
Curve25519:

new Diffie-Hellman speed records

D. J. Bernstein

Thanks to:

University of Illinois at Chicago

Danmarks Tekniske Universitet

Alfred P. Sloan Foundation

Which public-key systems

are smallest? Fastest?

Real-world cost measures:

Pentium cycles, Athlon cycles,

etc. for generating keys, signing,

verifying, encrypting, decrypting;

key bytes, signed-message bytes,

ciphertext bytes, etc.

More useful than

simplified cost measures,

although harder to analyze.



Curve25519:

new Diffie-Hellman speed records

D. J. Bernstein

Thanks to:

University of Illinois at Chicago

Danmarks Tekniske Universitet

Alfred P. Sloan Foundation

Which public-key systems

are smallest? Fastest?

Real-world cost measures:

Pentium cycles, Athlon cycles,

etc. for generating keys, signing,

verifying, encrypting, decrypting;

key bytes, signed-message bytes,

ciphertext bytes, etc.

More useful than

simplified cost measures,

although harder to analyze.

eBATS (ECRYPT Benchmarking

of Asymmetric Systems):

new project to measure

time and space consumed by

public-key signature systems,

public-key encryption systems,

public-key secret-sharing systems.

http://ebats.cr.yp.to



Which public-key systems

are smallest? Fastest?

Real-world cost measures:

Pentium cycles, Athlon cycles,

etc. for generating keys, signing,

verifying, encrypting, decrypting;

key bytes, signed-message bytes,

ciphertext bytes, etc.

More useful than

simplified cost measures,

although harder to analyze.

eBATS (ECRYPT Benchmarking

of Asymmetric Systems):

new project to measure

time and space consumed by

public-key signature systems,

public-key encryption systems,

public-key secret-sharing systems.

http://ebats.cr.yp.to



Which public-key systems

are smallest? Fastest?

Real-world cost measures:

Pentium cycles, Athlon cycles,

etc. for generating keys, signing,

verifying, encrypting, decrypting;

key bytes, signed-message bytes,

ciphertext bytes, etc.

More useful than

simplified cost measures,

although harder to analyze.

eBATS (ECRYPT Benchmarking

of Asymmetric Systems):

new project to measure

time and space consumed by

public-key signature systems,

public-key encryption systems,

public-key secret-sharing systems.

http://ebats.cr.yp.to

This talk’s scope

Focus on private communications:

ssh, email, purchasing, etc.

Typical setup:

Each communicating party

has a long-term secret key

and a long-term public key.

Alice authenticates and

encrypts messages to Bob

using Alice’s secret key

and Bob’s public key.

Bob verifies and decrypts

using Alice’s public key

and Bob’s secret key.



eBATS (ECRYPT Benchmarking

of Asymmetric Systems):

new project to measure

time and space consumed by

public-key signature systems,

public-key encryption systems,

public-key secret-sharing systems.

http://ebats.cr.yp.to

This talk’s scope

Focus on private communications:

ssh, email, purchasing, etc.

Typical setup:

Each communicating party

has a long-term secret key

and a long-term public key.

Alice authenticates and

encrypts messages to Bob

using Alice’s secret key

and Bob’s public key.

Bob verifies and decrypts

using Alice’s public key

and Bob’s secret key.



eBATS (ECRYPT Benchmarking

of Asymmetric Systems):

new project to measure

time and space consumed by

public-key signature systems,

public-key encryption systems,

public-key secret-sharing systems.

http://ebats.cr.yp.to

This talk’s scope

Focus on private communications:

ssh, email, purchasing, etc.

Typical setup:

Each communicating party

has a long-term secret key

and a long-term public key.

Alice authenticates and

encrypts messages to Bob

using Alice’s secret key

and Bob’s public key.

Bob verifies and decrypts

using Alice’s public key

and Bob’s secret key.

This talk’s recommendations

The “asymmetric” part:

Alice, Bob use Curve25519 to

compute long-term shared secret

from secret keys, public keys.

Note: minimal asymmetric usage!

The “symmetric” part:

Alice, Bob use shared secret

as key for Poly1305+Salsa20

to authenticate+encrypt packets.

Curve25519 is the bottleneck

if there aren’t many packets.

This talk focuses on Curve25519.



This talk’s scope

Focus on private communications:

ssh, email, purchasing, etc.

