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(1,10011+/x), degree 4.5.
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L = (0, ro/X)P + (1, r1+/X)P.
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(0,1010004/x), degree 5.5.
(1,101114/x), degree 4.5.
(10,110+/x), degree 2.5.
(1101, 114/x), degree 3.
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Euclid/Stevin computation:
Define rn = rp mod rq,
r3 = r1 mod ry, etc.
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(1101, 114/x), degree 3.

For any field k, any rg, i
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Euclid/Stevin computation:
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r3 = r1 mod ry, etc.

Extended: g9 = 0; g1 = 1;

qi+2 = qi — [ri/ri+1] Git1.
Then gjrp = r; (mod ry).
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in P = k[x] with degrg > deg r;:
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Then gjrp = r; (mod ry).

| attice view: Have
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(gi, riv/x)P + (qit1. rix1v/Xx)P.



Warning: Sometimes
shortest independent vector Is
after shortest nonzero vector.

e.g. Define
ro = 101000, r = 10111,

L = (0, ro/X)P + (1, r1+/X)P.

Successive generators for L:
(0,1010004/x), degree 5.5.
(1,101114/x), degree 4.5.
(10,110+/x), degree 2.5.
(1101, 114/x), degree 3.

For any field k, any rg, i
in P = k[x] with degrg > deg r;:

Euclid/Stevin computation:
Define rn = rp mod rq,
r3 = r1 mod ry, etc.

Extended: gp = 0; g1 = 1;
Gi+2 = qi — |fi/ri+1] gi+1-
Then gjrp = r; (mod ry).

| attice view: Have

(0, ov/x)P + (1, n+/x)P =
(gi, riv/x)P + (qit1. rix1v/Xx)P.

Can continue until rj, 7 = 0.
gcd{rg, 1} = r;/ leadcoeff r;.
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For any field k, any rg, i

in P = k|x] with deg rp > deg r1:

Euclid/Stevin computation:
Define rn = rp mod ry,
r3 = r; mod ry, etc.

Extended: g9 =0; g1 = 1;
Gi+2 = qi — |fi/ri+1] gi+1.
Then gjrp = r; (mod ry).

| attice view: Have

(0, ov/x)P + (1, n4/x)P =

(gi, riv/x)P + (Gix1, rix1vV/x)P.

Can continue until ri; 1 = 0.
gcd{rg, 1} = r;/ leadcoeff r;.
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in P = k|x] with deg ry > deg ry:

Euclid/Stevin computation:
Define rn = rp mod rq,
r3 = r; mod ry, etc.

Extended: gp = 0; g1 = 1;
Gi+2 = qi — |fi/ri+1] gi+1-
Then gjrp = r; (mod ry).

| attice view: Have

(0, ov/x)P + (1, n+/x)P =
(gi, rivX)P + (Git1. rit1v/x) P

Can continue until rj, 1 = 0.
gcd{rg, 1} = r;/ leadcoeff r;.

Reducing lattice b
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For any field k, any rg,

in P = k|x] with deg rp > deg r1:

Euclid/Stevin computation:
Define rn = rp mod ry,
r3 = r; mod ry, etc.

Extended: g9 =0; g1 = 1;
Gi+2 = qi — |fi/ri+1]) gi+1.
Then gjrp = r; (mod ry).

| attice view: Have

(0, ov/x)P + (1, n/x)P =
(gi, riv/X)P + (qi+1, rix1v/Xx)P.

Can continue until ri; 1 = 0.
gcd{rg, 1} = r;/ leadcoeff r;.

Reducing lattice basis for L
is a “half gcd” computation
stopping halfway to the gcd



For any field k, any rgy,

in P = k|x] with deg ry > deg ry:

Euclid/Stevin computation:
Define rn = rp mod rq,
r3 = rp mod ry, etc.

Extended: gp = 0; g1 = 1;
Gi+2 = qi — |fi/ri+1] gi+1-
Then gjrp = r; (mod ry).

| attice view: Have

(0, ov/x)P + (1, n/x)P =
(qi, riv/x)P + (gi+1, rig1v/x)P.

Can continue until rj, 1 = 0.
gcd{rg, 1} = r;/ leadcoeff r;.

Reducing lattice basis for L
is a “half gcd” computation,
stopping halfway to the gcd.



