
Advances in code-based

public-key cryptography

D. J. Bernstein

University of Illinois at Chicago



Advertisements

1. pqcrypto.org:

Post-quantum cryptography—

hash-based, lattice-based,

code-based, multivariate quadratic

—introduction and bibliography.

2. pq.crypto.tw/pqc11/:

PQCrypto 2011, Taipei,

just before Asiacrypt.

Deadline 24 June 2011.

3. 2011.indocrypt.org:

Indocrypt 2011, Chennai,

just after Asiacrypt.

Deadline 31 July 2011.



The McEliece cryptosystem

(1978 McEliece)

McEliece public key:

linear map G : F524
2 ,! F1024

2

represented as 1024� 524 matrix.

McEliece plaintext:

m 2 F524
2 ;

and e 2 F1024
2 of weight 50.

McEliece ciphertext:

y = Gm + e 2 F1024
2 .

Basic problem for attacker:

Given G; y, find codeword Gm

close to y in the code GF524
2 .



Instead use parity-check matrix

(1986 Niederreiter).

Niederreiter public key:

linear map H : F1024
2 � F500

2

represented as 500� 1024 matrix.

Niederreiter plaintext:

m 2 F1024
2 of weight 50.

Niederreiter ciphertext:

s = Hm 2 F500
2 .

Basic problem for attacker:

Given H; s, find low-weight

m 2 F1024
2 with Hm = s.

Equivalent to previous problem.



Information-set decoding

Choose random size-500 subset

S � f1; 2; 3; : : : ; 1024g.

For almost all H:

Good chance

that FS2 ,! F1024
2

H��! F500
2

is invertible.

Hope m 2 FS2 ; chance � 2�53.

Apply inverse map to Hm,

revealing m if m 2 FS2 .

If m =2 FS2 , try again.

Total cost � 280.



Long history, many improvements:

1962 Prange;

1981 Clark (crediting Omura);

1988 Lee–Brickell; 1988 Leon;

1989 Krouk; 1989 Stern;

1989 Dumer;

1990 Coffey–Goodman;

1990 van Tilburg; 1991 Dumer;

1991 Coffey–Goodman–Farrell;

1993 Chabanne–Courteau;

1993 Chabaud;

1994 van Tilburg;

1994 Canteaut–Chabanne;

1998 Canteaut–Chabaud;

1998 Canteaut–Sendrier.



1998 Canteaut–Chabaud–

Sendrier: 268 Alpha cycles

to attack a McEliece ciphertext.

2008 Bernstein–Lange–Peters:

further improvements;

258 Core 2 Quad cycles

to attack a McEliece ciphertext.

Ran attack successfully!

Subsequent literature:

2009 Finiasz–Sendrier;

2010 Peters;

2011 Bernstein–Lange–Peters.



Higher security levels

Easily improve security

by scaling parameters up from

McEliece’s 1024; 524; 50 example.

Niederreiter public key:

linear map H : Fn2 � Fn�k2

represented as (n� k)�n matrix.

Niederreiter plaintext:

m 2 Fn2 of weight w.

Niederreiter ciphertext:

s = Hm 2 Fn�k2 .

How large do n; k;w

have to be for 2b security?



Basic information-set decoding:

Hope m 2 FS2 .

Chance
�n�k
w

�
=
�n
w

�
.

Trying S costs � n3.

Total cost � n3
�n
w

�
=
�n�k
w

�
.



Basic information-set decoding:

Hope m 2 FS2 .

Chance
�n�k
w

�
=
�n
w

�
.

Trying S costs � n3.

Total cost � n3
�n
w

�
=
�n�k
w

�
.

Standard entropy approximation:

If w=n! W as n!1 then�n
w

�1=n ! 1
WW (1�W )1�W .



Basic information-set decoding:

Hope m 2 FS2 .

Chance
�n�k
w

�
=
�n
w

�
.

Trying S costs � n3.

Total cost � n3
�n
w

�
=
�n�k
w

�
.

Standard entropy approximation:

If w=n! W as n!1 then�n
w

�1=n ! 1
WW (1�W )1�W .

