Curve255109:
new Diffie-Hellman speed records

D. J. Bernstein

Thanks to:

University of lllinois at Chicago
Danmarks Tekniske Universitet

Alfred P. Sloan Foundation

Which public-key systems
are smallest? Fastest?

Real-world cost measures:
Pentium cycles, Athlon cycles,
etc. for generating keys, signing,
verifying, encrypting, decrypting;
key bytes, signed-message bytes,
ciphertext bytes, etc.

More useful than
simplified cost measures,
although harder to analyze.



an speed records

ois at Chicago
ke Universitet
-oundation

Which public-key systems
are smallest? Fastest?

Real-world cost measures:
Pentium cycles, Athlon cycles,
etc. for generating keys, signing,
verifying, encrypting, decrypting;
key bytes, signed-message bytes,
ciphertext bytes, etc.

More useful than
simplified cost measures,
although harder to analyze.

eBATS (ECRYP
of Asymmetric S

new project to r

time and space c

DU

DU

DU

D
D

D

|C-
|C-
|IC-

Key signat
KeYy encryf

Key secret

http://ebats.



Which public-key systems
are smallest? Fastest?

Real-world cost measures:
Pentium cycles, Athlon cycles,
etc. for generating keys, signing,
verifying, encrypting, decrypting;
key bytes, signed-message bytes,
ciphertext bytes, etc.

More useful than
simplified cost measures,
although harder to analyze.

eBATS (ECRYPT Benchmarking
of Asymmetric Systems):

new project to measure

time and space consumed by

DU
oUu

DU

D
D

D

|C-
|C-
|C-

Key signature systems,
Key encryption systems,

Key secret-sharing systems.

http://ebats.cr.yp.to



- systems
stest?

neasures:
Athlon cycles,
g keys, signing,
Ing, decrypting;
-message bytes,
etc.

easures,
to analyze.

eBATS (ECRYPT Benchmarking
of Asymmetric Systems):

new project to measure

time and space consumed by
oublic-key signature systems,
oublic-key encryption systems,

http://ebats.cr.yp.to

bublic-key secret-sharing systems.

This talk's scope

Focus on private
ssh, email, purch

Typical setup:

Each communica
has a long-term
and a long-term

Alice authenticat
encrypts message
using Alice’s sect
and Bob's public
Bob verifies and
using Alice’s pub
and Bob's secret



eBATS (ECRYPT Benchmarking
of Asymmetric Systems):

new project to measure

time and space consumed by
oublic-key signature systems,
oublic-key encryption systems,

http://ebats.cr.yp.to

bublic-key secret-sharing systems.

This talk's scope

Focus on private communications:
ssh, emall, purchasing, etc.

Typical setup:

Each communicating party
has a long-term secret key
and a long-term public key.

Alice authenticates and
encrypts messages to Bob
using Alice's secret key
and Bob's public key.
Bob verifies and decrypts
using Alice's public key
and Bob's secret key.



I Benchmarking
ystems):

easure
onsumed by

ure systems,
tion systems,

-sharing systems.

_r.yp.to

This talk's scope

Focus on private communications:
ssh, emall, purchasing, etc.

Typical setup:

Each communicating party
has a long-term secret key
and a long-term public key.

Alice authenticates and
encrypts messages to Bob
using Alice's secret key
and Bob's public key.
Bob verifies and decrypts
using Alice's public key
and Bob's secret key.

This talk’'s recon

The “asymmetric
Alice, Bob use C
compute long-tet
from secret keys,
Note: minimal a:

The “symmetric’
Alice, Bob use st
as key for Polyl:
to authenticate+

Curve25519 is th
If there aren’t m

This talk focuses



This talk's scope

Focus on private communications:
ssh, emall, purchasing, etc.

Typical setup:
Each communicating party
has a long-term secret key

and a long-term public key.

Alice authenticates and
encrypts messages to Bob
using Alice's secret key
and Bob's public key.
Bob verifies and decrypts
using Alice's public key
and Bob's secret key.

This talk’'s recommendations

The “asymmetric’ part:

Alice, Bob use Curve25519 to
compute long-term shared secret
from secret keys, public keys.
Note: minimal asymmetric usage!

The “symmetric” part:
Alice, Bob use shared secret

as key for Poly1305+Salsa20
to authenticate+encrypt packets.

Curve25519 is the bottleneck
if there aren’'t many packets.
This talk focuses on Curve255109.



communications:
asing, etc.

ting party
secret key
public key.

es and

s to Bob
et key
key.
decrypts
lic key
key.

