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Do you know how to add on a circle?
 Let & be afield with 2 £ 0. -

{(2,y) € b x kla® +y2 = 1)

| |
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Do you know how to add on a circle?
 Let & be afield with 2 £ 0. -

{(z,y) € k x kla® +y° =1}

IS a commutative group with
(z1,91) © (w2, y2) = (3,y3), where

T3 = r1Y2 + Y172 @nd y3 = y1yo — 1172,
# Polar coordinates and trigonometric identities readily

show that the result is on the curve.

# Associativity of the addition boils down to associativity
of addition of angles.

# Look, an addition law!
L # But it’s not elliptic; index calculus work efficiently. J
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Now add on an elliptic curve

-

An elliptic curve:

-
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Now add on an elliptic curve

-

An elliptic curve:

-

22 + y2 = a2(1 + x2y2)

| |
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Now add on an elliptic curve

| N

22 + y2 = a2(1 + x2y2)

elliptic?
use z = y(1 — a*2?)/a to obtain

22 =gt — (a® +1/a®)z* + 1.

| |
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Now add on an elliptic curve

fLet k be a field with 2 # 0 and let a € k with a° # a. T
There is an — almost everywhere defined — operation on the
set

{(z,y) € k x k|lz? +9* = a*(1 + 2%9?)}
as
(x1,91) ® (22,12) = (23,¥3)

defined by the Edwards addition law

Y1yz — 12
a(l — x1z2y192)

T1Y2 + Y122
a(l 4+ z1z2y1Y2)

Numerators like in addition on circle!

LWhere do these curves come from? J
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Long, long ago ...

[i;]‘]()NIIAR,])l EULERT OPERA OMNIA

j‘ SUB AUSPICIIS SOCIETATIS SCIENTIARUM NATURALIUM HELVETICAR
| e PR

SDENDA CURAVERUNT
FERDINAND RUDIO . ADOLF KRAZER - PAUL STACKEL
SERIES I - OPERA MATHEMATICA . VOLUMEN XX

LEONHARDI EULERI

COMMENTATIONES ANALYTICAE

AD THEORIAM INTEGRALIUM
ELLIPTICORUM PERTINENTES

EDIDIT

ADOLF KRAZER

VOLUMEN PRIUS

&

LIPSIAE ET BEROLINI
TYPIS ET IN AEDIBUS B.G.TEUBNERIL
MCMXIT

TanjaLange http://ww. hyperelliptic.org/tanja/newelliptic/ -p.4



Euler 1761

|_“ Observationes de Comparatione Arcuum Curvarum _‘
Irrectificabilium”

2
2 2 2 2
i =N = 1+ nx y”.
L_ " R T+ + Y _J
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Euler 1761

Euler gives doubling and (special) addition for (a, A) on
a? + A? =1— a?A>.

L |
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Gauss, posthumously

- ELEGANTIORES INTEGRALIS [ % PROPRIETATES. |

[2.]
| = ss+ccts8ce sive 2 = (14-s8)(14-cc) = ':ﬁ_ﬂ{ﬁ_

o "‘Jfl—dﬂ = \lllll_li

14 ce’ 1428
sin lemn (a+b) = %{f%
cos lemn (g +b) = > 1?;_:%'
sin lemn (—a) = —sinlemna,  cos lemn (—a) = cos lemna

sin lemn ke = 0 sin lemn (k448 = -1
coslemniw = 41 cos lemn (k44)m = 0

— Yy

\=>H
Gauss gives general addition for arbitrary points on

L 1 =52+ ¢ + s J
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Ex uno plura

Harold M. Edwards, Bulletin

of the AMS, 44, 393—422 2007
v? +y?=a*(1+2%y°),a’ £ a

describes an elllptlc curve.

Every elliptic curve can be
written in this form — over
some extension field.