If furthermore k=n! R then
�n�k
w

�1=n ! (1�R)1�R

WW (1�R�W )1�R�W .

So cost1=n ! (1�R�W )1�R�W

(1�R)1�R(1�W )1�W .



1988 Lee–Brickell idea:

Hope m� e 2 FS2 for

some weight-2 vector e 2 Fn�S2 .

Chance
�n�k
w�2

��k
2

�
=
�n
w

�
.

Trying S costs � n3;

reuse one matrix inversion

for all choices of e.

Speedup � k2w2=2(n� k�w)2.



1988 Lee–Brickell idea:

Hope m� e 2 FS2 for

some weight-2 vector e 2 Fn�S2 .

Chance
�n�k
w�2

��k
2

�
=
�n
w

�
.

Trying S costs � n3;

reuse one matrix inversion

for all choices of e.

Speedup � k2w2=2(n� k�w)2.

Not visible in cost1=n limit:

cost1=n ! (1�R�W )1�R�W

(1�R)1�R(1�W )1�W .

But still quite useful.



Many polynomial speedups

in subsequent papers.

e.g. 1988 Leon:

Choose random S as before;

invert FS2 ,! Fn2
H��! Fn�k2 ;

choose size-` subset Z � S.

Hope m� e 2 FS�Z2

for some weight-2 vector e.



Many polynomial speedups

in subsequent papers.

e.g. 1988 Leon:

Choose random S as before;

invert FS2 ,! Fn2
H��! Fn�k2 ;

choose size-` subset Z � S.

Hope m� e 2 FS�Z2

for some weight-2 vector e.

Advantage over Lee–Brickell:

quickly reject e if '(m� e) 6= 0;

' : Fn2 ! FZ2 is composition of

Fn2 ! Fn�k2 ! FS2 ! FZ2 .

Some loss of success chance

from disallowing FZ2 in m� e.



Collision decoding (1989 Stern,

independently 1989–1991 Dumer):

Again choose S;Z.

Partition n� S into X; Y .

Hope m� e� e0 2 FS�Z2

for weight-p vectors e; e0

with e 2 FX2 , e0 2 FY2 .



Collision decoding (1989 Stern,

independently 1989–1991 Dumer):

Again choose S;Z.

Partition n� S into X; Y .

Hope m� e� e0 2 FS�Z2

for weight-p vectors e; e0

with e 2 FX2 , e0 2 FY2 .

Don’t enumerate (e; e0).

Make list of '(m� e);

make list of '(e0);

find collisions between lists.



Collision decoding (1989 Stern,

independently 1989–1991 Dumer):

Again choose S;Z.

Partition n� S into X; Y .

Hope m� e� e0 2 FS�Z2

for weight-p vectors e; e0

with e 2 FX2 , e0 2 FY2 .

Don’t enumerate (e; e0).

Make list of '(m� e);

make list of '(e0);

find collisions between lists.

Optimal p is unbounded.

Exponential speedup for any

(R;W ), visible in cost1=n limit!



Ball-collision decoding

(Bernstein–Lange–Peters,

to appear at Crypto 2011):

Partition Z into A;B.

Hope m� e� e0 � f � f 0 2 FS�Z2

with e 2 FX2 of weight p,

e0 2 FY2 of weight p,

f 2 FA2 of weight � q,

f 0 2 FB2 of weight � q.

Expand '(m� e) into

ball of radius q; similarly '(e0);

find collisions between balls.

Exponential speedup over Stern

for any reasonable (R;W ).



Decryption

How does legitimate receiver

decrypt s (or y)?

Answer: Secretly generate

a fast decoding algorithm D

for a code C(D).

Take random H (or G) with

C(D) = KerH (or C(D) = GFk2).

Or systematic H: smaller, faster.

Fastest algorithms known to

exploit McEliece’s choice of D

(by, e.g., computing D)

are many orders of magnitude

slower than collision decoding.



Fix a prime power q;

a positive integer m;

a positive integer n � qm;

distinct a1; : : : ; an 2 Fqm ;

polynomial g 2 Fqm [x] with

deg g < n=m and

g(a1) � � � g(an) 6= 0.