Typical setup:

Each communicating party

has a long-term secret key

and a long-term public key.

Alice authenticates and

encrypts messages to Bob

using Alice’s secret key

and Bob’s public key.

Bob verifies and decrypts

using Alice’s public key

and Bob’s secret key.

This talk’s recommendations

The “asymmetric” part:

Alice, Bob use Curve25519 to

compute long-term shared secret

from secret keys, public keys.

Note: minimal asymmetric usage!

The “symmetric” part:

Alice, Bob use shared secret

as key for Poly1305+Salsa20

to authenticate+encrypt packets.

Curve25519 is the bottleneck

if there aren’t many packets.

This talk focuses on Curve25519.



This talk’s scope

Focus on private communications:

ssh, email, purchasing, etc.

Typical setup:

Each communicating party

has a long-term secret key

and a long-term public key.

Alice authenticates and

encrypts messages to Bob

using Alice’s secret key

and Bob’s public key.

Bob verifies and decrypts

using Alice’s public key

and Bob’s secret key.

This talk’s recommendations

The “asymmetric” part:

Alice, Bob use Curve25519 to

compute long-term shared secret

from secret keys, public keys.

Note: minimal asymmetric usage!

The “symmetric” part:

Alice, Bob use shared secret

as key for Poly1305+Salsa20

to authenticate+encrypt packets.

Curve25519 is the bottleneck

if there aren’t many packets.

This talk focuses on Curve25519.

Curve25519 secret key: 32 bytes.

Curve25519 public key: 32 bytes.

Time to compute shared secret:

957904 Pentium 4 cycles or

624786 Athlon cycles or : : :

plus negligible hashing time.

No data-dependent branches.

No data-dependent indexing.

No known patent problems.

Software is in public domain.

http://cr.yp.to/ecdh.html

Best attack known is

more expensive than typical

128-bit brute-force search.



This talk’s recommendations

The “asymmetric” part:

Alice, Bob use Curve25519 to

compute long-term shared secret

from secret keys, public keys.

Note: minimal asymmetric usage!

The “symmetric” part:

Alice, Bob use shared secret

as key for Poly1305+Salsa20

to authenticate+encrypt packets.

Curve25519 is the bottleneck

if there aren’t many packets.

This talk focuses on Curve25519.

Curve25519 secret key: 32 bytes.

Curve25519 public key: 32 bytes.

Time to compute shared secret:

957904 Pentium 4 cycles or

624786 Athlon cycles or : : :

plus negligible hashing time.

No data-dependent branches.

No data-dependent indexing.

No known patent problems.

Software is in public domain.

http://cr.yp.to/ecdh.html

Best attack known is

more expensive than typical

128-bit brute-force search.



This talk’s recommendations

The “asymmetric” part:

Alice, Bob use Curve25519 to

compute long-term shared secret

from secret keys, public keys.

Note: minimal asymmetric usage!

The “symmetric” part:

Alice, Bob use shared secret

as key for Poly1305+Salsa20

to authenticate+encrypt packets.

Curve25519 is the bottleneck

if there aren’t many packets.

This talk focuses on Curve25519.

Curve25519 secret key: 32 bytes.

Curve25519 public key: 32 bytes.

Time to compute shared secret:

957904 Pentium 4 cycles or

624786 Athlon cycles or : : :

plus negligible hashing time.

No data-dependent branches.

No data-dependent indexing.

No known patent problems.

Software is in public domain.

http://cr.yp.to/ecdh.html

Best attack known is

more expensive than typical

128-bit brute-force search.

Alice’s secret key is

integer a; minor restrictions.

Alice’s public key is

power 9a in Curve25519 group.

If Bob’s secret key is b:

Curve25519 uses hash of 9ab

as fAlice;Bobg’s shared secret.

Bob computes shared secret

with just one exponentiation

and one short hash.



Curve25519 secret key: 32 bytes.

Curve25519 public key: 32 bytes.

Time to compute shared secret:

957904 Pentium 4 cycles or

624786 Athlon cycles or : : :

plus negligible hashing time.

No data-dependent branches.

No data-dependent indexing.

No known patent problems.

Software is in public domain.

http://cr.yp.to/ecdh.html

Best attack known is

more expensive than typical

128-bit brute-force search.

Alice’s secret key is

integer a; minor restrictions.

Alice’s public key is

power 9a in Curve25519 group.