Ur-elliptic curve

2 4+ y? =1 — x%y?
needs v/—1 € k transform.
Edwards gives above-mentioned
addition law for this generalized form, shows

equivalence with Weierstrass form, proves addition law,
gives theta parameterization ... J

TanjalLange http://ww. hyperelliptic.org/tanja/newelliptic/ -p.8



Edwards curves over finite fields

f.o We do not necessarily have /—1 € k! The example T

curve z2 + y? = 1 — 2%y? from Euler and Gauss is not
always an Edwards curve.

# Solution: change the definition of Edwards curves.
# Introduce further parameter d to cover more curves

2+ y? = A1+ de*y?), ¢,d #0,dc* # 1.

® Atleast one of ¢,d small: if ¢*d = é*d then
1?2 4+ y? = A(1 + dx*y?) and 22 + y? = (1 + dz*y?)
Isomorphic.
We can always choose ¢ = 1 (and do so in the sequel).

® &*d = (c*d)~! gives quadratic twist (might be

L Isomorphic). J
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Addition on Edwards curves

| N

($1 y1) S (xg y2) — ( T1Y2 + Y172 Y1Y2 — T1x9 )
| | 1+ drizoyny’ 1 — drizoyiyo

® Neutral element is

| |
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Addition on Edwards curves

| N

(551 y1) S (xg y2) — ( T1Y2 + Y172 Y1Y2 — T1x9 )
| | 1+ drizoyny’ 1 — drizoyiyo

# Neutral elementis (0, 1), this is an affine point!

| |
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Addition on Edwards curves

| N

(551 y1) S (xg y2) — ( T1Y2 + Y172 Y1Y2 — T1x9 )
| | 1+ drizoyny’ 1 — drizoyiyo

# Neutral elementis (0, 1), this is an affine point!

® —(x1,y1) =

| |
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Addition on Edwards curves

| N

(551 y1) S (xg y2) — ( T1Y2 + Y172 Y1Y2 — T1x9 )
| | 1+ drizoyny’ 1 — drizoyiyo

# Neutral elementis (0, 1), this is an affine point!

® —(r1,11) =(—71,91)-

| |
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Addition on Edwards curves

| N

($1 y1) S (562 y2) — ( T1Y2 + Y172 Y1Y2 — T1x9 )
| | 1+ drizoyny’ 1 — drizoyiyo

# Neutral elementis (0, 1), this is an affine point!

°

—(71,91) =(—71,91).

# (0,—1) has order 2, (+1,0) have order 4,
so not every elliptic curve can be transformed to an
Edwards curve over k£ — but every curve with a point of
order 4 can!

# Our Asiacrypt 2007 paper makes explicit the birational
equivalence between a curve in Edwards form and in
Welerstrass form.

See also our newel | i pti c page.

| |
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Nice features of the addition law
f.. p@Q_( T1Y2 + Y12 Y1Yy2 — T122 ) T

1 +drizoy1ys 1 — drizay1y2

| |
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Nice features of the addition law
f.o p@Q_( T1Y2 + Y12 Y1Yy2 — T122 ) T

1 +drizoy1ys 1 — drizay1y2

s [2P— ( T1y1 + Y121 | Y1y1 — T121 )
1 +driziyiyr 1 — driziyin

| |
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Nice features of the addition law
f.. p@Q_( T1Y2 + Y12 Y1Yy2 — T122 ) T

1 +drizoy1ys 1 — drizay1y2

» 2P = ( T1Y1 + Y171 Yyiyir — 111 )
1 +driziyiyn’ 1 —deiziyiyr )

# Addition law also works for doubling (compare that to
curves in Welerstrass form!)

# Can show: denominator never 0 for non-square d.

| |
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Nice features of the addition law
f’ PoO— ( T1Y2 + Y1T2  Y1Y2 — T1T9 )

® [2|P =

1 +drizoy1ys 1 — drizay1y2

( T1Y1 + Y11 Y1yl — X121 )
1 +drizyyiyr’ 1 —deixiyiyr )

