Advances in code-based

public-key cryptography

D. J. Bernstein

University of lllinois at Chicago

Advertisements

1. pgcrypto.org:

Post-quantum cryptography—

hash-based, lattice-based,

code-based, multivariate quac

ratic

—introduction and bibliograp

2. pq.crypto.tw/pqcll/:
PQCrypto 2011, Taipei,
just before Asiacrypt.
Deadline 24 June 2011.

3. 2011.indocrypt.org:
Indocrypt 2011, Chennai,

just after Asiacrypt.
Deadline 31 July 2011.

ny.

The McEliece cryptosystem

(1978 McEliece)

McEliece public key:
linear map G : F324 — F1024
represented as 1024 x 524 matrix.

McEliece plaintext:
m € ng4;
and e € F3%%* of weight 50.

McEliece ciphertext:
y=Gm+ec€ F%024.

Basic problem for attacker:
Given G, vy, find codeword Gm
close to ¥ in the code GF224.

Instead use parity-check matrix
(1986 Niederreiter).

Niederreiter public key:
linear map H - F%O% —» FgOO
represented as 500 x 1024 matrix.

Niederreiter plaintext:
m € F%O% of weight 50.

Niederreiter ciphertext:
s = Hm € FSOO.

Basic problem for attacker:
Given H, s, find low-weight

m € F%OM with Hm = s.
Equivalent to previous problem.

Information-set decoding

Choose random size-500 subset
S$C{1,23,...,1024}.

For almost all H:

Good chance

S 1024 H . 500
that F2 s F2 5 F2
IS invertible.

Ho
Ap

e m € FS; chance ~ 2723

oly Inverse map to Hm,

revealing m if m € Fg.

It m ¢ Fg, try again.
Total cost ~s 28V,

Long history, many improvements:
1962 Prange;

1981 Clark (crediting Omura);
1988 Lee—Brickell; 1988 Leon;
1989 Krouk: 1989 Stern:

1989 Dumer;

1990 Coffey—Goodman;

1990 van Tilburg; 1991 Dumer;
1991 Coffey—Goodman—Farrell;
1993 Chabanne—Courteau:;
1993 Chabaud;

1994 van Tilburg;

1994 Canteaut—Chabanne;
1998 Canteaut—Chabaud;

1998 Canteaut—Sendrier.

1998 Canteaut—Chabaud-
Sendrier: 298 Alpha cycles

to attack a McEliece ciphertext.

2008 Bernstein—Lange—Peters:
further improvements;

298 Core 2 Quad cycles

to attack a McEliece ciphertext.
Ran attack successfully!

Subsequent literature:
2009 Finiasz—Sendrier:;

2010 Peters;
2011 Bernstein—Lange—Peters.

Higher security levels

Easily improve security

by scaling parameters up from
McEliece's 1024, 524,50 example.

Niederreiter public key:
linear map H : Fy — Fg_k
represented as (n — k) X n matrix.

Niederreiter plaintext:
m € FJ of weight w.

Niederreiter ciphertext:
s = Hm € F'g_l‘“.

How large do n, k, w
have to be for 2° security?

Basic information-set decoding:
Hope m € F25.
Chance ("~%)/(™).

w w

Trying S costs = n3.

Total cost = n3(™)/("F).

w w

Basic information-set decoding:
Hope m € F25.
Chance ("~%)/(™).

w w

Trying S costs = n3.

Total cost = n3(™)/("F).

w w

Standard entropy approximation:
If w/n — W as n — oo then

n 1/n
(w) / ’\' WVI/(1_1W)1—|/I/'

Basic information-set decoding:
Hope m € F25.
Chance ("~%)/(™).

w w

Trying S costs = n3.

Total cost ~ n3(") /(™).

Standard entropy approximation:
If w/n — W as n — oo then

n 1/n
(w) / ’\' WVI/(1_1W)1—|/I/'

If furthermore k/n — R then
(n—k)l/’”' X (1-R)1-FK
w ‘ WW(1—R—W)1-R-W"

1-R-W)l=R=W
So costl/™ (1(—R)1—R(i—W)1_W'

1988 Lee—Brickell idea:
Hope m — e € Fg for
some weight-2 vector e € F'S’_S.

Chance (275) (5) /().
Trying S costs ~ n3;
reuse one matrix inversion

for all choices of e.
Speedup ~ k*w?/2(n — k — w)?.

1988 Lee—Brickell idea:
Hope m — e € Fg for
some weight-2 vector e € F'S’_S.

Chance (375) (5)/(3).

Trying S costs ~ n3:

reuse one matrix inversion
for all choices of e.

Speedup ~ k*w?/2(n — k — w)?.

Not visible in costl/" 1Iinf]\>it|:/v
1/n \ (1_R_W) T
cost » L RRA_ W)W

But still quite useful.

Many polynomial speedups
In subsequent papers.

e.g. 1988 Leon:
Choose random S as before;
invert F3 — F} Fg’_k;

choose size-£ subset Z C S.
F5“

Hope m — e €
for some weight-2 vector e.