If Bob’s secret key is b:

Curve25519 uses hash of 9ab

as fAlice;Bobg’s shared secret.

Bob computes shared secret

with just one exponentiation

and one short hash.



Curve25519 secret key: 32 bytes.

Curve25519 public key: 32 bytes.

Time to compute shared secret:

957904 Pentium 4 cycles or

624786 Athlon cycles or : : :

plus negligible hashing time.

No data-dependent branches.

No data-dependent indexing.

No known patent problems.

Software is in public domain.

http://cr.yp.to/ecdh.html

Best attack known is

more expensive than typical

128-bit brute-force search.

Alice’s secret key is

integer a; minor restrictions.

Alice’s public key is

power 9a in Curve25519 group.

If Bob’s secret key is b:

Curve25519 uses hash of 9ab

as fAlice;Bobg’s shared secret.

Bob computes shared secret

with just one exponentiation

and one short hash.

Exponentiation methods

in the previous literature

take more than twice as long

at the Curve25519 security level.

(Other secret-sharing methods:

even slower.)

Many interacting parameters

in design and implementation.

Hard to find optimal parameters.

Remainder of this talk discusses

some of the choices made

in designing and implementing

Curve25519.



Alice’s secret key is

integer a; minor restrictions.

Alice’s public key is

power 9a in Curve25519 group.

If Bob’s secret key is b:

Curve25519 uses hash of 9ab

as fAlice;Bobg’s shared secret.

Bob computes shared secret

with just one exponentiation

and one short hash.

Exponentiation methods

in the previous literature

take more than twice as long

at the Curve25519 security level.

(Other secret-sharing methods:

even slower.)

Many interacting parameters

in design and implementation.

Hard to find optimal parameters.

Remainder of this talk discusses

some of the choices made

in designing and implementing

Curve25519.



Alice’s secret key is

integer a; minor restrictions.

Alice’s public key is

power 9a in Curve25519 group.

If Bob’s secret key is b:

Curve25519 uses hash of 9ab

as fAlice;Bobg’s shared secret.

Bob computes shared secret

with just one exponentiation

and one short hash.

Exponentiation methods

in the previous literature

take more than twice as long

at the Curve25519 security level.

(Other secret-sharing methods:

even slower.)

Many interacting parameters

in design and implementation.

Hard to find optimal parameters.

Remainder of this talk discusses

some of the choices made

in designing and implementing

Curve25519.

Curve25519 uses an

elliptic-curve group.

“Why not unit group T1 or torus

group T2 or torus group T6?

Why not XTR, using only 5:2

mults for each exponent bit?”

Answer: Compared to XTR,

elliptic curves use more mults

in a smaller field.

Overall slightly less expensive.

XTR needs larger field

to protect against NFS.



Exponentiation methods

in the previous literature

take more than twice as long

at the Curve25519 security level.

(Other secret-sharing methods:

even slower.)

Many interacting parameters

in design and implementation.

Hard to find optimal parameters.

Remainder of this talk discusses

some of the choices made

in designing and implementing

Curve25519.

Curve25519 uses an

elliptic-curve group.

“Why not unit group T1 or torus

group T2 or torus group T6?

Why not XTR, using only 5:2

mults for each exponent bit?”

Answer: Compared to XTR,

elliptic curves use more mults

in a smaller field.

Overall slightly less expensive.

XTR needs larger field

to protect against NFS.



Exponentiation methods

in the previous literature

take more than twice as long

at the Curve25519 security level.

(Other secret-sharing methods:

even slower.)

Many interacting parameters

in design and implementation.

Hard to find optimal parameters.

Remainder of this talk discusses

some of the choices made

in designing and implementing

Curve25519.

Curve25519 uses an

elliptic-curve group.

“Why not unit group T1 or torus

group T2 or torus group T6?

Why not XTR, using only 5:2

mults for each exponent bit?”

Answer: Compared to XTR,

elliptic curves use more mults

in a smaller field.

Overall slightly less expensive.

XTR needs larger field

to protect against NFS.

Curve25519 compresses

an elliptic-curve point (x; y)

to a public key x.

(Not patented. 1986 Miller.)

“But then you need

an expensive computation of y!

Why not also transmit y?”

Answer: Transmitting y is

often unacceptably expensive.

A square-root computation

isn’t terribly expensive—

and is avoided entirely in the

Curve25519 computation.



