Advances in code-based public-key cryptography

D. J. BernsteinUniversity of Illinois at Chicago

Advertisements

1. pqcrypto.org:

Post-quantum cryptography—hash-based, lattice-based, code-based, multivariate quadratic—introduction and bibliography.

- 2. pq.crypto.tw/pqc11/:
 PQCrypto 2011, Taipei,
 just before Asiacrypt.
 Deadline 24 June 2011.
- 3. 2011.indocrypt.org: Indocrypt 2011, Chennai, just after Asiacrypt.

 Deadline 31 July 2011.

The McEliece cryptosystem

(1978 McEliece)

McEliece public key:

linear map $G: \mathbf{F}_2^{524} \hookrightarrow \mathbf{F}_2^{1024}$ represented as 1024×524 matrix.

McEliece plaintext:

$$m \in \mathbf{F}_2^{524}$$
; and $e \in \mathbf{F}_2^{1024}$ of weight 50.

McEliece ciphertext:

$$y=Gm+e\in \mathbf{F}_2^{1024}.$$

Basic problem for attacker: Given G, y, find codeword Gmclose to y in the code $G\mathbf{F}_2^{524}$. Instead use parity-check matrix (1986 Niederreiter).

Niederreiter public key:

linear map
$$H: \mathbf{F}_2^{1024} \to \mathbf{F}_2^{500}$$
 represented as 500×1024 matrix.

Niederreiter plaintext:

$$m \in \mathbf{F}_2^{1024}$$
 of weight 50.

Niederreiter ciphertext:

$$s=Hm\in \mathbf{F}_2^{500}$$
.

Basic problem for attacker:

Given H, s, find low-weight

$$m \in \mathbf{F}_2^{1024}$$
 with $Hm = s$.

Equivalent to previous problem.

Information-set decoding

Choose random size-500 subset $S \subseteq \{1, 2, 3, ..., 1024\}$.

For almost all *H*:

Good chance

that $\mathbf{F}_2^S \hookrightarrow \mathbf{F}_2^{1024} \stackrel{H}{\longrightarrow} \mathbf{F}_2^{500}$ is invertible.

Hope $m \in \mathbf{F}_2^S$; chance $\approx 2^{-53}$. Apply inverse map to Hm, revealing m if $m \in \mathbf{F}_2^S$.

If $m \notin \mathbf{F}_2^S$, try again. Total cost $\approx 2^{80}$.

```
Long history, many improvements:
1962 Prange;
1981 Clark (crediting Omura);
1988 Lee-Brickell; 1988 Leon;
1989 Krouk; 1989 Stern;
1989 Dumer;
1990 Coffey-Goodman;
1990 van Tilburg; 1991 Dumer;
1991 Coffey-Goodman-Farrell;
1993 Chabanne-Courteau;
1993 Chabaud;
1994 van Tilburg;
1994 Canteaut-Chabanne;
1998 Canteaut-Chabaud;
1998 Canteaut-Sendrier.
```

1998 Canteaut–Chabaud– Sendrier: 2⁶⁸ Alpha cycles to attack a McEliece ciphertext.

2008 Bernstein-Lange-Peters: further improvements; 2^{58} Core 2 Quad cycles to attack a McEliece ciphertext. Ran attack successfully!

Subsequent literature:
2009 Finiasz–Sendrier;
2010 Peters;
2011 Bernstein–Lange–Peters.

Higher security levels

Easily improve security by scaling parameters up from McEliece's 1024, 524, 50 example.

Niederreiter public key:

linear map
$$H: \mathbf{F}_2^n \to \mathbf{F}_2^{n-k}$$
 represented as $(n-k) \times n$ matrix.

Niederreiter plaintext:

$$m \in \mathbf{F}_2^n$$
 of weight w .

Niederreiter ciphertext:

$$s = Hm \in \mathbf{F}_2^{n-k}$$
.

How large do n, k, w have to be for 2^b security?