For any field k, any rgy,

in P = k|x] with deg ry > deg ry:

Euclid/Stevin computation:
Define rn = rp mod rq,
r3 = rp mod ry, etc.

Extended: gp = 0; g1 = 1;
Gi+2 = qi — |fi/ri+1] gi+1-
Then gjrp = r; (mod ry).

| attice view: Have

(0, ov/x)P + (1, n/x)P =
(qi, riv/x)P + (gi+1, rig1v/x)P.

Can continue until rj, 1 = 0.
gcd{rg, 1} = r;/ leadcoeff r;.

Reducing lattice basis for L

is a “half gcd” computation,

stopping halfway to the gcd.

C

C

eg r; decreases; deg g; increases;
eg gir1 + degri = degrp.



For any field k, any rgy,

in P = k|x] with deg ry > deg ry:

Euclid/Stevin computation:
Define rn = rp mod rq,
r3 = rp mod ry, etc.

Extended: gp = 0; g1 = 1;
Gi+2 = qi — |fi/ri+1] gi+1-
Then gjrp = r; (mod ry).

| attice view: Have

(0, ov/x)P + (1, n/x)P =
(qi, riv/x)P + (gi+1, rig1v/x)P.

Can continue until rj, 1 = 0.
gcd{rg, 1} = r;/ leadcoeff r;.

Reducing lattice basis for L

is a “half gcd” computation,

stopping halfway to the gcd.

C

C

eg r; decreases; deg g; increases;
eg gir1 + degri = degrp.

Say j is minimal with

deg ri/x < (degrg)/2.
Then deg q; < (degrp)/2 so

deg(qj, rjv/x) < (degrp)/2.
Shortest nonzero vector.



For any field k, any rgy,

in P = k|x] with deg ry > deg ry:

Euclid/Stevin computation:
Define rn = rp mod rq,
r3 = rp mod ry, etc.

Extended: gp = 0; g1 = 1;
Gi+2 = qi — |fi/ri+1] gi+1-
Then gjrp = r; (mod ry).

| attice view: Have

(0, ov/x)P + (1, n/x)P =
(qi, riv/x)P + (gi+1, rig1v/x)P.

Can continue until rj, 1 = 0.
gcd{rg, 1} = r;/ leadcoeff r;.

Reducing lattice basis for L
is a “half gcd” computation,
stopping halfway to the gcd.

deg r; decreases; deg g; increases;
deg q;11 +degri = degn.

Say j is minimal with
deg ri/x < (degrg)/2.
Then deg q; < (degrp)/2 so

deg(qj, rjv/x) < (degrp)/2.
Shortest nonzero vector.

(qj+e1 rj+e\/)_<) has degree
deg ro/x — deg(qj, rj/x)
for some e € {—1,1}.
Shortest independent vector.
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tevin computation:
> — ) mod r1,
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d: go =0; g1 = 1;
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1} = r;/ leadcoeff r;.

Reducing lattice basis for L
is a “half gcd” computation,
stopping halfway to the gcd.

deg r; decreases; deg g; increases;
deg q;.1 +degri = degn.

Say j is minimal with
deg ri/x < (degrg)/2.
Then deg q; < (degrp)/2 so

deg(qj, rjv/x) < (degry)/2.
Shortest nonzero vector.

(Gjter ri+ev/x) has degree

deg ro+/x — deg(q;, rjv/x)
for some e € {—1,1}.
Shortest independent vector.

Proof of
Take an
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Reducing lattice basis for L
is a “half gcd” computation,
stopping halfway to the gcd.

deg r; decreases; deg g; increases;
deg qj11 +degri = degn.

Say j is minimal with
deg ri/x < (degrg)/2.
Then deg q; < (degrp)/2 so

deg(qj, rjv/x) < (degrp)/2.
Shortest nonzero vector.

(qj+e1 rj+e\/)_<) has degree
deg ro/x — deg(qj, rj/x)
for some e € {—1,1}.
Shortest independent vector.

Proof of “shortest
Take any (q, ry/x



Reducing lattice basis for L Proof of “shortest”:
g is a “half gcd” computation, Take any (g, ri/x) in lattice
stopping halfway to the gcd.

deg r; decreases; deg g; increases;
deg q;.1 +degri = degn.

Say j is minimal with
deg ri/x < (degrg)/2.
Then deg q; < (degrp)/2 so

deg(qgj, rjv/x) < (degrp)/2.
Shortest nonzero vector.

