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often lead users to reduce

cryptographic security levels
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Example 1 (according to

Firefox on Linux, 2013.06.24):

Google SSL uses RSA-1024.

Security note:

Analyses in 2003 concluded

that RSA-1024 was breakable;

e.g., 2003 Shamir–Tromer

estimated 1 year, �107 USD.

RSA Labs and NIST response:

Move to RSA-2048 by 2010.
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Extensive work on ECC speed

) fast high-security ECC.

Example: Curve25519 ECDH in

460200 Cortex A8 cycles;

332304 Snapdragon S4 cycles;

182632 Ivy Bridge cycles.

Requires serious analysis

and optimization of algorithms.

Not just “polynomial time”;

not just “quadratic time”.

My topic today:

decomposing elliptic-curve

operations into field operations.
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((x1y2 + y1x2)=(1 + dx1x2y1y2),

(y1y2 � x1x2)=(1� dx1x2y1y2))
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Better: postpone divisions

and work with fractions.

Represent (x; y) as

(X : Y : Z) with x = X=Z and

y = Y=Z for Z 6= 0.
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X1; Y1; Z1; X2; Y2; Z2.

Output from addition algorithm:

X3; Y3; Z3. No divisions needed!
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Faster doubling

(x1; y1) + (x1; y1) =

((x1y1+y1x1)=(1+dx1x1y1y1),

(y1y1�x1x1)=(1�dx1x1y1y1)) =

((2x1y1)=(1 + dx2
1y

2
1),

(y2
1�x

2
1)=(1� dx2

1y
2
1)).

x2
1 + y2

1 = 1 + dx2
1y

2
1 so

(x1; y1) + (x1; y1) =

((2x1y1)=(x2
1 + y2

1),

(y2
1�x

2
1)=(2� x2

1 � y2
1)).

Again eliminate divisions

using P2: only 3M + 4S.

Much faster than addition.

Useful: many doublings in ECC.



i.e.

�
X1

Z1
;
Y1

Z1

�
+

�
X2

Z2
;
Y2

Z2

�

=

�
X3

Z3
;
Y3

Z3

�

where

F = Z2
1Z

2
2 � dX1X2Y1Y2,

G = Z2
1Z

2
2 + dX1X2Y1Y2,

X3 = Z1Z2(X1Y2 + Y1X2)F ,

Y3 = Z1Z2(Y1Y2 �X1X2)G,

Z3 = FG.

Input to addition algorithm:

X1; Y1; Z1; X2; Y2; Z2.

Output from addition algorithm:

X3; Y3; Z3. No divisions needed!

Save multiplications by

eliminating common

subexpressions:

A = Z1 � Z2; B = A2;

C = X1 �X2;

D = Y1 � Y2;

E = d � C �D;

F = B � E; G = B + E;

X3 = A � F � (X1 � Y2 + Y1 �X2);

Y3 = A � G � (D � C);

Z3 = F � G.

Cost: 11M + 1S + 1D.

Can do better: 10M + 1S + 1D.

Faster doubling

(x1; y1) + (x1; y1) =

((x1y1+y1x1)=(1+dx1x1y1y1),

(y1y1�x1x1)=(1�dx1x1y1y1)) =

((2x1y1)=(1 + dx2
1y

2
1),

(y2
1�x

2
1)=(1� dx2

1y
2
1)).

x2
1 + y2

1 = 1 + dx2
1y

2
1 so

(x1; y1) + (x1; y1) =

((2x1y1)=(x2
1 + y2

1),

(y2
1�x

2
1)=(2� x2

1 � y2
1)).

Again eliminate divisions

using P2: only 3M + 4S.

Much faster than addition.

Useful: many doublings in ECC.



i.e.

�
X1

Z1
;
Y1

Z1

�
+

�
X2

Z2
;
Y2

Z2

�

=

�
X3

Z3
;
Y3

Z3

�

where

F = Z2
1Z

2
2 � dX1X2Y1Y2,

G = Z2
1Z

2
2 + dX1X2Y1Y2,

X3 = Z1Z2(X1Y2 + Y1X2)F ,

Y3 = Z1Z2(Y1Y2 �X1X2)G,

Z3 = FG.

Input to addition algorithm:

X1; Y1; Z1; X2; Y2; Z2.

Output from addition algorithm:

X3; Y3; Z3. No divisions needed!

Save multiplications by

eliminating common

subexpressions:

A = Z1 � Z2; B = A2;

C = X1 �X2;

D = Y1 � Y2;

E = d � C �D;

F = B � E; G = B + E;

X3 = A � F � (X1 � Y2 + Y1 �X2);

Y3 = A � G � (D � C);

Z3 = F � G.

Cost: 11M + 1S + 1D.

Can do better: 10M + 1S + 1D.

