¸

t
2 + · · ·+ rn¸

t
n.

r1; r2; : : : ; rn are received bits

scaled by Goppa constants.

Typically precompute matrix

mapping bits to syndrome.

Not as slow as Chien search but

still n2+o(1) and huge secret key.

Compare to multipoint evaluation:

F (¸1) = F0 + F1¸1 + · · ·+ Ft¸
t
1,

F (¸2) = F0 + F1¸2 + · · ·+ Ft¸
t
2,

...,

F (¸n) = F0 + F1¸n + · · ·+ Ft¸
t
n.

Syndrome computation

Initial decoding step: compute

s0 = r1 + r2 + · · ·+ rn,

s1 = r1¸1 + r2¸2 + · · ·+ rn¸n,

s2 = r1¸
2
1 + r2¸

2
2 + · · ·+ rn¸

2
n,

...,

st = r1¸
t
1 + r2¸

t
2 + · · ·+ rn¸

t
n.

r1; r2; : : : ; rn are received bits

scaled by Goppa constants.

Typically precompute matrix

mapping bits to syndrome.

Not as slow as Chien search but

still n2+o(1) and huge secret key.

Compare to multipoint evaluation:

F (¸1) = F0 + F1¸1 + · · ·+ Ft¸
t
1,

F (¸2) = F0 + F1¸2 + · · ·+ Ft¸
t
2,

...,

F (¸n) = F0 + F1¸n + · · ·+ Ft¸
t
n.

Syndrome computation

Initial decoding step: compute

s0 = r1 + r2 + · · ·+ rn,

s1 = r1¸1 + r2¸2 + · · ·+ rn¸n,

s2 = r1¸
2
1 + r2¸

2
2 + · · ·+ rn¸

2
n,

...,

st = r1¸
t
1 + r2¸

t
2 + · · ·+ rn¸

t
n.

r1; r2; : : : ; rn are received bits

scaled by Goppa constants.

Typically precompute matrix

mapping bits to syndrome.

Not as slow as Chien search but

still n2+o(1) and huge secret key.

Compare to multipoint evaluation:

F (¸1) = F0 + F1¸1 + · · ·+ Ft¸
t
1,

F (¸2) = F0 + F1¸2 + · · ·+ Ft¸
t
2,

...,

F (¸n) = F0 + F1¸n + · · ·+ Ft¸
t
n.

Matrix for syndrome computation

is transpose of

matrix for multipoint evaluation.

Syndrome computation

Initial decoding step: compute

s0 = r1 + r2 + · · ·+ rn,

s1 = r1¸1 + r2¸2 + · · ·+ rn¸n,

s2 = r1¸
2
1 + r2¸

2
2 + · · ·+ rn¸

2
n,

...,

st = r1¸
t
1 + r2¸

t
2 + · · ·+ rn¸

t
n.

r1; r2; : : : ; rn are received bits

scaled by Goppa constants.

Typically precompute matrix

mapping bits to syndrome.

Not as slow as Chien search but

still n2+o(1) and huge secret key.

Compare to multipoint evaluation:

F (¸1) = F0 + F1¸1 + · · ·+ Ft¸
t
1,

F (¸2) = F0 + F1¸2 + · · ·+ Ft¸
t
2,

...,

F (¸n) = F0 + F1¸n + · · ·+ Ft¸
t
n.

Matrix for syndrome computation

is transpose of

matrix for multipoint evaluation.

Amazing consequence:

syndrome computation is as few

ops as multipoint evaluation.

Eliminate precomputed matrix.

Syndrome computation

Initial decoding step: compute

s0 = r1 + r2 + · · ·+ rn,

s1 = r1¸1 + r2¸2 + · · ·+ rn¸n,

s2 = r1¸
2
1 + r2¸

2
2 + · · ·+ rn¸

2
n,

...,

st = r1¸
t
1 + r2¸

t
2 + · · ·+ rn¸

t
n.

r1; r2; : : : ; rn are received bits

scaled by Goppa constants.

