
High-speed cryptography,

part 1:

elliptic-curve formulas

Daniel J. Bernstein

University of Illinois at Chicago &

Technische Universiteit Eindhoven

Crypto performance problems

often lead users to reduce

cryptographic security levels

or give up on cryptography.

Example 1 (according to

Firefox on Linux, 2013.06.24):

Google SSL uses RSA-1024.

Security note:

Analyses in 2003 concluded

that RSA-1024 was breakable;

e.g., 2003 Shamir–Tromer

estimated 1 year, �107 USD.

RSA Labs and NIST response:

Move to RSA-2048 by 2010.



High-speed cryptography,

part 1:

elliptic-curve formulas

Daniel J. Bernstein

University of Illinois at Chicago &

Technische Universiteit Eindhoven

Crypto performance problems

often lead users to reduce

cryptographic security levels

or give up on cryptography.

Example 1 (according to

Firefox on Linux, 2013.06.24):

Google SSL uses RSA-1024.

Security note:

Analyses in 2003 concluded

that RSA-1024 was breakable;

e.g., 2003 Shamir–Tromer

estimated 1 year, �107 USD.

RSA Labs and NIST response:

Move to RSA-2048 by 2010.

Example 2: Tor uses RSA-1024.

Example 3: DNSSEC uses RSA-

1024: “tradeoff between the

risk of key compromise and

performance: : : ”

Example 4: OpenSSL uses secret

AES load addresses; dangerous!

Example 5:

https://sourceforge.net/account

is protected by SSL but

https://sourceforge.net/develop

redirects browser to

http://sourceforge.net/develop,

turning off the cryptography.



High-speed cryptography,

part 1:

elliptic-curve formulas

Daniel J. Bernstein

University of Illinois at Chicago &

Technische Universiteit Eindhoven

Crypto performance problems

often lead users to reduce

cryptographic security levels

or give up on cryptography.

Example 1 (according to

Firefox on Linux, 2013.06.24):

Google SSL uses RSA-1024.

Security note:

Analyses in 2003 concluded

that RSA-1024 was breakable;

e.g., 2003 Shamir–Tromer

estimated 1 year, �107 USD.

RSA Labs and NIST response:

Move to RSA-2048 by 2010.

Example 2: Tor uses RSA-1024.

Example 3: DNSSEC uses RSA-

1024: “tradeoff between the

risk of key compromise and

performance: : : ”

Example 4: OpenSSL uses secret

AES load addresses; dangerous!

Example 5:

https://sourceforge.net/account

is protected by SSL but

https://sourceforge.net/develop

redirects browser to

http://sourceforge.net/develop,

turning off the cryptography.



High-speed cryptography,

part 1:

elliptic-curve formulas

Daniel J. Bernstein

University of Illinois at Chicago &

Technische Universiteit Eindhoven

Crypto performance problems

often lead users to reduce

cryptographic security levels

or give up on cryptography.

Example 1 (according to

Firefox on Linux, 2013.06.24):

Google SSL uses RSA-1024.

Security note:

Analyses in 2003 concluded

that RSA-1024 was breakable;

e.g., 2003 Shamir–Tromer

estimated 1 year, �107 USD.

RSA Labs and NIST response:

Move to RSA-2048 by 2010.

Example 2: Tor uses RSA-1024.

Example 3: DNSSEC uses RSA-

1024: “tradeoff between the

risk of key compromise and

performance: : : ”

Example 4: OpenSSL uses secret

AES load addresses; dangerous!

Example 5:

https://sourceforge.net/account

is protected by SSL but

https://sourceforge.net/develop

redirects browser to

http://sourceforge.net/develop,

turning off the cryptography.



Crypto performance problems

often lead users to reduce

cryptographic security levels

or give up on cryptography.

Example 1 (according to

Firefox on Linux, 2013.06.24):

Google SSL uses RSA-1024.

Security note:

Analyses in 2003 concluded

that RSA-1024 was breakable;

e.g., 2003 Shamir–Tromer

estimated 1 year, �107 USD.

RSA Labs and NIST response:

Move to RSA-2048 by 2010.

Example 2: Tor uses RSA-1024.

Example 3: DNSSEC uses RSA-

1024: “tradeoff between the

risk of key compromise and

performance: : : ”

Example 4: OpenSSL uses secret

AES load addresses; dangerous!

Example 5:

https://sourceforge.net/account

is protected by SSL but

https://sourceforge.net/develop

redirects browser to

http://sourceforge.net/develop,

turning off the cryptography.



Crypto performance problems

often lead users to reduce

cryptographic security levels

or give up on cryptography.

Example 1 (according to

Firefox on Linux, 2013.06.24):

Google SSL uses RSA-1024.

Security note:

Analyses in 2003 concluded

that RSA-1024 was breakable;

e.g., 2003 Shamir–Tromer

estimated 1 year, �107 USD.

RSA Labs and NIST response:

Move to RSA-2048 by 2010.

Example 2: Tor uses RSA-1024.

Example 3: DNSSEC uses RSA-

1024: “tradeoff between the

risk of key compromise and

performance: : : ”

Example 4: OpenSSL uses secret

AES load addresses; dangerous!

Example 5:

https://sourceforge.net/account

is protected by SSL but

https://sourceforge.net/develop

redirects browser to

http://sourceforge.net/develop,

turning off the cryptography.

Extensive work on ECC speed

) fast high-security ECC.

Example: Curve25519 ECDH in

460200 Cortex A8 cycles;

332304 Snapdragon S4 cycles;

182632 Ivy Bridge cycles.

Requires serious analysis

and optimization of algorithms.

Not just “polynomial time”;

not just “quadratic time”.

My topic today:

decomposing elliptic-curve

operations into field operations.



Crypto performance problems

often lead users to reduce

cryptographic security levels

or give up on cryptography.

Example 1 (according to

Firefox on Linux, 2013.06.24):

Google SSL uses RSA-1024.

Security note:

Analyses in 2003 concluded

that RSA-1024 was breakable;

e.g., 2003 Shamir–Tromer

estimated 1 year, �107 USD.

RSA Labs and NIST response:

Move to RSA-2048 by 2010.

Example 2: Tor uses RSA-1024.

Example 3: DNSSEC uses RSA-

1024: “tradeoff between the

risk of key compromise and

performance: : : ”

Example 4: OpenSSL uses secret

AES load addresses; dangerous!

Example 5:

https://sourceforge.net/account

is protected by SSL but

https://sourceforge.net/develop

redirects browser to

http://sourceforge.net/develop,

turning off the cryptography.

Extensive work on ECC speed

) fast high-security ECC.

Example: Curve25519 ECDH in

460200 Cortex A8 cycles;

332304 Snapdragon S4 cycles;

182632 Ivy Bridge cycles.

Requires serious analysis

and optimization of algorithms.

Not just “polynomial time”;

not just “quadratic time”.

My topic today:

decomposing elliptic-curve

operations into field operations.



Crypto performance problems

often lead users to reduce

cryptographic security levels

or give up on cryptography.

Example 1 (according to

Firefox on Linux, 2013.06.24):

Google SSL uses RSA-1024.

Security note:

Analyses in 2003 concluded

that RSA-1024 was breakable;

e.g., 2003 Shamir–Tromer

estimated 1 year, �107 USD.

RSA Labs and NIST response:

Move to RSA-2048 by 2010.

Example 2: Tor uses RSA-1024.

Example 3: DNSSEC uses RSA-

1024: “tradeoff between the

risk of key compromise and

performance: : : ”

Example 4: OpenSSL uses secret

AES load addresses; dangerous!

Example 5:

https://sourceforge.net/account

is protected by SSL but

https://sourceforge.net/develop

redirects browser to

http://sourceforge.net/develop,

turning off the cryptography.

Extensive work on ECC speed

) fast high-security ECC.

Example: Curve25519 ECDH in

460200 Cortex A8 cycles;

332304 Snapdragon S4 cycles;

182632 Ivy Bridge cycles.

Requires serious analysis

and optimization of algorithms.

Not just “polynomial time”;

not just “quadratic time”.

My topic today:

decomposing elliptic-curve

operations into field operations.



Example 2: Tor uses RSA-1024.

Example 3: DNSSEC uses RSA-

1024: “tradeoff between the

risk of key compromise and

performance: : : ”

Example 4: OpenSSL uses secret

AES load addresses; dangerous!

Example 5:

https://sourceforge.net/account

is protected by SSL but

https://sourceforge.net/develop

redirects browser to

http://sourceforge.net/develop,

turning off the cryptography.

Extensive work on ECC speed

) fast high-security ECC.

Example: Curve25519 ECDH in

460200 Cortex A8 cycles;

332304 Snapdragon S4 cycles;

182632 Ivy Bridge cycles.

Requires serious analysis

and optimization of algorithms.

Not just “polynomial time”;

not just “quadratic time”.

My topic today:

decomposing elliptic-curve

operations into field operations.



Example 2: Tor uses RSA-1024.

Example 3: DNSSEC uses RSA-

1024: “tradeoff between the

risk of key compromise and

performance: : : ”

Example 4: OpenSSL uses secret

AES load addresses; dangerous!

Example 5:

https://sourceforge.net/account

is protected by SSL but

https://sourceforge.net/develop

redirects browser to

http://sourceforge.net/develop,

turning off the cryptography.

Extensive work on ECC speed

) fast high-security ECC.

Example: Curve25519 ECDH in

460200 Cortex A8 cycles;

332304 Snapdragon S4 cycles;

182632 Ivy Bridge cycles.

Requires serious analysis

and optimization of algorithms.

Not just “polynomial time”;

not just “quadratic time”.

My topic today:

decomposing elliptic-curve

operations into field operations.

Eliminating divisions

Typical computation:

P 7! nP .

Decompose into additions:

P;Q 7! P + Q.

Addition (x1; y1) + (x2; y2) =

((x1y2 + y1x2)=(1 + dx1x2y1y2),

(y1y2 � x1x2)=(1� dx1x2y1y2))

uses expensive divisions.

Better: postpone divisions

and work with fractions.

Represent (x; y) as

(X : Y : Z) with x = X=Z and

y = Y=Z for Z 6= 0.



Example 2: Tor uses RSA-1024.

Example 3: DNSSEC uses RSA-

1024: “tradeoff between the

risk of key compromise and

performance: : : ”

Example 4: OpenSSL uses secret

AES load addresses; dangerous!

Example 5:

https://sourceforge.net/account

is protected by SSL but

https://sourceforge.net/develop

redirects browser to

http://sourceforge.net/develop,

turning off the cryptography.

Extensive work on ECC speed

) fast high-security ECC.

Example: Curve25519 ECDH in

460200 Cortex A8 cycles;

332304 Snapdragon S4 cycles;

182632 Ivy Bridge cycles.

Requires serious analysis

and optimization of algorithms.

Not just “polynomial time”;

not just “quadratic time”.

My topic today:

decomposing elliptic-curve

operations into field operations.

Eliminating divisions

Typical computation:

P 7! nP .

Decompose into additions:

P;Q 7! P + Q.

Addition (x1; y1) + (x2; y2) =

((x1y2 + y1x2)=(1 + dx1x2y1y2),

(y1y2 � x1x2)=(1� dx1x2y1y2))

uses expensive divisions.

Better: postpone divisions

and work with fractions.

Represent (x; y) as

(X : Y : Z) with x = X=Z and

y = Y=Z for Z 6= 0.



Example 2: Tor uses RSA-1024.

Example 3: DNSSEC uses RSA-

1024: “tradeoff between the

risk of key compromise and

performance: : : ”

Example 4: OpenSSL uses secret

AES load addresses; dangerous!

Example 5:

https://sourceforge.net/account

is protected by SSL but

https://sourceforge.net/develop

redirects browser to

http://sourceforge.net/develop,

turning off the cryptography.

Extensive work on ECC speed

) fast high-security ECC.

Example: Curve25519 ECDH in

460200 Cortex A8 cycles;

332304 Snapdragon S4 cycles;

182632 Ivy Bridge cycles.

Requires serious analysis

and optimization of algorithms.

Not just “polynomial time”;

not just “quadratic time”.

My topic today:

decomposing elliptic-curve

operations into field operations.

Eliminating divisions

Typical computation:

P 7! nP .

Decompose into additions:

P;Q 7! P + Q.

Addition (x1; y1) + (x2; y2) =

((x1y2 + y1x2)=(1 + dx1x2y1y2),

(y1y2 � x1x2)=(1� dx1x2y1y2))

uses expensive divisions.

Better: postpone divisions

and work with fractions.

Represent (x; y) as

(X : Y : Z) with x = X=Z and

y = Y=Z for Z 6= 0.



Extensive work on ECC speed

) fast high-security ECC.

Example: Curve25519 ECDH in

460200 Cortex A8 cycles;

332304 Snapdragon S4 cycles;

182632 Ivy Bridge cycles.

Requires serious analysis

and optimization of algorithms.

Not just “polynomial time”;

not just “quadratic time”.

My topic today:

decomposing elliptic-curve

operations into field operations.

Eliminating divisions

Typical computation:

P 7! nP .

Decompose into additions:

P;Q 7! P + Q.

Addition (x1; y1) + (x2; y2) =

((x1y2 + y1x2)=(1 + dx1x2y1y2),

(y1y2 � x1x2)=(1� dx1x2y1y2))

uses expensive divisions.

Better: postpone divisions

and work with fractions.

Represent (x; y) as

(X : Y : Z) with x = X=Z and

y = Y=Z for Z 6= 0.



Extensive work on ECC speed

) fast high-security ECC.

Example: Curve25519 ECDH in

460200 Cortex A8 cycles;

332304 Snapdragon S4 cycles;

182632 Ivy Bridge cycles.

Requires serious analysis

and optimization of algorithms.

Not just “polynomial time”;

not just “quadratic time”.

My topic today:

decomposing elliptic-curve

operations into field operations.

Eliminating divisions

Typical computation:

P 7! nP .

Decompose into additions:

P;Q 7! P + Q.

Addition (x1; y1) + (x2; y2) =

((x1y2 + y1x2)=(1 + dx1x2y1y2),

(y1y2 � x1x2)=(1� dx1x2y1y2))

uses expensive divisions.

Better: postpone divisions

and work with fractions.

Represent (x; y) as

(X : Y : Z) with x = X=Z and

y = Y=Z for Z 6= 0.

Addition now has to

handle fractions as input:�
X1

Z1
;
Y1

Z1

�
+

�
X2

Z2
;
Y2

Z2

�
=

 X1
Z1

Y2
Z2

+ Y1
Z1

X2
Z2

1 + dX1
Z1

X2
Z2

Y1
Z1

Y2
Z2

,

Y1
Z1

Y2
Z2
�

X1
Z1

X2
Z2

1� dX1
Z1

X2
Z2

Y1
Z1

Y2
Z2

!
=

 
Z1Z2(X1Y2 + Y1X2)

Z2
1Z

2
2 + dX1X2Y1Y2

,

Z1Z2(Y1Y2 �X1X2)

Z2
1Z

2
2 � dX1X2Y1Y2

!



Extensive work on ECC speed

) fast high-security ECC.

Example: Curve25519 ECDH in

460200 Cortex A8 cycles;

332304 Snapdragon S4 cycles;

182632 Ivy Bridge cycles.

Requires serious analysis

and optimization of algorithms.

Not just “polynomial time”;

not just “quadratic time”.

My topic today:

decomposing elliptic-curve

operations into field operations.

Eliminating divisions

Typical computation:

P 7! nP .

Decompose into additions:

P;Q 7! P + Q.

Addition (x1; y1) + (x2; y2) =

((x1y2 + y1x2)=(1 + dx1x2y1y2),

(y1y2 � x1x2)=(1� dx1x2y1y2))

uses expensive divisions.

Better: postpone divisions

and work with fractions.

Represent (x; y) as

(X : Y : Z) with x = X=Z and

y = Y=Z for Z 6= 0.

Addition now has to

handle fractions as input:�
X1

Z1
;
Y1

Z1

�
+

�
X2

Z2
;
Y2

Z2

�
=

 X1
Z1

Y2
Z2

+ Y1
Z1

X2
Z2

1 + dX1
Z1

X2
Z2

Y1
Z1

Y2
Z2

,

Y1
Z1

Y2
Z2
�

X1
Z1

X2
Z2

1� dX1
Z1

X2
Z2

Y1
Z1

Y2
Z2

!
=

 
Z1Z2(X1Y2 + Y1X2)

Z2
1Z

2
2 + dX1X2Y1Y2

,

Z1Z2(Y1Y2 �X1X2)

Z2
1Z

2
2 � dX1X2Y1Y2

!



Extensive work on ECC speed

) fast high-security ECC.