)P. (Gjter ri+ev/x) has degree
deg ro/x — deg(g;, rjv/x)
for some € € {—1, 1}.

Shortest independent vector.




Reducing lattice basis for L Proof of “shortest”:
is a “half gcd” computation, Take any (g, ri/x) in lattice.
stopping halfway to the gcd.

deg r; decreases; deg g; increases;
deg q;11 +degri = degn.

Say j is minimal with
deg ri/x < (degrg)/2.
Then deg q; < (degrp)/2 so

deg(qj, rjv/x) < (degry)/2.
Shortest nonzero vector.

(qj+e1 rj+e\/)_<) has degree
deg ro/x — deg(qj, rj/x)
for some e € {—1,1}.
Shortest independent vector.




Reducing lattice basis for L
is a “half gcd” computation,
stopping halfway to the gcd.

deg r; decreases; deg g; increases;
deg q;11 +degri = degn.

Say j is minimal with

deg ri/x < (degrg)/2.
Then deg q; < (degrp)/2 so

deg(qj, rjv/x) < (degry)/2.
Shortest nonzero vector.

(qj+e1 rj+e\/)_<) has degree
deg ro/x — deg(qj, rj/x)
for some e € {—1,1}.
Shortest independent vector.

Proof of “shortest™:
Take any (g, ri/x) in lattice.

(g, rv/x) = u(qj, rjv/x)
+ V(Gjte Fjtev/X)
for some u, v € P.




Reducing lattice basis for L
is a “half gcd” computation,
stopping halfway to the gcd.

deg r; decreases; deg g; increases;
deg q;11 +degri = degn.

Say j is minimal with
deg ri/x < (degrg)/2.
Then deg q; < (degrp)/2 so

deg(qj, rjv/x) < (degry)/2.
Shortest nonzero vector.

(qj+e1 rj+e\/)_<) has degree
deg ro/x — deg(qj, rj/x)
for some e € {—1,1}.
Shortest independent vector.

Proof of “shortest™:
Take any (g, ri/x) in lattice.

(g, rv/x) = u(qj, rjv/x)
+ V(Gjte Fjtev/X)
for some u, v € P.

djlji+e — dj+elfj = =10
so v =*£(rq; —qrj)/r
and u = :(lej+e — fClj+e)/f0-




Reducing lattice basis for L
is a “half gcd” computation,
stopping halfway to the gcd.

deg r; decreases; deg g; increases;
deg q;11 +degri = degn.

Say j is minimal with
deg ri/x < (degrg)/2.
Then deg q; < (degrp)/2 so

deg(qj, rjv/x) < (degry)/2.
Shortest nonzero vector.

(qj+e1 rj+e\/)_<) has degree
deg ro/x — deg(qj, rj/x)
for some e € {—1,1}.
Shortest independent vector.

Proof of “shortest™:
Take any (g, ri/x) in lattice.

(g, rv/x) = u(qj, rjv/x)
+ V(Gjte Fjtev/X)
for some u, v € P.

djlji+e — dj+elfj = =10
so v =*£(rq; —qrj)/r
and u = :(lej+e — fClj+e)/f0-

If deg(q, rv/x)

< deg(qure rj+e\/})
then degv < 0 so v = 0;

l.e., any vector In lattice

shorter than (gjte, fjt+ev/X)
is a multiple of (q;, rj/x).
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(g, rv/x) = u(qj, rj/x)
+ V(qj er Iy eV X)
for some u, v € P.

dilj+e — 9j+elj = =10
so v =*£(rq; —qrj)/rn

and u = :(lej+e — fClj+e)/f0-

If deg(q, rv/x)

< deg(qj+€v rj+€\/)_<)
then degv < 0 so v =0;

l.e., any vector In lattice

shorter than (gjte, ri+ev/X)
is a multiple of (q;, rj/x).
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Fix integ
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Proof of “shortest™:
Take any (g, ri/x) in lattice.

(g, rv/x) = u(qj, rjv/x)
+ V(Gjte: Fi+eVX)
for some u,v € P.

djlji+e — dj+elfj = =10
so v =*£(rq; —qrj)/rn

and u = :(lej+e — fClj+e)/f0-

If deg(q, rv/x)

< deg(qure rj+e\/})
then degv < 0 so v = 0;

l.e., any vector In lattice

shorter than (gjte, fjt+ev/X)
is a multiple of (q;, rj/x).