Many polynomial speedups
In subsequent papers.

e.g. 1988 Leon:
Choose random S as before;
invert F3 — F} Fg’_k;

choose size-£ subset Z C S.
F5“

Hope m — e €
for some weight-2 vector e.

Advantage over Lee—Brickell:
quickly reject e if ¢(m — e) # 0;
¢ : F' — F% is composition of
F2 > F0°F 5 F5 — F5.

Some loss of success chance

from disallowing FQZ in m — e.

Collision decoding (1989 Stern,
independently 1989-1991 Dumer):

Again choose S, Z.
Partition n — S into X,Y.
Hopem —e — e’ € Fg_z
for weight-p vectors e, e’
with e € F5, e’ € F.

Collision decoding (1989 Stern,
independently 1989-1991 Dumer):

Again choose S, Z.
Partition n — S into X,Y.
Hopem —e — e’ € Fg_z
for weight-p vectors e, e’
with e € F5, e’ € F.

Don't enumerate (e, e').
Make list of ¢(m — e);
make list of ¢(e');

find collisions between lists.

Collision decoding (1989 Stern,
independently 1989-1991 Dumer):

Again choose S, Z.
Partition n — S into X,Y.
Hopem —e — e’ € Fg_z
for weight-p vectors e, e’
with e € F5, e’ € F.

Don't enumerate (e, e').
Make list of ¢(m — e);
make list of ¢(e');

find collisions between lists.

Optimal p is unbounded.

Exponential speedup for any
(R, W), visible in cost!/™ limit!

Ball-collision decoding
(Bernstein—Lange—Peters,
to appear at Crypto 2011):

Partition Z into A, B.

Hopem —e—¢e — f— f' € Fg_z
with e € Fé(of weight p,

e’ € F} of weight p,

f e F’24 of weight < g,

fle FQB of weight < g.

Expand ¢(m — e) into
ball of radius g; similarly ¢(e’);
find collisions between balls.

Exponential speedup over Stern
for any reasonable (R, W).

Decryption

How does legitimate receiver
decrypt s (or y)?

Answer: Secretly generate
a fast decoding algorithm D
for a code C(D).

Take random H (or G) with
C(D) = Ker H (or C(D) = GF%).
Or systematic H: smaller, faster.

Fastest algorithms known to

exploit McEliece's choice of D
(by, e.g., computing D)

are many orders of magnitude
slower than collision decoding.

Fix a prime power g;

a positive integer m;

a positive integer n < g™;
distinct a1, ..., an € Fgm;
polynomial g € Fym|[z] with
degg < n/m and
9(a1)---g(an) # 0.

The classical Goppa code

[4(a1,...,an,9)
Is the set of ¢ € Fg" with

2 i¢i/(z—a;) =0in Fem[z]/g.

Code dimension £ > n — mdegg.
Almost always £ = n — mdegg.

McEliece's choice of C(D):
[o(a1,...,an, g)

with irreducible g of degree w.

Can you figure out aq, ...,

McEliece's choice of C(D):

[o(a1,...,an, g)
with irreducible g of degree w.

Can you figure out aq, ..., an, g

McEliece's choice of D:
1975 Patterson algorithm
to decode deg g errors
given a1,...,0n, 3.

McEliece's choice of C(D):

[o(a1,...,an, g)
with irreducible g of degree w.

Can you figure out aq, ..., an, g

McEliece's choice of D:
1975 Patterson algorithm
to decode deg g errors
given a1,...,0n, 3.

Original parameters: m = 10,
w =50, n=1024, kK =524

McEliece's choice of C(D):

McEliece's choice of D:
1975 Patterson algorithm
to decode deg g errors
given ai, ..., an, g.

Original parameters: m = 10,
w =50, n=1024, kK =524

Much higher security: m = 12,
w = 150, n = 3600, £ = 1800.

If k/n - R asn — o
then 1 — m(degg)/n — R
but m > (Ign)/lgq

so w/n = (degg)/n — 0.

Standard conjecture is that

decoding is still quite hard:
(constant+o0(1))*/ 87 as n — 0.

McEliece reaches 2° security
with n € p1o(1).
Encryption and decryption
cost only $210(1),

ECC also costs p21o(1)
but ECC's o(1) seems bigger
and ECC isn't post-quantum.

2008 Bernstein—Lange—Peters:

Why stop with deg g errors?

Can take w above degg.
Use fast list-decoding algorithms

for exactly the same codes.

List can have > 1 plaintext, but
standard “CCA2 conversions”
easily identity correct plaintext.

Each extra error makes
«xnown attacks more difficult.

More security for same key size.
= Smaller key for same security.

More codes

"l can Increase w using

an asymptotically good code!
k/n — R >0 and

w/n — W >0."

More codes

"l can Increase w using

an asymptotically good code!
k/n — R >0 and

w/n — W >0."

Maybe, but this isn't easy.

Do you also have a good D?
Does your D run quickly?

Are there many choices of D?

No exploitable structure in C(D)?
Is D actually better than I'»

for reasonable values of n?

