The tangent FFT

D. J. Bernstein
University of lllinois at Chicago

Advertisement

“SPEED: Software
Performance Enhancement

for Encryption and Decryption”

A workshop on software speeds
for secret-key cryptography

and public-key cryptography.
Amsterdam, June 11-12, 2007

http://
www.hyperelliptic.org/SPEED

The convolution problem

How quickly can we multiply
polynomials in the ring R[z]|?

Answer depends on degrees,
representation of polynomials,
number of polynomials, etc.

Answer also depends on

definition of “quickly.
Many models of computation;
many Interesting cost measures.

Assume two inputs f, g € R|z],
deg f <m, degg <n—m,

so deg fg < n. Assume f,q, fg
represented as coeff sequences.

How quickly can we compute the
n coeffs of fg, given f's m coetfs
and g's n — m + 1 coeffs?

Output (hg, h1,..., Apn_1) € R?
with hg+hi1z+- - ._|_hn_1$n—1 —
(fo+ fiz+--)(90 + g1z +).

Assume R-algebraic algorithms
(without divs, branches): chains of

binary R-adds u, v — u + v,

oinary R-subs u, v — u — v,

oinary R-mults u, v — uwv,

starting from inputs and constants.

Example (1963 Karatsuba):

fo—= X > h

fl>§ '\

| > X

N

9o ~— - +/
X 7

g1 — X > ho

Cost measure for this talk:
total R-algebraic complexity.

Cost 1 for binary R-add;
cost 1 for binary R-sub;

cost 1 for binary R-mult;
cost O for constant in R.

Many real-world computations
use (e.g.) Pentium M's
floating-point operations

to approximate operations in R.
Properly scheduled operations
achieve Pentium M cycles

~ total R-algebraic complexity.

Fast Fourier transforms

Define (,, € C as exp(27i/n).
Define T : Cl|z]/(z™ — 1) — C"
as f— f(1), f(¢n), -, f(7?_1)-

Can very quickly compute 7.

First publication of fast algorithm:
1866 Gauss.

Easy to see that Gauss's FFT uses
O(nlgmn) arithmetic operations

ifne{l,248,...}.

Several subsequent reinventions,
ending with 1965 Cooley Tukey.

Inverse map is also very fast.

Multiplication in C" is very fast.

1966 Sande, 1966 Stockham:

Can very quickly multiply

in Clz]/(z™ — 1) or C|z] or R|z]
by mapping C|z]/(z™ — 1) to C".

Given f,g € Clz]/(z™ — 1):
compute fg as T HT(£)T(g)).

Given f, g € Clz| with deg fg < n:
compute fg from
its image in C[z]/(z™ — 1).

R-algebraic complexity O(nlgn).

A closer look at costs

More precise analysis of Gauss FFT
(and Cooley-Tukey FFT):

Clz]/(z™ — 1) < C™ using
(1/2)nlgn binary C-adds,
(1/2)nlgn binary C-subs,

(1/2)nlgn binary C-mults,
ifne{l,24,.8, ...}

(a,b) € R? represents a + bi € C.
C-add, C-sub, C-mult cost 2, 2, 6:
(a,b) + (¢, d) = (a+c, b+ d),
(a,b) — (c,d) = (a —c,b— d),
(a,b)(c,d) = (ac — bd, ad + bc).

Total cost bnlgn.

Easily save some time:

€
d

iminate mults by 1;

osorb mults by —1, 12, —1

iInto subsequent operations;

simplify mults by 4=/ =1

using, e.g., (a,b)(1/v/2,1//2) =
((a — 6)/v2, (a +b)/V2).

Cost bnlgn — 10n + 16
to map Clz|/(z"™ — 1) — C",
if n €44,8,16,32,...}.

What about cost of convolution?

bnlgn + O(n) to compute T(f),
bnlgn + O(n) to compute 7(g),
O(n) to multiply in C”,

similar 5nlgn + O(n) for T~ 1.

Total cost 15nlgn + O(n)
to compute fg € Clz]/(z™ — 1)
given f,g € Clz|/(z™ — 1).

Total cost (15/2)nlgn + O(n)
to compute fg € R[z]/(z™ — 1)
given f,g € Rlz]/(z™ — 1): map
R[z]/(z" — 1) < R2 @ C™/2~1
(Gauss) to save half the time.