# Addition law also works for doubling (compare that to
curves in Welerstrass form!)

# Can show: denominator never 0 for non-square d.
Explicit formulas for addition/doubling:

A
E

Xpao
ZpaQ

Tanja Lange

Zy-Zy, B=A% C=X1-Xo; D=Y1+Yo;
(X1+Y1) - (Xo+Ye)—C—-D; F=d-C-D;
A-E-(B—=F); Ypgg=A-(D-C)-(B+F);
(B—F)-(B+F).

http://ww. hyperelliptic.org/tanja/newelliptic/

-

|

-p. 11



Nice features of the addition law
f’ PoO— ( T1Y2 + Y1T2  Y1Y2 — T1T9 )

® [2|P =

1 +drizoy1ys 1 — drizay1y2

( T1Y1 + Y11 Y1yl — X121 )
1 +drizyyiyr’ 1 —deixiyiyr )

# Addition law also works for doubling (compare that to
curves in Welerstrass form!)

# Can show: denominator never 0 for non-square d.
Explicit formulas for addition/doubling:

A
E

Xpao
ZpaQ

Zy-Zy, B=A% C=X1-Xo; D=Y1+Yo;
(X1+Y1) - (Xo+Ye)—C—-D; F=d-C-D;
A-E-(B—=F); Ypgg=A-(D-C)-(B+F);
(B—F)-(B+F).

LNeeds 10M + 1S + 1D + 7A.

Tanja Lange
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Strongly unified group operations
f.o Addition formulas work also for doubling. T

# Addition in Weierstrass form y? = z3 + a4z + ag, involves
computation

_ ) e —y)/(wa— 1) Tay # 2o,
(32% + a4)/(2y1) else.

division by zero if first form is accidentally used for
doubling.

# Strongly unified addition laws remove some checks
from the code.

# Help against simple side-channel attacks. Attacker sees
uniform sequence of identical group operations, no
Information on secret scalar given (assuming the field

L operations are handled appropriately). J
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Tanja Lange

Unified Projective coordinates

Brier, Joye 2002
ldea: unify how the slope is computed.

Improved in Brier, Dechene, and Joye 2004

(z1 + 22)% — 2120 + ag + Y1 — 2
Yr + Y2 +x1 — x2

{ a2 (r1,y1) # £(22,92)

p—

2
S (21, y1) = (w2, 12)

-

Multiply numerator & denominator by x; — x5 to see this.

Proposed formulae can be generalized to projective

coordinates.
Some special cases may occur, but with very low

probabillity, e. 9. x9 = y1 + y2 + x1. Alternative equation

for this case.

http://ww. hyperelliptic.org/tanja/newelliptic/
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Jacobl intersections

f.o Chudnovsky and Chudnovsky 1986; Liardet and Smart T
CHES 2001

# Elliptic curve given as intersection of two quadratics
s+c*=1andas’ +d*>=1.

® Points (S:C: D: Z)with (s,c,d) = (S/Z,C/Z,D/Z).

o Neutral elementis (0,1, 1).

Sz = (£1C2+ D152)(C1Z2 + S1D2) — Z1C3C1Zy — D15251 Do
Cs = Z109C1Z9 — D15251 D>

D3 = Z1D1Z2D2 — aS1C1520%

7y = Z1C%+ D53,

L’ Unified formulas need 13M + 2S + 1D. J
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Jacobi quartics

Billet and Joye AAECC 2003 -
E;:Y?=eX*—20X%22% + 2%
Xz = X1Z41Yo+Y1 X029
7y = (Z179)% — e(X1X9)?
Y = (Z5+2e(X1X2)*)(V1Ya — 20 X1 X021 75) +
2e X1 X021 Z9( X272 + Z2X3).

Unified formulas need 10M+3S+D+2E
Can have € or § small

Needs point of order 2; for ¢ = 1 the group order is
divisible by 4.