Classical binary G

Fix integer n > 0;
integer m > 1 witl
integer t > 0;

distinct a1, ..., an
monic g € FQm[X]
with g(a1) - - g(a,
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Proof of “shortest”:
Take any (g, r1/x) in lattice.

(g, rv/x) = u(qj, rjv/x)
+ V(qj er Iy eV X)
for some u,v € P.

dilji+e — 9j+elj = =10
so v =*£(rq; —qrj)/rn

and u = :(lej+e — fClj+e)/f0-

If deg(q, rv/x)

< deg(qj+€v rj+€\/)_<)
then degv < 0 so v =0;

l.e., any vector In lattice

shorter than (gjte, ri+ev/X)
is a multiple of (q;, rj/x).

Classical binary Goppa code

Fix integer n > 0;

integer m > 1 with 2™ > p;
integer t > 0;

distinct ay, ..., an € Fom;
monic g € Fom|x] of degree
with g(a1)---g(an) # 0.



Proof of “shortest™:
Take any (g, ri/x) in lattice.

(g, rv/x) = u(qj, rjv/x)
+ V(Gjte Fjtev/X)
for some u,v € P.

dilj+e — dj+elj = =10
so v =*£(rq; —qrj)/rn

and u = :(lej+e — fClj+e)/f0-

If deg(q, rv/x)

< deg(qure rj+e\/})
then degv < 0 so v = 0;

l.e., any vector In lattice

shorter than (gjte, fjt+ev/X)
is a multiple of (q;, rj/x).

Classical binary Goppa codes

Fix integer n > 0;

integer m > 1 with 2™ > p;
integer t > 0;

distinct ay, ..., an € Fom;
monic g € Fom|[x]| of degree t
with g(a1) - - - g(an) # 0.



Proof of “shortest™:
Take any (g, ri/x) in lattice.

(g, rv/x) = u(qj, rjv/x)
+ V(Gjte Fjtev/X)
for some u,v € P.

dilj+e — dj+elj = =10
so v =*£(rq; —qrj)/rn

and u = :(lej+e — fClj+e)/f0-

If deg(q, rv/x)

< deg(qure rj+e\/})
then degv < 0 so v = 0;

l.e., any vector In lattice

shorter than (gjte, fjt+ev/X)
is a multiple of (q;, rj/x).

Classical binary Goppa codes

Fix integer n > 0;

integer m > 1 with 2™ > p;
integer t > 0;

distinct ay, ..., an € Fom;
monic g € Fom|[x]| of degree t
with g(a1) - - - g(an) # 0.

Note that x — a;
nas a reciprocal in Fom|x|/g.




Proof of “shortest™:
Take any (g, ri/x) in lattice.

(g, rv/x) = u(qj, rjv/x)
+ V(Gjte Fjtev/X)
for some u,v € P.

dilj+e — dj+elj = =10
so v =*£(rq; —qrj)/rn

and u = :(lej+e — fClj+e)/f0-

If deg(q, rv/x)

< deg(qure rj+e\/})
then degv < 0 so v = 0;

l.e., any vector In lattice

shorter than (gjte, fjt+ev/X)
is a multiple of (q;, rj/x).

Classical binary Goppa codes

Fix integer n > 0;

integer m > 1 with 2™ > p;
integer t > 0;

distinct ay, ..., an € Fom;
monic g € Fom|[x]| of degree t
with g(a1) - - - g(an) # 0.

Note that x — a;
nas a reciprocal in Fom|x|/g.

Define linear subspace I' C FJ
as set of (cy,...,cn) with

Zi C,'/(X — a,-) — 0 In F2m[X]/g.
Then #£[ > 2n—mt,
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Classical binary Goppa codes

+(qrjte — rqj+e)/ ro-

Fix integer n > 0;

integer m > 1 with 2™ > p;
integer t > 0;

distinct ay, ..., an € Fom;
monic g € Fom|[x| of degree t
with g(a1)---g(an) # 0.

Note that x — a;
nas a reciprocal in Fom|x]/g.