This talk’'s recommendations

The “asymmetric’ part:

Alice, Bob use Curve25519 to
compute long-term shared secret
from secret keys, public keys.
Note: minimal asymmetric usage!

The “symmetric” part:
Alice, Bob use shared secret

as key for Poly1305+Salsa20
to authenticate+encrypt packets.

Curve25519 is the bottleneck
if there aren’'t many packets.
This talk focuses on Curve255109.

Curve25519 secr
Curve25519 publ
Time to computse
057904 Pentium
624786 Athlon ¢

plus negligible h:

No data-depende
No data-depende

No known patent
Software is in pu

http://cr.yp.

Best attack knov

more expensive t
128-bit brute-for:



This talk’'s recommendations

The “asymmetric’ part:

Alice, Bob use Curve25519 to
compute long-term shared secret
from secret keys, public keys.

Note: minimal asymmetric usage!

The “symmetric” part:
Alice, Bob use shared secret

as key for Poly1305+Salsa20

to authenticate+encrypt packets.

Curve25519 is the bottleneck
if there aren’'t many packets.

This talk focuses on Curve255109.

Curve25519 secret key: 32 bytes.
Curve25519 public key: 32 bytes.
Time to compute shared secret:
9057904 Pentium 4 cycles or

624786 Athlon cycles or . ..
plus negligible hashing time.

No data-dependent branches.
No data-dependent indexing.

No known patent problems.
Software is in public domain.
http://cr.yp.to/ecdh.html

Best attack known is
more expensive than typical
128-bit brute-force search.



1mendations

' part:
urve25519 to
‘m shared secret
public keys.
symmetric usage!

~ part:
1ared secret

05+Salsa20
encrypt packets.

e bottleneck

any packets.
~on Curve25519.

Curve25519 secret
Curve25519 public
Time to compute s

hared secret:

057904 Pentium 4 cycles or
624786 Athlon cycles or . ..

plus negligible hashing time.

No data-dependent branches.
No data-dependent indexing.
No known patent problems.

Software is in public domain.
http://cr.yp.to/ecdh.html

Best attack known

1S

more expensive than typical

128-bit brute-force

search.

key: 32 bytes.
key: 32 bytes.

Alice's secret key
Integer a; minor

Alice’s public key
power 9% in Cun

If Bob's secret ke
Curve25519 uses
as {Alice, Bob}'s

Bob computes st
with just one exg
and one short ha



Curve25519 secret
Curve25519 public
Time to compute s

hared secret:

9057904 Pentium 4 cycles or
624786 Athlon cycles or . ..

plus negligible hashing time.

No data-dependent branches.
No data-dependent indexing.
No known patent problems.

Software is in public domain.
http://cr.yp.to/ecdh.html

Best attack known

1S

more expensive than typical

128-bit brute-force

search.

key: 32 bytes.
key: 32 bytes.

Alice's secret key Is
Integer a; minor restrictions.

Alice's public key is
power 9% in Curve25519 group.

It Bob's secret key is b:

Curve25519 uses hash of 92°
as {Alice, Bob}'s shared secret.

Bob computes shared secret
with just one exponentiation
and one short hash.



ot key: 32 bytes.
iIc key: 32 bytes.

> shared secret:
4 cycles or
ycles or . ..
ishing time.

nt branches.
nt indexing.

t problems.
blic domain.
to/ecdh.html

/N 1S
han typical
~e search.

Alice's secret key Is
Integer a; minor restrictions.

Alice's public key is

power 9% in Curve25519 group.

It Bob's secret key is b:
Curve25519 uses hash of 920

as {Alice, Bob}'s shared secret.

Bob computes shared secret
with just one exponentiation
and one short hash.

Exponentiation n
In the previous i
take more than t
at the Curve255]
(Other secret-sh:
even slower.)

Many interacting
In design and 1m|
Hard to find opti

Remainder of thi
some of the choi
in designing and
Curve25519.



Alice's secret key Is
Integer a; minor restrictions.

Alice's public key is

power 9% in Curve25519 group.

It Bob's secret key is b:
Curve25519 uses hash of 920

as {Alice, Bob}'s shared secret.

Bob computes shared secret
with just one exponentiation
and one short hash.

Exponentiation methods

In the previous literature

take more than twice as long

at the Curve25519 security level.
(Other secret-sharing methods:
even slower.)

Many interacting parameters
in design and implementation.
Hard to find optimal parameters.