Some recent speed ups due to Duguesne and to Hisil,
Carter, and Dawson. J
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Hesslan curves

| By : X 4+Y’ 4+ 2% =cXYZ .
Addition: P # +(Q Doubling P =Q # —P
X3 = XoYi?Zy — X1Y$7Z1 X3 =Y1(X} - Z})
Y3 = XYoZy — X3V 171 Y3 =X1(Z} - YD)
T3 = XoYoZ? — X123 Zs = Z,(Y] — X3)
#® Curves were first suggested for speed
# Joye and Quisquater show

[2](X1 Y7 Zl) = (Zl c X1 Yl) D (Y1 AR Xl)

® Unified formulas need 12M.

# Doubling is done by an addition, but not automatically —
L only unified, not strongly unified. J
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Unified addition law

Unified formulas introduced as countermeasure againstT
side-channel attacks — but useful in general.

Strongly unified addition laws indeed remove the check
for P # () before addition.

Some systems allow to omit the check P # —() before
addition.

Most systems still have exceptional cases.

No surprise:

“The smallest cardinality of a complete system of
addition laws on E equals two.”

(Theorem 1 in Wieb Bosma, Hendrik W. Lenstra, Jr.,
J. Number Theory 53, 229-240, 1995)

Bosma/lLenstra give such system; similar to unified
projective coordinates. J
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Complete addition law

f.o If d Is not a square then Edwards addition law is

|

complete: For 22 +y? = 1 + dx?y?, i = 1,2, always
drizoy1ys # +1. Outline of proof:
If (dzi2zoy1y2)* = 1 then (zy + dzyzoy1you1)? =

dz3y? (x9 + 12)%. Conclude that d is a square. But d # O.
# Edwards addition law allows omitting all checks

» Neutral element is affine point on curve.
s Addition works to add P and P.

s Addition works to add P and —P.

s Addition just works to add P and any Q.

# Only complete addition law Iin the literature.

# Bosma/lLenstra strikes over quadratic extension.
“Pointless exceptional divisor!”
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Fastest unified addition-or-doubling formul:

f System

Cost of unified addition-or-doubling T

Projective

Projective if ay = —1
Jacobi intersection
Jacobi quartic (e = 1)
Hessian

Edwards

11M+6S+1D; see Brier/Joye '03
13M+3S; see Brier/Joye '02
13M+2S+1D; see Liardet/Smart '01
10M+3S+1D; see Billet/Joye 01
12M; see Joye/Quisquater '01
10M+1S+1D

# Exactly the same formulae for doubling (no
re-arrangement like in Hessian; no if-else)

# No exceptional cases if d Is not a square.

# Operation counts as in Asiacrypt’07 paper.

L’ See EFD hyperel |1 ptic. org/ EFD. J
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What i1f we know that we
double?

| |
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How about non-unified doubling?

| N

[Q]P _ ( T1Y1 + Y121 y1yr — I )
1 +driziyiyi 1 —driziyiy

_ ( 2711 ye — )
L+ d(x1y1)? 1 —d(z1y1)?

| |
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How about non-unified doubling?

| N

[Q]P _ ( T1Y1 + Y121 y1yr — I )
1 +driziyiyi 1 —driziyiy

_ ( 2711 ye — )
L+ d(x1y1)? 1 —d(z1y1)?

Use curve equation z2 + y? = 1 + dz?y°.

| |
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How about non-unified doubling?

| N

[Q]P _ ( T1Y1 + Y121 y1yr — I )
1 +driziyiyi 1 —driziyiy

_ ( 2711 ye — )
L+ d(x1y1)? 1 —d(z1y1)?

_ ( 221Y1 yi — a1 )
vi+yp 2 (2] + ui)

| |
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How about non-unified doubling?

| N

[Q]P _ ( T1Y1 + Y121 y1yr — I )
1 +driziyiyi 1 —driziyiy

_ ( 2r1Y1 yi — af )
1+ d(z1y1)? 1 —d(z1y1)?

_ ( 2011 yi — o3 )
vi+yp 2 (2] + ui)

B = (X1+Y1)% C=X{; D=Y{; E=C+D; H=(c-Z1)*
J = E—2H; X3=c-(B—E)-J; Ys=c-E-(C—=D); Z3=E-.