Typically precompute matrix

mapping bits to syndrome.

Not as slow as Chien search but

still n2+o(1) and huge secret key.

Compare to multipoint evaluation:

F (¸1) = F0 + F1¸1 + · · ·+ Ft¸
t
1,

F (¸2) = F0 + F1¸2 + · · ·+ Ft¸
t
2,

...,

F (¸n) = F0 + F1¸n + · · ·+ Ft¸
t
n.

Matrix for syndrome computation

is transpose of

matrix for multipoint evaluation.

Amazing consequence:

syndrome computation is as few

ops as multipoint evaluation.

Eliminate precomputed matrix.

Transposition principle:

If a linear algorithm

computes a matrix M

then reversing edges and

exchanging inputs/outputs

computes the transpose of M.

1956 Bordewijk;

independently 1957 Lupanov

for Boolean matrices.

1973 Fiduccia analysis:

preserves number of mults;

preserves number of adds plus

number of nontrivial outputs.

Syndrome computation

Initial decoding step: compute

s0 = r1 + r2 + · · ·+ rn,

s1 = r1¸1 + r2¸2 + · · ·+ rn¸n,

s2 = r1¸
2
1 + r2¸

2
2 + · · ·+ rn¸

2
n,

...,

st = r1¸
t
1 + r2¸

t
2 + · · ·+ rn¸

t
n.

r1; r2; : : : ; rn are received bits

scaled by Goppa constants.

Typically precompute matrix

mapping bits to syndrome.

Not as slow as Chien search but

still n2+o(1) and huge secret key.

Compare to multipoint evaluation:

F (¸1) = F0 + F1¸1 + · · ·+ Ft¸
t
1,

F (¸2) = F0 + F1¸2 + · · ·+ Ft¸
t
2,

...,

F (¸n) = F0 + F1¸n + · · ·+ Ft¸
t
n.

Matrix for syndrome computation

is transpose of

matrix for multipoint evaluation.

Amazing consequence:

syndrome computation is as few

ops as multipoint evaluation.

Eliminate precomputed matrix.

Transposition principle:

If a linear algorithm

computes a matrix M

then reversing edges and

exchanging inputs/outputs

computes the transpose of M.

1956 Bordewijk;

independently 1957 Lupanov

for Boolean matrices.

1973 Fiduccia analysis:

preserves number of mults;

preserves number of adds plus

number of nontrivial outputs.

Syndrome computation

Initial decoding step: compute

s0 = r1 + r2 + · · ·+ rn,

s1 = r1¸1 + r2¸2 + · · ·+ rn¸n,

s2 = r1¸
2
1 + r2¸

2
2 + · · ·+ rn¸

2
n,

...,

st = r1¸
t
1 + r2¸

t
2 + · · ·+ rn¸

t
n.

r1; r2; : : : ; rn are received bits

scaled by Goppa constants.

Typically precompute matrix

mapping bits to syndrome.

Not as slow as Chien search but

still n2+o(1) and huge secret key.

Compare to multipoint evaluation:

F (¸1) = F0 + F1¸1 + · · ·+ Ft¸
t
1,

F (¸2) = F0 + F1¸2 + · · ·+ Ft¸
t
2,

...,

F (¸n) = F0 + F1¸n + · · ·+ Ft¸
t
n.

Matrix for syndrome computation

is transpose of

matrix for multipoint evaluation.

Amazing consequence:

syndrome computation is as few

ops as multipoint evaluation.

Eliminate precomputed matrix.

Transposition principle:

If a linear algorithm

computes a matrix M

then reversing edges and

exchanging inputs/outputs

computes the transpose of M.

1956 Bordewijk;

independently 1957 Lupanov

for Boolean matrices.

1973 Fiduccia analysis:

preserves number of mults;

preserves number of adds plus

number of nontrivial outputs.

