
NIST P-256 has a

cube-root ECDL algorithm

D. J. Bernstein

University of Illinois at Chicago,

Technische Universiteit Eindhoven

Joint work with:

Tanja Lange

Technische Universiteit Eindhoven

eprint.iacr.org/2012/318,

eprint.iacr.org/2012/458:

“Non-uniform cracks in the

concrete”, “Computing small

discrete logarithms faster”

http://eprint.iacr.org/2012/318
http://eprint.iacr.org/2012/458


Central question:

What is the best ECDL algorithm

for the NIST P-256 elliptic curve?

ECDL algorithm input:

curve point Q.

ECDL algorithm output: logP Q,

where P is standard generator.

Standard definition of “best”:

minimize “time”.



Central question:

What is the best ECDL algorithm

for the NIST P-256 elliptic curve?

ECDL algorithm input:

curve point Q.

ECDL algorithm output: logP Q,

where P is standard generator.

Standard definition of “best”:

minimize “time”.

More generally, allow algorithms

with <100% success probability;

analyze tradeoffs between

“time” and success probability.



Trivial standard conversion

from any P-256 ECDL algorithm

into (e.g.) signature-forgery

attack against P-256 ECDSA:

� Use the ECDL algorithm

to find the secret key.

� Run the signing algorithm

on attacker’s forged message.

Compared to ECDL algorithm,

attack has practically identical

speed and success probability.



Should P-256 ECDSA users

be worried about this?



Should P-256 ECDSA users

be worried about this?

No. Many ECC researchers

have tried and failed

to find good ECDL algorithms.



Should P-256 ECDSA users

be worried about this?

No. Many ECC researchers

have tried and failed

to find good ECDL algorithms.

Standard conjecture:

For each p 2 [0; 1],

each P-256 ECDL algorithm

with success probability �p

takes “time” �2128p1=2.



Interlude regarding “time”

How much “time” does the

following algorithm take?

def pidigit(n0,n1,n2):

if n0 == 0:

if n1 == 0:

if n2 == 0: return 3

return 1

if n2 == 0: return 4

return 1

if n1 == 0:

if n2 == 0: return 5

return 9

if n2 == 0: return 2

return 6



Students in algorithm courses

learn to count executed “steps”.

Skipped branches take 0 “steps”.

This algorithm uses 4 “steps”.



Students in algorithm courses

learn to count executed “steps”.

Skipped branches take 0 “steps”.

This algorithm uses 4 “steps”.

Generalization: There exists an

algorithm that, given n < 2k,

prints the nth digit of �

using k + 1 “steps”.



Students in algorithm courses

learn to count executed “steps”.

Skipped branches take 0 “steps”.

This algorithm uses 4 “steps”.

Generalization: There exists an

algorithm that, given n < 2k,

prints the nth digit of �

using k + 1 “steps”.

Variant: There exists a 259-

“step” P-256 ECDL algorithm

(with 100% success probability).



Students in algorithm courses

learn to count executed “steps”.

Skipped branches take 0 “steps”.

This algorithm uses 4 “steps”.

Generalization: There exists an

algorithm that, given n < 2k,

prints the nth digit of �

using k + 1 “steps”.

Variant: There exists a 259-

“step” P-256 ECDL algorithm

(with 100% success probability).

If “time” means “steps” then the

standard conjecture is wrong.



2000 Bellare–Kilian–Rogaway:

“We fix some particular Random

Access Machine (RAM) as a

model of computation. : : : A’s

running time [means] A’s actual

execution time plus the length

of A’s description : : : This

convention eliminates pathologies

caused [by] arbitrarily large lookup

tables : : : Alternatively, the reader

can think of circuits over some

fixed basis of gates, like 2-input

NAND gates : : : now time simply

means the circuit size.”



Side comments:

1. Definition from Crypto 1994

Bellare–Kilian–Rogaway was

flawed: failed to add length.

Paper conjectured “useful” DES

security bounds; any reasonable

interpretation of conjecture was

false, given paper’s definition.



Side comments:

1. Definition from Crypto 1994

Bellare–Kilian–Rogaway was

flawed: failed to add length.

