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Define P = F2[x ],

r0 = (101000)x = x5 + x3 ∈ P ,

r1 = (10011)x = x4 + x + 1 ∈ P ,
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(111; 1): shortest nonzero vector.

(10; 1110): shortest

independent vector.
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Gao and Mateer evaluate

F = F0 + F1x + · · ·+ Fn−1x
n−1

on a size-n F2-linear space.

Main idea: Write F as

F0(x2 + x) + xF1(x2 + x).

Big overlap between F (¸) =
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preserves number of mults;

preserves number of adds plus

number of nontrivial outputs.
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