Compare to multipoint evaluation:

F (¸1) = F0 + F1¸1 + · · ·+ Ft¸
t
1,

F (¸2) = F0 + F1¸2 + · · ·+ Ft¸
t
2,

...,

F (¸n) = F0 + F1¸n + · · ·+ Ft¸
t
n.

Matrix for syndrome computation

is transpose of

matrix for multipoint evaluation.

Amazing consequence:

syndrome computation is as few

ops as multipoint evaluation.

Eliminate precomputed matrix.

Transposition principle:

If a linear algorithm

computes a matrix M

then reversing edges and

exchanging inputs/outputs

computes the transpose of M.

1956 Bordewijk;

independently 1957 Lupanov

for Boolean matrices.

1973 Fiduccia analysis:

preserves number of mults;

preserves number of adds plus

number of nontrivial outputs.

Compare to multipoint evaluation:

F (¸1) = F0 + F1¸1 + · · ·+ Ft¸
t
1,

F (¸2) = F0 + F1¸2 + · · ·+ Ft¸
t
2,

...,

F (¸n) = F0 + F1¸n + · · ·+ Ft¸
t
n.

Matrix for syndrome computation

is transpose of

matrix for multipoint evaluation.

Amazing consequence:

syndrome computation is as few

ops as multipoint evaluation.

Eliminate precomputed matrix.

Transposition principle:

If a linear algorithm

computes a matrix M

then reversing edges and

exchanging inputs/outputs

computes the transpose of M.

1956 Bordewijk;

independently 1957 Lupanov

for Boolean matrices.

1973 Fiduccia analysis:

preserves number of mults;

preserves number of adds plus

number of nontrivial outputs.

We built transposing compiler

producing C code.

Too many variables for m = 13;

gcc ran out of memory.

Compare to multipoint evaluation:

F (¸1) = F0 + F1¸1 + · · ·+ Ft¸
t
1,

F (¸2) = F0 + F1¸2 + · · ·+ Ft¸
t
2,

...,

F (¸n) = F0 + F1¸n + · · ·+ Ft¸
t
n.

Matrix for syndrome computation

is transpose of

matrix for multipoint evaluation.

Amazing consequence:

syndrome computation is as few

ops as multipoint evaluation.

Eliminate precomputed matrix.

Transposition principle:

If a linear algorithm

computes a matrix M

then reversing edges and

exchanging inputs/outputs

computes the transpose of M.

1956 Bordewijk;

independently 1957 Lupanov

for Boolean matrices.

1973 Fiduccia analysis:

preserves number of mults;

preserves number of adds plus

number of nontrivial outputs.

We built transposing compiler

producing C code.

Too many variables for m = 13;

gcc ran out of memory.

Compare to multipoint evaluation:

F (¸1) = F0 + F1¸1 + · · ·+ Ft¸
t
1,

F (¸2) = F0 + F1¸2 + · · ·+ Ft¸
t
2,

...,

F (¸n) = F0 + F1¸n + · · ·+ Ft¸
t
n.

Matrix for syndrome computation

is transpose of

matrix for multipoint evaluation.

Amazing consequence:

syndrome computation is as few

ops as multipoint evaluation.

Eliminate precomputed matrix.

Transposition principle:

If a linear algorithm

computes a matrix M

then reversing edges and

exchanging inputs/outputs

computes the transpose of M.

1956 Bordewijk;

independently 1957 Lupanov

for Boolean matrices.

1973 Fiduccia analysis:

preserves number of mults;

preserves number of adds plus

number of nontrivial outputs.

We built transposing compiler

producing C code.

Too many variables for m = 13;

gcc ran out of memory.

Transposition principle:

If a linear algorithm

computes a matrix M

then reversing edges and

exchanging inputs/outputs

computes the transpose of M.

1956 Bordewijk;

independently 1957 Lupanov

for Boolean matrices.

1973 Fiduccia analysis:

preserves number of mults;

preserves number of adds plus

number of nontrivial outputs.