Curve25519 uses an

elliptic-curve group.

“Why not unit group T1 or torus

group T2 or torus group T6?

Why not XTR, using only 5:2

mults for each exponent bit?”

Answer: Compared to XTR,

elliptic curves use more mults

in a smaller field.

Overall slightly less expensive.

XTR needs larger field

to protect against NFS.

Curve25519 compresses

an elliptic-curve point (x; y)

to a public key x.

(Not patented. 1986 Miller.)

“But then you need

an expensive computation of y!

Why not also transmit y?”

Answer: Transmitting y is

often unacceptably expensive.

A square-root computation

isn’t terribly expensive—

and is avoided entirely in the

Curve25519 computation.



Curve25519 uses an

elliptic-curve group.

“Why not unit group T1 or torus

group T2 or torus group T6?

Why not XTR, using only 5:2

mults for each exponent bit?”

Answer: Compared to XTR,

elliptic curves use more mults

in a smaller field.

Overall slightly less expensive.

XTR needs larger field

to protect against NFS.

Curve25519 compresses

an elliptic-curve point (x; y)

to a public key x.

(Not patented. 1986 Miller.)

“But then you need

an expensive computation of y!

Why not also transmit y?”

Answer: Transmitting y is

often unacceptably expensive.

A square-root computation

isn’t terribly expensive—

and is avoided entirely in the

Curve25519 computation.

Curve25519 uses a curve

over a large-char field.

“Why not char 2?

Squaring is almost for free!

Can exploit Frobenius on curve.”

Answer: Current CPUs include

fast floating-point multipliers

for physics simulation etc.

Can reuse these multipliers for

arithmetic in large-char fields.

Outweighs the char-2 advantages.



Curve25519 compresses

an elliptic-curve point (x; y)

to a public key x.

(Not patented. 1986 Miller.)

“But then you need

an expensive computation of y!

Why not also transmit y?”

Answer: Transmitting y is

often unacceptably expensive.

A square-root computation

isn’t terribly expensive—

and is avoided entirely in the

Curve25519 computation.

Curve25519 uses a curve

over a large-char field.

“Why not char 2?

Squaring is almost for free!

Can exploit Frobenius on curve.”

Answer: Current CPUs include

fast floating-point multipliers

for physics simulation etc.

Can reuse these multipliers for

arithmetic in large-char fields.

Outweighs the char-2 advantages.



Curve25519 compresses

an elliptic-curve point (x; y)

to a public key x.

(Not patented. 1986 Miller.)

“But then you need

an expensive computation of y!

Why not also transmit y?”

Answer: Transmitting y is

often unacceptably expensive.

A square-root computation

isn’t terribly expensive—

and is avoided entirely in the

Curve25519 computation.

Curve25519 uses a curve

over a large-char field.

“Why not char 2?

Squaring is almost for free!

Can exploit Frobenius on curve.”

Answer: Current CPUs include

fast floating-point multipliers

for physics simulation etc.

Can reuse these multipliers for

arithmetic in large-char fields.

Outweighs the char-2 advantages.

Curve25519 uses curve shape

y2 = x3+Ax2+x, tiny A 2 2+4Z.

“Why not y2 = x3 ` 3x+ a6?

Double (x; y) in Jacobian coords

using only 5 field squarings

and 3 extra field mults!”

Answer: With y2 = x3 + Ax2 + x,

can do projective x-coord

doubling and addition together

using 1 field mult by (A` 2)=4,

4 field squarings,

5 extra field mults. Never need y.



Curve25519 uses a curve

over a large-char field.

“Why not char 2?

Squaring is almost for free!

Can exploit Frobenius on curve.”

Answer: Current CPUs include

fast floating-point multipliers

for physics simulation etc.

Can reuse these multipliers for

arithmetic in large-char fields.

Outweighs the char-2 advantages.

Curve25519 uses curve shape

y2 = x3+Ax2+x, tiny A 2 2+4Z.

“Why not y2 = x3 ` 3x+ a6?

Double (x; y) in Jacobian coords

using only 5 field squarings

and 3 extra field mults!”

Answer: With y2 = x3 + Ax2 + x,

can do projective x-coord

doubling and addition together

using 1 field mult by (A` 2)=4,

4 field squarings,

5 extra field mults. Never need y.



Curve25519 uses a curve

over a large-char field.

“Why not char 2?

