High-speed cryptography, Crypto performance problems
part 1: often lead users to reduce
elliptic-curve formulas cryptographic security levels

Daniel J. Bernstein or give up on cryptography.

University of lllinois at Chicago & Example 1 (according to
Technische Universiteit Eindhoven Firefox on Linux, 2013.06.24):
Google SSL uses RSA-1024.

Security note:

Analyses in 2003 concluded
that RSA-1024 was breakable;
e.g., 2003 Shamir—Tromer
estimated 1 year, ~10’ USD.
RSA Labs and NIST response:
Move to RSA-2048 by 2010.
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Useful: many doublings in ECC.
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Again eliminate divisions
using P2: only 3M + 4S.
Much faster than addition.

Useful: many doublings in ECC.
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Faster doubling

(z1,91) + (z1,91) =
((z1y1+y121)/(1+dz1219191),

(viyi—z1z1)/(1—dz1T19191)) =

((2z1y1)/(1 + dziy$),
(yi—22)/(1 — dziy?)).

2 2 20,2
r7 +y7 = 1+ dziy] so

(1, 91) + (21, 91) =
((2z191)/ (2] + ¥3),
(yi—21)/(2 — 21 — v7)).

Again eliminate divisions

using P2: only 3M + 4S.

Much faster than addition.
Useful: many doublings in ECC.

More addition stre

Dual addition forn

(1, 91) + (22, ¥2)
((z1y1 + z2Y2) /(s

(z1y1 — Zz2y2)/(a
Low degree, no ne

Warning: fails for
Is this really "addi
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Faster doubling

(z1,91) + (21, 91) =
((z1y1+y121)/(1+dz1Z19191),

(y1iyi—z1z1)/(1—dz1ZT19191)) =

((2z1y1)/(1 + dzfy]),
(yi—z7)/(1 — dziyg)).
T7 y% =1 da:lyl SO
(z1,91) + (21, yl)

((2z1y1)/ (2 + y %),
(91_331)/(2 — 5’31 y1))

Again eliminate divisions
using P2: only 3M + 4S.
Much faster than addition.

Useful: many doublings in ECC.

More addition strategies

Dual addition formula:
(z1,91) + (22, 92) =
((z1y1 + z292)/(z122 + Y17

(Z1y1 — 2292)/(T1y2 — 21
Low degree, no need for 4.

Warning: fails for doubling!
Is this really “addition”?
Most EC formulas have failt



Faster doubling

(z1,91) + (21, 91) =
((z1y1+y121)/(1+dz1219191),

(viyi—z1z1)/(1—dz1T19191)) =

((2z1y1)/(1 + dfﬂlyl)
(y1—=21)/(1 — dzfyy)).
T7 y% =1 dm%y% SO
(z1,91) + (21, 91) =

((2z1y1)/ (27 + yl)
(y%_ﬁc%)/@ — 331 y1))

Again eliminate divisions
using P2: only 3M + 4S.
Much faster than addition.

Useful: many doublings in ECC.

More addition strategies

Dual addition formula:

(z1,91) + (Z2,Y2) =
((z1y1 + z292)/(Z1Z2 + Y192),

(Z1y1 — z2y2)/(Z1Y2 — 22y1)).
Low degree, no need for d.

Warning: fails for doubling!
Is this really “addition”?
Most EC formulas have failures.



Faster doubling

(1, 91) + (21, 91) =
((z1y1t+yiz1)/(1+dz121Y191),
(y191—2121)/(1—dz1Z21Y1Y1)) =
((2z1y1)/(1 + dzTy7),
(y;—2%)/(1 — dz{yi)).

:c% yle

(1, 91) + (21, 91) =
((2z191)/ (2] + ¥3),
(yi—21)/(2 — 21 — v7)).

Again eliminate divisions

using P2: only 3M + 4S.