We built transposing compiler

producing C code.

Too many variables for m = 13;

gcc ran out of memory.

Transposition principle:

If a linear algorithm

computes a matrix M

then reversing edges and

exchanging inputs/outputs

computes the transpose of M.

1956 Bordewijk;

independently 1957 Lupanov

for Boolean matrices.

1973 Fiduccia analysis:

preserves number of mults;

preserves number of adds plus

number of nontrivial outputs.

We built transposing compiler

producing C code.

Too many variables for m = 13;

gcc ran out of memory.

Used qhasm register allocator

to optimize the variables.

Worked, but not very quickly.

Transposition principle:

If a linear algorithm

computes a matrix M

then reversing edges and

exchanging inputs/outputs

computes the transpose of M.

1956 Bordewijk;

independently 1957 Lupanov

for Boolean matrices.

1973 Fiduccia analysis:

preserves number of mults;

preserves number of adds plus

number of nontrivial outputs.

We built transposing compiler

producing C code.

Too many variables for m = 13;

gcc ran out of memory.

Used qhasm register allocator

to optimize the variables.

Worked, but not very quickly.

Wrote faster register allocator.

Still excessive code size.

Transposition principle:

If a linear algorithm

computes a matrix M

then reversing edges and

exchanging inputs/outputs

computes the transpose of M.

1956 Bordewijk;

independently 1957 Lupanov

for Boolean matrices.

1973 Fiduccia analysis:

preserves number of mults;

preserves number of adds plus

number of nontrivial outputs.

We built transposing compiler

producing C code.

Too many variables for m = 13;

gcc ran out of memory.

Used qhasm register allocator

to optimize the variables.

Worked, but not very quickly.

Wrote faster register allocator.

Still excessive code size.

Built new interpreter,

allowing some code compression.

Still big; still some overhead.

Transposition principle:

If a linear algorithm

computes a matrix M

then reversing edges and

exchanging inputs/outputs

computes the transpose of M.

1956 Bordewijk;

independently 1957 Lupanov

for Boolean matrices.

1973 Fiduccia analysis:

preserves number of mults;

preserves number of adds plus

number of nontrivial outputs.

We built transposing compiler

producing C code.

Too many variables for m = 13;

gcc ran out of memory.

Used qhasm register allocator

to optimize the variables.

Worked, but not very quickly.

Wrote faster register allocator.

Still excessive code size.

Built new interpreter,

allowing some code compression.

Still big; still some overhead.

Better solution:

stared at additive FFT,

wrote down transposition

with same loops etc.

Small code, no overhead.

Speedups of additive FFT

translate easily

to transposed algorithm.

Further savings:

merged first stage with

scaling by Goppa constants.

Transposition principle:

If a linear algorithm

computes a matrix M

then reversing edges and

exchanging inputs/outputs

computes the transpose of M.

1956 Bordewijk;

independently 1957 Lupanov

for Boolean matrices.

1973 Fiduccia analysis:

preserves number of mults;

preserves number of adds plus

number of nontrivial outputs.

We built transposing compiler

producing C code.

Too many variables for m = 13;

gcc ran out of memory.

Used qhasm register allocator

to optimize the variables.

Worked, but not very quickly.

Wrote faster register allocator.

Still excessive code size.

Built new interpreter,

allowing some code compression.

Still big; still some overhead.

Better solution:

stared at additive FFT,

wrote down transposition

with same loops etc.

Small code, no overhead.

Speedups of additive FFT

translate easily

to transposed algorithm.

Further savings:

merged first stage with

scaling by Goppa constants.

Transposition principle:

If a linear algorithm

computes a matrix M

then reversing edges and

exchanging inputs/outputs

computes the transpose of M.

1956 Bordewijk;

independently 1957 Lupanov

for Boolean matrices.

1973 Fiduccia analysis:

preserves number of mults;

preserves number of adds plus

number of nontrivial outputs.

We built transposing compiler

producing C code.