Squaring is almost for free!

Can exploit Frobenius on curve.”

Answer: Current CPUs include

fast floating-point multipliers

for physics simulation etc.

Can reuse these multipliers for

arithmetic in large-char fields.

Outweighs the char-2 advantages.

Curve25519 uses curve shape

y2 = x3+Ax2+x, tiny A 2 2+4Z.

“Why not y2 = x3 ` 3x+ a6?

Double (x; y) in Jacobian coords

using only 5 field squarings

and 3 extra field mults!”

Answer: With y2 = x3 + Ax2 + x,

can do projective x-coord

doubling and addition together

using 1 field mult by (A` 2)=4,

4 field squarings,

5 extra field mults. Never need y.

Curve25519 uses a prime field.

“Why not an extension field?

Adapt extension degree

to CPU’s multiplier size.

Avoid carries in arithmetic!”

Answer: Extension field

punishes CPUs with

another multiplier size.

Maybe tolerable

as CPUs converge—but

carries are a very small cost.



Curve25519 uses curve shape

y2 = x3+Ax2+x, tiny A 2 2+4Z.

“Why not y2 = x3 ` 3x+ a6?

Double (x; y) in Jacobian coords

using only 5 field squarings

and 3 extra field mults!”

Answer: With y2 = x3 + Ax2 + x,

can do projective x-coord

doubling and addition together

using 1 field mult by (A` 2)=4,

4 field squarings,

5 extra field mults. Never need y.

Curve25519 uses a prime field.

“Why not an extension field?

Adapt extension degree

to CPU’s multiplier size.

Avoid carries in arithmetic!”

Answer: Extension field

punishes CPUs with

another multiplier size.

Maybe tolerable

as CPUs converge—but

carries are a very small cost.



Curve25519 uses curve shape

y2 = x3+Ax2+x, tiny A 2 2+4Z.

“Why not y2 = x3 ` 3x+ a6?

Double (x; y) in Jacobian coords

using only 5 field squarings

and 3 extra field mults!”

Answer: With y2 = x3 + Ax2 + x,

can do projective x-coord

doubling and addition together

using 1 field mult by (A` 2)=4,

4 field squarings,

5 extra field mults. Never need y.

Curve25519 uses a prime field.

“Why not an extension field?

Adapt extension degree

to CPU’s multiplier size.

Avoid carries in arithmetic!”

Answer: Extension field

punishes CPUs with

another multiplier size.

Maybe tolerable

as CPUs converge—but

carries are a very small cost.

Curve25519 uses prime

extremely close to a power of 2:

specifically, 2255 ` 19.

“Why not a word-aligned prime,

2256 ` 2224 + 2192 + 296 ` 1?

Reduce by simple word additions

and subtractions!”

Answer: Repeated additions

are more expensive than

a multiplication by 19.

Also, analogous problem

to extension fields.



Curve25519 uses a prime field.

“Why not an extension field?

Adapt extension degree

to CPU’s multiplier size.

Avoid carries in arithmetic!”

Answer: Extension field

punishes CPUs with

another multiplier size.

Maybe tolerable

as CPUs converge—but

carries are a very small cost.

Curve25519 uses prime

extremely close to a power of 2:

specifically, 2255 ` 19.

“Why not a word-aligned prime,

2256 ` 2224 + 2192 + 296 ` 1?

Reduce by simple word additions

and subtractions!”

Answer: Repeated additions

are more expensive than

a multiplication by 19.

Also, analogous problem

to extension fields.



Curve25519 uses a prime field.

“Why not an extension field?

Adapt extension degree

to CPU’s multiplier size.

Avoid carries in arithmetic!”

Answer: Extension field

punishes CPUs with

another multiplier size.

Maybe tolerable

as CPUs converge—but

carries are a very small cost.

Curve25519 uses prime

extremely close to a power of 2:

specifically, 2255 ` 19.

“Why not a word-aligned prime,

2256 ` 2224 + 2192 + 296 ` 1?

Reduce by simple word additions

and subtractions!”

Answer: Repeated additions

are more expensive than

a multiplication by 19.

Also, analogous problem

to extension fields.

Curve25519 computation uses

largest convenient radix 2255=w

with integer w.

Example: With 64-bit x86

floating-point mantissas,

Curve25519 uses radix 225:5, i.e.,P
i small multiple of 2d25:5ie.