Paper conjectured “useful” DES

security bounds; any reasonable

interpretation of conjecture was

false, given paper’s definition.

2. Many more subtle issues

defining RAM “time”: see

1990 van Emde Boas survey.



Side comments:

1. Definition from Crypto 1994

Bellare–Kilian–Rogaway was

flawed: failed to add length.

Paper conjectured “useful” DES

security bounds; any reasonable

interpretation of conjecture was

false, given paper’s definition.

2. Many more subtle issues

defining RAM “time”: see

1990 van Emde Boas survey.

3. NAND definition is easier

but breaks many theorems.



Two-way reductions

Another standard conjecture:

For each p 2 [2�40; 1],

each P-256 ECDSA attack

with success probability �p

takes “time” >2128p1=2.



Two-way reductions

Another standard conjecture:

For each p 2 [2�40; 1],

each P-256 ECDSA attack

with success probability �p

takes “time” >2128p1=2.

Why should users have any

confidence in this conjecture?

How many ECC researchers have

really tried to break ECDSA?

ECDH? Other ECC protocols?

Far less attention than for ECDL.



Provable security to the rescue!

Prove: if there is an ECDSA

attack then there is an ECDL

attack with similar “time” and

success probability.



Provable security to the rescue!

Prove: if there is an ECDSA

attack then there is an ECDL

attack with similar “time” and

success probability.

Oops: This turns out to be hard.

But changing from ECDSA to

Schnorr allows a proof: Eurocrypt

1996 Pointcheval–Stern.



Provable security to the rescue!

Prove: if there is an ECDSA

attack then there is an ECDL

attack with similar “time” and

success probability.

Oops: This turns out to be hard.

But changing from ECDSA to

Schnorr allows a proof: Eurocrypt

1996 Pointcheval–Stern.

Oops: This proof has very bad

“tightness” and is only for limited

classes of attacks. Continuing

efforts to fix these limitations.



Similar pattern throughout the

“provable security” literature.

Protocol designers (try to) prove

that hardness of a problem P

(e.g., the ECDL problem) implies

security of various protocols Q.

After extensive cryptanalysis of P ,

maybe gain confidence in hardness

of P , and hence in security of Q.



Similar pattern throughout the

“provable security” literature.

Protocol designers (try to) prove

that hardness of a problem P

(e.g., the ECDL problem) implies

security of various protocols Q.

After extensive cryptanalysis of P ,

maybe gain confidence in hardness

of P , and hence in security of Q.

Why not directly cryptanalyze Q?

Cryptanalysis is hard work: have

to focus on a few problems P .

Proofs scale to many protocols Q.





Have cryptanalysts actually

studied the problem P

that the protocol designer

hypothesizes to be hard?



Have cryptanalysts actually

studied the problem P

that the protocol designer

hypothesizes to be hard?

Three different situations:

“The good”: Cryptanalysts

have studied P .



Have cryptanalysts actually

studied the problem P

that the protocol designer

hypothesizes to be hard?

Three different situations:

“The good”: Cryptanalysts

have studied P .

“The bad”: Cryptanalysts

have not studied P .



Have cryptanalysts actually

studied the problem P

that the protocol designer

hypothesizes to be hard?

Three different situations:

“The good”: Cryptanalysts

have studied P .

“The bad”: Cryptanalysts

have not studied P .

“The ugly”: People think that

cryptanalysts have studied P , but

actually they’ve studied P 0 6= P .



Cube-root ECDL algorithms

Assuming plausible heuristics,

overwhelmingly verified by

computer experiment:

There exists a P-256 ECDL

algorithm that takes “time” �285

and has success probability �1.

“Time” includes algorithm length.

“�”: details later in the talk.

Inescapable conclusion: The

standard conjectures (regarding

P-256 ECDL hardness, P-256

ECDSA security, etc.) are false.



Switch to P-384 but

continue using 256-bit scalars?



Switch to P-384 but

continue using 256-bit scalars?

Doesn’t fix the problem.

There exists a P-384 ECDL

algorithm that takes “time” �285

and has success probability �1

for P;Q with 256-bit logP Q.



Switch to P-384 but

continue using 256-bit scalars?