Too many variables for m = 13;

gcc ran out of memory.

Used qhasm register allocator

to optimize the variables.

Worked, but not very quickly.

Wrote faster register allocator.

Still excessive code size.

Built new interpreter,

allowing some code compression.

Still big; still some overhead.

Better solution:

stared at additive FFT,

wrote down transposition

with same loops etc.

Small code, no overhead.

Speedups of additive FFT

translate easily

to transposed algorithm.

Further savings:

merged first stage with

scaling by Goppa constants.

We built transposing compiler

producing C code.

Too many variables for m = 13;

gcc ran out of memory.

Used qhasm register allocator

to optimize the variables.

Worked, but not very quickly.

Wrote faster register allocator.

Still excessive code size.

Built new interpreter,

allowing some code compression.

Still big; still some overhead.

Better solution:

stared at additive FFT,

wrote down transposition

with same loops etc.

Small code, no overhead.

Speedups of additive FFT

translate easily

to transposed algorithm.

Further savings:

merged first stage with

scaling by Goppa constants.

We built transposing compiler

producing C code.

Too many variables for m = 13;

gcc ran out of memory.

Used qhasm register allocator

to optimize the variables.

Worked, but not very quickly.

Wrote faster register allocator.

Still excessive code size.

Built new interpreter,

allowing some code compression.

Still big; still some overhead.

Better solution:

stared at additive FFT,

wrote down transposition

with same loops etc.

Small code, no overhead.

Speedups of additive FFT

translate easily

to transposed algorithm.

Further savings:

merged first stage with

scaling by Goppa constants.

Results

60493 Ivy Bridge cycles:

8622 for permutation.

20846 for syndrome.

7714 for BM.

14794 for roots.

8520 for permutation.

Code will be public domain.

We’re still speeding it up.

More information:

cr.yp.to/papers.html#mcbits

We built transposing compiler

producing C code.

Too many variables for m = 13;

gcc ran out of memory.

Used qhasm register allocator

to optimize the variables.

Worked, but not very quickly.

Wrote faster register allocator.

Still excessive code size.

Built new interpreter,

allowing some code compression.

Still big; still some overhead.

Better solution:

stared at additive FFT,

wrote down transposition

with same loops etc.

Small code, no overhead.

Speedups of additive FFT

translate easily

to transposed algorithm.

Further savings:

merged first stage with

scaling by Goppa constants.

Results

60493 Ivy Bridge cycles:

8622 for permutation.

20846 for syndrome.

7714 for BM.

14794 for roots.

8520 for permutation.

Code will be public domain.

We’re still speeding it up.

More information:

cr.yp.to/papers.html#mcbits

We built transposing compiler

producing C code.

Too many variables for m = 13;

gcc ran out of memory.

Used qhasm register allocator

to optimize the variables.

Worked, but not very quickly.

Wrote faster register allocator.

Still excessive code size.

Built new interpreter,

allowing some code compression.

Still big; still some overhead.

Better solution:

stared at additive FFT,

wrote down transposition

with same loops etc.

Small code, no overhead.

Speedups of additive FFT

translate easily

to transposed algorithm.

Further savings:

merged first stage with

scaling by Goppa constants.

Results

60493 Ivy Bridge cycles:

8622 for permutation.

20846 for syndrome.

7714 for BM.

14794 for roots.

8520 for permutation.

Code will be public domain.

We’re still speeding it up.

More information:

cr.yp.to/papers.html#mcbits

Better solution:

stared at additive FFT,

wrote down transposition

with same loops etc.

Small code, no overhead.

Speedups of additive FFT

translate easily

to transposed algorithm.

Further savings:

merged first stage with

scaling by Goppa constants.

Results

60493 Ivy Bridge cycles:

8622 for permutation.

20846 for syndrome.

7714 for BM.

14794 for roots.

8520 for permutation.

Code will be public domain.

We’re still speeding it up.

More information:

cr.yp.to/papers.html#mcbits