Example: Curve25519 ECDH in

460200 Cortex A8 cycles;

332304 Snapdragon S4 cycles;

182632 Ivy Bridge cycles.

Requires serious analysis

and optimization of algorithms.

Not just “polynomial time”;

not just “quadratic time”.

My topic today:

decomposing elliptic-curve

operations into field operations.

Eliminating divisions

Typical computation:

P 7! nP .

Decompose into additions:

P;Q 7! P + Q.

Addition (x1; y1) + (x2; y2) =

((x1y2 + y1x2)=(1 + dx1x2y1y2),

(y1y2 � x1x2)=(1� dx1x2y1y2))

uses expensive divisions.

Better: postpone divisions

and work with fractions.

Represent (x; y) as

(X : Y : Z) with x = X=Z and

y = Y=Z for Z 6= 0.

Addition now has to

handle fractions as input:�
X1

Z1
;
Y1

Z1

�
+

�
X2

Z2
;
Y2

Z2

�
=

 X1
Z1

Y2
Z2

+ Y1
Z1

X2
Z2

1 + dX1
Z1

X2
Z2

Y1
Z1

Y2
Z2

,

Y1
Z1

Y2
Z2
�

X1
Z1

X2
Z2

1� dX1
Z1

X2
Z2

Y1
Z1

Y2
Z2

!
=

 
Z1Z2(X1Y2 + Y1X2)

Z2
1Z

2
2 + dX1X2Y1Y2

,

Z1Z2(Y1Y2 �X1X2)

Z2
1Z

2
2 � dX1X2Y1Y2

!



Eliminating divisions

Typical computation:

P 7! nP .

Decompose into additions:

P;Q 7! P + Q.

Addition (x1; y1) + (x2; y2) =

((x1y2 + y1x2)=(1 + dx1x2y1y2),

(y1y2 � x1x2)=(1� dx1x2y1y2))

uses expensive divisions.

Better: postpone divisions

and work with fractions.

Represent (x; y) as

(X : Y : Z) with x = X=Z and

y = Y=Z for Z 6= 0.

Addition now has to

handle fractions as input:�
X1

Z1
;
Y1

Z1

�
+

�
X2

Z2
;
Y2

Z2

�
=

 X1
Z1

Y2
Z2

+ Y1
Z1

X2
Z2

1 + dX1
Z1

X2
Z2

Y1
Z1

Y2
Z2

,

Y1
Z1

Y2
Z2
�

X1
Z1

X2
Z2

1� dX1
Z1

X2
Z2

Y1
Z1

Y2
Z2

!
=

 
Z1Z2(X1Y2 + Y1X2)

Z2
1Z

2
2 + dX1X2Y1Y2

,

Z1Z2(Y1Y2 �X1X2)

Z2
1Z

2
2 � dX1X2Y1Y2

!



Eliminating divisions

Typical computation:

P 7! nP .

Decompose into additions:

P;Q 7! P + Q.

Addition (x1; y1) + (x2; y2) =

((x1y2 + y1x2)=(1 + dx1x2y1y2),

(y1y2 � x1x2)=(1� dx1x2y1y2))

uses expensive divisions.

Better: postpone divisions

and work with fractions.

Represent (x; y) as

(X : Y : Z) with x = X=Z and

y = Y=Z for Z 6= 0.

Addition now has to

handle fractions as input:�
X1

Z1
;
Y1

Z1

�
+

�
X2

Z2
;
Y2

Z2

�
=

 X1
Z1

Y2
Z2

+ Y1
Z1

X2
Z2

1 + dX1
Z1

X2
Z2

Y1
Z1

Y2
Z2

,

Y1
Z1

Y2
Z2
�

X1
Z1

X2
Z2

1� dX1
Z1

X2
Z2

Y1
Z1

Y2
Z2

!
=

 
Z1Z2(X1Y2 + Y1X2)

Z2
1Z

2
2 + dX1X2Y1Y2

,

Z1Z2(Y1Y2 �X1X2)

Z2
1Z

2
2 � dX1X2Y1Y2

!

i.e.

�
X1

Z1
;
Y1

Z1

�
+

�
X2

Z2
;
Y2

Z2

�

=

�
X3

Z3
;
Y3

Z3

�

where

F = Z2
1Z

2
2 � dX1X2Y1Y2,

G = Z2
1Z

2
2 + dX1X2Y1Y2,

X3 = Z1Z2(X1Y2 + Y1X2)F ,

Y3 = Z1Z2(Y1Y2 �X1X2)G,

Z3 = FG.

Input to addition algorithm:

X1; Y1; Z1; X2; Y2; Z2.

Output from addition algorithm:

X3; Y3; Z3. No divisions needed!



Eliminating divisions

Typical computation:

P 7! nP .

Decompose into additions:

P;Q 7! P + Q.

Addition (x1; y1) + (x2; y2) =

((x1y2 + y1x2)=(1 + dx1x2y1y2),

(y1y2 � x1x2)=(1� dx1x2y1y2))

uses expensive divisions.

Better: postpone divisions

and work with fractions.

Represent (x; y) as

(X : Y : Z) with x = X=Z and

y = Y=Z for Z 6= 0.

Addition now has to

handle fractions as input:�
X1

Z1
;
Y1

Z1

�
+

�
X2

Z2
;
Y2

Z2

�
=

 X1
Z1

Y2
Z2

+ Y1
Z1

X2
Z2

1 + dX1
Z1

X2
Z2

Y1
Z1

Y2
Z2

,

Y1
Z1

Y2
Z2
�

X1
Z1

X2
Z2

1� dX1
Z1

X2
Z2

Y1
Z1

Y2
Z2

!
=

 
Z1Z2(X1Y2 + Y1X2)

Z2
1Z

2
2 + dX1X2Y1Y2

,

Z1Z2(Y1Y2 �X1X2)

Z2
1Z

2
2 � dX1X2Y1Y2

!

i.e.

�
X1

Z1
;
Y1

Z1

�
+

�
X2

Z2
;
Y2

Z2

�

=

�
X3

Z3
;
Y3

Z3

�

where

F = Z2
1Z

2
2 � dX1X2Y1Y2,

G = Z2
1Z

2
2 + dX1X2Y1Y2,

X3 = Z1Z2(X1Y2 + Y1X2)F ,

Y3 = Z1Z2(Y1Y2 �X1X2)G,

Z3 = FG.

Input to addition algorithm:

X1; Y1; Z1; X2; Y2; Z2.

Output from addition algorithm:

X3; Y3; Z3. No divisions needed!



Eliminating divisions

Typical computation:

P 7! nP .

Decompose into additions:

P;Q 7! P + Q.

Addition (x1; y1) + (x2; y2) =

((x1y2 + y1x2)=(1 + dx1x2y1y2),

(y1y2 � x1x2)=(1� dx1x2y1y2))

uses expensive divisions.

Better: postpone divisions

and work with fractions.

Represent (x; y) as

(X : Y : Z) with x = X=Z and

y = Y=Z for Z 6= 0.

Addition now has to

handle fractions as input:�
X1

Z1
;
Y1

Z1

�
+

�
X2

Z2
;
Y2

Z2

�
=

 X1
Z1

Y2
Z2

+ Y1
Z1

X2
Z2

1 + dX1
Z1

X2
Z2

Y1
Z1

Y2
Z2

,

Y1
Z1

Y2
Z2
�

X1
Z1

X2
Z2

1� dX1
Z1

X2
Z2

Y1
Z1

Y2
Z2

!
=

 
Z1Z2(X1Y2 + Y1X2)

Z2
1Z

2
2 + dX1X2Y1Y2

,

Z1Z2(Y1Y2 �X1X2)

Z2
1Z

2
2 � dX1X2Y1Y2

!

i.e.

�
X1

Z1
;
Y1

Z1

�
+

�
X2

Z2
;
Y2

Z2

�

=

�
X3

Z3
;
Y3

Z3

�

where

F = Z2
1Z

2
2 � dX1X2Y1Y2,

G = Z2
1Z

2
2 + dX1X2Y1Y2,

X3 = Z1Z2(X1Y2 + Y1X2)F ,

Y3 = Z1Z2(Y1Y2 �X1X2)G,

Z3 = FG.

Input to addition algorithm:

X1; Y1; Z1; X2; Y2; Z2.

Output from addition algorithm:

X3; Y3; Z3. No divisions needed!



Addition now has to

handle fractions as input:�
X1

Z1
;
Y1

Z1

�
+

�
X2

Z2
;
Y2

Z2

�
=

 X1
Z1

Y2
Z2

+ Y1
Z1

X2
Z2

1 + dX1
Z1

X2
Z2

Y1
Z1

Y2
Z2

,

Y1
Z1

Y2
Z2
�

X1
Z1

X2
Z2

1� dX1
Z1

X2
Z2

Y1
Z1

Y2
Z2

!
=

 
Z1Z2(X1Y2 + Y1X2)

Z2
1Z

2
2 + dX1X2Y1Y2

,

Z1Z2(Y1Y2 �X1X2)

Z2
1Z

2
2 � dX1X2Y1Y2

!

i.e.

�
X1

Z1
;
Y1

Z1

�
+

�
X2

Z2
;
Y2

Z2

�

=

�
X3

Z3
;
Y3

Z3

�

where

F = Z2
1Z

2
2 � dX1X2Y1Y2,

G = Z2
1Z

2
2 + dX1X2Y1Y2,

X3 = Z1Z2(X1Y2 + Y1X2)F ,

Y3 = Z1Z2(Y1Y2 �X1X2)G,

Z3 = FG.

Input to addition algorithm:

X1; Y1; Z1; X2; Y2; Z2.

Output from addition algorithm:

X3; Y3; Z3. No divisions needed!



Addition now has to

handle fractions as input:�
X1

Z1
;
Y1

Z1

�
+

�
X2

Z2
;
Y2

Z2

�
=

 X1
Z1

Y2
Z2

+ Y1
Z1

X2
Z2

1 + dX1
Z1

X2
Z2

Y1
Z1

Y2
Z2

,

Y1
Z1

Y2
Z2
�

X1
Z1

X2
Z2

1� dX1
Z1

X2
Z2

Y1
Z1

Y2
Z2

!
=

 
Z1Z2(X1Y2 + Y1X2)

Z2
1Z

2
2 + dX1X2Y1Y2

,

Z1Z2(Y1Y2 �X1X2)

Z2
1Z

2
2 � dX1X2Y1Y2

!

i.e.

�
X1

Z1
;
Y1

Z1

�
+

�
X2

Z2
;
Y2

Z2

�

=

�
X3

Z3
;
Y3

Z3

�

where

F = Z2
1Z

2
2 � dX1X2Y1Y2,

G = Z2
1Z

2
2 + dX1X2Y1Y2,

X3 = Z1Z2(X1Y2 + Y1X2)F ,

Y3 = Z1Z2(Y1Y2 �X1X2)G,

Z3 = FG.

Input to addition algorithm:

X1; Y1; Z1; X2; Y2; Z2.

Output from addition algorithm:

X3; Y3; Z3. No divisions needed!

Save multiplications by

eliminating common

subexpressions:

A = Z1 � Z2; B = A2;

C = X1 �X2;

D = Y1 � Y2;

E = d � C �D;

F = B � E; G = B + E;

X3 = A � F � (X1 � Y2 + Y1 �X2);

Y3 = A � G � (D � C);

Z3 = F � G.

Cost: 11M + 1S + 1D.

Can do better: 10M + 1S + 1D.



Addition now has to

handle fractions as input:�
X1

Z1
;
Y1

Z1

�
+

�
X2

Z2
;
Y2

Z2

�
=

 X1
Z1

Y2
Z2

+ Y1
Z1

X2
Z2

1 + dX1
Z1

X2
Z2

Y1
Z1

Y2
Z2

,

Y1
Z1

Y2
Z2
�

X1
Z1

X2
Z2

1� dX1
Z1

X2
Z2

Y1
Z1

Y2
Z2

!
=

 
Z1Z2(X1Y2 + Y1X2)

Z2
1Z

2
2 + dX1X2Y1Y2

,

Z1Z2(Y1Y2 �X1X2)

Z2
1Z

2
2 � dX1X2Y1Y2

!

i.e.

�
X1

Z1
;
Y1

Z1

�
+

�
X2

Z2
;
Y2

Z2

�

=

�
X3

Z3
;
Y3

Z3

�

where

F = Z2
1Z

2
2 � dX1X2Y1Y2,

G = Z2
1Z

2
2 + dX1X2Y1Y2,

X3 = Z1Z2(X1Y2 + Y1X2)F ,

Y3 = Z1Z2(Y1Y2 �X1X2)G,

Z3 = FG.

Input to addition algorithm:

X1; Y1; Z1; X2; Y2; Z2.

Output from addition algorithm:

X3; Y3; Z3. No divisions needed!

Save multiplications by

eliminating common

subexpressions:

A = Z1 � Z2; B = A2;

C = X1 �X2;

D = Y1 � Y2;

E = d � C �D;

F = B � E; G = B + E;

X3 = A � F � (X1 � Y2 + Y1 �X2);

Y3 = A � G � (D � C);

Z3 = F � G.

Cost: 11M + 1S + 1D.

Can do better: 10M + 1S + 1D.



Addition now has to

handle fractions as input:�
X1

Z1
;
Y1

Z1

�
+

�
X2

Z2
;
Y2

Z2

�
=

 X1
Z1

Y2
Z2

+ Y1
Z1

X2
Z2

1 + dX1
Z1

X2
Z2

Y1
Z1

Y2
Z2

,

Y1
Z1

Y2
Z2
�

X1
Z1

X2
Z2

1� dX1
Z1

X2
Z2

Y1
Z1

Y2
Z2

!
=

 
Z1Z2(X1Y2 + Y1X2)

Z2
1Z

2
2 + dX1X2Y1Y2

,

Z1Z2(Y1Y2 �X1X2)

Z2
1Z

2
2 � dX1X2Y1Y2

!

i.e.

�
X1

Z1
;
Y1

Z1

�
+

�
X2

Z2
;
Y2

Z2

�

=

�
X3

Z3
;
Y3

Z3

�

where

F = Z2
1Z

2
2 � dX1X2Y1Y2,

G = Z2
1Z

2
2 + dX1X2Y1Y2,

X3 = Z1Z2(X1Y2 + Y1X2)F ,

Y3 = Z1Z2(Y1Y2 �X1X2)G,

Z3 = FG.

Input to addition algorithm:

X1; Y1; Z1; X2; Y2; Z2.

Output from addition algorithm:

X3; Y3; Z3. No divisions needed!

Save multiplications by

eliminating common

subexpressions:

A = Z1 � Z2; B = A2;

C = X1 �X2;

D = Y1 � Y2;

E = d � C �D;

F = B � E; G = B + E;

X3 = A � F � (X1 � Y2 + Y1 �X2);

Y3 = A � G � (D � C);

Z3 = F � G.

Cost: 11M + 1S + 1D.

Can do better: 10M + 1S + 1D.



i.e.

�
X1

Z1
;
Y1

Z1

�
+

�
X2

Z2
;
Y2

Z2

�

=

�
X3

Z3
;
Y3

Z3

�

where

F = Z2
1Z

2
2 � dX1X2Y1Y2,

G = Z2
1Z

2
2 + dX1X2Y1Y2,

X3 = Z1Z2(X1Y2 + Y1X2)F ,

Y3 = Z1Z2(Y1Y2 �X1X2)G,

Z3 = FG.

Input to addition algorithm:

X1; Y1; Z1; X2; Y2; Z2.

Output from addition algorithm:

X3; Y3; Z3. No divisions needed!

Save multiplications by

eliminating common

subexpressions:

A = Z1 � Z2; B = A2;

C = X1 �X2;

D = Y1 � Y2;

E = d � C �D;

F = B � E; G = B + E;

X3 = A � F � (X1 � Y2 + Y1 �X2);

Y3 = A � G � (D � C);

Z3 = F � G.

Cost: 11M + 1S + 1D.

Can do better: 10M + 1S + 1D.



i.e.

�
X1

Z1
;
Y1

Z1

�
+

�
X2

Z2
;
Y2

Z2

�

=

�
X3

Z3
;
Y3

Z3

�

where

F = Z2
1Z

2
2 � dX1X2Y1Y2,

G = Z2
1Z

2
2 + dX1X2Y1Y2,

X3 = Z1Z2(X1Y2 + Y1X2)F ,

Y3 = Z1Z2(Y1Y2 �X1X2)G,

Z3 = FG.

Input to addition algorithm:

X1; Y1; Z1; X2; Y2; Z2.

Output from addition algorithm:

X3; Y3; Z3. No divisions needed!