Much faster than addition.
Useful: many doublings in ECC.

dm%y% SO

More addition strategies

Dual addition formula:

(z1,91) + (Z2,Y2) =
((z1y1 + z292)/(Z1Z2 + Y192),

(Z1y1 — z2y2)/(Z1Y2 — 22y1)).
Low degree, no need for d.

Warning: fails for doubling!
Is this really “addition”?
Most EC formulas have failures.

More coordinate systems:

Inverted: z=2/X,y=72/Y.
Extended: z = X/Z, y=Y/T.
Completed: z = X/Z,y =Y/Z,
zy=1/Z.
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(z1,91) + (Z2,9Y2) =
((z1y1 + z292)/(Z1Z2 + Y192),

(Z1y1 — z2y2)/(Z1Y2 — T2y1)).
Low degree, no need for 4.

Warning: fails for doubling!
Is this really “addition”?
Most EC formulas have failures.

More coordinate systems:
Inverted: ¢ =2/X,y=2/Y.
Extended: ¢ = X/Z, y=Y/T.

Completed: z = X/Z,y =Y/Z,
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More addition strategies

Dual addition formula:

(z1,91) + (22, Y2) =
((z1y1 + z292)/(Z1Z2 + Y192),

(Z1y1 — z2y2)/(Z1Y2 — 22y1)).
Low degree, no need for d.

Warning: fails for doubling!
Is this really “addition”?
Most EC formulas have failures.

More coordinate systems:
Inverted: ¢ =Z2/X, y=2/Y.
Extended: z = X/Z, y=Y/T.
Completed: z = X/Z,y =Y/Z,
zy =1/Z.
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More addition strategies

Dual addition formula:
(z1,y1) + (z2,92) =
(191 + z2y2) /(122 + Y192),

(Z1y1 — z2y2)/(Z1y2 — T2y1)).
Low degree, no need for 4.

Warning: fails for doubling!
Is this really “addition”?
Most EC formulas have failures.

More coordinate systems:
Inverted: z =2/X,y=2/Y.
Extended: ¢ = X/Z, y=Y/T.

Completed: z = X/Z,y =Y/Z,

zy =1/Z.

More elliptic curves

Edwards curves are elliptic.
Easiest way to understand
elliptic curves 1s Edwards.

Geometrically, all elliptic cut
are Edwards curves.

Algebraically,
more elliptic curves exist.

Every odd-char curve can be
expressed as Welerstrass cur

V2 = 13 +a,2u2 + A4U + ag
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More addition strategies

Dual addition formula:
(z1,y1) + (z2,92) =
((z1y1 + z2y2) /(122 + Y192),

(Z1y1 — z2y2)/(Z1Y2 — 22y1)).
Low degree, no need for d.

Warning: fails for doubling!
Is this really “addition”?
Most EC formulas have failures.

More coordinate systems:
Inverted: ¢ =Z2/X, y=2/Y.
Extended: ¢ = X/Z, y=Y/T.

Completed: z = X/Z,y =Y/Z,

zy=1/Z.

More elliptic curves

Edwards curves are elliptic.
Easiest way to understand
elliptic curves 1s Edwards.

Geometrically, all elliptic curves
are Edwards curves.

Algebraically,
more elliptic curves exist.

Every odd-char curve can be
expressed as Welerstrass curve

V2 = 3 -+ a2u2 + a4U + a6.

Warning: “Welerstrass’ has
different meaning in char 2.
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elliptic curves 1s Edwards.

Geometrically, all elliptic curves
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Every odd-char curve can be
expressed as Welerstrass curve

V2 = 13 -+ a2u2 + Q44U + ag.

Warning: “Welerstrass' has
different meaning in char 2.

Additior

Slope A
Note th:



tegies

1ula:

122 + Y1Y2),

1Y2 — Z2Y1)).
ed for d.

doubling!
tion" 7
have failures.

ystems:

X, y=2/Y.
Z, y=Y/T.
X/Z,y=Y/Z,

More elliptic curves

Edwards curves are elliptic.
Easiest way to understand
elliptic curves 1s Edwards.