Basic information-set decoding:

Hope $m \in \mathbf{F}_2^S$. Chance $\binom{n-k}{w}/\binom{n}{w}$.

Trying S costs $\approx n^3$. Total cost $\approx n^3 \binom{n}{m} / \binom{n-k}{m}$. Basic information-set decoding:

Hope
$$m \in \mathbf{F}_2^S$$
.
Chance $\binom{n-k}{w}/\binom{n}{w}$.

Trying S costs $\approx n^3$. Total cost $\approx n^3 \binom{n}{w} / \binom{n-k}{w}$.

Standard entropy approximation:

If
$$w/n \to W$$
 as $n \to \infty$ then $\binom{n}{w}^{1/n} \to \frac{1}{W^W(1-W)^{1-W}}$.

Basic information-set decoding:

Hope
$$m \in \mathbf{F}_2^S$$
.
Chance $\binom{n-k}{w}/\binom{n}{w}$.

Trying S costs $\approx n^3$.

Total cost
$$\approx n^3 \binom{n}{w} / \binom{n-k}{w}$$
.

Standard entropy approximation:

If
$$w/n \to W$$
 as $n \to \infty$ then $\binom{n}{w}^{1/n} \to \frac{1}{W^W(1-W)^{1-W}}$.

If furthermore $k/n \to R$ then $\binom{n-k}{w}^{1/n} \to \frac{(1-R)^{1-R}}{W^W(1-R-W)^{1-R-W}}$.

So
$$cost^{1/n}
ightharpoonup rac{(1-R-W)^{1-R-W}}{(1-R)^{1-R}(1-W)^{1-W}}$$
.

1988 Lee-Brickell idea:

Hope $m-e\in \mathbf{F}_2^S$ for some weight-2 vector $e\in \mathbf{F}_2^{n-S}$. Chance $\binom{n-k}{w-2}\binom{k}{2}/\binom{n}{w}$.

Trying S costs $\approx n^3$; reuse one matrix inversion for all choices of e. Speedup $\approx k^2w^2/2(n-k-w)^2$. 1988 Lee-Brickell idea:

Hope $m-e\in \mathbf{F}_2^S$ for some weight-2 vector $e\in \mathbf{F}_2^{n-S}$. Chance $\binom{n-k}{w-2}\binom{k}{2}/\binom{n}{w}$.

Trying S costs $\approx n^3$; reuse one matrix inversion for all choices of e. Speedup $\approx k^2w^2/2(n-k-w)^2$.

Not visible in $\cos t^{1/n}$ limit: $\cot^{1/n} \to \frac{(1-R-W)^{1-R-W}}{(1-R)^{1-R}(1-W)^{1-W}}$. But still quite useful.

Many polynomial speedups in subsequent papers.

e.g. 1988 Leon:

Choose random S as before; invert $\mathbf{F}_2^S \hookrightarrow \mathbf{F}_2^n \stackrel{H}{\longrightarrow} \mathbf{F}_2^{n-k}$; choose size- ℓ subset $Z \subseteq S$. Hope $m-e \in \mathbf{F}_2^{S-Z}$ for some weight-2 vector e.

Many polynomial speedups in subsequent papers.

e.g. 1988 Leon:

Choose random S as before; invert $\mathbf{F}_2^S \hookrightarrow \mathbf{F}_2^n \stackrel{H}{\longrightarrow} \mathbf{F}_2^{n-k}$; choose size- ℓ subset $Z \subseteq S$. Hope $m-e \in \mathbf{F}_2^{S-Z}$ for some weight-2 vector e.

Advantage over Lee–Brickell: quickly reject e if $\varphi(m-e) \neq 0$; $\varphi: \mathbf{F}_2^n \to \mathbf{F}_2^Z$ is composition of $\mathbf{F}_2^n \to \mathbf{F}_2^{n-k} \to \mathbf{F}_2^S \to \mathbf{F}_2^Z$.