Save multiplications by

eliminating common

subexpressions:

A = Z1 � Z2; B = A2;

C = X1 �X2;

D = Y1 � Y2;

E = d � C �D;

F = B � E; G = B + E;

X3 = A � F � (X1 � Y2 + Y1 �X2);

Y3 = A � G � (D � C);

Z3 = F � G.

Cost: 11M + 1S + 1D.

Can do better: 10M + 1S + 1D.

Faster doubling

(x1; y1) + (x1; y1) =

((x1y1+y1x1)=(1+dx1x1y1y1),

(y1y1�x1x1)=(1�dx1x1y1y1)) =

((2x1y1)=(1 + dx2
1y

2
1),

(y2
1�x

2
1)=(1� dx2

1y
2
1)).

x2
1 + y2

1 = 1 + dx2
1y

2
1 so

(x1; y1) + (x1; y1) =

((2x1y1)=(x2
1 + y2

1),

(y2
1�x

2
1)=(2� x2

1 � y2
1)).

Again eliminate divisions

using P2: only 3M + 4S.

Much faster than addition.

Useful: many doublings in ECC.



i.e.

�
X1

Z1
;
Y1

Z1

�
+

�
X2

Z2
;
Y2

Z2

�

=

�
X3

Z3
;
Y3

Z3

�

where

F = Z2
1Z

2
2 � dX1X2Y1Y2,

G = Z2
1Z

2
2 + dX1X2Y1Y2,

X3 = Z1Z2(X1Y2 + Y1X2)F ,

Y3 = Z1Z2(Y1Y2 �X1X2)G,

Z3 = FG.

Input to addition algorithm:

X1; Y1; Z1; X2; Y2; Z2.

Output from addition algorithm:

X3; Y3; Z3. No divisions needed!

Save multiplications by

eliminating common

subexpressions:

A = Z1 � Z2; B = A2;

C = X1 �X2;

D = Y1 � Y2;

E = d � C �D;

F = B � E; G = B + E;

X3 = A � F � (X1 � Y2 + Y1 �X2);

Y3 = A � G � (D � C);

Z3 = F � G.

Cost: 11M + 1S + 1D.

Can do better: 10M + 1S + 1D.

Faster doubling

(x1; y1) + (x1; y1) =

((x1y1+y1x1)=(1+dx1x1y1y1),

(y1y1�x1x1)=(1�dx1x1y1y1)) =

((2x1y1)=(1 + dx2
1y

2
1),

(y2
1�x

2
1)=(1� dx2

1y
2
1)).

x2
1 + y2

1 = 1 + dx2
1y

2
1 so

(x1; y1) + (x1; y1) =

((2x1y1)=(x2
1 + y2

1),

(y2
1�x

2
1)=(2� x2

1 � y2
1)).

Again eliminate divisions

using P2: only 3M + 4S.

Much faster than addition.

Useful: many doublings in ECC.



i.e.

�
X1

Z1
;
Y1

Z1

�
+

�
X2

Z2
;
Y2

Z2

�

=

�
X3

Z3
;
Y3

Z3

�

where

F = Z2
1Z

2
2 � dX1X2Y1Y2,

G = Z2
1Z

2
2 + dX1X2Y1Y2,

X3 = Z1Z2(X1Y2 + Y1X2)F ,

Y3 = Z1Z2(Y1Y2 �X1X2)G,

Z3 = FG.

Input to addition algorithm:

X1; Y1; Z1; X2; Y2; Z2.

Output from addition algorithm:

X3; Y3; Z3. No divisions needed!

Save multiplications by

eliminating common

subexpressions:

A = Z1 � Z2; B = A2;

C = X1 �X2;

D = Y1 � Y2;

E = d � C �D;

F = B � E; G = B + E;

X3 = A � F � (X1 � Y2 + Y1 �X2);

Y3 = A � G � (D � C);

Z3 = F � G.

Cost: 11M + 1S + 1D.

Can do better: 10M + 1S + 1D.

Faster doubling

(x1; y1) + (x1; y1) =

((x1y1+y1x1)=(1+dx1x1y1y1),

(y1y1�x1x1)=(1�dx1x1y1y1)) =

((2x1y1)=(1 + dx2
1y

2
1),

(y2
1�x

2
1)=(1� dx2

1y
2
1)).

x2
1 + y2

1 = 1 + dx2
1y

2
1 so

(x1; y1) + (x1; y1) =

((2x1y1)=(x2
1 + y2

1),

(y2
1�x

2
1)=(2� x2

1 � y2
1)).

Again eliminate divisions

using P2: only 3M + 4S.

Much faster than addition.

Useful: many doublings in ECC.



Save multiplications by

eliminating common

subexpressions:

A = Z1 � Z2; B = A2;

C = X1 �X2;

D = Y1 � Y2;

E = d � C �D;

F = B � E; G = B + E;

X3 = A � F � (X1 � Y2 + Y1 �X2);

Y3 = A � G � (D � C);

Z3 = F � G.

Cost: 11M + 1S + 1D.

Can do better: 10M + 1S + 1D.

Faster doubling

(x1; y1) + (x1; y1) =

((x1y1+y1x1)=(1+dx1x1y1y1),

(y1y1�x1x1)=(1�dx1x1y1y1)) =

((2x1y1)=(1 + dx2
1y

2
1),

(y2
1�x

2
1)=(1� dx2

1y
2
1)).

x2
1 + y2

1 = 1 + dx2
1y

2
1 so

(x1; y1) + (x1; y1) =

((2x1y1)=(x2
1 + y2

1),

(y2
1�x

2
1)=(2� x2

1 � y2
1)).

Again eliminate divisions

using P2: only 3M + 4S.

Much faster than addition.

Useful: many doublings in ECC.



Save multiplications by

eliminating common

subexpressions:

A = Z1 � Z2; B = A2;

C = X1 �X2;

D = Y1 � Y2;

E = d � C �D;

F = B � E; G = B + E;

X3 = A � F � (X1 � Y2 + Y1 �X2);

Y3 = A � G � (D � C);

Z3 = F � G.

Cost: 11M + 1S + 1D.

Can do better: 10M + 1S + 1D.

Faster doubling

(x1; y1) + (x1; y1) =

((x1y1+y1x1)=(1+dx1x1y1y1),

(y1y1�x1x1)=(1�dx1x1y1y1)) =

((2x1y1)=(1 + dx2
1y

2
1),

(y2
1�x

2
1)=(1� dx2

1y
2
1)).

x2
1 + y2

1 = 1 + dx2
1y

2
1 so

(x1; y1) + (x1; y1) =

((2x1y1)=(x2
1 + y2

1),

(y2
1�x

2
1)=(2� x2

1 � y2
1)).

Again eliminate divisions

using P2: only 3M + 4S.

Much faster than addition.

Useful: many doublings in ECC.

More addition strategies

Dual addition formula:

(x1; y1) + (x2; y2) =

((x1y1 + x2y2)=(x1x2 + y1y2);

(x1y1 � x2y2)=(x1y2 � x2y1)).

Low degree, no need for d.

Warning: fails for doubling!

Is this really “addition”?

Most EC formulas have failures.



Save multiplications by

eliminating common

subexpressions:

A = Z1 � Z2; B = A2;

C = X1 �X2;

D = Y1 � Y2;

E = d � C �D;

F = B � E; G = B + E;

X3 = A � F � (X1 � Y2 + Y1 �X2);

Y3 = A � G � (D � C);

Z3 = F � G.

Cost: 11M + 1S + 1D.

Can do better: 10M + 1S + 1D.

Faster doubling

(x1; y1) + (x1; y1) =

((x1y1+y1x1)=(1+dx1x1y1y1),

(y1y1�x1x1)=(1�dx1x1y1y1)) =

((2x1y1)=(1 + dx2
1y

2
1),

(y2
1�x

2
1)=(1� dx2

1y
2
1)).

x2
1 + y2

1 = 1 + dx2
1y

2
1 so

(x1; y1) + (x1; y1) =

((2x1y1)=(x2
1 + y2

1),

(y2
1�x

2
1)=(2� x2

1 � y2
1)).

Again eliminate divisions

using P2: only 3M + 4S.

Much faster than addition.

Useful: many doublings in ECC.

More addition strategies

Dual addition formula:

(x1; y1) + (x2; y2) =

((x1y1 + x2y2)=(x1x2 + y1y2);

(x1y1 � x2y2)=(x1y2 � x2y1)).

Low degree, no need for d.

Warning: fails for doubling!

Is this really “addition”?

Most EC formulas have failures.



Save multiplications by

eliminating common

subexpressions:

A = Z1 � Z2; B = A2;

C = X1 �X2;

D = Y1 � Y2;

E = d � C �D;

F = B � E; G = B + E;

X3 = A � F � (X1 � Y2 + Y1 �X2);

Y3 = A � G � (D � C);

Z3 = F � G.

Cost: 11M + 1S + 1D.

Can do better: 10M + 1S + 1D.

Faster doubling

(x1; y1) + (x1; y1) =

((x1y1+y1x1)=(1+dx1x1y1y1),

(y1y1�x1x1)=(1�dx1x1y1y1)) =

((2x1y1)=(1 + dx2
1y

2
1),

(y2
1�x

2
1)=(1� dx2

1y
2
1)).

x2
1 + y2

1 = 1 + dx2
1y

2
1 so

(x1; y1) + (x1; y1) =

((2x1y1)=(x2
1 + y2

1),

(y2
1�x

2
1)=(2� x2

1 � y2
1)).

Again eliminate divisions

using P2: only 3M + 4S.

Much faster than addition.

Useful: many doublings in ECC.

More addition strategies

Dual addition formula:

(x1; y1) + (x2; y2) =

((x1y1 + x2y2)=(x1x2 + y1y2);

(x1y1 � x2y2)=(x1y2 � x2y1)).

Low degree, no need for d.

Warning: fails for doubling!

Is this really “addition”?

Most EC formulas have failures.



Faster doubling

(x1; y1) + (x1; y1) =

((x1y1+y1x1)=(1+dx1x1y1y1),

(y1y1�x1x1)=(1�dx1x1y1y1)) =

((2x1y1)=(1 + dx2
1y

2
1),

(y2
1�x

2
1)=(1� dx2

1y
2
1)).

x2
1 + y2

1 = 1 + dx2
1y

2
1 so

(x1; y1) + (x1; y1) =

((2x1y1)=(x2
1 + y2

1),

(y2
1�x

2
1)=(2� x2

1 � y2
1)).

Again eliminate divisions

using P2: only 3M + 4S.

Much faster than addition.

Useful: many doublings in ECC.

More addition strategies

Dual addition formula:

(x1; y1) + (x2; y2) =

((x1y1 + x2y2)=(x1x2 + y1y2);

(x1y1 � x2y2)=(x1y2 � x2y1)).

Low degree, no need for d.

Warning: fails for doubling!

Is this really “addition”?

Most EC formulas have failures.



Faster doubling

(x1; y1) + (x1; y1) =

((x1y1+y1x1)=(1+dx1x1y1y1),

(y1y1�x1x1)=(1�dx1x1y1y1)) =

((2x1y1)=(1 + dx2
1y

2
1),

(y2
1�x

2
1)=(1� dx2

1y
2
1)).

x2
1 + y2

1 = 1 + dx2
1y

2
1 so

(x1; y1) + (x1; y1) =

((2x1y1)=(x2
1 + y2

1),

(y2
1�x

2
1)=(2� x2

1 � y2
1)).

Again eliminate divisions

using P2: only 3M + 4S.

Much faster than addition.

Useful: many doublings in ECC.

More addition strategies

Dual addition formula:

(x1; y1) + (x2; y2) =

((x1y1 + x2y2)=(x1x2 + y1y2);

(x1y1 � x2y2)=(x1y2 � x2y1)).

Low degree, no need for d.

Warning: fails for doubling!

Is this really “addition”?

Most EC formulas have failures.

More coordinate systems:

Inverted: x = Z=X, y = Z=Y .

Extended: x = X=Z, y = Y=T .

Completed: x = X=Z, y = Y=Z,

xy = T=Z.



Faster doubling

(x1; y1) + (x1; y1) =

((x1y1+y1x1)=(1+dx1x1y1y1),

(y1y1�x1x1)=(1�dx1x1y1y1)) =

((2x1y1)=(1 + dx2
1y

2
1),

(y2
1�x

2
1)=(1� dx2

1y
2
1)).

x2
1 + y2

1 = 1 + dx2
1y

2
1 so

(x1; y1) + (x1; y1) =

((2x1y1)=(x2
1 + y2

1),

(y2
1�x

2
1)=(2� x2

1 � y2
1)).

Again eliminate divisions

using P2: only 3M + 4S.

Much faster than addition.

Useful: many doublings in ECC.

More addition strategies

Dual addition formula:

(x1; y1) + (x2; y2) =

((x1y1 + x2y2)=(x1x2 + y1y2);

(x1y1 � x2y2)=(x1y2 � x2y1)).

Low degree, no need for d.

Warning: fails for doubling!

Is this really “addition”?

Most EC formulas have failures.

More coordinate systems:

Inverted: x = Z=X, y = Z=Y .

Extended: x = X=Z, y = Y=T .

Completed: x = X=Z, y = Y=Z,

xy = T=Z.

More elliptic curves

Edwards curves are elliptic.

Easiest way to understand

elliptic curves is Edwards.

Geometrically, all elliptic curves

are Edwards curves.

Algebraically,

more elliptic curves exist.

Every odd-char curve can be

expressed as Weierstrass curve

v2 = u3 + a2u
2 + a4u + a6.

Warning: “Weierstrass” has

different meaning in char 2.



Faster doubling

(x1; y1) + (x1; y1) =

((x1y1+y1x1)=(1+dx1x1y1y1),

(y1y1�x1x1)=(1�dx1x1y1y1)) =

((2x1y1)=(1 + dx2
1y

2
1),

(y2
1�x

2
1)=(1� dx2

1y
2
1)).

x2
1 + y2

1 = 1 + dx2
1y

2
1 so

(x1; y1) + (x1; y1) =

((2x1y1)=(x2
1 + y2

1),

(y2
1�x

2
1)=(2� x2

1 � y2
1)).

Again eliminate divisions

using P2: only 3M + 4S.

Much faster than addition.

Useful: many doublings in ECC.

More addition strategies

Dual addition formula:

(x1; y1) + (x2; y2) =

((x1y1 + x2y2)=(x1x2 + y1y2);

(x1y1 � x2y2)=(x1y2 � x2y1)).

Low degree, no need for d.

Warning: fails for doubling!

Is this really “addition”?

Most EC formulas have failures.

More coordinate systems:

Inverted: x = Z=X, y = Z=Y .

Extended: x = X=Z, y = Y=T .

Completed: x = X=Z, y = Y=Z,

xy = T=Z.

More elliptic curves

Edwards curves are elliptic.

Easiest way to understand

elliptic curves is Edwards.

Geometrically, all elliptic curves

are Edwards curves.

Algebraically,

more elliptic curves exist.

Every odd-char curve can be

expressed as Weierstrass curve

v2 = u3 + a2u
2 + a4u + a6.

Warning: “Weierstrass” has

different meaning in char 2.



Faster doubling

(x1; y1) + (x1; y1) =

((x1y1+y1x1)=(1+dx1x1y1y1),

(y1y1�x1x1)=(1�dx1x1y1y1)) =

((2x1y1)=(1 + dx2
1y

2
1),

(y2
1�x

2
1)=(1� dx2

1y
2
1)).

x2
1 + y2

1 = 1 + dx2
1y

2
1 so

(x1; y1) + (x1; y1) =

((2x1y1)=(x2
1 + y2

1),

(y2
1�x

2
1)=(2� x2

1 � y2
1)).

Again eliminate divisions

using P2: only 3M + 4S.

Much faster than addition.

Useful: many doublings in ECC.

More addition strategies

Dual addition formula:

(x1; y1) + (x2; y2) =

((x1y1 + x2y2)=(x1x2 + y1y2);

(x1y1 � x2y2)=(x1y2 � x2y1)).

Low degree, no need for d.

Warning: fails for doubling!

Is this really “addition”?

Most EC formulas have failures.

More coordinate systems:

Inverted: x = Z=X, y = Z=Y .

Extended: x = X=Z, y = Y=T .

Completed: x = X=Z, y = Y=Z,

xy = T=Z.

More elliptic curves

Edwards curves are elliptic.

Easiest way to understand

elliptic curves is Edwards.

Geometrically, all elliptic curves

are Edwards curves.

Algebraically,

more elliptic curves exist.

Every odd-char curve can be

expressed as Weierstrass curve

v2 = u3 + a2u
2 + a4u + a6.

Warning: “Weierstrass” has

different meaning in char 2.



