
Two grumpy giants

and a baby

D. J. Bernstein

University of Illinois at Chicago

Tanja Lange

Technische Universiteit Eindhoven



Discrete-logarithm problems

Fix a prime `.

Input: generator g

of group of order `;

element h of same group.

Output: integer k 2 Z=`

such that h = gk, where

group is written multiplicatively.

“k = logg h”.

How difficult is computation of k?



Generic algorithms

Will focus on algorithms

that work for every

group of order `.

Allowed operations:

neutral element 1;

multiplication a; b 7! ab.

Will measure algorithm cost

by counting # multiplications.

Success probability:

average over groups

and over algorithm randomness.



Each group element

computed by the algorithm

is trivially expressed as

hxgy for known (x; y) 2 (Z=`)2.

1 = hxgy for (x; y) = (0; 0).

g = hxgy for (x; y) = (0; 1).

h = hxgy for (x; y) = (1; 0).

If algorithm multiplies

hx1gy1 by hx2gy2

then it obtains hxgy where

(x; y) = (x1; y1) + (x2; y2).



Slopes

If hx1gy1 = hx2gy2

and (x1; y1) 6= (x2; y2)

then logg h is the negative

of the slope (y2 � y1)=(x2 � x1).

(Impossible to have x1 = x2:

if x1 = x2 then gy1 = gy2

so y1 = y2, contradiction.)

Algorithm immediately recognizes

collisions of group elements

by putting each (hxgy; x; y)

into, e.g., a red-black tree.

(Low memory? Parallel?

Distributed? Not in this talk.)



Baby-step-giant-step

(1971 Shanks)

Choose n � 1,

typically n � p`.
Points (x; y):

n + 1 “baby steps”

(0; 0); (0; 1); (0; 2); : : : ; (0; n);

n + 1 “giant steps”

(1; 0); (1; n); (1; 2n); : : : ; (1; n2).

Can use more giant steps.

Stop when logg h is found.



Performance of BSGS

Slope jn�i from (0; i) to (1; jn).

Covers slopes��n; : : : ;�1; 0; 1; 2; 3; : : : ; n2
	

,

using 2n� 1 multiplications.

Finds all discrete logarithms

if ` � n2 + n + 1.

Worst case with n � p`:
(2 + o(1))

p
` multiplications.

(In fact always < 2
p
`.)

Average case with n � p`:
(1:5 + o(1))

p
` multiplications.



Interleaving (2000 Pollard)

Improve average case to

(4=3 + o(1))
p
` multiplications:

(0; 0); (1; 0);

(0; 1); (1; n);

(0; 2); (1; 2n);

(0; 3); (1; 3n);
...

(0; n); (1; n2).

4=3 arises as
R 1

0 (2x)2 dx.



Interleaving (2000 Pollard)

Improve average case to

(4=3 + o(1))
p
` multiplications:

(0; 0); (1; 0);

(0; 1); (1; n);

(0; 2); (1; 2n);

(0; 3); (1; 3n);
...

(0; n); (1; n2).

4=3 arises as
R 1

0 (2x)2 dx.

Oops: Have to start with

(0; n) as step towards (1; n).

But this costs only O(log `).



Is BSGS optimal?

After m multiplications

have m + 3 points in (Z=`)2.

Can hope for (m + 3)(m + 2)=2

different slopes in Z=`.



Is BSGS optimal?

After m multiplications

have m + 3 points in (Z=`)2.

Can hope for (m + 3)(m + 2)=2

different slopes in Z=`.

1994 Nechaev, 1997 Shoup:

proof that generic algorithms

have success probability O(m2=`).

Proof actually gives

� ((m + 3)(m + 2)=2 + 1)=`.



Is BSGS optimal?

After m multiplications

have m + 3 points in (Z=`)2.

Can hope for (m + 3)(m + 2)=2

different slopes in Z=`.

1994 Nechaev, 1997 Shoup:

proof that generic algorithms

have success probability O(m2=`).

Proof actually gives

� ((m + 3)(m + 2)=2 + 1)=`.

BSGS: at best �m2=4 slopes,

taking n �m=2.

Factor of 2 away from the bound.



The rho method

(1978 Pollard, r = 3 “mixed”;

many subsequent variants)

Initial computation:

r uniform random “steps”

(s1; t1); : : : ; (sr; tr) 2 (Z=`)2.

O(r log `) multiplications;

negligible if r is small.

The “walk”: Starting from

(xi; yi) 2 (Z=`)2 compute

(xi+1; yi+1) = (xi; yi) + (sj ; tj)

where j 2 f1; : : : ; rg
is a hash of hxigyi .





























































Performance of rho

Model walk as truly random.

Using m multiplications:

�m points (xi; yi);

�m2=2 pairs of points;

slope � is missed

with chance � (1� 1=`)m
2=2

� exp(�m2=(2`)).