1968 R. Yavne: Can do better!
Cost 4nlgn — 6n + 8
to map Clz|/(z"™ — 1) — C",
if ne€{2,4,8,16,...}.

1968 R. Yavne: Can do better!
Cost 4nlgn — 6n + 8

to map Clz|/(z"™ — 1) — C",
if ne€{2,4,8,16,...}.

2004 James Van Buskirk:
Can do better!
Cost (34/9)nlgn + O(n).

Expositions of the new algorithm:
Frigo, Johnson,

in [EEE Trans. Signal Processing;
Lundy, Van Buskirk,

in Computing;

Bernstein, this talk,

expanding an old idea of Fiduccia.

Van Buskirk, comp.arch,
January 2005: “Have you ever
considered changing djbfft to get
better opcounts along the lines of

home.comcast.net/“kmbtib?"

Van Buskirk, comp.arch,
January 2005: “Have you ever
considered changing djbfft to get
better opcounts along the lines of

home.comcast.net/“kmbtib?"

Bernstein, comp.arch: “What do
you mean, ‘better opcounts' ? The
algebraic complexity . . . of a size-2*
complex DFT has stood at (3k —
3)2% 44 additions and (k—3)2%+4
multiplications since 1968."

Van Buskirk, comp.arch,
January 2005: “Have you ever
considered changing djbfft to get
better opcounts along the lines of

home.comcast.net/“kmbtib?"

Bernstein, comp.arch: “What do
you mean, ‘better opcounts' ? The
algebraic complexity . . . of a size-2*
complex DFT has stood at (3k —
3)2% 44 additions and (k—3)2%+4
multiplications since 1968."

Van Buskirk, comp.arch:
“Oh, you're so 20th century, Dan.
Read the handwriting on the wall.”

Understanding the FFT

The FFT trick: Clz]/(z" — 1) <
Clz]/(z™? —1)® C[z]/(z™/? +1)
by unique C|z]-algebra morphism.
Cost 2n: n/2 C-adds, n/2 C-subs.

eg. n=4 Clz]/(z* — 1) —
C[z]/(z* — 1) ® C[z]/(z* + 1)
by g0 + g1 + goz? + g3T> >
(90 + g2) + (91 + 93)z,

(90 — 92) + (91 — 93)z.
Representation: (go, 91, 92, 93) —
((90 + 92). (91 + 93)),

((90 — 92), (91 — 93)).

Recurse: C[:z:]/(:z:n/2 —1) <
Clz]/(z™/*—1)®C[z]/(z™/* +1);
similarly C[:I:]/(:z:”'/2 + 1) <
Clz]/(z™/* —i)GBC[:E]/(:E”/4+z)
continue to Clz]/(z — 1) &

General case: Clz]/(z" — a?) —»
Clz]/(z™? - a) @& Clz]/(z™? +)
byg0+---+gn/2:z;n/2+ SR
(90 +gn/2) + (g1 +a)T+

(90 _agn/2)“ (g1—a)+
Cost 5n: n/2 C-mults,

n/2 C-adds, n/2 C-subs.

Recurse, eliminate easy mults.
Cost bnlgn — 10n + 16.

Alternative: the twisted FFT

After previous Clz]/(z" — 1) —»
Clz]/(z™? - 1)®C[z]/(z™/?+1),
apply unique C-algebra morphism
Clz]/(z"/?+1) — C[y]/(y™?*—1)
that maps = to (,¥.

go + 91T+ - -+9n/2-’13n/2+' S
(90 +9n/2) + (91 +9n/2+1)03+ oy

(90—9n/2)+¢n(91—gn o41)y+ -
Again cost bn: n/2 C-mults,

n/2 C-adds, n/2 C-subs.

Eliminate easy mults, recurse.
Cost 5nlgn — 10n + 16.

The split-radix FFT

FFT and twisted FFT end up with

same number of mults by (.

same number of mults by Cn/21
same number of mults by ¢, 4,
etc.

Is this necessary? Nol

Split-radix FFT: more easy mults.
“"Don’t twist until you see

the whites of their 7's.”

(Can use same idea to speed up
Schonhage-Strassen algorithm
for integer multiplication.)

Cost 2n: Clz|/(z™ — 1) —
Clz]/(z™/?-1)&Clz]/(z™/?+1).
Cost n: Clz]/(z™? + 1) <
Clz]/(z"/* 1) & C[z]/(z™* +4).
Cost 6(n/4): Clz]/(z™* — i) <
Cly]/(y™* = 1) by = — (ny.
Cost 6(n/4): Clz]/(z™* + 1) <
Clyl/(y™* = 1) by > (y

Overall cost 6n to split into
1/2,1/4,1/4, entropy 1.5 bits.