More addition strategies

Dual addition formula:

(x1; y1) + (x2; y2) =

((x1y1 + x2y2)=(x1x2 + y1y2);

(x1y1 � x2y2)=(x1y2 � x2y1)).

Low degree, no need for d.

Warning: fails for doubling!

Is this really “addition”?

Most EC formulas have failures.

More coordinate systems:

Inverted: x = Z=X, y = Z=Y .

Extended: x = X=Z, y = Y=T .

Completed: x = X=Z, y = Y=Z,

xy = T=Z.

More elliptic curves

Edwards curves are elliptic.

Easiest way to understand

elliptic curves is Edwards.

Geometrically, all elliptic curves

are Edwards curves.

Algebraically,

more elliptic curves exist.

Every odd-char curve can be

expressed as Weierstrass curve

v2 = u3 + a2u
2 + a4u + a6.

Warning: “Weierstrass” has

different meaning in char 2.



More addition strategies

Dual addition formula:

(x1; y1) + (x2; y2) =

((x1y1 + x2y2)=(x1x2 + y1y2);

(x1y1 � x2y2)=(x1y2 � x2y1)).

Low degree, no need for d.

Warning: fails for doubling!

Is this really “addition”?

Most EC formulas have failures.

More coordinate systems:

Inverted: x = Z=X, y = Z=Y .

Extended: x = X=Z, y = Y=T .

Completed: x = X=Z, y = Y=Z,

xy = T=Z.

More elliptic curves

Edwards curves are elliptic.

Easiest way to understand

elliptic curves is Edwards.

Geometrically, all elliptic curves

are Edwards curves.

Algebraically,

more elliptic curves exist.

Every odd-char curve can be

expressed as Weierstrass curve

v2 = u3 + a2u
2 + a4u + a6.

Warning: “Weierstrass” has

different meaning in char 2.

Addition on Weierstrass curve

v2 = u3 + u2 + u + 1

�
P1

�P2

��(P1 + P2)
99

99
99

99
99

99
99

99
99

99
�P1 + P2

u
//

vOO

Slope � = (v2 � v1)=(u2 � u1).

Note that u1 6= u2.



More addition strategies

Dual addition formula:

(x1; y1) + (x2; y2) =

((x1y1 + x2y2)=(x1x2 + y1y2);

(x1y1 � x2y2)=(x1y2 � x2y1)).

Low degree, no need for d.

Warning: fails for doubling!

Is this really “addition”?

Most EC formulas have failures.

More coordinate systems:

Inverted: x = Z=X, y = Z=Y .

Extended: x = X=Z, y = Y=T .

Completed: x = X=Z, y = Y=Z,

xy = T=Z.

More elliptic curves

Edwards curves are elliptic.

Easiest way to understand

elliptic curves is Edwards.

Geometrically, all elliptic curves

are Edwards curves.

Algebraically,

more elliptic curves exist.

Every odd-char curve can be

expressed as Weierstrass curve

v2 = u3 + a2u
2 + a4u + a6.

Warning: “Weierstrass” has

different meaning in char 2.

Addition on Weierstrass curve

v2 = u3 + u2 + u + 1

�
P1

�P2

��(P1 + P2)
99

99
99

99
99

99
99

99
99

99
�P1 + P2

u
//

vOO

Slope � = (v2 � v1)=(u2 � u1).

Note that u1 6= u2.



More addition strategies

Dual addition formula:

(x1; y1) + (x2; y2) =

((x1y1 + x2y2)=(x1x2 + y1y2);

(x1y1 � x2y2)=(x1y2 � x2y1)).

Low degree, no need for d.

Warning: fails for doubling!

Is this really “addition”?

Most EC formulas have failures.

More coordinate systems:

Inverted: x = Z=X, y = Z=Y .

Extended: x = X=Z, y = Y=T .

Completed: x = X=Z, y = Y=Z,

xy = T=Z.

More elliptic curves

Edwards curves are elliptic.

Easiest way to understand

elliptic curves is Edwards.

Geometrically, all elliptic curves

are Edwards curves.

Algebraically,

more elliptic curves exist.

Every odd-char curve can be

expressed as Weierstrass curve

v2 = u3 + a2u
2 + a4u + a6.

Warning: “Weierstrass” has

different meaning in char 2.

Addition on Weierstrass curve

v2 = u3 + u2 + u + 1

�
P1

�P2

��(P1 + P2)
99

99
99

99
99

99
99

99
99

99
�P1 + P2

u
//

vOO

Slope � = (v2 � v1)=(u2 � u1).

Note that u1 6= u2.



More elliptic curves

Edwards curves are elliptic.

Easiest way to understand

elliptic curves is Edwards.

Geometrically, all elliptic curves

are Edwards curves.

Algebraically,

more elliptic curves exist.

Every odd-char curve can be

expressed as Weierstrass curve

v2 = u3 + a2u
2 + a4u + a6.

Warning: “Weierstrass” has

different meaning in char 2.

Addition on Weierstrass curve

v2 = u3 + u2 + u + 1

�
P1

�P2

��(P1 + P2)
99

99
99

99
99

99
99

99
99

99
�P1 + P2

u
//

vOO

Slope � = (v2 � v1)=(u2 � u1).

Note that u1 6= u2.



More elliptic curves

Edwards curves are elliptic.

Easiest way to understand

elliptic curves is Edwards.

Geometrically, all elliptic curves

are Edwards curves.

Algebraically,

more elliptic curves exist.

Every odd-char curve can be

expressed as Weierstrass curve

v2 = u3 + a2u
2 + a4u + a6.

Warning: “Weierstrass” has

different meaning in char 2.

Addition on Weierstrass curve

v2 = u3 + u2 + u + 1

�
P1

�P2

��(P1 + P2)
99

99
99

99
99

99
99

99
99

99
�P1 + P2

u
//

vOO

Slope � = (v2 � v1)=(u2 � u1).

Note that u1 6= u2.

Doubling on Weierstrass curve

v2 = u3 � u

�
P1

�
�2P1

lllllllllllllllllllll

� 2P1

u
//

vOO

Slope � = (3u2
1 � 1)=(2v1).



More elliptic curves

Edwards curves are elliptic.

Easiest way to understand

elliptic curves is Edwards.

Geometrically, all elliptic curves

are Edwards curves.

Algebraically,

more elliptic curves exist.

Every odd-char curve can be

expressed as Weierstrass curve

v2 = u3 + a2u
2 + a4u + a6.

Warning: “Weierstrass” has

different meaning in char 2.

Addition on Weierstrass curve

v2 = u3 + u2 + u + 1

�
P1

�P2

��(P1 + P2)
99

99
99

99
99

99
99

99
99

99
�P1 + P2

u
//

vOO

Slope � = (v2 � v1)=(u2 � u1).

Note that u1 6= u2.

Doubling on Weierstrass curve

v2 = u3 � u

�
P1

�
�2P1

lllllllllllllllllllll

� 2P1

u
//

vOO

Slope � = (3u2
1 � 1)=(2v1).



More elliptic curves

Edwards curves are elliptic.

Easiest way to understand

elliptic curves is Edwards.

Geometrically, all elliptic curves

are Edwards curves.

Algebraically,

more elliptic curves exist.

Every odd-char curve can be

expressed as Weierstrass curve

v2 = u3 + a2u
2 + a4u + a6.

Warning: “Weierstrass” has

different meaning in char 2.

Addition on Weierstrass curve

v2 = u3 + u2 + u + 1

�
P1

�P2

��(P1 + P2)
99

99
99

99
99

99
99

99
99

99
�P1 + P2

u
//

vOO

Slope � = (v2 � v1)=(u2 � u1).

Note that u1 6= u2.

Doubling on Weierstrass curve

v2 = u3 � u

�
P1

�
�2P1

lllllllllllllllllllll

� 2P1

u
//

vOO

Slope � = (3u2
1 � 1)=(2v1).



Addition on Weierstrass curve

v2 = u3 + u2 + u + 1

�
P1

�P2

��(P1 + P2)
99

99
99

99
99

99
99

99
99

99
�P1 + P2

u
//

vOO

Slope � = (v2 � v1)=(u2 � u1).

Note that u1 6= u2.

Doubling on Weierstrass curve

v2 = u3 � u

�
P1

�
�2P1

lllllllllllllllllllll

� 2P1

u
//

vOO

Slope � = (3u2
1 � 1)=(2v1).



Addition on Weierstrass curve

v2 = u3 + u2 + u + 1

�
P1

�P2

��(P1 + P2)
99

99
99

99
99

99
99

99
99

99
�P1 + P2

u
//

vOO

Slope � = (v2 � v1)=(u2 � u1).

Note that u1 6= u2.

Doubling on Weierstrass curve

v2 = u3 � u

�
P1

�
�2P1

lllllllllllllllllllll

� 2P1

u
//

vOO

Slope � = (3u2
1 � 1)=(2v1).

In most cases

(u1; v1) + (u2; v2) =

(u3; v3) where (u3; v3) =

(�2�u1�u2; �(u1�u3)�v1):

u1 6= u2, “addition” (alert!):

� = (v2 � v1)=(u2 � u1).

Total cost 1I + 2M + 1S.

(u1; v1) = (u2; v2) and v1 6= 0,

“doubling” (alert!):

� = (3u2
1 + 2a2u1 + a4)=(2v1).

Total cost 1I + 2M + 2S.

Also handle some exceptions:

(u1; v1) = (u2;�v2);

inputs at 1.



Addition on Weierstrass curve

v2 = u3 + u2 + u + 1

�
P1

�P2

��(P1 + P2)
99

99
99

99
99

99
99

99
99

99
�P1 + P2

u
//

vOO

Slope � = (v2 � v1)=(u2 � u1).

Note that u1 6= u2.

Doubling on Weierstrass curve

v2 = u3 � u

�
P1

�
�2P1

lllllllllllllllllllll

� 2P1

u
//

vOO

Slope � = (3u2
1 � 1)=(2v1).

In most cases

(u1; v1) + (u2; v2) =

(u3; v3) where (u3; v3) =

(�2�u1�u2; �(u1�u3)�v1):

u1 6= u2, “addition” (alert!):

� = (v2 � v1)=(u2 � u1).

Total cost 1I + 2M + 1S.

(u1; v1) = (u2; v2) and v1 6= 0,

“doubling” (alert!):

� = (3u2
1 + 2a2u1 + a4)=(2v1).

Total cost 1I + 2M + 2S.

Also handle some exceptions:

(u1; v1) = (u2;�v2);

inputs at 1.



Addition on Weierstrass curve

v2 = u3 + u2 + u + 1

�
P1

�P2

��(P1 + P2)
99

99
99

99
99

99
99

99
99

99
�P1 + P2

u
//

vOO

Slope � = (v2 � v1)=(u2 � u1).

Note that u1 6= u2.

Doubling on Weierstrass curve

v2 = u3 � u

�
P1

�
�2P1

lllllllllllllllllllll

� 2P1

u
//

vOO

Slope � = (3u2
1 � 1)=(2v1).

In most cases

(u1; v1) + (u2; v2) =

(u3; v3) where (u3; v3) =

(�2�u1�u2; �(u1�u3)�v1):

u1 6= u2, “addition” (alert!):

� = (v2 � v1)=(u2 � u1).

Total cost 1I + 2M + 1S.

(u1; v1) = (u2; v2) and v1 6= 0,

“doubling” (alert!):

� = (3u2
1 + 2a2u1 + a4)=(2v1).

Total cost 1I + 2M + 2S.

Also handle some exceptions:

(u1; v1) = (u2;�v2);

inputs at 1.



Doubling on Weierstrass curve

v2 = u3 � u

�
P1

�
�2P1

lllllllllllllllllllll

� 2P1

u
//

vOO

Slope � = (3u2
1 � 1)=(2v1).

In most cases

(u1; v1) + (u2; v2) =

(u3; v3) where (u3; v3) =

(�2�u1�u2; �(u1�u3)�v1):

u1 6= u2, “addition” (alert!):

� = (v2 � v1)=(u2 � u1).

Total cost 1I + 2M + 1S.

(u1; v1) = (u2; v2) and v1 6= 0,

“doubling” (alert!):

� = (3u2
1 + 2a2u1 + a4)=(2v1).

Total cost 1I + 2M + 2S.

Also handle some exceptions:

(u1; v1) = (u2;�v2);

inputs at 1.



Doubling on Weierstrass curve

v2 = u3 � u

�
P1

�
�2P1

lllllllllllllllllllll

� 2P1

u
//

vOO

Slope � = (3u2
1 � 1)=(2v1).

In most cases

(u1; v1) + (u2; v2) =

(u3; v3) where (u3; v3) =

(�2�u1�u2; �(u1�u3)�v1):

u1 6= u2, “addition” (alert!):

� = (v2 � v1)=(u2 � u1).

Total cost 1I + 2M + 1S.

(u1; v1) = (u2; v2) and v1 6= 0,

“doubling” (alert!):

� = (3u2
1 + 2a2u1 + a4)=(2v1).

Total cost 1I + 2M + 2S.

Also handle some exceptions:

(u1; v1) = (u2;�v2);

inputs at 1.

Birational equivalence

Starting from point (x; y)

on x2 + y2 = 1 + dx2y2:

Define A = 2(1 + d)=(1� d),

B = 4=(1� d);

u = (1 + y)=(B(1� y)),

v = u=x = (1 + y)=(Bx(1� y)).

(Skip a few exceptional points.)

v2 = u3 + (A=B)u2 + (1=B2)u.

Maps Edwards to Weierstrass.

Compatible with point addition!

Easily invert this map:

x = u=v, y = (Bu� 1)=(Bu+ 1).



Doubling on Weierstrass curve

v2 = u3 � u

�
P1

�
�2P1

lllllllllllllllllllll

� 2P1

u
//

vOO

Slope � = (3u2
1 � 1)=(2v1).

In most cases

(u1; v1) + (u2; v2) =

(u3; v3) where (u3; v3) =

(�2�u1�u2; �(u1�u3)�v1):

u1 6= u2, “addition” (alert!):

� = (v2 � v1)=(u2 � u1).

Total cost 1I + 2M + 1S.

(u1; v1) = (u2; v2) and v1 6= 0,

“doubling” (alert!):

� = (3u2
1 + 2a2u1 + a4)=(2v1).

Total cost 1I + 2M + 2S.

Also handle some exceptions:

(u1; v1) = (u2;�v2);

inputs at 1.

Birational equivalence

Starting from point (x; y)

on x2 + y2 = 1 + dx2y2:

Define A = 2(1 + d)=(1� d),

B = 4=(1� d);

u = (1 + y)=(B(1� y)),

v = u=x = (1 + y)=(Bx(1� y)).

(Skip a few exceptional points.)

v2 = u3 + (A=B)u2 + (1=B2)u.

Maps Edwards to Weierstrass.

Compatible with point addition!

Easily invert this map:

x = u=v, y = (Bu� 1)=(Bu+ 1).



Doubling on Weierstrass curve

v2 = u3 � u

�
P1

�
�2P1

lllllllllllllllllllll

� 2P1

u
//

vOO

Slope � = (3u2
1 � 1)=(2v1).

In most cases

(u1; v1) + (u2; v2) =

(u3; v3) where (u3; v3) =

(�2�u1�u2; �(u1�u3)�v1):

u1 6= u2, “addition” (alert!):

� = (v2 � v1)=(u2 � u1).

Total cost 1I + 2M + 1S.

(u1; v1) = (u2; v2) and v1 6= 0,

“doubling” (alert!):

� = (3u2
1 + 2a2u1 + a4)=(2v1).

Total cost 1I + 2M + 2S.

Also handle some exceptions:

(u1; v1) = (u2;�v2);

inputs at 1.

Birational equivalence

Starting from point (x; y)

on x2 + y2 = 1 + dx2y2:

Define A = 2(1 + d)=(1� d),

B = 4=(1� d);

u = (1 + y)=(B(1� y)),

v = u=x = (1 + y)=(Bx(1� y)).

(Skip a few exceptional points.)

v2 = u3 + (A=B)u2 + (1=B2)u.

Maps Edwards to Weierstrass.

Compatible with point addition!

Easily invert this map:

x = u=v, y = (Bu� 1)=(Bu+ 1).



In most cases

(u1; v1) + (u2; v2) =

(u3; v3) where (u3; v3) =

(�2�u1�u2; �(u1�u3)�v1):

u1 6= u2, “addition” (alert!):

� = (v2 � v1)=(u2 � u1).

Total cost 1I + 2M + 1S.

(u1; v1) = (u2; v2) and v1 6= 0,

“doubling” (alert!):

� = (3u2
1 + 2a2u1 + a4)=(2v1).