Geometrically, all elliptic curves

are Edwards curves.

Algebraically,
more elliptic curves exist.

Every odd-char curve can be
expressed as Welerstrass curve

V2 = 3 -+ a2u2 + a4U + a6.
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More elliptic curves

Edwards curves are elliptic.
Easiest way to understand
elliptic curves 1s Edwards.

Geometrically, all elliptic curves
are Edwards curves.

Algebraically,
more elliptic curves exist.

Every odd-char curve can be
expressed as Welerstrass curve

V2 = 13 -+ a2u2 + Q44U + ag.

Warning: “Welerstrass' has
different meaning in char 2.
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More elliptic curves

Edwards curves are elliptic.
Easiest way to understand
elliptic curves 1s Edwards.

Geometrically, all elliptic curves
are Edwards curves.

Algebraically,
more elliptic curves exist.

Every odd-char curve can be
expressed as Welerstrass curve

V2 = 3 -+ a2u2 + a4U + a6.

Warning: “Welerstrass’ has
different meaning in char 2.

Addition on Welerstrass curve
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Slope A = (v2 —v1)/(u2 — u1).
Note that u1 # uo.
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Addition on Welerstrass curve
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Slope A = (v2 —v1)/(u2 — u1).
Note that u1 # uo.
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Doubling on Welerstrass curve

’U2 — ‘U,3 — U
AU
Py —2P;
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Slope A = (3u? — 1)/(2v1).

In most cases

(u1,v1) + (u2, v2,
(u3,v3) where (u:
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u1 # uo, additiol

A= (v —v1)/(us
Total cost 11 + 2N
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Also handle some
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Doubling on Welerstrass curve

2 =ud —u

}%ﬁ
=
\Pl

Slope A = (3u? — 1)/(2v1).

In most cases

(u1,v1) + (w2, v2) =
(u3,v3) where (u3,v3) =
(A2 —u1—up, AM(u1—u3)—v1,

u1 # up, ‘addition” (alert!)

= (v2 —v1)/(u2 — u1).
Total cost 11 +2M + 18S.

(u1,v1) = (u2,v2) and vy 7
“doubling” (alert!):

A = (3uf + 2asu1 +aq)/(2
Total cost 11 +2M + 2S.

Also handle some exception:

(u1,v1) = (u2, —v2);
Inputs at oo.



Doubling on Welerstrass curve

v? =ud —u
AV
Py —2P;
Y U
2P

Slope A = (3u? — 1)/(2v1).

In most cases

(u1,v1) + (u2, v2) =
(u3,v3) where (u3,v3) =
()\z—ul—uz, AMui—u3z)—v1).

u1 # up, “addition” (alert!):

A= (v —v1)/(u2 — uy).
Total cost 11 +2M + 18S.

(w1,v1) = (u2,v2) and v # 0,
“doubling” (alert!):

A = (3uf + 2asu1 + ag)/(2v1).
Total cost 11 +2M + 2S.

Also handle some exceptions:

(u1,v1) = (u2, —v2);
Inputs at 00.
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In most cases

(u1,v1) + (u2,v2) =
(u3,v3) where (u3,v3) =
(A% —u1—up, AMu1—u3)—v1).

u1 # up, “addition” (alert!):

= (v2 —v1)/(u2 — u1).
Total cost 11 +2M + 18S.

(u1,v1) = (up,v2) and v # 0,

“doubling” (alert!):

A = (3ug + 2asu1 + ag)/(2v1).

Total cost 11 + 2M + 2S.

Also handle some exceptions:

(u1,v1) = (u2, —v2);
Inputs at 0.
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1)/(2v1).