Eliminate easy mults, recurse.
Cost 4nlgn — 6m + 8,
exactly as in 1968 Yavne.

The tangent FFT

Several ways to achieve
cost 6 for mult by e®.

One approach: Factor et

as (1 +ztan@)cos@.
Cost 2 for mult by cos?é.
Cost 4 for mult by 1 + 2tané.

For stability and symmetry,
sin 0|}

use max{|cos @

instead of cosé.

Surprise (Van Buskirk):

Can merge some cost-2 mults!

Rethink basis of Clz|/(z™ — 1).

Instead of 1.z, ... 2" 1 use
1/377,,0, 37/377,,11 Cey xn_l/sn,n—l
where s, =
max{ cos% | sin % X
max{ cos% | sin % X

2k - 21k
max{ | cos n716 | sin n716 3
Now (90,91, ...,9n_1) represents

gO/Sn,O + - T gn—lxn_l/sn,n—l-

Note t
Note t

Nat Sy k = Sp kyn/4-
nat (i (Sn/ak/Sn k) is

+(1+2tan---) or £(cot- -+ 1).

Cost 2n:

Clz]/(z™ — 1), basis ¥ /s, j, <
Clz]/(z™/? — 1), basis ¥ /sy) @
Clz]/(z™/? + 1), basis z¥ /sy k.

Cost n:

Clz]/(z™/2 — 1), basis ¥ /sy) <>
Clz]/(z™* — 1), basis z¥/s,, 4, ®
Clz]/(z™* + 1), basis ¥ /sy k.

Cost n:

Clz]/(z™/2 +1), basis ¥ /sy) <>
Clz]/(z™/* — 1), basis ¥ /sy) @
Clz]/(z™* + 1), basis z¥ /sy k.

Cost n/2 — 2:
Clz]/(z™/* —1), ba5|sack/sn/C —»
Clz]/(z™* — 1), basis z* /Sn 4k

Cost n/2 — 2:
C[z]/(z™* +1), basis :1:/“/3,”.C <
Clz]/(z '”'/4+1), basis z* /sn/z,k.

Cost n/2:
Clz]/(z™* + 1), basis :z:/“/sn/Q,/c,

Clz]/(z™/8 — %), basis mk/sn/z,k,
D
Clz]/(z™® + 1), basis z¥/s,, /5 1.

Cost 4(n/4) —

C

z|/(x "'/4—2) baS|s :z:l“/sn;C >

I

] /(y™/* — 1), basis ¥ /s, 4 s

Cost 4(n/4) —

o

-x-

CI

T

|/(z 77’/4+'L) baS|s :z:/‘c/sn/,C o
1/(y™/* — 1), basis y* /sy, 4 1.

Cost 4(n/8) — 6:
Clz]/(z™/8 — %), basis :z:/“/sn/Q,/c,

Clz]/(y™8 — 1), basis y/“/sn/&/c.

),
Cost 4(n/8) — 6:
Clz]/(z™/8 + %), basis mk/sn/z,k,

<

Clal/(y"/® — 1), basis v*/5, /5 1

Overall cost 8.5n — 28 to split into
1/4,1/4,1/4,1/8,1/8,

entropy 9/4.

Recurse: (34/9)nlgn + O(n).

What if input is in C[z]/(z™ — 1)
with usual basis 1, z, ..., T

Could scale immediately,

but faster to scale upon twist.
Cost (34/9)nlgn — (124/27)n —
2lgn — (2/9)(—1)'8"Ign +
(16/27)(—1)'8™ + 8,

exactly as in 2004 Van Buskirk.

Easily handle R[z]/(z™ + 1)
by mapping to Clz]/(z™/2 — 1).

Easily handle R[z]/(z™ — 1)
by mapping to

R[z]/(z"/? —1)@®R[z]/(z™/?+1).
Cost (17/9)nlgn + O(n) for
R[z]/(z™ — 1) <= R x C"/2-1,
so cost (17/3)nlgn + O(n)

to compute fg € R|[z|/(z™ — 1)
given f,g € R[z]/(z™ — 1).
Cost (17/3)nlgn + O(n)

for size-n convolution.

Open: Can 17/3 be improved?