Total cost 1I + 2M + 2S.

Also handle some exceptions:

(u1; v1) = (u2;�v2);

inputs at 1.

Birational equivalence

Starting from point (x; y)

on x2 + y2 = 1 + dx2y2:

Define A = 2(1 + d)=(1� d),

B = 4=(1� d);

u = (1 + y)=(B(1� y)),

v = u=x = (1 + y)=(Bx(1� y)).

(Skip a few exceptional points.)

v2 = u3 + (A=B)u2 + (1=B2)u.

Maps Edwards to Weierstrass.

Compatible with point addition!

Easily invert this map:

x = u=v, y = (Bu� 1)=(Bu+ 1).



In most cases

(u1; v1) + (u2; v2) =

(u3; v3) where (u3; v3) =

(�2�u1�u2; �(u1�u3)�v1):

u1 6= u2, “addition” (alert!):

� = (v2 � v1)=(u2 � u1).

Total cost 1I + 2M + 1S.

(u1; v1) = (u2; v2) and v1 6= 0,

“doubling” (alert!):

� = (3u2
1 + 2a2u1 + a4)=(2v1).

Total cost 1I + 2M + 2S.

Also handle some exceptions:

(u1; v1) = (u2;�v2);

inputs at 1.

Birational equivalence

Starting from point (x; y)

on x2 + y2 = 1 + dx2y2:

Define A = 2(1 + d)=(1� d),

B = 4=(1� d);

u = (1 + y)=(B(1� y)),

v = u=x = (1 + y)=(Bx(1� y)).

(Skip a few exceptional points.)

v2 = u3 + (A=B)u2 + (1=B2)u.

Maps Edwards to Weierstrass.

Compatible with point addition!

Easily invert this map:

x = u=v, y = (Bu� 1)=(Bu+ 1).

Some history

There are many perspectives on

elliptic-curve computations.

1984 (published 1987) Lenstra:

ECM, the elliptic-curve method

of factoring integers.

1984 (published 1985) Miller,

and independently

1984 (published 1987) Koblitz:

Elliptic-curve cryptography.

Bosma, Goldwasser–Kilian,

Chudnovsky–Chudnovsky, Atkin:

elliptic-curve primality proving.



In most cases

(u1; v1) + (u2; v2) =

(u3; v3) where (u3; v3) =

(�2�u1�u2; �(u1�u3)�v1):

u1 6= u2, “addition” (alert!):

� = (v2 � v1)=(u2 � u1).

Total cost 1I + 2M + 1S.

(u1; v1) = (u2; v2) and v1 6= 0,

“doubling” (alert!):

� = (3u2
1 + 2a2u1 + a4)=(2v1).

Total cost 1I + 2M + 2S.

Also handle some exceptions:

(u1; v1) = (u2;�v2);

inputs at 1.

Birational equivalence

Starting from point (x; y)

on x2 + y2 = 1 + dx2y2:

Define A = 2(1 + d)=(1� d),

B = 4=(1� d);

u = (1 + y)=(B(1� y)),

v = u=x = (1 + y)=(Bx(1� y)).

(Skip a few exceptional points.)

v2 = u3 + (A=B)u2 + (1=B2)u.

Maps Edwards to Weierstrass.

Compatible with point addition!

Easily invert this map:

x = u=v, y = (Bu� 1)=(Bu+ 1).

Some history

There are many perspectives on

elliptic-curve computations.

1984 (published 1987) Lenstra:

ECM, the elliptic-curve method

of factoring integers.

1984 (published 1985) Miller,

and independently

1984 (published 1987) Koblitz:

Elliptic-curve cryptography.

Bosma, Goldwasser–Kilian,

Chudnovsky–Chudnovsky, Atkin:

elliptic-curve primality proving.



In most cases

(u1; v1) + (u2; v2) =

(u3; v3) where (u3; v3) =

(�2�u1�u2; �(u1�u3)�v1):

u1 6= u2, “addition” (alert!):

� = (v2 � v1)=(u2 � u1).

Total cost 1I + 2M + 1S.

(u1; v1) = (u2; v2) and v1 6= 0,

“doubling” (alert!):

� = (3u2
1 + 2a2u1 + a4)=(2v1).

Total cost 1I + 2M + 2S.

Also handle some exceptions:

(u1; v1) = (u2;�v2);

inputs at 1.

Birational equivalence

Starting from point (x; y)

on x2 + y2 = 1 + dx2y2:

Define A = 2(1 + d)=(1� d),

B = 4=(1� d);

u = (1 + y)=(B(1� y)),

v = u=x = (1 + y)=(Bx(1� y)).

(Skip a few exceptional points.)

v2 = u3 + (A=B)u2 + (1=B2)u.

Maps Edwards to Weierstrass.

Compatible with point addition!

Easily invert this map:

x = u=v, y = (Bu� 1)=(Bu+ 1).

Some history

There are many perspectives on

elliptic-curve computations.

1984 (published 1987) Lenstra:

ECM, the elliptic-curve method

of factoring integers.

1984 (published 1985) Miller,

and independently

1984 (published 1987) Koblitz:

Elliptic-curve cryptography.

Bosma, Goldwasser–Kilian,

Chudnovsky–Chudnovsky, Atkin:

elliptic-curve primality proving.



Birational equivalence

Starting from point (x; y)

on x2 + y2 = 1 + dx2y2:

Define A = 2(1 + d)=(1� d),

B = 4=(1� d);

u = (1 + y)=(B(1� y)),

v = u=x = (1 + y)=(Bx(1� y)).

(Skip a few exceptional points.)

v2 = u3 + (A=B)u2 + (1=B2)u.

Maps Edwards to Weierstrass.

Compatible with point addition!

Easily invert this map:

x = u=v, y = (Bu� 1)=(Bu+ 1).

Some history

There are many perspectives on

elliptic-curve computations.

1984 (published 1987) Lenstra:

ECM, the elliptic-curve method

of factoring integers.

1984 (published 1985) Miller,

and independently

1984 (published 1987) Koblitz:

Elliptic-curve cryptography.

Bosma, Goldwasser–Kilian,

Chudnovsky–Chudnovsky, Atkin:

elliptic-curve primality proving.



Birational equivalence

Starting from point (x; y)

on x2 + y2 = 1 + dx2y2:

Define A = 2(1 + d)=(1� d),

B = 4=(1� d);

u = (1 + y)=(B(1� y)),

v = u=x = (1 + y)=(Bx(1� y)).

(Skip a few exceptional points.)

v2 = u3 + (A=B)u2 + (1=B2)u.

Maps Edwards to Weierstrass.

Compatible with point addition!

Easily invert this map:

x = u=v, y = (Bu� 1)=(Bu+ 1).

Some history

There are many perspectives on

elliptic-curve computations.

1984 (published 1987) Lenstra:

ECM, the elliptic-curve method

of factoring integers.

1984 (published 1985) Miller,

and independently

1984 (published 1987) Koblitz:

Elliptic-curve cryptography.

Bosma, Goldwasser–Kilian,

Chudnovsky–Chudnovsky, Atkin:

elliptic-curve primality proving.

The Edwards perspective is new!

1761 Euler, 1866 Gauss

introduced an addition law

for x2 + y2 = 1� x2y2,

the “lemniscatic elliptic curve.”

2007 Edwards generalized to

many curves x2 +y2 = 1+c4x2y2.

Theorem: have now obtained

all elliptic curves over Q.

2007 Bernstein–Lange:

Edwards addition law is complete

for x2 + y2 = 1 + dx2y2 if d 6= ;

and gives new ECC speed records.



Birational equivalence

Starting from point (x; y)

on x2 + y2 = 1 + dx2y2:

Define A = 2(1 + d)=(1� d),

B = 4=(1� d);

u = (1 + y)=(B(1� y)),

v = u=x = (1 + y)=(Bx(1� y)).

(Skip a few exceptional points.)

v2 = u3 + (A=B)u2 + (1=B2)u.

Maps Edwards to Weierstrass.

Compatible with point addition!

Easily invert this map:

x = u=v, y = (Bu� 1)=(Bu+ 1).

Some history

There are many perspectives on

elliptic-curve computations.

1984 (published 1987) Lenstra:

ECM, the elliptic-curve method

of factoring integers.

1984 (published 1985) Miller,

and independently

1984 (published 1987) Koblitz:

Elliptic-curve cryptography.

Bosma, Goldwasser–Kilian,

Chudnovsky–Chudnovsky, Atkin:

elliptic-curve primality proving.

The Edwards perspective is new!

1761 Euler, 1866 Gauss

introduced an addition law

for x2 + y2 = 1� x2y2,

the “lemniscatic elliptic curve.”

2007 Edwards generalized to

many curves x2 +y2 = 1+c4x2y2.

Theorem: have now obtained

all elliptic curves over Q.

2007 Bernstein–Lange:

Edwards addition law is complete

for x2 + y2 = 1 + dx2y2 if d 6= ;

and gives new ECC speed records.



Birational equivalence

Starting from point (x; y)

on x2 + y2 = 1 + dx2y2:

Define A = 2(1 + d)=(1� d),

B = 4=(1� d);

u = (1 + y)=(B(1� y)),

v = u=x = (1 + y)=(Bx(1� y)).

(Skip a few exceptional points.)

v2 = u3 + (A=B)u2 + (1=B2)u.

Maps Edwards to Weierstrass.

Compatible with point addition!

Easily invert this map:

x = u=v, y = (Bu� 1)=(Bu+ 1).

Some history

There are many perspectives on

elliptic-curve computations.

1984 (published 1987) Lenstra:

ECM, the elliptic-curve method

of factoring integers.

1984 (published 1985) Miller,

and independently

1984 (published 1987) Koblitz:

Elliptic-curve cryptography.

Bosma, Goldwasser–Kilian,

Chudnovsky–Chudnovsky, Atkin:

elliptic-curve primality proving.

The Edwards perspective is new!

1761 Euler, 1866 Gauss

introduced an addition law

for x2 + y2 = 1� x2y2,

the “lemniscatic elliptic curve.”

2007 Edwards generalized to

many curves x2 +y2 = 1+c4x2y2.

Theorem: have now obtained

all elliptic curves over Q.

2007 Bernstein–Lange:

Edwards addition law is complete

for x2 + y2 = 1 + dx2y2 if d 6= ;

and gives new ECC speed records.



Some history

There are many perspectives on

elliptic-curve computations.

1984 (published 1987) Lenstra:

ECM, the elliptic-curve method

of factoring integers.

1984 (published 1985) Miller,

and independently

1984 (published 1987) Koblitz:

Elliptic-curve cryptography.

Bosma, Goldwasser–Kilian,

Chudnovsky–Chudnovsky, Atkin:

elliptic-curve primality proving.

The Edwards perspective is new!

1761 Euler, 1866 Gauss

introduced an addition law

for x2 + y2 = 1� x2y2,

the “lemniscatic elliptic curve.”

2007 Edwards generalized to

many curves x2 +y2 = 1+c4x2y2.

Theorem: have now obtained

all elliptic curves over Q.

2007 Bernstein–Lange:

Edwards addition law is complete

for x2 + y2 = 1 + dx2y2 if d 6= ;

and gives new ECC speed records.



Some history

There are many perspectives on

elliptic-curve computations.

1984 (published 1987) Lenstra:

ECM, the elliptic-curve method

of factoring integers.

1984 (published 1985) Miller,

and independently

1984 (published 1987) Koblitz:

Elliptic-curve cryptography.

Bosma, Goldwasser–Kilian,

Chudnovsky–Chudnovsky, Atkin:

elliptic-curve primality proving.

The Edwards perspective is new!

1761 Euler, 1866 Gauss

introduced an addition law

for x2 + y2 = 1� x2y2,

the “lemniscatic elliptic curve.”

2007 Edwards generalized to

many curves x2 +y2 = 1+c4x2y2.

Theorem: have now obtained

all elliptic curves over Q.

2007 Bernstein–Lange:

Edwards addition law is complete

for x2 + y2 = 1 + dx2y2 if d 6= ;

and gives new ECC speed records.

Representing curve points

Crypto 1985, Miller, “Use of

elliptic curves in cryptography”:

Given n 2 Z, P 2 E(Fq),

division-polynomial recurrence

computes nP 2 E(Fq)

“in 26 log2 n multiplications”;

but can do better!

“It appears to be best to

represent the points on the curve

in the following form:

Each point is represented by the

triple (x; y; z) which corresponds

to the point (x=z2; y=z3).”



Some history

There are many perspectives on

elliptic-curve computations.

1984 (published 1987) Lenstra:

ECM, the elliptic-curve method

of factoring integers.

1984 (published 1985) Miller,

and independently

1984 (published 1987) Koblitz:

Elliptic-curve cryptography.

Bosma, Goldwasser–Kilian,

Chudnovsky–Chudnovsky, Atkin:

elliptic-curve primality proving.

The Edwards perspective is new!

1761 Euler, 1866 Gauss

introduced an addition law

for x2 + y2 = 1� x2y2,

the “lemniscatic elliptic curve.”

2007 Edwards generalized to

many curves x2 +y2 = 1+c4x2y2.

Theorem: have now obtained

all elliptic curves over Q.

2007 Bernstein–Lange:

Edwards addition law is complete

for x2 + y2 = 1 + dx2y2 if d 6= ;

and gives new ECC speed records.

Representing curve points

Crypto 1985, Miller, “Use of

elliptic curves in cryptography”:

Given n 2 Z, P 2 E(Fq),

division-polynomial recurrence

computes nP 2 E(Fq)

“in 26 log2 n multiplications”;

but can do better!

“It appears to be best to

represent the points on the curve

in the following form:

Each point is represented by the

triple (x; y; z) which corresponds

to the point (x=z2; y=z3).”



Some history

There are many perspectives on

elliptic-curve computations.

1984 (published 1987) Lenstra:

ECM, the elliptic-curve method

of factoring integers.

1984 (published 1985) Miller,

and independently

1984 (published 1987) Koblitz:

Elliptic-curve cryptography.

Bosma, Goldwasser–Kilian,

Chudnovsky–Chudnovsky, Atkin:

elliptic-curve primality proving.

The Edwards perspective is new!

1761 Euler, 1866 Gauss

introduced an addition law

for x2 + y2 = 1� x2y2,

the “lemniscatic elliptic curve.”

2007 Edwards generalized to

many curves x2 +y2 = 1+c4x2y2.

Theorem: have now obtained

all elliptic curves over Q.

2007 Bernstein–Lange:

Edwards addition law is complete

for x2 + y2 = 1 + dx2y2 if d 6= ;

and gives new ECC speed records.

Representing curve points

Crypto 1985, Miller, “Use of

elliptic curves in cryptography”:

Given n 2 Z, P 2 E(Fq),

division-polynomial recurrence

computes nP 2 E(Fq)

“in 26 log2 n multiplications”;

but can do better!

“It appears to be best to

represent the points on the curve

in the following form:

Each point is represented by the

triple (x; y; z) which corresponds

to the point (x=z2; y=z3).”



The Edwards perspective is new!

1761 Euler, 1866 Gauss

introduced an addition law

for x2 + y2 = 1� x2y2,

the “lemniscatic elliptic curve.”

2007 Edwards generalized to

many curves x2 +y2 = 1+c4x2y2.

Theorem: have now obtained

all elliptic curves over Q.

2007 Bernstein–Lange:

Edwards addition law is complete

for x2 + y2 = 1 + dx2y2 if d 6= ;

and gives new ECC speed records.

Representing curve points

Crypto 1985, Miller, “Use of

elliptic curves in cryptography”:

Given n 2 Z, P 2 E(Fq),

division-polynomial recurrence

computes nP 2 E(Fq)

“in 26 log2 n multiplications”;

but can do better!

“It appears to be best to

represent the points on the curve

in the following form:

Each point is represented by the

triple (x; y; z) which corresponds

to the point (x=z2; y=z3).”



The Edwards perspective is new!

1761 Euler, 1866 Gauss

introduced an addition law

for x2 + y2 = 1� x2y2,

the “lemniscatic elliptic curve.”

2007 Edwards generalized to

many curves x2 +y2 = 1+c4x2y2.

Theorem: have now obtained

all elliptic curves over Q.

2007 Bernstein–Lange:

Edwards addition law is complete

for x2 + y2 = 1 + dx2y2 if d 6= ;

and gives new ECC speed records.

Representing curve points

Crypto 1985, Miller, “Use of

elliptic curves in cryptography”:

Given n 2 Z, P 2 E(Fq),

division-polynomial recurrence

computes nP 2 E(Fq)

“in 26 log2 n multiplications”;

but can do better!

“It appears to be best to

represent the points on the curve

in the following form:

Each point is represented by the

triple (x; y; z) which corresponds

to the point (x=z2; y=z3).”

