Two grumpy giants
and a baby

D. J. Bernstein
University of lllinois at Chicago

Tanja Lange
Technische Universiteit Eindhoven



Discrete-logarithm problems

Fix a prime £.

Input: generator g
of group of order ¥;
element h of same group.

Output: integer k € Z /¢
such that A = ¢*, where

group Is written multiplicatively.
'k =log, A"

How difficult is computation of k7



Generic algorithms

Will focus on algorithms
that work for every
group of order £.

Allowed operations:
neutral element 1;

multiplication a, b — ab.

Will measure algorithm cost
by counting # multiplications.

Success probability:
average over groups
and over algorithm randomness.



Each group element
computed by the algorithm
s trivially expressed as

hZgY for known (z,y) € (Z/4)?.

1 = h%g¥ for (z,y) = (0,0).
g = h%g¥ for (z,y) = (0,1).
h = h*g¥ for (z,y) = (1,0).
If algorithm multiplies
ha:lgyl by h$29y2

then it obtains h*g¥ where
(z.y) = (z1,91) + (22, 92).



Slopes

If R¥1gY1 = pZ2g¥2
and (z1,y1) # (22, y2)
then log, A is the negative

of the slope (y2 — y1)/(z2 — z1).

(Impossible to have z1 = z»:
if £1 = xo then g¥1 = ¢¥2
so Y1 = Y2, contradiction.)

Algorithm immediately recognizes
collisions of group elements

by putting each (h*gY, z, y)

into, e.g., a red-black tree.

(Low memory? Parallel?
Distributed? Not in this talk.)



Baby-step-giant-step

(1971 Shanks)

Choose n > 1,
typically n & /4.

Points (z, y):

n + 1 “baby steps”
(0,0),(0,1),(0,2),..., (0,n);
n + 1 “giant steps’
(1,0),(1,n),(1,2n), ..., (1,n2).

Can use more giant steps.
Stop when log, A is found.



Performance of BSGS

Slope jn—1 from (0,2) to (1, 5n).

Covers slopes

using 2n — 1 multiplications.

Finds all discrete logarithms
if{<n’+n+1

Worst case with n & /£
(2 + o(1))v/£ multiplications.
(In fact always < 2+/¢.)

Average case with n ~ V/£:
(1.5 + o(1))v£ multiplications.



Interleaving (2000 Pollard)

Improve average case to
4/3 + o(1))v£ multiplications:
(1.0),
(1.n).

(
(0,0),
(0,1),
(0,2),(1,2n),
(0 3),

(On) (1,'n2).
4/3 arises as fol(Z:c)2 dz.



Interleaving (2000 Pollard)

Improve average case to
(4/3 + o(1))v/£ multiplications:
(0,0).(1,0),
(0,1), (L. )
(0,2),(1,2n),
(0,3),

(On) (1,'n2).
4/3 arises as fol(Z:c)2 dz.

Oops: Have to start with
(0,7m) as step towards (1,n).
But this costs only O(logé).
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s BSGS optimal?

After m multiplications

have m + 3 points in (Z/£)?.
Can hope for (m + 3)(m + 2)/2
different slopes in Z /4.

1994 Nechaev, 1997 Shoup:

proof that generic algorithms
have success probability O(m?/£).
Proof actually gives

<((m+3)(m+2)/2+1)/L

BSGS: at best ~» m?/4 slopes,
taking n &~ m/2.
Factor of 2 away from the bound.



The rho method

(1978 Pollard, r = 3 “mixed”;
many subsequent variants)

Initial computation:

r uniform random “steps”
(s1,%1),..., (sr,tr) € (Z/£)?.
O(r log ) multiplications;
negligible if r is small.

The “walk”: Starting from
(z;,y;) € (Z/£)? compute
(Tit1, Yit1) = (24, 5) + (55, t§)
where 7 € {1, ..., r}

is a hash of h*1gY:.
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Performance of rho

Model walk as truly random.

Using m multiplications:

~ m points (z;, ¥;);

~ m?/2 pairs of points;
slope X is missed

with chance ~ (1 — 1/3)”’”2/2
~ exp(—m?/(24)).

Average # multiplications

~ Y 5 exp(—m?/(24))

~ [y exp(—m?/(24)) dm

= /m/4/20 = (1.25.. VL.
Better than (4/3 + o(1))V/4.




Performance of rho

Model walk as truly random.

Using m multiplications:

~ m points (z;, ¥;);

~ m?/2 pairs of points;
slope X is missed

with chance ~ (1 — 1/3)”’”2/2
~ exp(—m?/(24)).

Average # multiplications

~ Y80 exp(—m?/(20))

~ [y exp(—m?/(24)) dm

= /m/4/20 = (1.25.. VL.
Better than (4/3 + o(1))V/4.
Don't ask about the worst case.




Anti-collisions

Bad news:
The walk 1s worse than random.

Very often have

(Tit1, Yiv1) = (24, 95) + (55, t5)
followed later by

(Thr1, Ykt1) = (Tk, y) + (55, 25).
Slope from

(Zk+1) Yk+1) tO (Tit1, Yit1)
IS not new: same as slope from

(Zk, Y) to (z4, ¥s).

Repeated slope: “anti-collision”.



m? /2 was too optimistic.
About (1/r)m?/2 pairs
use same step, so only

(1 —1/7)m?/2 chances.

This replacement model =
(v/7/2/4/1—1]7r + o(1))V¢.

Can derive /1 —1/r

from more complicated 1981
Brent—Pollard v/V heuristic.
1998 Blackburn—Murphy:
explicit /1 —1/7.

2009 Bernstein—Lange:
simplified heuristic;

generalized \/1 -2 p?.




Higher-degree anti-collisions
Actually, rho Is even worse!

Often have

(Ti41, Yir1)=(z4, y5)+(55. t5)
(Zi+2, Yit2)=(Ti11, Vit1)+(Sh. th)
followed later by

(Tht1, Yor1)=(Tkr Y )+ (Shr Th)
(Tht2, Yer2)=(Tpr1, Ykr1)+(55. t5)
so slope from

(Tht2: Ykt+2) tO (Tis2, Yig2)
IS not new.

"Degree-2 local anti-collisions™:

1/4/1—1/r —1/72 +1/73.

See paper for more.




Is rho optimal?

Allow r to grow slowly with Z£.

(Not quickly: remember
cost of initial computation.)

V1-1/r = 1.
V1—=1/r—1/r2 +1/r3 = 1.

Experimental evidence =
average (\/m/2 + o(1))VZ.

But still have many
global anti-collisions:
slopes appearing repeatedly.
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Two grumpy giants and a baby

B: (0,0)+A0, ..., n}(0,1).
Gl: (1,0)+{0,..., n}(0,n).
G2: (2,0)—A0,..., n}(0,n+1).

Minor initial cost: (0, —(n + 1)).

As before can interleave:
(0,0),(1,0),(2,0),
(0,1),(1,n), (2, —(n + 1)),
(0,2),(1,2n), (2, -2(n + 1)),
(0,3).(1,3n), (2, -3(n + 1)),

.(O, n),(1,n2), (2, —n(n + 1)).
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BSGS, with n ~ 0.75v/4
or interleaved with n ~ \/Z
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Grumpy performance

For

(1.5 + o(1))v£ mults:

BSGS. with n & 0.75v/%

or |

nterleaved with n ~ \/Z

finds (0.5625 + 0(1))4 slopes.

Tru

ly random walk

finds (0.6753...+ o(1))£ slopes.

Two grumpy giants and a baby,

wit

ﬂnNO5\/_

find

(0.71875 + o(1))4 slopes.

Also better average case than rho.