Some loss of success chance from disallowing \mathbf{F}_2^Z in m-e.

Collision decoding (1989 Stern, independently 1989–1991 Dumer):

Again choose S, Z. Partition n-S into X, Y. Hope $m-e-e'\in \mathbf{F}_2^{S-Z}$ for weight-p vectors e, e'with $e\in \mathbf{F}_2^X$, $e'\in \mathbf{F}_2^Y$. Collision decoding (1989 Stern, independently 1989–1991 Dumer):

Again choose S, Z. Partition n-S into X, Y. Hope $m-e-e'\in \mathbf{F}_2^{S-Z}$ for weight-p vectors e, e'with $e\in \mathbf{F}_2^X$, $e'\in \mathbf{F}_2^Y$.

Don't enumerate (e, e'). Make list of $\varphi(m - e)$; make list of $\varphi(e')$; find collisions between lists. Collision decoding (1989 Stern, independently 1989–1991 Dumer):

Again choose S, Z. Partition n-S into X, Y. Hope $m-e-e'\in \mathbf{F}_2^{S-Z}$ for weight-p vectors e, e'with $e\in \mathbf{F}_2^X$, $e'\in \mathbf{F}_2^Y$.

Don't enumerate (e, e'). Make list of $\varphi(m - e)$; make list of $\varphi(e')$; find collisions between lists.

Optimal p is unbounded. Exponential speedup for any (R, W), visible in $cost^{1/n}$ limit! Ball-collision decoding (Bernstein-Lange-Peters, to appear at Crypto 2011):

Partition Z into A, B. Hope $m-e-e'-f-f' \in \mathbf{F}_2^{S-Z}$ with $e \in \mathbf{F}_2^X$ of weight p, $e' \in \mathbf{F}_2^Y$ of weight p, $f \in \mathbf{F}_2^A$ of weight $\leq q$, $f' \in \mathbf{F}_2^B$ of weight $\leq q$.

Expand $\varphi(m-e)$ into ball of radius q; similarly $\varphi(e')$; find collisions between balls.

Exponential speedup over Stern for any reasonable (R, W).

Decryption

How does legitimate receiver decrypt s (or y)?

Answer: Secretly generate a fast decoding algorithm D for a code C(D). Take random H (or G) with $C(D) = \operatorname{Ker} H$ (or $C(D) = G\mathbf{F}_2^k$). Or systematic H: smaller, faster.

Fastest algorithms known to exploit McEliece's choice of D (by, e.g., computing D) are many orders of magnitude slower than collision decoding.

Fix a prime power q; a positive integer m; a positive integer $n \leq q^m$; distinct $a_1, \ldots, a_n \in \mathbf{F}_{q^m}$; polynomial $g \in \mathbf{F}_{q^m}[x]$ with $\deg g < n/m$ and $g(a_1) \cdots g(a_n) \neq 0$.

The classical Goppa code $\Gamma_q(a_1,\ldots,a_n,g)$ is the set of $c\in \mathbf{F}_q^n$ with $\sum_i c_i/(x-a_i)=0$ in $\mathbf{F}_q m[x]/g$.

Code dimension $k \geq n-m$ deg g. Almost always k = n-m deg g. McEliece's choice of C(D): $\Gamma_2(a_1, \ldots, a_n, g)$ with irreducible g of degree w. Can you figure out a_1, \ldots, a_n, g given $\Gamma_2(a_1, \ldots, a_n, g)$? McEliece's choice of C(D): $\Gamma_2(a_1, \ldots, a_n, g)$ with irreducible g of degree w.

Can you figure out a_1, \ldots, a_n, g given $\Gamma_2(a_1, \ldots, a_n, g)$?

McEliece's choice of D: 1975 Patterson algorithm to decode deg g errors given a_1, \ldots, a_n, g . McEliece's choice of C(D):

$$\Gamma_2(a_1,\ldots,a_n,g)$$

with irreducible g of degree w.