Doesn’t fix the problem.

There exists a P-384 ECDL

algorithm that takes “time” �285

and has success probability �1

for P;Q with 256-bit logP Q.

To push the cost of these attacks

up to 2128, switch to P-384

and switch to 384-bit scalars.

This is not common practice:

users don’t like �3� slowdown.





Should P-256 ECDSA users

be worried about this

P-256 ECDL algorithm A?

No!

We have a program B

that prints out A,

but B takes “time” �2170.

We conjecture that

nobody will ever print out A.



Should P-256 ECDSA users

be worried about this

P-256 ECDL algorithm A?

No!

We have a program B

that prints out A,

but B takes “time” �2170.

We conjecture that

nobody will ever print out A.

But A exists, and the standard

conjecture doesn’t see the 2170.



Cryptanalysts do see the 2170.

Common parlance: We have

a 2170 “precomputation”

(independent of Q) followed by

a 285 “main computation”.

For cryptanalysts: This costs

2170, much worse than 2128.

For the standard security

definitions and conjectures:

The main computation costs 285,

much better than 2128.



What the algorithm does



What the algorithm does

1999 Escott–Sager–Selkirk–

Tsapakidis, also crediting

Silverman–Stapleton:

Computing (e.g.) logP Q1,

logP Q2, logP Q3, logP Q4, and

logP Q5 costs only 2:49� more

than computing logP Q.

The basic idea:

compute logP Q1 with rho;

compute logP Q2 with rho,

reusing distinguished points

produced by Q1; etc.



2001 Kuhn–Struik analysis:

cost Θ(n1=2`1=2)

for n discrete logarithms

in group of order `

if n� `1=4.



2001 Kuhn–Struik analysis:

cost Θ(n1=2`1=2)

for n discrete logarithms

in group of order `

if n� `1=4.

2004 Hitchcock–

Montague–Carter–Dawson:

View computations of

logP Q1; : : : ; logP Qn�1 as

precomputatation for main

computation of logP Qn.

Analyze tradeoffs between

main-computation time and

precomputation time.



2012 Bernstein–Lange:

(1) Adapt to interval of length `

inside much larger group.

(2) Analyze tradeoffs between

main-computation time and

precomputed table size.

(3) Choose table entries

more carefully to reduce

main-computation time.

(4) Also choose iteration

function more carefully.

(5) Reduce space required

for each table entry.

(6) Break `1=4 barrier.



Applications:

(7) Disprove the standard 2128

P-256 security conjectures.

(8) Accelerate trapdoor DL etc.

(9) Accelerate BGN etc.;

this needs (1).

Bonus:

(10) Disprove the standard 2128

AES, DSA-3072, RSA-3072

security conjectures.

Credit to earlier Lee–Cheon–Hong

paper for (2), (6), (8).



The basic algorithm:

Precomputation:

Start some walks at yP

for random choices of y.

Build table of distinct

distinguished points D

along with logP D.

Main computation:

Starting from Q, walk to

distinguished point Q + yP .

Check for Q + yP in table.

(If this fails, rerandomize Q.)



Standard walk function:

choose uniform random

c1; : : : ; cr 2 f1; 2; : : : ; `� 1g;

walk from R to R + cH(R)P .

Nonstandard tweak:

reduce ` � 1 to, e.g., 0:25`=W ,

where W is average walk length.

Intuition: This tweak

compromises performance by

only a small constant factor.



Standard walk function:

choose uniform random

c1; : : : ; cr 2 f1; 2; : : : ; `� 1g;

walk from R to R + cH(R)P .

Nonstandard tweak:

reduce ` � 1 to, e.g., 0:25`=W ,

where W is average walk length.

Intuition: This tweak

compromises performance by

only a small constant factor.

If tweaked algorithm works for a

group of order `, what will it do

for an interval of order `?



Are rho and kangaroo really

so different? Seek unification:

“kangarho”?



Are rho and kangaroo really

so different? Seek unification:

“kangarho”? Not approved by

coauthor: “kangarhoach”?



Are rho and kangaroo really

so different? Seek unification:

“kangarho”? Not approved by

coauthor: “kangarhoach”?