1986 Chudnovsky–Chudnovsky,

“Sequences of numbers

generated by addition

in formal groups

and new primality

and factorization tests”:

“The crucial problem becomes

the choice of the model

of an algebraic group variety,

where computations mod p

are the least time consuming.”

Most important computations:

ADD is P;Q 7! P + Q.

DBL is P 7! 2P .



The Edwards perspective is new!

1761 Euler, 1866 Gauss

introduced an addition law

for x2 + y2 = 1� x2y2,

the “lemniscatic elliptic curve.”

2007 Edwards generalized to

many curves x2 +y2 = 1+c4x2y2.

Theorem: have now obtained

all elliptic curves over Q.

2007 Bernstein–Lange:

Edwards addition law is complete

for x2 + y2 = 1 + dx2y2 if d 6= ;

and gives new ECC speed records.

Representing curve points

Crypto 1985, Miller, “Use of

elliptic curves in cryptography”:

Given n 2 Z, P 2 E(Fq),

division-polynomial recurrence

computes nP 2 E(Fq)

“in 26 log2 n multiplications”;

but can do better!

“It appears to be best to

represent the points on the curve

in the following form:

Each point is represented by the

triple (x; y; z) which corresponds

to the point (x=z2; y=z3).”

1986 Chudnovsky–Chudnovsky,

“Sequences of numbers

generated by addition

in formal groups

and new primality

and factorization tests”:

“The crucial problem becomes

the choice of the model

of an algebraic group variety,

where computations mod p

are the least time consuming.”

Most important computations:

ADD is P;Q 7! P + Q.

DBL is P 7! 2P .



The Edwards perspective is new!

1761 Euler, 1866 Gauss

introduced an addition law

for x2 + y2 = 1� x2y2,

the “lemniscatic elliptic curve.”

2007 Edwards generalized to

many curves x2 +y2 = 1+c4x2y2.

Theorem: have now obtained

all elliptic curves over Q.

2007 Bernstein–Lange:

Edwards addition law is complete

for x2 + y2 = 1 + dx2y2 if d 6= ;

and gives new ECC speed records.

Representing curve points

Crypto 1985, Miller, “Use of

elliptic curves in cryptography”:

Given n 2 Z, P 2 E(Fq),

division-polynomial recurrence

computes nP 2 E(Fq)

“in 26 log2 n multiplications”;

but can do better!

“It appears to be best to

represent the points on the curve

in the following form:

Each point is represented by the

triple (x; y; z) which corresponds

to the point (x=z2; y=z3).”

1986 Chudnovsky–Chudnovsky,

“Sequences of numbers

generated by addition

in formal groups

and new primality

and factorization tests”:

“The crucial problem becomes

the choice of the model

of an algebraic group variety,

where computations mod p

are the least time consuming.”

Most important computations:

ADD is P;Q 7! P + Q.

DBL is P 7! 2P .



Representing curve points

Crypto 1985, Miller, “Use of

elliptic curves in cryptography”:

Given n 2 Z, P 2 E(Fq),

division-polynomial recurrence

computes nP 2 E(Fq)

“in 26 log2 n multiplications”;

but can do better!

“It appears to be best to

represent the points on the curve

in the following form:

Each point is represented by the

triple (x; y; z) which corresponds

to the point (x=z2; y=z3).”

1986 Chudnovsky–Chudnovsky,

“Sequences of numbers

generated by addition

in formal groups

and new primality

and factorization tests”:

“The crucial problem becomes

the choice of the model

of an algebraic group variety,

where computations mod p

are the least time consuming.”

Most important computations:

ADD is P;Q 7! P + Q.

DBL is P 7! 2P .



Representing curve points

Crypto 1985, Miller, “Use of

elliptic curves in cryptography”:

Given n 2 Z, P 2 E(Fq),

division-polynomial recurrence

computes nP 2 E(Fq)

“in 26 log2 n multiplications”;

but can do better!

“It appears to be best to

represent the points on the curve

in the following form:

Each point is represented by the

triple (x; y; z) which corresponds

to the point (x=z2; y=z3).”

1986 Chudnovsky–Chudnovsky,

“Sequences of numbers

generated by addition

in formal groups

and new primality

and factorization tests”:

“The crucial problem becomes

the choice of the model

of an algebraic group variety,

where computations mod p

are the least time consuming.”

Most important computations:

ADD is P;Q 7! P + Q.

DBL is P 7! 2P .

“It is preferable to use

models of elliptic curves

lying in low-dimensional spaces,

for otherwise the number of

coordinates and operations is

increasing. This limits us : : : to

4 basic models of elliptic curves.”

Short Weierstrass:

y2 = x3 + ax + b.

Jacobi intersection:

s2 + c2 = 1, as2 + d2 = 1.

Jacobi quartic: y2 = x4+2ax2+1.

Hessian: x3 + y3 + 1 = 3dxy.



Representing curve points

Crypto 1985, Miller, “Use of

elliptic curves in cryptography”:

Given n 2 Z, P 2 E(Fq),

division-polynomial recurrence

computes nP 2 E(Fq)

“in 26 log2 n multiplications”;

but can do better!

“It appears to be best to

represent the points on the curve

in the following form:

Each point is represented by the

triple (x; y; z) which corresponds

to the point (x=z2; y=z3).”

1986 Chudnovsky–Chudnovsky,

“Sequences of numbers

generated by addition

in formal groups

and new primality

and factorization tests”:

“The crucial problem becomes

the choice of the model

of an algebraic group variety,

where computations mod p

are the least time consuming.”

Most important computations:

ADD is P;Q 7! P + Q.

DBL is P 7! 2P .

“It is preferable to use

models of elliptic curves

lying in low-dimensional spaces,

for otherwise the number of

coordinates and operations is

increasing. This limits us : : : to

4 basic models of elliptic curves.”

Short Weierstrass:

y2 = x3 + ax + b.

Jacobi intersection:

s2 + c2 = 1, as2 + d2 = 1.

Jacobi quartic: y2 = x4+2ax2+1.

Hessian: x3 + y3 + 1 = 3dxy.



Representing curve points

Crypto 1985, Miller, “Use of

elliptic curves in cryptography”:

Given n 2 Z, P 2 E(Fq),

division-polynomial recurrence

computes nP 2 E(Fq)

“in 26 log2 n multiplications”;

but can do better!

“It appears to be best to

represent the points on the curve

in the following form:

Each point is represented by the

triple (x; y; z) which corresponds

to the point (x=z2; y=z3).”

1986 Chudnovsky–Chudnovsky,

“Sequences of numbers

generated by addition

in formal groups

and new primality

and factorization tests”:

“The crucial problem becomes

the choice of the model

of an algebraic group variety,

where computations mod p

are the least time consuming.”

Most important computations:

ADD is P;Q 7! P + Q.

DBL is P 7! 2P .

“It is preferable to use

models of elliptic curves

lying in low-dimensional spaces,

for otherwise the number of

coordinates and operations is

increasing. This limits us : : : to

4 basic models of elliptic curves.”

Short Weierstrass:

y2 = x3 + ax + b.

Jacobi intersection:

s2 + c2 = 1, as2 + d2 = 1.

Jacobi quartic: y2 = x4+2ax2+1.

Hessian: x3 + y3 + 1 = 3dxy.



1986 Chudnovsky–Chudnovsky,

“Sequences of numbers

generated by addition

in formal groups

and new primality

and factorization tests”:

“The crucial problem becomes

the choice of the model

of an algebraic group variety,

where computations mod p

are the least time consuming.”

Most important computations:

ADD is P;Q 7! P + Q.

DBL is P 7! 2P .

“It is preferable to use

models of elliptic curves

lying in low-dimensional spaces,

for otherwise the number of

coordinates and operations is

increasing. This limits us : : : to

4 basic models of elliptic curves.”

Short Weierstrass:

y2 = x3 + ax + b.

Jacobi intersection:

s2 + c2 = 1, as2 + d2 = 1.

Jacobi quartic: y2 = x4+2ax2+1.

Hessian: x3 + y3 + 1 = 3dxy.



1986 Chudnovsky–Chudnovsky,

“Sequences of numbers

generated by addition

in formal groups

and new primality

and factorization tests”:

“The crucial problem becomes

the choice of the model

of an algebraic group variety,

where computations mod p

are the least time consuming.”

Most important computations:

ADD is P;Q 7! P + Q.

DBL is P 7! 2P .

“It is preferable to use

models of elliptic curves

lying in low-dimensional spaces,

for otherwise the number of

coordinates and operations is

increasing. This limits us : : : to

4 basic models of elliptic curves.”

Short Weierstrass:

y2 = x3 + ax + b.

Jacobi intersection:

s2 + c2 = 1, as2 + d2 = 1.

Jacobi quartic: y2 = x4+2ax2+1.

Hessian: x3 + y3 + 1 = 3dxy.

Optimizing Jacobian coordinates

For “traditional” (X=Z2; Y=Z3)

on y2 = x3 + ax + b:

1986 Chudnovsky–Chudnovsky

state explicit formulas using

10M for DBL; 16M for ADD.

Consequence:

�

�
10 lgn + 16

lgn

lg lgn

�
M

to compute n; P 7! nP

using sliding-windows method

of scalar multiplication.

Notation: lg = log2.



1986 Chudnovsky–Chudnovsky,

“Sequences of numbers

generated by addition

in formal groups

and new primality

and factorization tests”:

“The crucial problem becomes

the choice of the model

of an algebraic group variety,

where computations mod p

are the least time consuming.”

Most important computations:

ADD is P;Q 7! P + Q.

DBL is P 7! 2P .

“It is preferable to use

models of elliptic curves

lying in low-dimensional spaces,

for otherwise the number of

coordinates and operations is

increasing. This limits us : : : to

4 basic models of elliptic curves.”

Short Weierstrass:

y2 = x3 + ax + b.

Jacobi intersection:

s2 + c2 = 1, as2 + d2 = 1.

Jacobi quartic: y2 = x4+2ax2+1.

Hessian: x3 + y3 + 1 = 3dxy.

Optimizing Jacobian coordinates

For “traditional” (X=Z2; Y=Z3)

on y2 = x3 + ax + b:

1986 Chudnovsky–Chudnovsky

state explicit formulas using

10M for DBL; 16M for ADD.

Consequence:

�

�
10 lgn + 16

lgn

lg lgn

�
M

to compute n; P 7! nP

using sliding-windows method

of scalar multiplication.

Notation: lg = log2.



1986 Chudnovsky–Chudnovsky,

“Sequences of numbers

generated by addition

in formal groups

and new primality

and factorization tests”:

“The crucial problem becomes

the choice of the model

of an algebraic group variety,

where computations mod p

are the least time consuming.”

Most important computations:

ADD is P;Q 7! P + Q.

DBL is P 7! 2P .

“It is preferable to use

models of elliptic curves

lying in low-dimensional spaces,

for otherwise the number of

coordinates and operations is

increasing. This limits us : : : to

4 basic models of elliptic curves.”

Short Weierstrass:

y2 = x3 + ax + b.

Jacobi intersection:

s2 + c2 = 1, as2 + d2 = 1.

Jacobi quartic: y2 = x4+2ax2+1.

Hessian: x3 + y3 + 1 = 3dxy.

Optimizing Jacobian coordinates

For “traditional” (X=Z2; Y=Z3)

on y2 = x3 + ax + b:

1986 Chudnovsky–Chudnovsky

state explicit formulas using

10M for DBL; 16M for ADD.

Consequence:

�

�
10 lgn + 16

lgn

lg lgn

�
M

to compute n; P 7! nP

using sliding-windows method

of scalar multiplication.

Notation: lg = log2.



“It is preferable to use

models of elliptic curves

lying in low-dimensional spaces,

for otherwise the number of

coordinates and operations is

increasing. This limits us : : : to

4 basic models of elliptic curves.”

Short Weierstrass:

y2 = x3 + ax + b.

Jacobi intersection:

s2 + c2 = 1, as2 + d2 = 1.

Jacobi quartic: y2 = x4+2ax2+1.

Hessian: x3 + y3 + 1 = 3dxy.

Optimizing Jacobian coordinates

For “traditional” (X=Z2; Y=Z3)

on y2 = x3 + ax + b:

1986 Chudnovsky–Chudnovsky

state explicit formulas using

10M for DBL; 16M for ADD.

Consequence:

�

�
10 lgn + 16

lgn

lg lgn

�
M

to compute n; P 7! nP

using sliding-windows method

of scalar multiplication.

Notation: lg = log2.



“It is preferable to use

models of elliptic curves

lying in low-dimensional spaces,

for otherwise the number of

coordinates and operations is

increasing. This limits us : : : to

4 basic models of elliptic curves.”

Short Weierstrass:

y2 = x3 + ax + b.

Jacobi intersection:

s2 + c2 = 1, as2 + d2 = 1.

Jacobi quartic: y2 = x4+2ax2+1.

Hessian: x3 + y3 + 1 = 3dxy.

Optimizing Jacobian coordinates

For “traditional” (X=Z2; Y=Z3)

on y2 = x3 + ax + b:

1986 Chudnovsky–Chudnovsky

state explicit formulas using

10M for DBL; 16M for ADD.

Consequence:

�

�
10 lgn + 16

lgn

lg lgn

�
M

to compute n; P 7! nP

using sliding-windows method

of scalar multiplication.

Notation: lg = log2.

Squaring is faster than M.

Here are the DBL formulas:

S = 4X1 � Y
2

1 ;

M = 3X2
1 + aZ4

1 ;

T = M2 � 2S;

X3 = T ;

Y3 = M � (S � T )� 8Y 4
1 ;

Z3 = 2Y1 � Z1.

Total cost 3M + 6S + 1D where

S is the cost of squaring in Fq,

D is the cost of multiplying by a.

The squarings produce

X2
1 ; Y

2
1 ; Y

4
1 ; Z

2
1 ; Z

4
1 ;M

2.



“It is preferable to use

models of elliptic curves

lying in low-dimensional spaces,

for otherwise the number of

coordinates and operations is

increasing. This limits us : : : to

4 basic models of elliptic curves.”

Short Weierstrass:

y2 = x3 + ax + b.

Jacobi intersection:

s2 + c2 = 1, as2 + d2 = 1.

Jacobi quartic: y2 = x4+2ax2+1.

Hessian: x3 + y3 + 1 = 3dxy.

Optimizing Jacobian coordinates

For “traditional” (X=Z2; Y=Z3)

on y2 = x3 + ax + b:

1986 Chudnovsky–Chudnovsky

state explicit formulas using

10M for DBL; 16M for ADD.

Consequence:

�

�
10 lgn + 16

lgn

lg lgn

�
M

to compute n; P 7! nP

using sliding-windows method

of scalar multiplication.

Notation: lg = log2.

Squaring is faster than M.

Here are the DBL formulas:

S = 4X1 � Y
2

1 ;

M = 3X2
1 + aZ4

1 ;

T = M2 � 2S;

X3 = T ;

Y3 = M � (S � T )� 8Y 4
1 ;

Z3 = 2Y1 � Z1.

Total cost 3M + 6S + 1D where

S is the cost of squaring in Fq,

D is the cost of multiplying by a.

The squarings produce

X2
1 ; Y

2
1 ; Y

4
1 ; Z

2
1 ; Z

4
1 ;M

2.



“It is preferable to use

models of elliptic curves

lying in low-dimensional spaces,

for otherwise the number of

coordinates and operations is

increasing. This limits us : : : to

4 basic models of elliptic curves.”

Short Weierstrass:

y2 = x3 + ax + b.

Jacobi intersection:

s2 + c2 = 1, as2 + d2 = 1.

Jacobi quartic: y2 = x4+2ax2+1.

Hessian: x3 + y3 + 1 = 3dxy.

Optimizing Jacobian coordinates

For “traditional” (X=Z2; Y=Z3)

on y2 = x3 + ax + b:

1986 Chudnovsky–Chudnovsky

state explicit formulas using

10M for DBL; 16M for ADD.

Consequence:

�

�
10 lgn + 16

lgn

lg lgn

�
M

to compute n; P 7! nP

using sliding-windows method

of scalar multiplication.

Notation: lg = log2.

Squaring is faster than M.

Here are the DBL formulas:

S = 4X1 � Y
2

1 ;

M = 3X2
1 + aZ4

1 ;

T = M2 � 2S;

X3 = T ;

Y3 = M � (S � T )� 8Y 4
1 ;

Z3 = 2Y1 � Z1.

Total cost 3M + 6S + 1D where

S is the cost of squaring in Fq,

D is the cost of multiplying by a.