Inversion-free version needs 3M + 4S + 6A.

| |
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Very fast doubling formulae

~ System

Cost of doubling

Projective
Projective if a4 = —3
Hessian
Doche/lcart/Kohel-3
Jacobian

Jacobian if a4y = —3
Jacobi quartic
Jacobi intersection
Edwards
Doche/lcart/Kohel-2

5M+6S+1D; EFD

7M+3S: EFD

7M+1S; see Hisil/Carter/Dawson '07
2M+7S5+2D; see Doche/lcart/Kohel '06
1M+8S+1D; EFD

3M+5S; see DJB '01

2M+6S+2D; see Hisil/Carter/Dawson ‘07
3M+4S; see Liardet/Smart '01

3IM+4S:;

2M+55+2D; see Doche/lcart/Kohel '06

# Edwards fastest for general curves, no D.
L.o Operation counts as in our Asiacrypt paper. J
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Fastest addition formulae

f System Cost of addition T
Doche/lcart/Kohel-2 | 12M+5S+1D; see Doche/lcart/Kohel '06
Doche/lcart/Kohel-3 | 11M+6S+1D; see Doche/lcart/Kohel '06
Jacobian 11M+5S; EFD
Jacobi intersection | 13M+2S+1D; see Liardet/Smart '01
Projective 12M+2S; HECC
Jacobi quartic 10M+3S+1D; see Billet/Joye '03
Hessian 12M; see Joye/Quisquater '01
Edwards 10M+1S+1D

# EFD and full paper also contain costs for mixed addition
(mADD) and re-additions (reADD).

# reADD: non-mixed ADD where one point has been
L added before and computations have been cached. J
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Single-scalar multiplication using NAF

f System 1 DBL, 1/3 mADD T
Projective 8M+6.67S+1D
Projective if ay = —3 | 10M+3.67S
Hessian 10.3M+1S
Doche/lcart/Kohel-3 | 4.33M+8.33S5+2.33D
Jacobian 3.33M+9.335+1D

Jacobian if a4y = —3
Jacobi intersection
Jacobi quartic
Doche/lcart/Kohel-2
Edwards

5.33M+6.33S
6.6/M+4.675+0.333D
4.6/M+75+2.33D
4.6/M+6.33S+2.33D
6M+4.335+0.333D

For comparison: Montgomery arithmetic takes 5SM+4S+1D

Lper bit.

|
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Signed width-4 sliding windows

Fhese counts include the precomputations.

System

-

0.98 DBL, 0.17 reADD, 0.025 mADD, 0.0035 £

Projective
Projective if ay = —3
Doche/lcart/Kohel-3
Hessian

Jacobian

Jacobian if a4 = —3
Doche/lcart/Kohel-2
Jacobi quartic
Jacobi intersection
Edwards

7.17M+6.285+0.982D
9.13M+3.34S
3.84M+7.995+2.16D
9.16M+0.982S
2.85M+8.645+0.982D
4.82M+5.69S
4.2M+5.86S+2.16D
3.69M+6.485+2.16D
5.09M+4.325+0.194D
4.86M+4.125+0.194D

Montgomery takes 5M+4S+1D per bit. Edwards solidly faster!J

Tanja Lange
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Inverted Edwards coordinates

| N

# Latest news (Bernstein/Lange, to appear at AAECC
2007):
Inverted Edwards coordinates are even faster strongly
unified system — but not complete.

# Using the representation (X; : Y : Z;) for the affine
point (7, /X1, Z1/Y1) (X1Y1Z1 # 0) gives operation
counts:

s Doubling takes 3M + 4S5 + 1D.
s Addition takes 9M + 1S +1D.