Some of our experiments

for average ECDL computations

using table of size �`1=3 (selected

from somewhat larger table):

for group of order `,

precomputation �1:24`2=3,

main computation �1:77`1=3;

for interval of order `,

precomputation �1:21`2=3,

main computation �1:93`1=3.



Interlude: constructivity

Bolzano–Weierstrass theorem:

every sequence x0; x1; : : : 2 [0; 1]

has a converging subsequence.

The standard proof:

Define I1 = [0; 0:5]

if [0; 0:5] has infinitely many xi;

otherwise define I1 = [0:5; 1].

Define I2 similarly

as left or right half of I1; etc.

Take smallest i1 with xi1 2 I1,

smallest i2 > i1 with xi2 2 I2,

etc.



Kronecker’s reaction: WTF?



Kronecker’s reaction: WTF?

This is not constructive.

This proof gives us no way

to find I1, even if each xi
is completely explicit.



Kronecker’s reaction: WTF?

This is not constructive.

This proof gives us no way

to find I1, even if each xi
is completely explicit.

Early 20th-century formalists:

This objection is meaningless.

The only formalization of “one

can find x such that p(x)” is

“there exists x such that p(x)”.



Kronecker’s reaction: WTF?

This is not constructive.

This proof gives us no way

to find I1, even if each xi
is completely explicit.

Early 20th-century formalists:

This objection is meaningless.

The only formalization of “one

can find x such that p(x)” is

“there exists x such that p(x)”.

Constructive mathematics later

introduced other possibilities,

giving a formal meaning

to Kronecker’s objection.



Findable algorithms

“Time”-2170 algorithm B prints

“time”-285 ECDL algorithm A.

First attempt to formally quantify

unfindability of A:

“What is the lowest cost for an

algorithm that prints A?”



Findable algorithms

“Time”-2170 algorithm B prints

“time”-285 ECDL algorithm A.

First attempt to formally quantify

unfindability of A:

“What is the lowest cost for an

algorithm that prints A?”

Oops: This cost is 285, not 2170.



Findable algorithms

“Time”-2170 algorithm B prints

“time”-285 ECDL algorithm A.

First attempt to formally quantify

unfindability of A:

“What is the lowest cost for an

algorithm that prints A?”

Oops: This cost is 285, not 2170.

Our proposed quantification:

“What is the lowest cost for a

small algorithm that prints A?”

Can consider longer chains:

A00 prints A0 prints A.



The big picture

The literature on provable

concrete security is full of

security definitions that consider

all “time � T” algorithms.

Cryptanalysts actually focus on

a subset of these algorithms.

Widely understood for decades:

this drastically changes

cost of hash collisions.

Not widely understood:

this drastically changes

cost of breaking P-256,

cost of breaking RSA-3072, etc.



What to do about this gap?



What to do about this gap?

Nitwit formalists: “Oops,

P-256 doesn’t have 2128 security?

Thanks. New conjecture:

P-256 has 285 security.”



What to do about this gap?

Nitwit formalists: “Oops,

P-256 doesn’t have 2128 security?

Thanks. New conjecture:

P-256 has 285 security.”

Why should users have any

confidence in this conjecture?

How many ECC researchers

have really tried to break it?



What to do about this gap?

Nitwit formalists: “Oops,

P-256 doesn’t have 2128 security?

Thanks. New conjecture:

P-256 has 285 security.”

Why should users have any

confidence in this conjecture?

How many ECC researchers

have really tried to break it?

Why should cryptanalysts

study algorithms that

attackers can’t possibly use?



Much better answer:

Aim for unification of

(1) set of algorithms

feasible for attackers,

(2) set of algorithms

considered by cryptanalysts,

(3) set of algorithms

considered in definitions,

conjectures, theorems, proofs.

A gap between (1) and (3)

is a flaw in the definitions,

undermining the credibility

of provable security.



Adding uniformity

(i.e., requiring attacks to

work against many systems)

would increase the gap,

so we recommend against it.

We recommend

� adding findability and

� switching from “time”

to price-performance

ratio for chips (see,

e.g., 1981 Brent–Kung).

Each recommendation kills

the 285 ECDL algorithm.


