The tangent FFT

D. J. BernsteinUniversity of Illinois at Chicago

Advertisement

"SPEED: Software

Performance Enhancement for Encryption and Decryption"

A workshop on software speeds for secret-key cryptography and public-key cryptography.

Amsterdam, June 11-12, 2007

http://

www.hyperelliptic.org/SPEED

The convolution problem

How quickly can we multiply polynomials in the ring $\mathbf{R}[x]$?

Answer depends on degrees, representation of polynomials, number of polynomials, etc.

Answer also depends on definition of "quickly."

Many models of computation; many interesting cost measures.

Assume two inputs $f,g \in \mathbf{R}[x]$, $\deg f < m$, $\deg g \leq n - m$, so $\deg fg < n$. Assume f,g,fg represented as coeff sequences.

How quickly can we compute the n coeffs of fg, given f's m coeffs and g's n-m+1 coeffs?

Inputs $(f_0, f_1, \dots, f_{m-1}) \in \mathbf{R}^m$, $(g_0, g_1, \dots, g_{n-m}) \in \mathbf{R}^{n-m+1}$. Output $(h_0, h_1, \dots, h_{n-1}) \in \mathbf{R}^n$ with $h_0 + h_1 x + \dots + h_{n-1} x^{n-1} = (f_0 + f_1 x + \dots)(g_0 + g_1 x + \dots)$.

Assume **R**-algebraic algorithms (without divs, branches): chains of binary **R**-adds $u, v \mapsto u + v$, binary **R**-subs $u, v \mapsto u - v$, binary **R**-mults $u, v \mapsto uv$, starting from inputs and constants.

Example (1963 Karatsuba):

Cost measure for this talk: total **R**-algebraic complexity. Cost 1 for binary **R**-add; cost 1 for binary **R**-sub; cost 1 for binary **R**-mult; cost 0 for constant in **R**.

Many real-world computations use (e.g.) Pentium M's floating-point operations to approximate operations in \mathbf{R} . Properly scheduled operations achieve Pentium M cycles \approx total \mathbf{R} -algebraic complexity.

Fast Fourier transforms

Define $\zeta_n \in \mathbf{C}$ as $\exp(2\pi i/n)$. Define $T: \mathbf{C}[x]/(x^n-1) \hookrightarrow \mathbf{C}^n$ as $f \mapsto f(1), f(\zeta_n), \ldots, f(\zeta_n^{n-1})$.

Can very quickly compute T.

First publication of fast algorithm: 1866 Gauss.

Easy to see that Gauss's FFT uses $O(n \lg n)$ arithmetic operations if $n \in \{1, 2, 4, 8, \ldots\}$.

Several subsequent reinventions, ending with 1965 Cooley Tukey.

Inverse map is also very fast.

Multiplication in \mathbb{C}^n is very fast.

1966 Sande, 1966 Stockham: Can very quickly multiply in $\mathbf{C}[x]/(x^n-1)$ or $\mathbf{C}[x]$ or $\mathbf{R}[x]$ by mapping $\mathbf{C}[x]/(x^n-1)$ to \mathbf{C}^n .

Given $f, g \in \mathbf{C}[x]/(x^n-1)$: compute fg as $T^{-1}(T(f)T(g))$.

Given $f,g \in \mathbf{C}[x]$ with $\deg fg < n$: compute fg from its image in $\mathbf{C}[x]/(x^n-1)$.

R-algebraic complexity $O(n \lg n)$.

A closer look at costs

More precise analysis of Gauss FFT (and Cooley-Tukey FFT):

$$\mathbf{C}[x]/(x^n-1) \hookrightarrow \mathbf{C}^n$$
 using $(1/2)n \lg n$ binary \mathbf{C} -adds, $(1/2)n \lg n$ binary \mathbf{C} -subs, $(1/2)n \lg n$ binary \mathbf{C} -mults, if $n \in \{1, 2, 4, 8, \ldots\}$.

 $(a,b) \in \mathbf{R}^2$ represents $a+bi \in \mathbf{C}$. **C**-add, **C**-sub, **C**-mult cost 2, 2, 6: (a,b)+(c,d)=(a+c,b+d), (a,b)-(c,d)=(a-c,b-d),(a,b)(c,d)=(ac-bd,ad+bc). Total cost $5n \lg n$.

Easily save some time: eliminate mults by 1; absorb mults by -1, i, -i into subsequent operations; simplify mults by $\pm \sqrt{\pm i}$ using, e.g., $(a,b)(1/\sqrt{2},1/\sqrt{2})=((a-b)/\sqrt{2},(a+b)/\sqrt{2}).$

Cost $5n\lg n-10n+16$ to map $\mathbf{C}[x]/(x^n-1)\hookrightarrow \mathbf{C}^n$, if $n\in\{4,8,16,32,\ldots\}$.