In most cases

(ul, ’Ul) + (uQ, ‘Ug) =
(u3,v3) where (u3,v3) =
(A% —u1—up, AMu1—u3)—v1).

u1 # up, “addition” (alert!):

A= (v —v1)/(u2 — uy).
Total cost 11 +2M + 18S.

(w1,v1) = (u2,v2) and v1 # 0,

“doubling” (alert!):

A = (3uf + 2asu1 + ag)/(2v1).

Total cost 11 +2M + 2S.

Also handle some exceptions:

(u1,v1) = (u2, —v2);
Inputs at 00.

Birational equivale

Starting from poir
on z° + y2 =1+

Define A =2(1 +
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u=(1+y)/(B(1
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Compatible with

Easily invert this r
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In most cases

(u1,v1) + (u2, v2) =
(u3,v3) where (u3,v3) =
(A% —u1—up, AMu1—u3)—v1).

u1 # up, “addition” (alert!):

A= (v —v1)/(u2 — u1).
Total cost 11 +2M + 18S.

(u1,v1) = (up,v2) and v # 0,

“doubling” (alert!):

A = (3ug + 2asu1 + ag)/(2v1).

Total cost 11 + 2M + 2S.

Also handle some exceptions:

(u1,v1) = (u2, —v2);
Inputs at oo.

Birational equivalence

Starting from point (z, y)
on z° + y° = 1 + dz’y?:

Define A=2(1+d)/(1 —d
B=4/(1-4d);
u=(1+y)/(B(1-y))
v=u/z=(1+y)/(Bz(l-
(Skip a few exceptional poir

v? =u3 + (A/B)u’® + (1/B

Maps Edwards to Weierstras

Compatible with point addit

Easily invert this map:
t=u/v,y=(Bu—-1)/(B



In most cases

(ul, ’Ul) + (uQ, ‘Ug) =
(u3,v3) where (u3,v3) =
(A% —u1—up, AMu1—u3)—v1).

u1 # up, “addition” (alert!):

A= (v —v1)/(u2 — uy).
Total cost 11 +2M + 18S.

(w1,v1) = (up,v2) and v # 0,

“doubling” (alert!):

A = (3uf + 2asu1 + ag)/(2v1).

Total cost 11 +2M + 2S.

Also handle some exceptions:

(u1,v1) = (u2, —v2);
Inputs at 00.

Birational equivalence

Starting from point (z, y)
on z° + y° = 1 + dz’y?:

Define A=2(1+4d)/(1 — d),
B=4/(1-d);
u=(1+y)/(B(1-1y)),
v=u/z=(1+y)/(Bz(1l-1y))
(Skip a few exceptional points.)

v? =ud + (A/B)u® + (1/B?)u.

Maps Edwards to Weierstrass.

Compatible with point addition!

Easily invert this map:
r=u/v,y=(Bu—1)/(Bu+1).
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Starting from point (z, y)
on z° + y° = 1 + dz’y?:

Define A=2(1+d)/(1 — d),
B=4/(1-4d);
u=(1+y)/(B(1-y))

v=u/z=(1+y)/(Bz(l-1y))
(Skip a few exceptional points.)

v? =ud + (A/B)u® + (1/B?)u.

Maps Edwards to Welerstrass.

Compatible with point addition!

Easily invert this map:

t=u/v,y=(Bu—1)/(Bu+1).
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Starting from point (z, y)
on z° + y° = 1 + dz’y?:

Define A =2(1+d)/(1 — d),
B=4/(1-d);
u=(1+y)/(B(1-y))

v=u/z=(1+y)/(Bz(1-1y))
(Skip a few exceptional points.)

v? =u3 + (A/B)u® + (1/B?)u.

Maps Edwards to Weierstrass.

Compatible with point addition!

Easily invert this map:

r=u/v,y=(Bu—1)/(Bu+1).

Some history
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el

nere are many perspectives on

Iptic-curve computations.
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1984 (published 1985) Miller,
and independently
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Can eliminate the 1D
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