Can you figure out a_1, \ldots, a_n, g given $\Gamma_2(a_1, \ldots, a_n, g)$?

McEliece's choice of D: 1975 Patterson algorithm to decode deg g errors given a_1, \ldots, a_n, g .

Original parameters: m=10, w=50, n=1024, k=524.

McEliece's choice of C(D):

$$\Gamma_2(a_1,\ldots,a_n,g)$$

with irreducible g of degree w.

Can you figure out a_1, \ldots, a_n, g given $\Gamma_2(a_1, \ldots, a_n, g)$?

McEliece's choice of D: 1975 Patterson algorithm to decode deg g errors given a_1, \ldots, a_n, g .

Original parameters: m=10, w=50, n=1024, k=524.

Much higher security: m = 12, w = 150, n = 3600, k = 1800.

If $k/n \to R$ as $n \to \infty$ then $1 - m(\deg g)/n \to R$ but $m \ge (\lg n)/\lg q$ so $w/n = (\deg g)/n \to 0$.

Standard conjecture is that decoding is still quite hard: $(\operatorname{constant} + o(1))^{n/\lg n}$ as $n \to \infty$.

McEliece reaches 2^b security with $n \in b^{1+o(1)}$.

Encryption and decryption cost only $b^{2+o(1)}$.

ECC also costs $b^{2+o(1)}$, but ECC's o(1) seems bigger and ECC isn't post-quantum.

2008 Bernstein-Lange-Peters:

Why stop with deg g errors? Can take w above deg g. Use fast list-decoding algorithms for exactly the same codes.

List can have > 1 plaintext, but standard "CCA2 conversions" easily identify correct plaintext.

Each extra error makes known attacks more difficult.

More security for same key size.

⇒ Smaller key for same security.

More codes

"I can increase w using an asymptotically good code! $k/n \to R > 0$ and $w/n \to W > 0$."

More codes

"I can increase w using an asymptotically good code! $k/n \to R > 0$ and $w/n \to W > 0$."

Maybe, but this isn't easy. Do you also have a good D? Does your D run quickly? Are there many choices of D? No exploitable structure in C(D)? Is D actually better than Γ_2 for reasonable values of n?

Tempting to increase q.

 $n/\sqrt{\lg q}$, $k/\sqrt{\lg q}$, q

have same key size as n, k, 2.

Maybe better security?

Tempting to increase q. $n/\sqrt{\lg q}$, $k/\sqrt{\lg q}$, q have same key size as n, k, 2. Maybe better security?

Problem 1: Structural attacks seem disastrous for large q. e.g. 1992 Shestakov–Sidelnikov broke 1986 Niederreiter proposal using $\Gamma_q(\ldots)$ with $q \approx n$.

Tempting to increase q. $n/\sqrt{\lg q}$, $k/\sqrt{\lg q}$, q have same key size as n, k, 2. Maybe better security?

Problem 1: Structural attacks seem disastrous for large q. e.g. 1992 Shestakov–Sidelnikov broke 1986 Niederreiter proposal using $\Gamma_q(\ldots)$ with $q \approx n$.

Problem 2: Patterson's algorithm is specific to q = 2.

Conventional wisdom: correct only $(\deg g)/2$ errors for $q \geq 3$.

2010 Peters: switching from q = 2 to q = 31 gains factor 2 in key size with same security against information-set decoding, despite Problem 2.

2010 Peters: switching from q = 2 to q = 31 gains factor 2 in key size with same security against information-set decoding, despite Problem 2.

2010 Bernstein-Lange-Peters: "Wild Goppa codes" $\Gamma_q(\ldots,g^{q-1})$ with squarefree g correct $q(\deg g)/2$ errors, generalizing smoothly from q=2. Even more with list decoding. Gain already for q=3.

Ongoing work: optimizing $\Gamma_q(\ldots, fg^{q-1})$.

Also many ongoing efforts to reduce key size by creating C(D) with *visible* structure. But safety is unclear.

e.g.