What about cost of convolution?

 $5n \lg n + O(n)$ to compute T(f), $5n \lg n + O(n)$ to compute T(g), O(n) to multiply in \mathbb{C}^n , similar $5n \lg n + O(n)$ for T^{-1} .

Total cost $15n\lg n + O(n)$ to compute $fg \in \mathbf{C}[x]/(x^n-1)$ given $f,g \in \mathbf{C}[x]/(x^n-1)$.

Total cost $(15/2)n \lg n + O(n)$ to compute $fg \in \mathbf{R}[x]/(x^n-1)$ given $f,g \in \mathbf{R}[x]/(x^n-1)$: map $\mathbf{R}[x]/(x^n-1) \hookrightarrow \mathbf{R}^2 \oplus \mathbf{C}^{n/2-1}$ (Gauss) to save half the time.

1968 R. Yavne: Can do better! Cost $4n \lg n - 6n + 8$ to map $\mathbf{C}[x]/(x^n - 1) \hookrightarrow \mathbf{C}^n$, if $n \in \{2, 4, 8, 16, \ldots\}$.

1968 R. Yavne: Can do better! Cost $4n \lg n - 6n + 8$ to map $\mathbf{C}[x]/(x^n - 1) \hookrightarrow \mathbf{C}^n$, if $n \in \{2, 4, 8, 16, \ldots\}$.

2004 James Van Buskirk:

Can do better!

Cost $(34/9)n \lg n + O(n)$.

Expositions of the new algorithm:

Frigo, Johnson,

in IEEE Trans. Signal Processing;

Lundy, Van Buskirk,

in Computing;

Bernstein, this talk,

expanding an old idea of Fiduccia.

Van Buskirk, comp.arch,
January 2005: "Have you ever
considered changing djbfft to get
better opcounts along the lines of
home.comcast.net/~kmbtib?"

Van Buskirk, comp.arch,
January 2005: "Have you ever
considered changing djbfft to get
better opcounts along the lines of
home.comcast.net/~kmbtib?"

Bernstein, comp.arch: "What do you mean, better opcounts? The algebraic complexity . . . of a size- 2^k complex DFT has stood at $(3k-3)2^k+4$ additions and $(k-3)2^k+4$ multiplications since 1968."

Van Buskirk, comp.arch,
January 2005: "Have you ever
considered changing djbfft to get
better opcounts along the lines of
home.comcast.net/~kmbtib?"

Bernstein, comp.arch: "What do you mean, better opcounts? The algebraic complexity ... of a size- 2^k complex DFT has stood at $(3k-3)2^k+4$ additions and $(k-3)2^k+4$ multiplications since 1968."

Van Buskirk, comp.arch:
"Oh, you're so 20th century, Dan.
Read the handwriting on the wall."

Understanding the FFT

The FFT trick: $\mathbf{C}[x]/(x^n-1) \hookrightarrow \mathbf{C}[x]/(x^{n/2}-1) \oplus \mathbf{C}[x]/(x^{n/2}+1)$ by unique $\mathbf{C}[x]$ -algebra morphism. Cost 2n: n/2 **C**-adds, n/2 **C**-subs.

e.g.
$$n=4$$
: $\mathbf{C}[x]/(x^4-1) \hookrightarrow$
 $\mathbf{C}[x]/(x^2-1) \oplus \mathbf{C}[x]/(x^2+1)$
by $g_0+g_1x+g_2x^2+g_3x^3 \mapsto$
 $(g_0+g_2)+(g_1+g_3)x$,
 $(g_0-g_2)+(g_1-g_3)x$.
Representation: $(g_0,g_1,g_2,g_3) \mapsto$
 $((g_0+g_2),(g_1+g_3))$,
 $((g_0-g_2),(g_1-g_3))$.

Recurse: $\mathbf{C}[x]/(x^{n/2}-1) \hookrightarrow \mathbf{C}[x]/(x^{n/4}-1) \oplus \mathbf{C}[x]/(x^{n/4}+1);$ similarly $\mathbf{C}[x]/(x^{n/2}+1) \hookrightarrow \mathbf{C}[x]/(x^{n/4}-i) \oplus \mathbf{C}[x]/(x^{n/4}+i);$ continue to $\mathbf{C}[x]/(x-1) \oplus \cdots$

General case: $\mathbf{C}[x]/(x^n-\alpha^2) \hookrightarrow \mathbf{C}[x]/(x^{n/2}-\alpha) \oplus \mathbf{C}[x]/(x^{n/2}+\alpha)$ by $g_0+\cdots+g_{n/2}x^{n/2}+\cdots\mapsto (g_0+\alpha g_{n/2})+(g_1+\alpha\cdots)x+\cdots, (g_0-\alpha g_{n/2})+(g_1-\alpha\cdots)x+\cdots$ Cost 5n: n/2 **C**-mults, n/2 **C**-subs.