Tempting to Increase g.

n/\1g8q.k/\V/1gq.q

have same key size as n, k, 2.
Maybe better security?

Tempting to Increase g.

n/\1g8q.k/\V/1gq.q

have same key size as n
Maybe better security?

K, 2.

Problem 1: Structural attacks

seem disastrous for large g.
e.g. 1992 Shestakov—Sidelnikov

broke 1986 Niederreiter

Droposal

using [4(...) with g ~ n.

Tempting to Increase g.
n/\/lgq, k/\/1gq.q

have same key size as n, k, 2.
Maybe better security?

Problem 1: Structural attacks
seem disastrous for large g.

e.g. 1992 Shestakov—Sidelnikov
broke 1986 Niederreiter proposal

using [4(...) with g ~ n.

Problem 2: Patterson’s algorithm
Is specific to g = 2.

Conventional wisdom: correct
only (deg g)/2 errors for ¢ > 3.

2010 Peters: switching from

g = 2 to ¢ = 31 gains factor

2 In key size with same security
against information-set decoding,
despite Problem 2.

2010 Peters: switching from

g = 2 to ¢ = 31 gains factor

2 In key size with same security
against information-set decoding,
despite Problem 2.

2010 Bernstein—Lange—Peters:
"Wild Goppa codes”
Fo(...,9971) with squarefree g
correct q(deg g)/2 errors,
generalizing smoothly from g = 2.
Even more with list decoding.
Gain already for g = 3.

Ongoing work:
optimizing 4(. .., g9 1),

Also many ongoing efforts

to reduce key size by creating
C(D) with visible structure.
But safety is unclear.

e.g.

2010 Gauthier Umana—Leander
and 2010 Faugere—Otmani-—
Perret—Tillich

broke most of the quasi-cyclic
and quasi-dyadic proposals

by 2009 Berger—Cayrel-Gaborit—
Otmani and 2009 Misocki—
Barreto.

List-decoding algorithms
Most often quoted results:

Take any alternant code over F,
of designed distance ¢t + 1.

Assume (n/t)q(lg g™)e(lgn)OW).

1999 Guruswami—Sudan:
Polynomial-time algorithm
forw <mn—+/n(n—t—1).
(Roughly: w < t/2 4 t%/8n.)

2000 Koetter—Vardy:
Polynomial-time algorithm

forw <n' —/n/(n' —t—1)
where n' = n(q — 1)/q. (Roughly:
w < t/2+t%/8n +t°/8n(q —1).)

What

does this mean for Fq?

Easy application:

Fq(. .
with @

Slight

,g) is an alternant code
esigned distance deg g + 1.
y above (deg g)/2 errors.

What does this mean for [47

Easy application:

[4(...,g) is an alternant code
with designed distance degg + 1.
Slightly above (deg g)/2 errors.

2010 Bernstein—Lange—Peters:
Plug 1999 Guruswami—Sudan
into 1975 Sugiyama—Kasahara-
Hirasawa—Namekawa identity

[q(. .. ,gq_l) =[q(...,9%).

What does this mean for [47

Easy application:
[4(...,g) is an alternant code
with designed distance deg g + 1.

Slightly above (deg g)/2 errors.

2010 Bernstein—Lange—Peters:
Plug 1999 Guruswami—Sudan
into 1975 Sugiyama—Kasahara-
Hirasawa—Namekawa identity

[q(. .. ,gq_l) =[q(...,9%).

2010 Augot—Barbier—Couvreur:
Plug 2000 Koetter—Vardy into
1975 Sugiyama—Kasahara—
Hirasawa—Namekawa identity.

2011 Bernstein “Simplified high-
speed high-distance list decoding
for alternant codes”:

Write J' =n' — \/n/(n’ —t — 1).

nO) bit operations

ifw < J' +0((lgn)/Iglgn).

2011 Bernstein “Simplified high-
speed high-distance list decoding
for alternant codes”:

Write J' =n' — \/n/(n’ —t — 1).

nO) bit operations

ifw < J' +0((lgn)/Iglgn).

O(n*>) bit operations
if w <J' +o((lgn)/lglgn).

2011 Bernstein “Simplified high-
speed high-distance list decoding
for alternant codes”:

Write J' =n' — \/n/(n’ —t — 1).
nO) bit operations

ifw < J' +0((lgn)/Iglgn).
O(n*>) bit operations

if w <J' +o((lgn)/lglgn).

n(lgn)°W) bit operatlons
ifw < J' —n/(gn)°D

Can of course combine with 1975
Sugiyama—Kasahara—Hirasawa—
Namekawa identity.

Still not really fast.
Big problem for, e.g., n = 3600.

New wave of “rational”
list-decoding algorithms promise
much better speeds: 2007 Wu;
2008 Bernstein “List decoding

for binary Goppa codes”
(final version: IWCC 2011).

These algorithms are efficient
only up to about J, not J'.
Can this limitation be removed?

I'm exploring one idea for this:
“Jet list decoding.”