Faster doubling

(x1; y1) + (x1; y1) =

((x1y1+y1x1)=(1+dx1x1y1y1),

(y1y1�x1x1)=(1�dx1x1y1y1)) =

((2x1y1)=(1 + dx2
1y

2
1),

(y2
1�x

2
1)=(1� dx2

1y
2
1)).

x2
1 + y2

1 = 1 + dx2
1y

2
1 so

(x1; y1) + (x1; y1) =

((2x1y1)=(x2
1 + y2

1),

(y2
1�x

2
1)=(2� x2

1 � y2
1)).

Again eliminate divisions

using P2: only 3M + 4S.

Much faster than addition.

Useful: many doublings in ECC.



Save multiplications by

eliminating common

subexpressions:

A = Z1 � Z2; B = A2;

C = X1 �X2;

D = Y1 � Y2;

E = d � C �D;

F = B � E; G = B + E;

X3 = A � F � (X1 � Y2 + Y1 �X2);

Y3 = A � G � (D � C);

Z3 = F � G.

Cost: 11M + 1S + 1D.

Can do better: 10M + 1S + 1D.

Faster doubling
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Useful: many doublings in ECC.

More addition strategies

Dual addition formula:

(x1; y1) + (x2; y2) =

((x1y1 + x2y2)=(x1x2 + y1y2);

(x1y1 � x2y2)=(x1y2 � x2y1)).

Low degree, no need for d.

Warning: fails for doubling!

Is this really “addition”?

Most EC formulas have failures.
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More addition strategies
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((x1y1 + x2y2)=(x1x2 + y1y2);

(x1y1 � x2y2)=(x1y2 � x2y1)).

Low degree, no need for d.
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Most EC formulas have failures.

More coordinate systems:

Inverted: x = Z=X, y = Z=Y .

Extended: x = X=Z, y = Y=T .

Completed: x = X=Z, y = Y=Z,

xy = T=Z.
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Starting from point (x; y)
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u = (1 + y)=(B(1� y)),

v = u=x = (1 + y)=(Bx(1� y)).

(Skip a few exceptional points.)

v2 = u3 + (A=B)u2 + (1=B2)u.

Maps Edwards to Weierstrass.

Compatible with point addition!

Easily invert this map:

x = u=v, y = (Bu� 1)=(Bu+ 1).
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for x2 + y2 = 1 + dx2y2 if d 6= ;

and gives new ECC speed records.



Birational equivalence

Starting from point (x; y)

on x2 + y2 = 1 + dx2y2:

Define A = 2(1 + d)=(1� d),

B = 4=(1� d);

u = (1 + y)=(B(1� y)),

v = u=x = (1 + y)=(Bx(1� y)).

(Skip a few exceptional points.)

v2 = u3 + (A=B)u2 + (1=B2)u.

Maps Edwards to Weierstrass.

Compatible with point addition!

Easily invert this map:

x = u=v, y = (Bu� 1)=(Bu+ 1).

Some history

There are many perspectives on

elliptic-curve computations.

1984 (published 1987) Lenstra:

ECM, the elliptic-curve method

of factoring integers.

1984 (published 1985) Miller,

and independently

1984 (published 1987) Koblitz:

Elliptic-curve cryptography.

Bosma, Goldwasser–Kilian,

Chudnovsky–Chudnovsky, Atkin:

elliptic-curve primality proving.

The Edwards perspective is new!

1761 Euler, 1866 Gauss

introduced an addition law

for x2 + y2 = 1� x2y2,

the “lemniscatic elliptic curve.”

2007 Edwards generalized to

many curves x2 +y2 = 1+c4x2y2.

Theorem: have now obtained

all elliptic curves over Q.

2007 Bernstein–Lange:

Edwards addition law is complete

for x2 + y2 = 1 + dx2y2 if d 6= ;

and gives new ECC speed records.



Birational equivalence

Starting from point (x; y)

on x2 + y2 = 1 + dx2y2:

Define A = 2(1 + d)=(1� d),

B = 4=(1� d);

u = (1 + y)=(B(1� y)),

v = u=x = (1 + y)=(Bx(1� y)).

(Skip a few exceptional points.)

v2 = u3 + (A=B)u2 + (1=B2)u.

Maps Edwards to Weierstrass.

Compatible with point addition!

Easily invert this map:

x = u=v, y = (Bu� 1)=(Bu+ 1).

Some history

There are many perspectives on

elliptic-curve computations.

1984 (published 1987) Lenstra:

ECM, the elliptic-curve method

of factoring integers.

1984 (published 1985) Miller,

and independently

1984 (published 1987) Koblitz:

Elliptic-curve cryptography.

Bosma, Goldwasser–Kilian,

Chudnovsky–Chudnovsky, Atkin:

elliptic-curve primality proving.

The Edwards perspective is new!

1761 Euler, 1866 Gauss

introduced an addition law

for x2 + y2 = 1� x2y2,

the “lemniscatic elliptic curve.”

2007 Edwards generalized to

many curves x2 +y2 = 1+c4x2y2.

Theorem: have now obtained

all elliptic curves over Q.