2010 Gauthier Umana–Leander and 2010 Faugère–Otmani–Perret–Tillich broke most of the quasi-cyclic and quasi-dyadic proposals by 2009 Berger–Cayrel–Gaborit–Otmani and 2009 Misocki–Barreto.

List-decoding algorithms

Most often quoted results:

Take any alternant code over \mathbf{F}_q of designed distance t+1. Assume $(n/t)q(\lg q^m)\in (\lg n)^{O(1)}$.

1999 Guruswami-Sudan:

Polynomial-time algorithm

for
$$w < n - \sqrt{n(n-t-1)}$$
.

(Roughly: $w < t/2 + t^2/8n$.)

2000 Koetter-Vardy:

Polynomial-time algorithm

for
$$w < n' - \sqrt{n'(n'-t-1)}$$

where n' = n(q-1)/q. (Roughly:

$$w < t/2 + t^2/8n + t^2/8n(q-1).$$

What does this mean for Γ_q ?

Easy application:

 $\Gamma_q(\ldots,g)$ is an alternant code with designed distance $\deg g+1$. Slightly above $(\deg g)/2$ errors.

What does this mean for Γ_q ?

Easy application:

 $\Gamma_q(\ldots,g)$ is an alternant code with designed distance $\deg g+1$. Slightly above $(\deg g)/2$ errors.

2010 Bernstein-Lange-Peters: Plug 1999 Guruswami-Sudan into 1975 Sugiyama-Kasahara-Hirasawa-Namekawa identity $\Gamma_q(\ldots,g^{q-1})=\Gamma_q(\ldots,g^q)$.

What does this mean for Γ_q ?

Easy application:

 $\Gamma_q(\ldots,g)$ is an alternant code with designed distance $\deg g+1$. Slightly above $(\deg g)/2$ errors.

2010 Bernstein-Lange-Peters: Plug 1999 Guruswami-Sudan into 1975 Sugiyama-Kasahara-Hirasawa-Namekawa identity $\Gamma_q(\ldots,g^{q-1})=\Gamma_q(\ldots,g^q)$.

2010 Augot-Barbier-Couvreur: Plug 2000 Koetter-Vardy into 1975 Sugiyama-Kasahara-Hirasawa-Namekawa identity.

2011 Bernstein "Simplified highspeed high-distance list decoding for alternant codes":

Write
$$J'=n'-\sqrt{n'(n'-t-1)}.$$
 $n^{O(1)}$ bit operations if $w \leq J' + O((\lg n)/\lg\lg n).$

2011 Bernstein "Simplified highspeed high-distance list decoding for alternant codes":

Write
$$J'=n'-\sqrt{n'(n'-t-1)}$$
. $n^{O(1)}$ bit operations if $w \leq J'+O((\lg n)/\lg\lg n)$. $O(n^{4.5})$ bit operations

if $w < J' + o((\lg n)/\lg\lg n)$.

2011 Bernstein "Simplified highspeed high-distance list decoding for alternant codes":

Write
$$J'=n'-\sqrt{n'(n'-t-1)}$$
.

 $n^{O(1)}$ bit operations if $w \leq J' + O((\lg n)/\lg \lg n)$.

 $O(n^{4.5})$ bit operations if $w \leq J' + o((\lg n)/\lg \lg n)$.

 $n(\lg n)^{O(1)}$ bit operations if $w \leq J' - n/(\lg n)^{O(1)}$.

Can of course combine with 1975 Sugiyama–Kasahara–Hirasawa– Namekawa identity. Still not really fast. Big problem for, e.g., n=3600.

New wave of "rational" list-decoding algorithms promise much better speeds: 2007 Wu; 2008 Bernstein "List decoding for binary Goppa codes" (final version: IWCC 2011).

These algorithms are efficient only up to about J, not J'. Can this limitation be removed? I'm exploring one idea for this: "jet list decoding."