The classical Goppa code

Γq(a1; : : : ; an; g)

is the set of c 2 Fnq with
P

i ci=(x� ai) = 0 in Fqm [x]=g.

Code dimension k � n�m deg g.

Almost always k = n�m deg g.



McEliece’s choice of C(D):

Γ2(a1; : : : ; an; g)

with irreducible g of degree w.

Can you figure out a1; : : : ; an; g

given Γ2(a1; : : : ; an; g)?



McEliece’s choice of C(D):

Γ2(a1; : : : ; an; g)

with irreducible g of degree w.

Can you figure out a1; : : : ; an; g

given Γ2(a1; : : : ; an; g)?

McEliece’s choice of D:

1975 Patterson algorithm

to decode deg g errors

given a1; : : : ; an; g.



McEliece’s choice of C(D):

Γ2(a1; : : : ; an; g)

with irreducible g of degree w.

Can you figure out a1; : : : ; an; g

given Γ2(a1; : : : ; an; g)?

McEliece’s choice of D:

1975 Patterson algorithm

to decode deg g errors

given a1; : : : ; an; g.

Original parameters: m = 10,

w = 50, n = 1024, k = 524.



McEliece’s choice of C(D):

Γ2(a1; : : : ; an; g)

with irreducible g of degree w.

Can you figure out a1; : : : ; an; g

given Γ2(a1; : : : ; an; g)?

McEliece’s choice of D:

1975 Patterson algorithm

to decode deg g errors

given a1; : : : ; an; g.

Original parameters: m = 10,

w = 50, n = 1024, k = 524.

Much higher security: m = 12,

w = 150, n = 3600, k = 1800.



If k=n! R as n!1
then 1�m(deg g)=n! R

but m � (lgn)= lg q

so w=n = (deg g)=n! 0.

Standard conjecture is that

decoding is still quite hard:

(constant+o(1))n= lgn as n!1.

McEliece reaches 2b security

with n 2 b1+o(1).

Encryption and decryption

cost only b2+o(1).

ECC also costs b2+o(1),

but ECC’s o(1) seems bigger

and ECC isn’t post-quantum.



2008 Bernstein–Lange–Peters:

Why stop with deg g errors?

Can take w above deg g.

Use fast list-decoding algorithms

for exactly the same codes.

List can have > 1 plaintext, but

standard “CCA2 conversions”

easily identify correct plaintext.

Each extra error makes

known attacks more difficult.

More security for same key size.

) Smaller key for same security.



More codes

“I can increase w using

an asymptotically good code!

k=n! R > 0 and

w=n! W > 0.”



More codes

“I can increase w using

an asymptotically good code!

k=n! R > 0 and

w=n! W > 0.”

Maybe, but this isn’t easy.

Do you also have a good D?

Does your D run quickly?

Are there many choices of D?

No exploitable structure in C(D)?

Is D actually better than Γ2

for reasonable values of n?



Tempting to increase q.

n=
p

lg q; k=
p

lg q; q

have same key size as n; k; 2.

Maybe better security?



Tempting to increase q.

n=
p

lg q; k=
p

lg q; q

have same key size as n; k; 2.

Maybe better security?

Problem 1: Structural attacks

seem disastrous for large q.

e.g. 1992 Shestakov–Sidelnikov

broke 1986 Niederreiter proposal

using Γq(: : :) with q � n.



Tempting to increase q.

n=
p

lg q; k=
p

lg q; q

have same key size as n; k; 2.

Maybe better security?

Problem 1: Structural attacks

seem disastrous for large q.

e.g. 1992 Shestakov–Sidelnikov

broke 1986 Niederreiter proposal

using Γq(: : :) with q � n.

Problem 2: Patterson’s algorithm

is specific to q = 2.

Conventional wisdom: correct

only (deg g)=2 errors for q � 3.



2010 Peters: switching from

q = 2 to q = 31 gains factor

2 in key size with same security

against information-set decoding,

despite Problem 2.