“Why not use radix 225, or radix

226? Doesn’t the exponent have

to be an integer?”

Answer: No, exponent doesn’t

have to be an integer.

Radix 225:5 saves time in

reduction mod 2255 ` 19.



Curve25519 uses prime

extremely close to a power of 2:

specifically, 2255 ` 19.

“Why not a word-aligned prime,

2256 ` 2224 + 2192 + 296 ` 1?

Reduce by simple word additions

and subtractions!”

Answer: Repeated additions

are more expensive than

a multiplication by 19.

Also, analogous problem

to extension fields.

Curve25519 computation uses

largest convenient radix 2255=w

with integer w.

Example: With 64-bit x86

floating-point mantissas,

Curve25519 uses radix 225:5, i.e.,P
i small multiple of 2d25:5ie.

“Why not use radix 225, or radix

226? Doesn’t the exponent have

to be an integer?”

Answer: No, exponent doesn’t

have to be an integer.

Radix 225:5 saves time in

reduction mod 2255 ` 19.



Curve25519 uses prime

extremely close to a power of 2:

specifically, 2255 ` 19.

“Why not a word-aligned prime,

2256 ` 2224 + 2192 + 296 ` 1?

Reduce by simple word additions

and subtractions!”

Answer: Repeated additions

are more expensive than

a multiplication by 19.

Also, analogous problem

to extension fields.

Curve25519 computation uses

largest convenient radix 2255=w

with integer w.

Example: With 64-bit x86

floating-point mantissas,

Curve25519 uses radix 225:5, i.e.,P
i small multiple of 2d25:5ie.

“Why not use radix 225, or radix

226? Doesn’t the exponent have

to be an integer?”

Answer: No, exponent doesn’t

have to be an integer.

Radix 225:5 saves time in

reduction mod 2255 ` 19.

Curve25519 computation allows

coefficients slightly larger

than the radix.

“Why not use canonical form,

with minimal coefficients?

Smaller coefficients

allow faster arithmetic!”

Answer: Conversion

to canonical form is expensive.

Making coefficients small

is much less expensive

than making them smallest.

Has most of the same benefit.



Curve25519 computation uses

largest convenient radix 2255=w

with integer w.

Example: With 64-bit x86

floating-point mantissas,

Curve25519 uses radix 225:5, i.e.,P
i small multiple of 2d25:5ie.

“Why not use radix 225, or radix

226? Doesn’t the exponent have

to be an integer?”

Answer: No, exponent doesn’t

have to be an integer.

Radix 225:5 saves time in

reduction mod 2255 ` 19.

Curve25519 computation allows

coefficients slightly larger

than the radix.

“Why not use canonical form,

with minimal coefficients?

Smaller coefficients

allow faster arithmetic!”

Answer: Conversion

to canonical form is expensive.

Making coefficients small

is much less expensive

than making them smallest.

Has most of the same benefit.



Curve25519 computation uses

largest convenient radix 2255=w

with integer w.

Example: With 64-bit x86

floating-point mantissas,

Curve25519 uses radix 225:5, i.e.,P
i small multiple of 2d25:5ie.

“Why not use radix 225, or radix

226? Doesn’t the exponent have

to be an integer?”

Answer: No, exponent doesn’t

have to be an integer.

Radix 225:5 saves time in

reduction mod 2255 ` 19.

Curve25519 computation allows

coefficients slightly larger

than the radix.

“Why not use canonical form,

with minimal coefficients?

Smaller coefficients

allow faster arithmetic!”

Answer: Conversion

to canonical form is expensive.

Making coefficients small

is much less expensive

than making them smallest.

Has most of the same benefit.

Curve25519 converts variable

indexing into arithmetic: e.g.,

given P [0], P [1], bit b, compute

P [b] as bP [1] + (1` b)P [0].

“Why not simply use b as an array

index? Skip the multiplications by

b; 1` b and the addition!”

Answer: This arithmetic is 6%

of the Curve25519 computation.

Protects against timing attacks,

such as hyperthreading attacks.

Less expensive than protecting

variable array indexing.



Curve25519 computation allows

coefficients slightly larger

than the radix.

“Why not use canonical form,

with minimal coefficients?

Smaller coefficients

allow faster arithmetic!”

Answer: Conversion

to canonical form is expensive.

Making coefficients small

is much less expensive

than making them smallest.