2007 Bernstein–Lange:

Edwards addition law is complete

for x2 + y2 = 1 + dx2y2 if d 6= ;

and gives new ECC speed records.



Some history

There are many perspectives on

elliptic-curve computations.

1984 (published 1987) Lenstra:

ECM, the elliptic-curve method

of factoring integers.

1984 (published 1985) Miller,

and independently

1984 (published 1987) Koblitz:

Elliptic-curve cryptography.

Bosma, Goldwasser–Kilian,

Chudnovsky–Chudnovsky, Atkin:

elliptic-curve primality proving.

The Edwards perspective is new!

1761 Euler, 1866 Gauss

introduced an addition law

for x2 + y2 = 1� x2y2,

the “lemniscatic elliptic curve.”

2007 Edwards generalized to

many curves x2 +y2 = 1+c4x2y2.

Theorem: have now obtained

all elliptic curves over Q.

2007 Bernstein–Lange:

Edwards addition law is complete

for x2 + y2 = 1 + dx2y2 if d 6= ;

and gives new ECC speed records.



Some history

There are many perspectives on

elliptic-curve computations.

1984 (published 1987) Lenstra:

ECM, the elliptic-curve method

of factoring integers.

1984 (published 1985) Miller,

and independently

1984 (published 1987) Koblitz:

Elliptic-curve cryptography.

Bosma, Goldwasser–Kilian,

Chudnovsky–Chudnovsky, Atkin:

elliptic-curve primality proving.

The Edwards perspective is new!

1761 Euler, 1866 Gauss

introduced an addition law

for x2 + y2 = 1� x2y2,

the “lemniscatic elliptic curve.”

2007 Edwards generalized to

many curves x2 +y2 = 1+c4x2y2.

Theorem: have now obtained

all elliptic curves over Q.

2007 Bernstein–Lange:

Edwards addition law is complete

for x2 + y2 = 1 + dx2y2 if d 6= ;

and gives new ECC speed records.

Representing curve points

Crypto 1985, Miller, “Use of

elliptic curves in cryptography”:

Given n 2 Z, P 2 E(Fq),

division-polynomial recurrence

computes nP 2 E(Fq)

“in 26 log2 n multiplications”;

but can do better!

“It appears to be best to

represent the points on the curve

in the following form:

Each point is represented by the

triple (x; y; z) which corresponds

to the point (x=z2; y=z3).”
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ADD is P;Q 7! P + Q.
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models of elliptic curves

lying in low-dimensional spaces,

for otherwise the number of

coordinates and operations is

increasing. This limits us : : : to

4 basic models of elliptic curves.”

Short Weierstrass:

y2 = x3 + ax + b.

Jacobi intersection:

s2 + c2 = 1, as2 + d2 = 1.

Jacobi quartic: y2 = x4+2ax2+1.

Hessian: x3 + y3 + 1 = 3dxy.
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Optimizing Jacobian coordinates

For “traditional” (X=Z2; Y=Z3)

on y2 = x3 + ax + b:

1986 Chudnovsky–Chudnovsky

state explicit formulas using

10M for DBL; 16M for ADD.

Consequence:

�

�
10 lgn + 16

lgn

lg lgn

�
M

to compute n; P 7! nP

using sliding-windows method

of scalar multiplication.

Notation: lg = log2.
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Z3 = 2Y1 � Z1.

Total cost 3M + 6S + 1D where

S is the cost of squaring in Fq,

D is the cost of multiplying by a.

The squarings produce

X2
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2
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1 ; Z

2
1 ; Z

4
1 ;M
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Most ECC standards choose

curves that make formulas faster.

Curve-choice advice from

1986 Chudnovsky–Chudnovsky:

Can eliminate the 1D

by choosing curve with a = 1.

But “it is even smarter”

to choose curve with a = �3.

If a = �3 then M = 3(X2
1 � Z4

1 )

= 3(X1 � Z2
1 ) � (X1 + Z2

1 ).

Replace 2S with 1M.

Now DBL costs 4M + 4S.
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2001 Bernstein:

3M + 5S for DBL.

11M + 5S for ADD.

How? Easy S�M tradeoff:

instead of computing 2Y1 � Z1,

compute (Y1 + Z1)2 � Y 2
1 � Z2

1 .

DBL formulas were already

computing Y 2
1 and Z2

1 .

Same idea for the ADD formulas,

but have to scale X; Y; Z

to eliminate divisions by 2.
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1986 Chudnovsky–Chudnovsky:

“We suggest to write

addition formulas involving

(X; Y; Z; Z2; Z3).”

Disadvantages:

Allocate space for Z2; Z3.

Pay 1S+1M in ADD and in DBL.

Advantages:

Save 2S + 2M at start of ADD.

Save 1S at start of DBL.
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1998 Cohen–Miyaji–Ono:

Store point as (X : Y : Z).

If point is input to ADD,

also cache Z2 and Z3.

No cost, aside from space.
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