Define linear subspace I' C F7J
as set of (cy,...,cn) with

2 Ci/(x—aj) =0inFom[x]/g.

Then 4 > 2n—mt,

Goal: Fi
V = C +
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Classical binary Goppa codes

Fix integer n > 0;

integer m > 1 with 2™ > p;
integer t > 0;

distinct ay, ..., an € Fom;
monic g € Fom|[x]| of degree t
with g(a1) - --g(an) # 0.

Note that x — a;
nas a reciprocal in Fom|x|/g.

Define linear subspace I' C FJ
as set of (cq,...,cn) with

2 Ci/(x—aj)=0inFom[x]/g.

Then #I > 2n—mt,

Goal: Find c el
v = C -+ e, assumi



Classical binary Goppa codes

Fix integer n > 0;

integer m > 1 with 2™ > p;
integer t > 0;

distinct ay, ..., an € Fom;
monic g € Fom|[x| of degree t
with g(a1)---g(an) # 0.

Note that x — a;
nas a reciprocal in Fom|x]/g.

Define linear subspace I' C F7J
as set of (cy,...,cn) with

2 Ci/(x —aj) =0in Fom[x]/g.

Then 4 > 2n—mt,

Goal: Find c €T given
v =+ e, assuming |e| < t



Classical binary Goppa codes

Fix integer n > 0;

integer m > 1 with 2™ > p;
integer t > 0;

distinct ay, ..., an € Fom;
monic g € Fom|[x]| of degree t
with g(a1) - - - g(an) # 0.

Note that x — a;
nas a reciprocal in Fom|x|/g.

Define linear subspace I' C FJ
as set of (cy,...,cn) with

2 Ci/(x—aj)=0inFom[x]/g.

Then #I > 2n—mt,

Goal: Find c €T given
v = c + e, assuming |e| < t/2.



Classical binary Goppa codes

Fix integer n > 0;

integer m > 1 with 2™ > p;
integer t > 0;

distinct ay, ..., an € Fom;
monic g € Fom|[x]| of degree t
with g(a1) - - - g(an) # 0.

Note that x — a;
nas a reciprocal in Fom|x|/g.

Define linear subspace I' C FJ
as set of (cy,..., Cp) with

Then #I > 2n—mt,

Goal: Find c €T given
v = c + e, assuming |e| < t/2.

Lift > ;- vi/(x — aj) from Fom|x]/g
to s € Fom|x] with degs < t.

Find shortest nonzero

(gj. rj+/x) in the lattice L =

(0, gv/x)Fom|x] + (1, s4/x)Fom[x].



Classical binary Goppa codes

Fix integer n > 0;

integer m > 1 with 2™ > p;
integer t > 0;

distinct ay, ..., an € Fom;
monic g € Fom|[x]| of degree t
with g(a1) - - - g(an) # 0.

Note that x — a;
nas a reciprocal in Fom|x|/g.

Define linear subspace I' C FJ
as set of (cy,..., Cp) with

Then 4 > 2n—mt,

Goal: Find c €T given
v = c + e, assuming |e| < t/2.

Lift > ;- vi/(x — aj) from Fom|x]/g
to s € Fom|[x| with degs < t.
Find shortest nonzero

(gj. rj+/x) in the lattice L =

(0, gv/X)Fam[x] + (1, s¢/x)Fam][x].
Define E, F € Fom|[x] by
F=1l;.e+0(x —aj) and
E=>;Fei/(x— a).

Fact: E/F = rj/qj SO

F is monic denominator of rj/qj_



Classical binary Goppa codes

Fix integer n > 0;

integer m > 1 with 2™ > p;
integer t > 0;

distinct ay, ..., an € Fom;
monic g € Fom|[x]| of degree t
with g(a1) - - - g(an) # 0.

Note that x — a;
nas a reciprocal in Fom|x|/g.

Define linear subspace I' C FJ
as set of (cy,..., Cp) with

Then 4 > 2n—mt,

Goal: Find c €T given
v = c + e, assuming |e| < t/2.

Lift > ;- vi/(x — aj) from Fom|x]/g
to s € Fom|[x| with degs < t.
Find shortest nonzero

(gj. rj+/x) in the lattice L =

(0, gv/X)Fam[x] + (1, s¢/x)Fam][x].
Define E, F € Fom|[x] by
F=1l;.e+0(x —aj) and
E=>;Fei/(x— a).