Recurse, eliminate easy mults. Cost $5n \lg n - 10n + 16$.

Alternative: the twisted FFT

After previous $\mathbf{C}[x]/(x^n-1) \hookrightarrow \mathbf{C}[x]/(x^{n/2}-1) \oplus \mathbf{C}[x]/(x^{n/2}+1)$, apply unique \mathbf{C} -algebra morphism $\mathbf{C}[x]/(x^{n/2}+1) \hookrightarrow \mathbf{C}[y]/(y^{n/2}-1)$ that maps x to $\zeta_n y$.

$$g_0 + g_1 x + \cdots + g_{n/2} x^{n/2} + \cdots \mapsto (g_0 + g_{n/2}) + (g_1 + g_{n/2+1}) x + \cdots, (g_0 - g_{n/2}) + \zeta_n (g_1 - g_{n/2+1}) y + \cdots$$
 Again cost $5n$: $n/2$ C-mults, $n/2$ C-adds, $n/2$ C-subs.

Eliminate easy mults, recurse. Cost $5n \lg n - 10n + 16$.

The split-radix FFT

FFT and twisted FFT end up with same number of mults by ζ_n , same number of mults by $\zeta_{n/2}$, same number of mults by $\zeta_{n/4}$, etc.

Is this necessary? No! Split-radix FFT: more easy mults. "Don't twist until you see the whites of their i's."

(Can use same idea to speed up Schönhage-Strassen algorithm for integer multiplication.)

Cost 2n: $\mathbf{C}[x]/(x^n-1) \hookrightarrow$ $\mathbf{C}[x]/(x^{n/2}-1) \oplus \mathbf{C}[x]/(x^{n/2}+1)$.
Cost n: $\mathbf{C}[x]/(x^{n/2}+1) \hookrightarrow$ $\mathbf{C}[x]/(x^{n/4}-i) \oplus \mathbf{C}[x]/(x^{n/4}+i)$.
Cost 6(n/4): $\mathbf{C}[x]/(x^{n/4}-i) \hookrightarrow$ $\mathbf{C}[y]/(y^{n/4}-1)$ by $x \mapsto \zeta_n y$.
Cost 6(n/4): $\mathbf{C}[x]/(x^{n/4}+i) \hookrightarrow$ $\mathbf{C}[y]/(y^{n/4}-1)$ by $x \mapsto \zeta_n y$.

Overall cost 6n to split into 1/2, 1/4, 1/4, entropy 1.5 bits.

Eliminate easy mults, recurse. Cost $4n \lg n - 6n + 8$, exactly as in 1968 Yavne.

The tangent FFT

Several ways to achieve cost 6 for mult by $e^{i\theta}$.

One approach: Factor $e^{i\theta}$ as $(1+i\tan\theta)\cos\theta$. Cost 2 for mult by $\cos\theta$. Cost 4 for mult by $1+i\tan\theta$.

For stability and symmetry, use $\max\{|\cos\theta|, |\sin\theta|\}$ instead of $\cos\theta$.

Surprise (Van Buskirk): Can merge some cost-2 mults! Rethink basis of $\mathbf{C}[x]/(x^n-1)$. Instead of $1,x,\ldots,x^{n-1}$ use $1/s_{n,0},x/s_{n,1},\ldots,x^{n-1}/s_{n,n-1}$ where $s_{n,k}=\max\{\left|\cos\frac{2\pi k}{n}\right|,\left|\sin\frac{2\pi k}{n}\right|\}$ $\max\{\left|\cos\frac{2\pi k}{n/4}\right|,\left|\sin\frac{2\pi k}{n/4}\right|\}$ $\max\{\left|\cos\frac{2\pi k}{n/16}\right|,\left|\sin\frac{2\pi k}{n/16}\right|\}$

Now (g_0,g_1,\ldots,g_{n-1}) represents $g_0/s_{n,0}+\cdots+g_{n-1}x^{n-1}/s_{n,n-1}.$

Note that $s_{n,k}=s_{n,k+n/4}$. Note that $\zeta_n^k(s_{n/4,k}/s_{n,k})$ is $\pm (1+i\tan\cdots)$ or $\pm (\cot\cdots+i)$. Cost 2n:

$$oxed{C}[x]/(x^n-1)$$
, basis $x^k/s_{n,k}$, \hookrightarrow $oxed{C}[x]/(x^{n/2}-1)$, basis $x^k/s_{n,k}$, \oplus $oxed{C}[x]/(x^{n/2}+1)$, basis $x^k/s_{n,k}$.