# This saves 1M for each addition compared to standard
Edwards coordinates.

# New speed leader: inverted Edwards coordinates.

| |
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Different coordinate systems

| N

For coordinate systems we could find, the group law,
operation counts (and improvements) for the explicit
formulas, MAGMA-based proofs (sorry, not SAGE) of their
correctness, lots of entertainment visit the

Explicit Formulas Database
http://ww. hyperelliptic.org/EFD

| |
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Non-zero denominators
f (1, 11) @ (2,92) = ( T1Y2 + Y1T2  Y1Y2 — T1X2 ) T

1 4+ dzizay1y2” 1 — drizay1y2

What if denominators are 0?

| |
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Non-zero denominators
f (1, 11) @ (2,92) = ( T1Y2 + Y1T2  Y1Y2 — T1X2 ) T

1 4+ dzizay1y2” 1 — drizay1y2

What if denominators are 0?

Answer: They are never 0 if d Is not a square in k.

| |
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Non-zero denominators
f (z1,91) ® (22,92) = ( T1Y2 + Y12 Y1y2 — T1T2 ) T

1+ drizoy1y2” 1 — drixay1ys
What if denominators are 0?
Answer: They are never 0 if d Is not a square in k.

Intuitive explanation:

The points (1:0:0) and (0 : 1:0) are singular. They
correspond to four points on the desingularization of the
curve; but those four points are defined over k(+/d).

| |
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Non-zero denominators
f (z1,91) ® (22,92) = ( T1Y2 + Y12 Y1y2 — T1T2 ) T

1 4+ dzizay1y2” 1 — drizay1y2

What if denominators are 0?

Answer: They are never 0 if d Is not a square in k.
Explicit proof: Let(x1,y1), (x2,y2) be on curve, i.e., if
v? +y? = 1+ dxty?. Write e = dz129y1y2 and suppose
e € {—1,1}. Then z1,z2,y1,y2 # 0 and

driyt (a3 + y3) = datyi + d*afyiesys

| |
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Non-zero denominators
f (z1,91) ® (22,92) = ( T1Y2 + Y12 Y1y2 — T1T2 ) T

1 4+ dzizay1y2” 1 — drizay1y2

What if denominators are 0?

Answer: They are never 0 if d Is not a square in k.
Explicit proof: Let(x1,y1), (x2,y2) be on curve, i.e., if
v? +y? = 1+ dxty?. Write e = dz129y1y2 and suppose
e € {—1,1}. Then z1,z2,y1,y2 # 0 and
datyi(x3 +v3) = dutyi + d*riytesy;

= dzty? + €
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Answer: They are never 0 if d Is not a square in k.

Explicit proof: Let(x1,y1), (x2,y2) be on curve, i.e., if

v? +y? = 1+ dxty?. Write e = dz129y1y2 and suppose

e € {—1,1}. Then z1,z2,y1,y2 # 0 and

datyi (3 J;y%) " x%;y%, SO o

(1 +ey1)” = 27 +y1 + 2er1y1 = dayyy (25 + y3) + 2z191dT1 7212

= doty? (23 + 2oy + y3) = daiyi(we + y2)>.
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Non-zero denominators
f (z1,91) ® (22,92) = ( T1Y2 + Y12 Y1y2 — T1T2 ) T

1 4+ dzizay1y2” 1 — drizay1y2

What if denominators are 0?

Answer: They are never 0 if d Is not a square in k.
Explicit proof: Let(x1,y1), (x2,y2) be on curve, i.e., if
v? +y? = 1+ dxty?. Write e = dz129y1y2 and suppose
e € {—1,1}. Then z1,z2,y1,y2 # 0 and
iyt (3 + y3) = 27 + i, SO
(@1 + ey1)” = af + 7 + 2ex1y1 = datyi(as + y5) + 2x1y1dw1z2y1
= dziyi (a3 + 2322 + y3) = datyi(za + y2)°.
x4+ y2 #0=d = ((x1 4+ en)/zyi(z2 + y2))* = d =0
xo—yp #0=d=((x1 —ey1)/z1y1(x2 —y2))* = d =0
Llf ro + 1y = 0and z9 — y9 = 0 then x9 = yo = 0, contradiction.J
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