Fact: E/F = rj/qj SO

F is monic denominator of rj/qj_

e — 0 if F(a,-) 75 0.
e — E(a,-)/F'(a,-) if F(a,-) = 0.
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rer n > 0;
n > 1 with 2™ > n;

€ Fom|x| of degree t
1) -+ g(an) # 0.

At X — g
ciprocal in Fom|x]/g.

near subspace [ C FJ
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Goal: Find c €T given
v = c + e, assuming |e| < t/2.

Lift > ;v;i/(x — aj) from Fom|x]/g
to s € Fom|[x| with degs < t.
Find shortest nonzero

(gj. rjv/x) in the lattice L =

(0, gv/X)Fam[x] + (1, s¢/x)Fam][x].
Define E, F € Fom|x] by
F=11;.e0(x —ai) and
E=2;Fei/(x—aj)

Fact: E/F =r;/q; so

F is monic denominator of rj/qj_

€ = 0 if F(a,-) # 0.
€ — E(a,-)/F'(a,-) if F(a,-) = 0.

This dec
“correct:

Why do

> i€/(
> i¢i/(
so s =1I
so (F, E
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of degree t

) # 0.
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bace [ C FJ
“n) with

0 in Fom[x]/g.

’.

Goal: Find c €T given
v = c + e, assuming |e| < t/2.

Lift 3 ; vi/(x — a;) from Fom([x]/g
to s € Fom|[x| with degs < t.
Find shortest nonzero

(gj. rj+/x) in the lattice L =

(0, gv/X)Fom[x] + (1, s/x)Fom[x].
Define E, F € Fom|x] by

F = Hi;eﬁ,go(x — a;) and

E=2 ;Fei/(x—a)

Fact: E/F =rj/q; so

F is monic denominator of r;/g;.
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Proof: Assume
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Proof: Assume
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t >2: m>1with 2™ > n.
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This 1s too small:

~200 pre-quantum security.



Proof: Assume
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~200 pre-quantum security.

n= 2048, m=11, t = 32:
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Proof: Assume
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~200 pre-quantum security.

n= 2048, m=11, t = 32:
~287 pre-quantum security.

n=34038, m =12, t = 67:
~2140 pre-quantum security.



Proof: Assume
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n= 2048, m=11, t = 32:
~287 pre-quantum security.

n=34038, m =12, t = 67:
~2140 pre-quantum security.

n=6960, m=13, t =1109:
~2203 pre-quantum security.
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The McEliece cryptosystem

Standardize integers n > 0;
t>2: m>1with 2™ > n.
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n—=1024, m = 10, t = 50.
This 1s too small:
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The McEliece cryptosystem

Standardize integers n > O;
t>2: m>1with 2™ > n.

1978 McEliece example:
n—=1024, m = 10, t = 50.
This 1s too small:

~260 pre-quantum security.

n= 2048, m=11, t = 32:
~287 pre-quantum security.

n=3403, m =12, t = 67:
~2140 pre-quantum security.

n=6960, m=13, t =1109:
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Standardize integers n > 0; g € Fam|x| with degg = t;
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The McEliece cryptosystem

Standardize integers n > 0;
t >2: m>1with 2™ > n.

1978 McEliece example:
n—=1024, m = 10, t = 50.
This 1s too small:
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n= 2048, m=11, t = 32:
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n=3403, m =12, t = 67:
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n=06960, m=13, t =1109:
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Alice's secrets: monic irreducible
g € Fom[x]| with degg = t;
distinct a1,...,a, € Fom.

Note that g(a1)---g(an) # 0.
Define [ as before.



The McEliece cryptosystem

Standardize integers n > 0;
t >2: m>1with 2™ > n.

1978 McEliece example:
n—=1024, m = 10, t = 50.
This 1s too small:

~200 pre-quantum security.

n= 2048, m=11, t = 32:
~287 pre-quantum security.

n=3403, m =12, t = 67:
~2140 pre-quantum security.

n=06960, m=13, t =1109:
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distinct a1,...,a, € Fom.

Note that g(a1)---g(an) # 0.
Define [ as before.

Alice's public key:
mt X n matrix K over F»
such that I = Ker K.
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an n-coeff polynomial

at n points
using plto(l) operations? Fo has n/2 coeffs;
Isn't this better than n°/lg n? evaluate at (n/2)nd roots of 1

by same idea recursively.
Similarly Fq.
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