Has most of the same benefit.

Curve25519 converts variable

indexing into arithmetic: e.g.,

given P [0], P [1], bit b, compute

P [b] as bP [1] + (1` b)P [0].

“Why not simply use b as an array

index? Skip the multiplications by

b; 1` b and the addition!”

Answer: This arithmetic is 6%

of the Curve25519 computation.

Protects against timing attacks,

such as hyperthreading attacks.

Less expensive than protecting

variable array indexing.



Curve25519 computation allows

coefficients slightly larger

than the radix.

“Why not use canonical form,

with minimal coefficients?

Smaller coefficients

allow faster arithmetic!”

Answer: Conversion

to canonical form is expensive.

Making coefficients small

is much less expensive

than making them smallest.

Has most of the same benefit.

Curve25519 converts variable

indexing into arithmetic: e.g.,

given P [0], P [1], bit b, compute

P [b] as bP [1] + (1` b)P [0].

“Why not simply use b as an array

index? Skip the multiplications by

b; 1` b and the addition!”

Answer: This arithmetic is 6%

of the Curve25519 computation.

Protects against timing attacks,

such as hyperthreading attacks.

Less expensive than protecting

variable array indexing.

Curve25519 uses a secure curve

with a secure twist:

y2 = x3 + 486662x2 + x.

Group order 8 ´ prime.

Twist group order 4 ´ prime.

“Why worry about twist order?

Why not simply prohibit

keys on the twist?”

Answer: Prohibiting keys on the

twist means checking for them

(“validating keys”). Eliminate this

cost by choosing curve carefully.



Curve25519 converts variable

indexing into arithmetic: e.g.,

given P [0], P [1], bit b, compute

P [b] as bP [1] + (1` b)P [0].

“Why not simply use b as an array

index? Skip the multiplications by

b; 1` b and the addition!”

Answer: This arithmetic is 6%

of the Curve25519 computation.

Protects against timing attacks,

such as hyperthreading attacks.

Less expensive than protecting

variable array indexing.

Curve25519 uses a secure curve

with a secure twist:

y2 = x3 + 486662x2 + x.

Group order 8 ´ prime.

Twist group order 4 ´ prime.

“Why worry about twist order?

Why not simply prohibit

keys on the twist?”

Answer: Prohibiting keys on the

twist means checking for them

(“validating keys”). Eliminate this

cost by choosing curve carefully.



Curve25519 converts variable

indexing into arithmetic: e.g.,

given P [0], P [1], bit b, compute

P [b] as bP [1] + (1` b)P [0].

“Why not simply use b as an array

index? Skip the multiplications by

b; 1` b and the addition!”

Answer: This arithmetic is 6%

of the Curve25519 computation.

Protects against timing attacks,

such as hyperthreading attacks.

Less expensive than protecting

variable array indexing.

Curve25519 uses a secure curve

with a secure twist:

y2 = x3 + 486662x2 + x.

Group order 8 ´ prime.

Twist group order 4 ´ prime.

“Why worry about twist order?

Why not simply prohibit

keys on the twist?”

Answer: Prohibiting keys on the

twist means checking for them

(“validating keys”). Eliminate this

cost by choosing curve carefully.

What’s next?

Culmination of extensive work

on eliminating field mults for

genus-2 hyperelliptic curves:

25 mults per bit. Gaudry,

eprint.iacr.org/2005/314

Half-size prime: e.g., 2127 ` 1.

Select curve to make some

mults easier, like taking tiny A;

this needs faster point counting!

Should analyze cycles

instead of field mults.

Prediction: this will beat genus 1.



Curve25519 uses a secure curve

with a secure twist:

y2 = x3 + 486662x2 + x.

Group order 8 ´ prime.

Twist group order 4 ´ prime.

“Why worry about twist order?

Why not simply prohibit

keys on the twist?”

Answer: Prohibiting keys on the

twist means checking for them

(“validating keys”). Eliminate this

cost by choosing curve carefully.

What’s next?

Culmination of extensive work

on eliminating field mults for

genus-2 hyperelliptic curves:

25 mults per bit. Gaudry,

eprint.iacr.org/2005/314

Half-size prime: e.g., 2127 ` 1.

Select curve to make some

mults easier, like taking tiny A;

this needs faster point counting!

Should analyze cycles

instead of field mults.

Prediction: this will beat genus 1.