2010 Peters: switching from

q = 2 to q = 31 gains factor

2 in key size with same security

against information-set decoding,

despite Problem 2.

2010 Bernstein–Lange–Peters:

“Wild Goppa codes”

Γq(: : : ; gq�1) with squarefree g

correct q(deg g)=2 errors,

generalizing smoothly from q = 2.

Even more with list decoding.

Gain already for q = 3.

Ongoing work:

optimizing Γq(: : : ; fgq�1).



Also many ongoing efforts

to reduce key size by creating

C(D) with visible structure.

But safety is unclear.

e.g.

2010 Gauthier Umana–Leander

and 2010 Faugère–Otmani–

Perret–Tillich

broke most of the quasi-cyclic

and quasi-dyadic proposals

by 2009 Berger–Cayrel–Gaborit–

Otmani and 2009 Misocki–

Barreto.



List-decoding algorithms

Most often quoted results:

Take any alternant code over Fq
of designed distance t + 1.

Assume (n=t)q(lg qm)2(lgn)O(1).

1999 Guruswami–Sudan:

Polynomial-time algorithm

for w < n�
p
n(n� t� 1).

(Roughly: w < t=2 + t2=8n.)

2000 Koetter–Vardy:

Polynomial-time algorithm

for w < n0 �
p
n0(n0 � t� 1)

where n0 = n(q � 1)=q. (Roughly:

w < t=2 + t2=8n + t2=8n(q � 1).)



What does this mean for Γq?

Easy application:

Γq(: : : ; g) is an alternant code

with designed distance deg g + 1.

Slightly above (deg g)=2 errors.



What does this mean for Γq?

Easy application:

Γq(: : : ; g) is an alternant code

with designed distance deg g + 1.

Slightly above (deg g)=2 errors.

2010 Bernstein–Lange–Peters:

Plug 1999 Guruswami–Sudan

into 1975 Sugiyama–Kasahara–

Hirasawa–Namekawa identity

Γq(: : : ; gq�1) = Γq(: : : ; gq).



What does this mean for Γq?

Easy application:

Γq(: : : ; g) is an alternant code

with designed distance deg g + 1.

Slightly above (deg g)=2 errors.

2010 Bernstein–Lange–Peters:

Plug 1999 Guruswami–Sudan

into 1975 Sugiyama–Kasahara–

Hirasawa–Namekawa identity

Γq(: : : ; gq�1) = Γq(: : : ; gq).

2010 Augot–Barbier–Couvreur:

Plug 2000 Koetter–Vardy into

1975 Sugiyama–Kasahara–

Hirasawa–Namekawa identity.



2011 Bernstein “Simplified high-

speed high-distance list decoding

for alternant codes”:

Write J 0 = n0 �
p
n0(n0 � t� 1).

nO(1) bit operations

if w � J 0 + O((lgn)= lg lgn).



2011 Bernstein “Simplified high-

speed high-distance list decoding

for alternant codes”:

Write J 0 = n0 �
p
n0(n0 � t� 1).

nO(1) bit operations

if w � J 0 + O((lgn)= lg lgn).

O(n4:5) bit operations

if w � J 0 + o((lgn)= lg lgn).



2011 Bernstein “Simplified high-

speed high-distance list decoding

for alternant codes”:

Write J 0 = n0 �
p
n0(n0 � t� 1).

nO(1) bit operations

if w � J 0 + O((lgn)= lg lgn).

O(n4:5) bit operations

if w � J 0 + o((lgn)= lg lgn).

n(lgn)O(1) bit operations

if w � J 0 � n=(lgn)O(1).

Can of course combine with 1975

Sugiyama–Kasahara–Hirasawa–

Namekawa identity.



Still not really fast.

Big problem for, e.g., n = 3600.

New wave of “rational”

list-decoding algorithms promise

much better speeds: 2007 Wu;

2008 Bernstein “List decoding

for binary Goppa codes”

(final version: IWCC 2011).

These algorithms are efficient

only up to about J, not J 0.

Can this limitation be removed?

I’m exploring one idea for this:

“jet list decoding.”