The squarings produce

X2
1 ; Y

2
1 ; Y

4
1 ; Z

2
1 ; Z

4
1 ;M

2.



Optimizing Jacobian coordinates

For “traditional” (X=Z2; Y=Z3)

on y2 = x3 + ax + b:

1986 Chudnovsky–Chudnovsky

state explicit formulas using

10M for DBL; 16M for ADD.

Consequence:

�

�
10 lgn + 16

lgn

lg lgn

�
M

to compute n; P 7! nP

using sliding-windows method

of scalar multiplication.

Notation: lg = log2.

Squaring is faster than M.

Here are the DBL formulas:

S = 4X1 � Y
2

1 ;

M = 3X2
1 + aZ4

1 ;

T = M2 � 2S;

X3 = T ;

Y3 = M � (S � T )� 8Y 4
1 ;

Z3 = 2Y1 � Z1.

Total cost 3M + 6S + 1D where

S is the cost of squaring in Fq,

D is the cost of multiplying by a.

The squarings produce

X2
1 ; Y

2
1 ; Y

4
1 ; Z

2
1 ; Z

4
1 ;M

2.



Optimizing Jacobian coordinates

For “traditional” (X=Z2; Y=Z3)

on y2 = x3 + ax + b:

1986 Chudnovsky–Chudnovsky

state explicit formulas using

10M for DBL; 16M for ADD.

Consequence:

�

�
10 lgn + 16

lgn

lg lgn

�
M

to compute n; P 7! nP

using sliding-windows method

of scalar multiplication.

Notation: lg = log2.

Squaring is faster than M.

Here are the DBL formulas:

S = 4X1 � Y
2

1 ;

M = 3X2
1 + aZ4

1 ;

T = M2 � 2S;

X3 = T ;

Y3 = M � (S � T )� 8Y 4
1 ;

Z3 = 2Y1 � Z1.

Total cost 3M + 6S + 1D where

S is the cost of squaring in Fq,

D is the cost of multiplying by a.

The squarings produce

X2
1 ; Y

2
1 ; Y

4
1 ; Z

2
1 ; Z

4
1 ;M

2.

Most ECC standards choose

curves that make formulas faster.

Curve-choice advice from

1986 Chudnovsky–Chudnovsky:

Can eliminate the 1D

by choosing curve with a = 1.

But “it is even smarter”

to choose curve with a = �3.

If a = �3 then M = 3(X2
1 � Z4

1 )

= 3(X1 � Z2
1 ) � (X1 + Z2

1 ).

Replace 2S with 1M.

Now DBL costs 4M + 4S.



Optimizing Jacobian coordinates

For “traditional” (X=Z2; Y=Z3)

on y2 = x3 + ax + b:

1986 Chudnovsky–Chudnovsky

state explicit formulas using

10M for DBL; 16M for ADD.

Consequence:

�

�
10 lgn + 16

lgn

lg lgn

�
M

to compute n; P 7! nP

using sliding-windows method

of scalar multiplication.

Notation: lg = log2.

Squaring is faster than M.

Here are the DBL formulas:

S = 4X1 � Y
2

1 ;

M = 3X2
1 + aZ4

1 ;

T = M2 � 2S;

X3 = T ;

Y3 = M � (S � T )� 8Y 4
1 ;

Z3 = 2Y1 � Z1.

Total cost 3M + 6S + 1D where

S is the cost of squaring in Fq,

D is the cost of multiplying by a.

The squarings produce

X2
1 ; Y

2
1 ; Y

4
1 ; Z

2
1 ; Z

4
1 ;M

2.

Most ECC standards choose

curves that make formulas faster.

Curve-choice advice from

1986 Chudnovsky–Chudnovsky:

Can eliminate the 1D

by choosing curve with a = 1.

But “it is even smarter”

to choose curve with a = �3.

If a = �3 then M = 3(X2
1 � Z4

1 )

= 3(X1 � Z2
1 ) � (X1 + Z2

1 ).

Replace 2S with 1M.

Now DBL costs 4M + 4S.



Optimizing Jacobian coordinates

For “traditional” (X=Z2; Y=Z3)

on y2 = x3 + ax + b:

1986 Chudnovsky–Chudnovsky

state explicit formulas using

10M for DBL; 16M for ADD.

Consequence:

�

�
10 lgn + 16

lgn

lg lgn

�
M

to compute n; P 7! nP

using sliding-windows method

of scalar multiplication.

Notation: lg = log2.

Squaring is faster than M.

Here are the DBL formulas:

S = 4X1 � Y
2

1 ;

M = 3X2
1 + aZ4

1 ;

T = M2 � 2S;

X3 = T ;

Y3 = M � (S � T )� 8Y 4
1 ;

Z3 = 2Y1 � Z1.

Total cost 3M + 6S + 1D where

S is the cost of squaring in Fq,

D is the cost of multiplying by a.

The squarings produce

X2
1 ; Y

2
1 ; Y

4
1 ; Z

2
1 ; Z

4
1 ;M

2.

Most ECC standards choose

curves that make formulas faster.

Curve-choice advice from

1986 Chudnovsky–Chudnovsky:

Can eliminate the 1D

by choosing curve with a = 1.

But “it is even smarter”

to choose curve with a = �3.

If a = �3 then M = 3(X2
1 � Z4

1 )

= 3(X1 � Z2
1 ) � (X1 + Z2

1 ).

Replace 2S with 1M.

Now DBL costs 4M + 4S.



Squaring is faster than M.

Here are the DBL formulas:

S = 4X1 � Y
2

1 ;

M = 3X2
1 + aZ4

1 ;

T = M2 � 2S;

X3 = T ;

Y3 = M � (S � T )� 8Y 4
1 ;

Z3 = 2Y1 � Z1.

Total cost 3M + 6S + 1D where

S is the cost of squaring in Fq,

D is the cost of multiplying by a.

The squarings produce

X2
1 ; Y

2
1 ; Y

4
1 ; Z

2
1 ; Z

4
1 ;M

2.

Most ECC standards choose

curves that make formulas faster.

Curve-choice advice from

1986 Chudnovsky–Chudnovsky:

Can eliminate the 1D

by choosing curve with a = 1.

But “it is even smarter”

to choose curve with a = �3.

If a = �3 then M = 3(X2
1 � Z4

1 )

= 3(X1 � Z2
1 ) � (X1 + Z2

1 ).

Replace 2S with 1M.

Now DBL costs 4M + 4S.



Squaring is faster than M.

Here are the DBL formulas:

S = 4X1 � Y
2

1 ;

M = 3X2
1 + aZ4

1 ;

T = M2 � 2S;

X3 = T ;

Y3 = M � (S � T )� 8Y 4
1 ;

Z3 = 2Y1 � Z1.

Total cost 3M + 6S + 1D where

S is the cost of squaring in Fq,

D is the cost of multiplying by a.

The squarings produce

X2
1 ; Y

2
1 ; Y

4
1 ; Z

2
1 ; Z

4
1 ;M

2.

Most ECC standards choose

curves that make formulas faster.

Curve-choice advice from

1986 Chudnovsky–Chudnovsky:

Can eliminate the 1D

by choosing curve with a = 1.

But “it is even smarter”

to choose curve with a = �3.

If a = �3 then M = 3(X2
1 � Z4

1 )

= 3(X1 � Z2
1 ) � (X1 + Z2

1 ).

Replace 2S with 1M.

Now DBL costs 4M + 4S.

2001 Bernstein:

3M + 5S for DBL.

11M + 5S for ADD.

How? Easy S�M tradeoff:

instead of computing 2Y1 � Z1,

compute (Y1 + Z1)2 � Y 2
1 � Z2

1 .

DBL formulas were already

computing Y 2
1 and Z2

1 .

Same idea for the ADD formulas,

but have to scale X; Y; Z

to eliminate divisions by 2.



Squaring is faster than M.

Here are the DBL formulas:

S = 4X1 � Y
2

1 ;

M = 3X2
1 + aZ4

1 ;

T = M2 � 2S;

X3 = T ;

Y3 = M � (S � T )� 8Y 4
1 ;

Z3 = 2Y1 � Z1.

Total cost 3M + 6S + 1D where

S is the cost of squaring in Fq,

D is the cost of multiplying by a.

The squarings produce

X2
1 ; Y

2
1 ; Y

4
1 ; Z

2
1 ; Z

4
1 ;M

2.

Most ECC standards choose

curves that make formulas faster.

Curve-choice advice from

1986 Chudnovsky–Chudnovsky:

Can eliminate the 1D

by choosing curve with a = 1.

But “it is even smarter”

to choose curve with a = �3.

If a = �3 then M = 3(X2
1 � Z4

1 )

= 3(X1 � Z2
1 ) � (X1 + Z2

1 ).

Replace 2S with 1M.

Now DBL costs 4M + 4S.

2001 Bernstein:

3M + 5S for DBL.

11M + 5S for ADD.

How? Easy S�M tradeoff:

instead of computing 2Y1 � Z1,

compute (Y1 + Z1)2 � Y 2
1 � Z2

1 .

DBL formulas were already

computing Y 2
1 and Z2

1 .

Same idea for the ADD formulas,

but have to scale X; Y; Z

to eliminate divisions by 2.



Squaring is faster than M.

Here are the DBL formulas:

S = 4X1 � Y
2

1 ;

M = 3X2
1 + aZ4

1 ;

T = M2 � 2S;

X3 = T ;

Y3 = M � (S � T )� 8Y 4
1 ;

Z3 = 2Y1 � Z1.

Total cost 3M + 6S + 1D where

S is the cost of squaring in Fq,

D is the cost of multiplying by a.

The squarings produce

X2
1 ; Y

2
1 ; Y

4
1 ; Z

2
1 ; Z

4
1 ;M

2.

Most ECC standards choose

curves that make formulas faster.

Curve-choice advice from

1986 Chudnovsky–Chudnovsky:

Can eliminate the 1D

by choosing curve with a = 1.

But “it is even smarter”

to choose curve with a = �3.

If a = �3 then M = 3(X2
1 � Z4

1 )

= 3(X1 � Z2
1 ) � (X1 + Z2

1 ).

Replace 2S with 1M.

Now DBL costs 4M + 4S.

2001 Bernstein:

3M + 5S for DBL.

11M + 5S for ADD.

How? Easy S�M tradeoff:

instead of computing 2Y1 � Z1,

compute (Y1 + Z1)2 � Y 2
1 � Z2

1 .

DBL formulas were already

computing Y 2
1 and Z2

1 .

Same idea for the ADD formulas,

but have to scale X; Y; Z

to eliminate divisions by 2.



Most ECC standards choose

curves that make formulas faster.

Curve-choice advice from

1986 Chudnovsky–Chudnovsky:

Can eliminate the 1D

by choosing curve with a = 1.

But “it is even smarter”

to choose curve with a = �3.

If a = �3 then M = 3(X2
1 � Z4

1 )

= 3(X1 � Z2
1 ) � (X1 + Z2

1 ).

Replace 2S with 1M.

Now DBL costs 4M + 4S.

2001 Bernstein:

3M + 5S for DBL.

11M + 5S for ADD.

How? Easy S�M tradeoff:

instead of computing 2Y1 � Z1,

compute (Y1 + Z1)2 � Y 2
1 � Z2

1 .

DBL formulas were already

computing Y 2
1 and Z2

1 .

Same idea for the ADD formulas,

but have to scale X; Y; Z

to eliminate divisions by 2.



Most ECC standards choose

curves that make formulas faster.

Curve-choice advice from

1986 Chudnovsky–Chudnovsky:

Can eliminate the 1D

by choosing curve with a = 1.

But “it is even smarter”

to choose curve with a = �3.

If a = �3 then M = 3(X2
1 � Z4

1 )

= 3(X1 � Z2
1 ) � (X1 + Z2

1 ).

Replace 2S with 1M.

Now DBL costs 4M + 4S.

2001 Bernstein:

3M + 5S for DBL.

11M + 5S for ADD.

How? Easy S�M tradeoff:

instead of computing 2Y1 � Z1,

compute (Y1 + Z1)2 � Y 2
1 � Z2

1 .

DBL formulas were already

computing Y 2
1 and Z2

1 .

Same idea for the ADD formulas,

but have to scale X; Y; Z

to eliminate divisions by 2.

ADD for y2 = x3 + ax + b:

U1 = X1Z
2
2 , U2 = X2Z

2
1 ,

S1 = Y1Z
3
2 , S2 = Y2Z

3
1 ,

many more computations.

1986 Chudnovsky–Chudnovsky:

“We suggest to write

addition formulas involving

(X; Y; Z; Z2; Z3).”

Disadvantages:

Allocate space for Z2; Z3.

Pay 1S+1M in ADD and in DBL.

Advantages:

Save 2S + 2M at start of ADD.

Save 1S at start of DBL.



Most ECC standards choose

curves that make formulas faster.

Curve-choice advice from

1986 Chudnovsky–Chudnovsky:

Can eliminate the 1D

by choosing curve with a = 1.

But “it is even smarter”

to choose curve with a = �3.

If a = �3 then M = 3(X2
1 � Z4

1 )

= 3(X1 � Z2
1 ) � (X1 + Z2

1 ).

Replace 2S with 1M.

Now DBL costs 4M + 4S.

2001 Bernstein:

3M + 5S for DBL.

11M + 5S for ADD.

How? Easy S�M tradeoff:

instead of computing 2Y1 � Z1,

compute (Y1 + Z1)2 � Y 2
1 � Z2

1 .

DBL formulas were already

computing Y 2
1 and Z2

1 .

Same idea for the ADD formulas,

but have to scale X; Y; Z

to eliminate divisions by 2.

ADD for y2 = x3 + ax + b:

U1 = X1Z
2
2 , U2 = X2Z

2
1 ,

S1 = Y1Z
3
2 , S2 = Y2Z

3
1 ,

many more computations.

1986 Chudnovsky–Chudnovsky:

“We suggest to write

addition formulas involving

(X; Y; Z; Z2; Z3).”

Disadvantages:

Allocate space for Z2; Z3.

Pay 1S+1M in ADD and in DBL.

Advantages:

Save 2S + 2M at start of ADD.

Save 1S at start of DBL.



Most ECC standards choose

curves that make formulas faster.

Curve-choice advice from

1986 Chudnovsky–Chudnovsky:

Can eliminate the 1D

by choosing curve with a = 1.

But “it is even smarter”

to choose curve with a = �3.

If a = �3 then M = 3(X2
1 � Z4

1 )

= 3(X1 � Z2
1 ) � (X1 + Z2

1 ).

Replace 2S with 1M.

Now DBL costs 4M + 4S.

2001 Bernstein:

3M + 5S for DBL.

11M + 5S for ADD.

How? Easy S�M tradeoff:

instead of computing 2Y1 � Z1,

compute (Y1 + Z1)2 � Y 2
1 � Z2

1 .

DBL formulas were already

computing Y 2
1 and Z2

1 .

Same idea for the ADD formulas,

but have to scale X; Y; Z

to eliminate divisions by 2.

ADD for y2 = x3 + ax + b:

U1 = X1Z
2
2 , U2 = X2Z

2
1 ,

S1 = Y1Z
3
2 , S2 = Y2Z

3
1 ,

many more computations.

1986 Chudnovsky–Chudnovsky:

“We suggest to write

addition formulas involving

(X; Y; Z; Z2; Z3).”

Disadvantages:

Allocate space for Z2; Z3.

Pay 1S+1M in ADD and in DBL.

Advantages:

Save 2S + 2M at start of ADD.

Save 1S at start of DBL.



2001 Bernstein:

3M + 5S for DBL.

11M + 5S for ADD.

How? Easy S�M tradeoff:

instead of computing 2Y1 � Z1,

compute (Y1 + Z1)2 � Y 2
1 � Z2

1 .

DBL formulas were already

computing Y 2
1 and Z2

1 .

Same idea for the ADD formulas,

but have to scale X; Y; Z

to eliminate divisions by 2.

ADD for y2 = x3 + ax + b:

U1 = X1Z
2
2 , U2 = X2Z

2
1 ,

S1 = Y1Z
3
2 , S2 = Y2Z

3
1 ,

many more computations.

1986 Chudnovsky–Chudnovsky:

“We suggest to write

addition formulas involving

(X; Y; Z; Z2; Z3).”

Disadvantages:

Allocate space for Z2; Z3.

Pay 1S+1M in ADD and in DBL.

Advantages:

Save 2S + 2M at start of ADD.

Save 1S at start of DBL.



2001 Bernstein:

3M + 5S for DBL.

11M + 5S for ADD.

How? Easy S�M tradeoff:

instead of computing 2Y1 � Z1,

compute (Y1 + Z1)2 � Y 2
1 � Z2

1 .