Cost n:

$$oxed{C}[x]/(x^{n/2}-1)$$
, basis $x^k/s_{n,k}$, \hookrightarrow $oxed{C}[x]/(x^{n/4}-1)$, basis $x^k/s_{n,k}$, \oplus $oxed{C}[x]/(x^{n/4}+1)$, basis $x^k/s_{n,k}$.

Cost n:

$$oxed{C}[x]/(x^{n/2}+1)$$
, basis $x^k/s_{n,k}$, \hookrightarrow $oxed{C}[x]/(x^{n/4}-i)$, basis $x^k/s_{n,k}$, \oplus $oxed{C}[x]/(x^{n/4}+i)$, basis $x^k/s_{n,k}$.

Cost n/2 - 2:

 $\mathbf{C}[x]/(x^{n/4}-1)$, basis $x^k/s_{n,k}$, \hookrightarrow $\mathbf{C}[x]/(x^{n/4}-1)$, basis $x^k/s_{n/4,k}$.

Cost n/2 - 2:

 $\mathbf{C}[x]/(x^{n/4}+1)$, basis $x^k/s_{n,k}$, \hookrightarrow $\mathbf{C}[x]/(x^{n/4}+1)$, basis $x^k/s_{n/2,k}$.

Cost n/2:

 $\mathbf{C}[x]/(x^{n/4}+1)$, basis $x^k/s_{n/2,k}$,

 ${f C}[x]/(x^{n/8}-i)$, basis $x^k/s_{n/2,k}$, \oplus

 ${f C}[x]/(x^{n/8}+i)$, basis $x^k/s_{n/2,k}$.

Cost 4(n/4) - 6:

 ${f C}[x]/(x^{n/4}-i)$, basis $x^k/s_{n,k}$, \hookrightarrow

 ${f C}[x]/(y^{n/4}-1)$, basis $y^k/s_{n/4,k}$.

Cost 4(n/4) - 6:

 ${f C}[x]/(x^{n/4}+i)$, basis $x^k/s_{n,k}$, \hookrightarrow

 ${f C}[x]/(y^{n/4}-1)$, basis $y^k/s_{n/4,k}$.

Cost 4(n/8) - 6:

 ${f C}[x]/(x^{n/8}-i)$, basis $x^k/s_{n/2,k}$,

 \longrightarrow

 ${f C}[x]/(y^{n/8}-1)$, basis $y^k/s_{n/8,k}$.

Cost 4(n/8) - 6:

 ${f C}[x]/(x^{n/8}+i)$, basis $x^k/s_{n/2,k}$,

 \longrightarrow

 ${f C}[x]/(y^{n/8}-1)$, basis $y^k/s_{n/8,k}$.

Overall cost 8.5n - 28 to split into 1/4, 1/4, 1/4, 1/8, 1/8, entropy 9/4.

Recurse: $(34/9)n \lg n + O(n)$.

What if input is in $\mathbf{C}[x]/(x^n-1)$ with usual basis $1, x, \ldots, x^{n-1}$? Could scale immediately, but faster to scale upon twist. Cost $(34/9)n\lg n - (124/27)n - 2\lg n - (2/9)(-1)^{\lg n}\lg n + (16/27)(-1)^{\lg n} + 8$, exactly as in 2004 Van Buskirk.

Easily handle $\mathbf{R}[x]/(x^n+1)$ by mapping to $\mathbf{C}[x]/(x^{n/2}-i)$.

Easily handle $\mathbf{R}[x]/(x^n-1)$ by mapping to $\mathbf{R}[x]/(x^{n/2}-1)\oplus \mathbf{R}[x]/(x^{n/2}+1).$

Cost $(17/9)n\lg n + O(n)$ for $\mathbf{R}[x]/(x^n-1) \hookrightarrow \mathbf{R}^2 \times \mathbf{C}^{n/2-1}$, so cost $(17/3)n\lg n + O(n)$ to compute $fg \in \mathbf{R}[x]/(x^n-1)$. given $f,g \in \mathbf{R}[x]/(x^n-1)$.

Cost $(17/3)n \lg n + O(n)$ for size-n convolution.

Open: Can 17/3 be improved?