Average # multiplications

�P10 exp(�m2=(2`))

� R10 exp(�m2=(2`)) dm

=
p
�=4

p
2` = (1:25 : : :)

p
`.

Better than (4=3 + o(1))
p
`.



Performance of rho

Model walk as truly random.

Using m multiplications:

�m points (xi; yi);

�m2=2 pairs of points;

slope � is missed

with chance � (1� 1=`)m
2=2

� exp(�m2=(2`)).

Average # multiplications

�P10 exp(�m2=(2`))

� R10 exp(�m2=(2`)) dm

=
p
�=4

p
2` = (1:25 : : :)

p
`.

Better than (4=3 + o(1))
p
`.

Don’t ask about the worst case.



Anti-collisions

Bad news:

The walk is worse than random.

Very often have

(xi+1; yi+1) = (xi; yi) + (sj ; tj)

followed later by

(xk+1; yk+1) = (xk; yk) + (sj ; tj).

Slope from

(xk+1; yk+1) to (xi+1; yi+1)

is not new: same as slope from

(xk; yk) to (xi; yi):

Repeated slope: “anti-collision”.



m2=2 was too optimistic.

About (1=r)m2=2 pairs

use same step, so only

(1� 1=r)m2=2 chances.

This replacement model )
(
p
�=2=

p
1� 1=r + o(1))

p
`.

Can derive
p

1� 1=r

from more complicated 1981

Brent–Pollard
p
V heuristic.

1998 Blackburn–Murphy:

explicit
p

1� 1=r.

2009 Bernstein–Lange:

simplified heuristic;

generalized
q

1�Pj p
2
j .



Higher-degree anti-collisions

Actually, rho is even worse!

Often have

(xi+1; yi+1)=(xi; yi)+(sj ; tj)

(xi+2; yi+2)=(xi+1; yi+1)+(sh; th)

followed later by

(xk+1; yk+1)=(xk; yk)+(sh; th)

(xk+2; yk+2)=(xk+1; yk+1)+(sj ; tj)

so slope from

(xk+2; yk+2) to (xi+2; yi+2)

is not new.

“Degree-2 local anti-collisions”:

1=
p

1� 1=r � 1=r2 + 1=r3.

See paper for more.



Is rho optimal?

Allow r to grow slowly with `.

(Not quickly: remember

cost of initial computation.)
p

1� 1=r ! 1.p
1� 1=r � 1=r2 + 1=r3 ! 1.

Experimental evidence )
average (

p
�=2 + o(1))

p
`.

But still have many

global anti-collisions:

slopes appearing repeatedly.



Two grumpy giants and a baby

B: (0; 0)+f0; : : : ; ng(0; 1).

G1: (1; 0)+f0; : : : ; ng(0; n).

G2: (2; 0)�f0; : : : ; ng(0; n+1).



Two grumpy giants and a baby

B: (0; 0)+f0; : : : ; ng(0; 1).

G1: (1; 0)+f0; : : : ; ng(0; n).

G2: (2; 0)�f0; : : : ; ng(0; n+1).

Minor initial cost: (0;�(n + 1)).



Two grumpy giants and a baby

B: (0; 0)+f0; : : : ; ng(0; 1).

G1: (1; 0)+f0; : : : ; ng(0; n).

G2: (2; 0)�f0; : : : ; ng(0; n+1).

Minor initial cost: (0;�(n + 1)).

As before can interleave:

(0; 0); (1; 0); (2; 0);

(0; 1); (1; n); (2;�(n + 1));

(0; 2); (1; 2n); (2;�2(n + 1));

(0; 3); (1; 3n); (2;�3(n + 1));
...

(0; n); (1; n2); (2;�n(n + 1)).



Grumpy performance

For (1:5 + o(1))
p
` mults:

BSGS, with n � 0:75
p
`

or interleaved with n � p`,
finds (0:5625 + o(1))` slopes.



Grumpy performance

For (1:5 + o(1))
p
` mults:

BSGS, with n � 0:75
p
`

or interleaved with n � p`,
finds (0:5625 + o(1))` slopes.

Truly random walk

finds (0:6753 : : : + o(1))` slopes.



Grumpy performance

For (1:5 + o(1))
p
` mults:

BSGS, with n � 0:75
p
`

or interleaved with n � p`,
finds (0:5625 + o(1))` slopes.

Truly random walk

finds (0:6753 : : : + o(1))` slopes.

Two grumpy giants and a baby,

with n � 0:5
p
`,

find (0:71875 + o(1))` slopes.



Grumpy performance

For (1:5 + o(1))
p
` mults:

BSGS, with n � 0:75
p
`

or interleaved with n � p`,
finds (0:5625 + o(1))` slopes.

Truly random walk

finds (0:6753 : : : + o(1))` slopes.

Two grumpy giants and a baby,

with n � 0:5
p
`,

find (0:71875 + o(1))` slopes.

Also better average case than rho.