DBL formulas were already

computing Y 2
1 and Z2

1 .

Same idea for the ADD formulas,

but have to scale X; Y; Z

to eliminate divisions by 2.

ADD for y2 = x3 + ax + b:

U1 = X1Z
2
2 , U2 = X2Z

2
1 ,

S1 = Y1Z
3
2 , S2 = Y2Z

3
1 ,

many more computations.

1986 Chudnovsky–Chudnovsky:

“We suggest to write

addition formulas involving

(X; Y; Z; Z2; Z3).”

Disadvantages:

Allocate space for Z2; Z3.

Pay 1S+1M in ADD and in DBL.

Advantages:

Save 2S + 2M at start of ADD.

Save 1S at start of DBL.

1998 Cohen–Miyaji–Ono:

Store point as (X : Y : Z).

If point is input to ADD,

also cache Z2 and Z3.

No cost, aside from space.

If point is input to another ADD,

reuse Z2; Z3. Save 1S + 1M!

Best Jacobian speeds today,

including S�M tradeoffs:

3M + 5S for DBL if a = �3.

11M + 5S for ADD.

10M + 4S for reADD.

7M + 4S for mADD (i.e. Z2 = 1).



2001 Bernstein:

3M + 5S for DBL.

11M + 5S for ADD.

How? Easy S�M tradeoff:

instead of computing 2Y1 � Z1,

compute (Y1 + Z1)2 � Y 2
1 � Z2

1 .

DBL formulas were already

computing Y 2
1 and Z2

1 .

Same idea for the ADD formulas,

but have to scale X; Y; Z

to eliminate divisions by 2.

ADD for y2 = x3 + ax + b:

U1 = X1Z
2
2 , U2 = X2Z

2
1 ,

S1 = Y1Z
3
2 , S2 = Y2Z

3
1 ,

many more computations.

1986 Chudnovsky–Chudnovsky:

“We suggest to write

addition formulas involving

(X; Y; Z; Z2; Z3).”

Disadvantages:

Allocate space for Z2; Z3.

Pay 1S+1M in ADD and in DBL.

Advantages:

Save 2S + 2M at start of ADD.

Save 1S at start of DBL.

1998 Cohen–Miyaji–Ono:

Store point as (X : Y : Z).

If point is input to ADD,

also cache Z2 and Z3.

No cost, aside from space.

If point is input to another ADD,

reuse Z2; Z3. Save 1S + 1M!

Best Jacobian speeds today,

including S�M tradeoffs:

3M + 5S for DBL if a = �3.

11M + 5S for ADD.

10M + 4S for reADD.

7M + 4S for mADD (i.e. Z2 = 1).



2001 Bernstein:

3M + 5S for DBL.

11M + 5S for ADD.

How? Easy S�M tradeoff:

instead of computing 2Y1 � Z1,

compute (Y1 + Z1)2 � Y 2
1 � Z2

1 .

DBL formulas were already

computing Y 2
1 and Z2

1 .

Same idea for the ADD formulas,

but have to scale X; Y; Z

to eliminate divisions by 2.

ADD for y2 = x3 + ax + b:

U1 = X1Z
2
2 , U2 = X2Z

2
1 ,

S1 = Y1Z
3
2 , S2 = Y2Z

3
1 ,

many more computations.

1986 Chudnovsky–Chudnovsky:

“We suggest to write

addition formulas involving

(X; Y; Z; Z2; Z3).”

Disadvantages:

Allocate space for Z2; Z3.

Pay 1S+1M in ADD and in DBL.

Advantages:

Save 2S + 2M at start of ADD.

Save 1S at start of DBL.

1998 Cohen–Miyaji–Ono:

Store point as (X : Y : Z).

If point is input to ADD,

also cache Z2 and Z3.

No cost, aside from space.

If point is input to another ADD,

reuse Z2; Z3. Save 1S + 1M!

Best Jacobian speeds today,

including S�M tradeoffs:

3M + 5S for DBL if a = �3.

11M + 5S for ADD.

10M + 4S for reADD.

7M + 4S for mADD (i.e. Z2 = 1).



ADD for y2 = x3 + ax + b:

U1 = X1Z
2
2 , U2 = X2Z

2
1 ,

S1 = Y1Z
3
2 , S2 = Y2Z

3
1 ,

many more computations.

1986 Chudnovsky–Chudnovsky:

“We suggest to write

addition formulas involving

(X; Y; Z; Z2; Z3).”

Disadvantages:

Allocate space for Z2; Z3.

Pay 1S+1M in ADD and in DBL.

Advantages:

Save 2S + 2M at start of ADD.

Save 1S at start of DBL.

1998 Cohen–Miyaji–Ono:

Store point as (X : Y : Z).

If point is input to ADD,

also cache Z2 and Z3.

No cost, aside from space.

If point is input to another ADD,

reuse Z2; Z3. Save 1S + 1M!

Best Jacobian speeds today,

including S�M tradeoffs:

3M + 5S for DBL if a = �3.

11M + 5S for ADD.

10M + 4S for reADD.

7M + 4S for mADD (i.e. Z2 = 1).



ADD for y2 = x3 + ax + b:

U1 = X1Z
2
2 , U2 = X2Z

2
1 ,

S1 = Y1Z
3
2 , S2 = Y2Z

3
1 ,

many more computations.

1986 Chudnovsky–Chudnovsky:

“We suggest to write

addition formulas involving

(X; Y; Z; Z2; Z3).”

Disadvantages:

Allocate space for Z2; Z3.

Pay 1S+1M in ADD and in DBL.

Advantages:

Save 2S + 2M at start of ADD.

Save 1S at start of DBL.

1998 Cohen–Miyaji–Ono:

Store point as (X : Y : Z).

If point is input to ADD,

also cache Z2 and Z3.

No cost, aside from space.

If point is input to another ADD,

reuse Z2; Z3. Save 1S + 1M!

Best Jacobian speeds today,

including S�M tradeoffs:

3M + 5S for DBL if a = �3.

11M + 5S for ADD.

10M + 4S for reADD.

7M + 4S for mADD (i.e. Z2 = 1).

Compare to speeds for Edwards

curves x2 + y2 = 1 + dx2y2

in projective coordinates

(2007 Bernstein–Lange):

3M + 4S for DBL.

10M + 1S + 1D for ADD.

9M + 1S + 1D for mADD.

Inverted Edwards coordinates

(2007 Bernstein–Lange):

3M + 4S + 1D for DBL.

9M + 1S + 1D for ADD.

8M + 1S + 1D for mADD.

Even better speeds from

extended/completed coordinates

(2008 Hisil–Wong–Carter–Dawson).



ADD for y2 = x3 + ax + b:

U1 = X1Z
2
2 , U2 = X2Z

2
1 ,

S1 = Y1Z
3
2 , S2 = Y2Z

3
1 ,

many more computations.

1986 Chudnovsky–Chudnovsky:

“We suggest to write

addition formulas involving

(X; Y; Z; Z2; Z3).”

Disadvantages:

Allocate space for Z2; Z3.

Pay 1S+1M in ADD and in DBL.

Advantages:

Save 2S + 2M at start of ADD.

Save 1S at start of DBL.

1998 Cohen–Miyaji–Ono:

Store point as (X : Y : Z).

If point is input to ADD,

also cache Z2 and Z3.

No cost, aside from space.

If point is input to another ADD,

reuse Z2; Z3. Save 1S + 1M!

Best Jacobian speeds today,

including S�M tradeoffs:

3M + 5S for DBL if a = �3.

11M + 5S for ADD.

10M + 4S for reADD.

7M + 4S for mADD (i.e. Z2 = 1).

Compare to speeds for Edwards

curves x2 + y2 = 1 + dx2y2

in projective coordinates

(2007 Bernstein–Lange):

3M + 4S for DBL.

10M + 1S + 1D for ADD.

9M + 1S + 1D for mADD.

Inverted Edwards coordinates

(2007 Bernstein–Lange):

3M + 4S + 1D for DBL.

9M + 1S + 1D for ADD.

8M + 1S + 1D for mADD.

Even better speeds from

extended/completed coordinates

(2008 Hisil–Wong–Carter–Dawson).



ADD for y2 = x3 + ax + b:

U1 = X1Z
2
2 , U2 = X2Z

2
1 ,

S1 = Y1Z
3
2 , S2 = Y2Z

3
1 ,

many more computations.

1986 Chudnovsky–Chudnovsky:

“We suggest to write

addition formulas involving

(X; Y; Z; Z2; Z3).”

Disadvantages:

Allocate space for Z2; Z3.

Pay 1S+1M in ADD and in DBL.

Advantages:

Save 2S + 2M at start of ADD.

Save 1S at start of DBL.

1998 Cohen–Miyaji–Ono:

Store point as (X : Y : Z).

If point is input to ADD,

also cache Z2 and Z3.

No cost, aside from space.

If point is input to another ADD,

reuse Z2; Z3. Save 1S + 1M!

Best Jacobian speeds today,

including S�M tradeoffs:

3M + 5S for DBL if a = �3.

11M + 5S for ADD.

10M + 4S for reADD.

7M + 4S for mADD (i.e. Z2 = 1).

Compare to speeds for Edwards

curves x2 + y2 = 1 + dx2y2

in projective coordinates

(2007 Bernstein–Lange):

3M + 4S for DBL.

10M + 1S + 1D for ADD.

9M + 1S + 1D for mADD.

Inverted Edwards coordinates

(2007 Bernstein–Lange):

3M + 4S + 1D for DBL.

9M + 1S + 1D for ADD.

8M + 1S + 1D for mADD.

Even better speeds from

extended/completed coordinates

(2008 Hisil–Wong–Carter–Dawson).



1998 Cohen–Miyaji–Ono:

Store point as (X : Y : Z).

If point is input to ADD,

also cache Z2 and Z3.

No cost, aside from space.

If point is input to another ADD,

reuse Z2; Z3. Save 1S + 1M!

Best Jacobian speeds today,

including S�M tradeoffs:

3M + 5S for DBL if a = �3.

11M + 5S for ADD.

10M + 4S for reADD.

7M + 4S for mADD (i.e. Z2 = 1).

Compare to speeds for Edwards

curves x2 + y2 = 1 + dx2y2

in projective coordinates

(2007 Bernstein–Lange):

3M + 4S for DBL.

10M + 1S + 1D for ADD.

9M + 1S + 1D for mADD.

Inverted Edwards coordinates

(2007 Bernstein–Lange):

3M + 4S + 1D for DBL.

9M + 1S + 1D for ADD.

8M + 1S + 1D for mADD.

Even better speeds from

extended/completed coordinates

(2008 Hisil–Wong–Carter–Dawson).



1998 Cohen–Miyaji–Ono:

Store point as (X : Y : Z).

If point is input to ADD,

also cache Z2 and Z3.

No cost, aside from space.

If point is input to another ADD,

reuse Z2; Z3. Save 1S + 1M!

Best Jacobian speeds today,

including S�M tradeoffs:

3M + 5S for DBL if a = �3.

11M + 5S for ADD.

10M + 4S for reADD.

7M + 4S for mADD (i.e. Z2 = 1).

Compare to speeds for Edwards

curves x2 + y2 = 1 + dx2y2

in projective coordinates

(2007 Bernstein–Lange):

3M + 4S for DBL.

10M + 1S + 1D for ADD.

9M + 1S + 1D for mADD.

Inverted Edwards coordinates

(2007 Bernstein–Lange):

3M + 4S + 1D for DBL.

9M + 1S + 1D for ADD.

8M + 1S + 1D for mADD.

Even better speeds from

extended/completed coordinates

(2008 Hisil–Wong–Carter–Dawson).

y2 = x3 � 0:4x + 0:7



1998 Cohen–Miyaji–Ono:

Store point as (X : Y : Z).

If point is input to ADD,

also cache Z2 and Z3.

No cost, aside from space.

If point is input to another ADD,

reuse Z2; Z3. Save 1S + 1M!

Best Jacobian speeds today,

including S�M tradeoffs:

3M + 5S for DBL if a = �3.

11M + 5S for ADD.

10M + 4S for reADD.

7M + 4S for mADD (i.e. Z2 = 1).

Compare to speeds for Edwards

curves x2 + y2 = 1 + dx2y2

in projective coordinates

(2007 Bernstein–Lange):

3M + 4S for DBL.

10M + 1S + 1D for ADD.

9M + 1S + 1D for mADD.

Inverted Edwards coordinates

(2007 Bernstein–Lange):

3M + 4S + 1D for DBL.

9M + 1S + 1D for ADD.

8M + 1S + 1D for mADD.

Even better speeds from

extended/completed coordinates

(2008 Hisil–Wong–Carter–Dawson).

y2 = x3 � 0:4x + 0:7



1998 Cohen–Miyaji–Ono:

Store point as (X : Y : Z).

If point is input to ADD,

also cache Z2 and Z3.

No cost, aside from space.

If point is input to another ADD,

reuse Z2; Z3. Save 1S + 1M!

Best Jacobian speeds today,

including S�M tradeoffs:

3M + 5S for DBL if a = �3.

11M + 5S for ADD.

10M + 4S for reADD.

7M + 4S for mADD (i.e. Z2 = 1).

Compare to speeds for Edwards

curves x2 + y2 = 1 + dx2y2

in projective coordinates

(2007 Bernstein–Lange):

3M + 4S for DBL.

10M + 1S + 1D for ADD.

9M + 1S + 1D for mADD.

Inverted Edwards coordinates

(2007 Bernstein–Lange):

3M + 4S + 1D for DBL.

9M + 1S + 1D for ADD.

8M + 1S + 1D for mADD.

Even better speeds from

extended/completed coordinates

(2008 Hisil–Wong–Carter–Dawson).

y2 = x3 � 0:4x + 0:7



Compare to speeds for Edwards

curves x2 + y2 = 1 + dx2y2

in projective coordinates

(2007 Bernstein–Lange):

3M + 4S for DBL.

10M + 1S + 1D for ADD.

9M + 1S + 1D for mADD.

Inverted Edwards coordinates

(2007 Bernstein–Lange):

3M + 4S + 1D for DBL.

9M + 1S + 1D for ADD.

8M + 1S + 1D for mADD.

Even better speeds from

extended/completed coordinates

(2008 Hisil–Wong–Carter–Dawson).

y2 = x3 � 0:4x + 0:7



Compare to speeds for Edwards

curves x2 + y2 = 1 + dx2y2

in projective coordinates

(2007 Bernstein–Lange):

3M + 4S for DBL.

10M + 1S + 1D for ADD.

9M + 1S + 1D for mADD.

Inverted Edwards coordinates

(2007 Bernstein–Lange):

3M + 4S + 1D for DBL.

9M + 1S + 1D for ADD.

8M + 1S + 1D for mADD.

Even better speeds from

extended/completed coordinates

(2008 Hisil–Wong–Carter–Dawson).

y2 = x3 � 0:4x + 0:7



Compare to speeds for Edwards

curves x2 + y2 = 1 + dx2y2

in projective coordinates

(2007 Bernstein–Lange):

3M + 4S for DBL.

10M + 1S + 1D for ADD.

9M + 1S + 1D for mADD.

Inverted Edwards coordinates

(2007 Bernstein–Lange):

3M + 4S + 1D for DBL.

9M + 1S + 1D for ADD.

8M + 1S + 1D for mADD.

Even better speeds from

extended/completed coordinates

(2008 Hisil–Wong–Carter–Dawson).

y2 = x3 � 0:4x + 0:7



Compare to speeds for Edwards

curves x2 + y2 = 1 + dx2y2

in projective coordinates

(2007 Bernstein–Lange):

3M + 4S for DBL.

10M + 1S + 1D for ADD.

9M + 1S + 1D for mADD.

Inverted Edwards coordinates

(2007 Bernstein–Lange):

3M + 4S + 1D for DBL.

9M + 1S + 1D for ADD.

8M + 1S + 1D for mADD.

Even better speeds from

extended/completed coordinates

(2008 Hisil–Wong–Carter–Dawson).

y2 = x3 � 0:4x + 0:7



y2 = x3 � 0:4x + 0:7



y2 = x3 � 0:4x + 0:7 x2 + y2 = 1� 300x2y2



y2 = x3 � 0:4x + 0:7 x2 + y2 = 1� 300x2y2



y2 = x3 � 0:4x + 0:7 x2 + y2 = 1� 300x2y2



x2 + y2 = 1� 300x2y2



x2 + y2 = 1� 300x2y2



x2 + y2 = 1� 300x2y2



x2 + y2 = 1� 300x2y2



x2 + y2 = 1� 300x2y2



x2 + y2 = 1� 300x2y2



x2 + y2 = 1� 300x2y2



x2 + y2 = 1� 300x2y2




