Remainder of this talk discusses
some of the choices made

in designing and implementing
Curve25519.



1S
restrictions.

/1S

e25519 group.

oy 1S b:
hash of 92°

shared secret.

1ared secret
yonentiation

sh.

Exponentiation methods
In the previous literature
take more than twice as long

at the Curve25519 security level.

(Other secret-sharing methods:
even slower.)

Many interacting parameters
in design and implementation.

Hard to find optimal parameters.

Remainder of this talk discusses
some of the choices made

in designing and implementing
Curve25519.

Curve25519 uses
elliptic-curve gro

“Why not unit g
group /> or toru:

Why not XTR, u
mults for each e>

Answer: Compar
elliptic curves ust
in a smaller field
Overall slightly le

XTR needs large
to protect agains



Exponentiation methods
In the previous literature
take more than twice as long

at the Curve25519 security level.

(Other secret-sharing methods:

even slower.)

Many interacting parameters
in design and implementation.

Hard to find optimal parameters.

Remainder of this talk discusses
some of the choices made

in designing and implementing
Curve25519.

Curve25519 uses an
elliptic-curve group.

“Why not unit group 77 or torus
group To or torus group 747
Why not XTR, using only 5.2
mults for each exponent bit?”

Answer: Compared to XTR,
elliptic curves use more mults
in a smaller field.

Overall slightly less expensive.

XTR needs larger field
to protect against NFS.



nethods
terature
wice as long

9 security level.

ring methods:

- parameters
plementation.

mal parameters.

s talk discusses
ces made
iImplementing

Curve25519 uses an
elliptic-curve group.

“Why not unit group 77 or torus
group To or torus group 7g?
Why not XTR, using only 5.2
mults for each exponent bit?”

Answer: Compared to XTR,
elliptic curves use more mults
in a smaller field.

Overall slightly less expensive.

XTR needs larger field
to protect against NFS.

Curve25519 com
an elliptic-curve

to a public key x
(Not patented. 1

“But then you n¢
an expensive con
Why not also tra

Answer: Transmi
often unacceptak
A square-root co
Isn’'t terribly expe
and i1s avoided er
Curve25519 com



Curve25519 uses an
elliptic-curve group.

“Why not unit group 77 or torus
group To or torus group 747
Why not XTR, using only 5.2
mults for each exponent bit?”

Answer: Compared to XTR,
elliptic curves use more mults
in a smaller field.

Overall slightly less expensive.

XTR needs larger field
to protect against NFS.

Curve25519 compresses

an elliptic-curve point (z, y)
to a public key .

(Not patented. 1986 Miller.)

“But then you need
an expensive computation of y!
Why not also transmit y?"

Answer: Transmitting vy iIs
often unacceptably expensive.
A square-root computation
Isn’'t terribly expensive—

and Is avoided entirely in the
Curve25519 computation.



an

up.

roup /71 or torus
s group Tg?
sing only 5.2
(ponent bit?”

ed to XTR,

> more mults

2SS expensive.

r field
t NFS.

Curve25519 compresses

an elliptic-curve point (z, y)
to a public key .

(Not patented. 1986 Miller.)

“But then you need
an expensive computation of y!
Why not also transmit y?"

Answer: Transmitting vy iIs
often unacceptably expensive.
A square-root computation
Isn’'t terribly expensive—

and Is avoided entirely in the
Curve25519 computation.

Curve25519 uses
over a large-char

“Why not char 2

Squaring is almo
Can exploit Frob

Answer: Current
fast floating-poin
for physics simul.
Can reuse these
arithmetic in larg
Outweighs the ct



Curve25519 compresses

an elliptic-curve point (z, y)
to a public key .

(Not patented. 1986 Miller.)

“But then you need
an expensive computation of y!
Why not also transmit y?"

Answer: Transmitting vy iIs
often unacceptably expensive.
A square-root computation
Isn’'t terribly expensive—

and Is avoided entirely in the
Curve25519 computation.

Curve25519 uses a curve
over a large-char field.

“Why not char 27
Squaring is almost for free!
Can exploit Frobenius on curve.”

Answer: Current CPUs include
fast floating-point multipliers
for physics simulation etc.

Can reuse these multipliers for
arithmetic in large-char fields.
Outweighs the char-2 advantages.



presses
point (z, y)

986 Miller.)

2ed

1putation of y!
nsmit y?"
tting v Is

|y expensive.
mputation
2NsSive—
1itirely in the
putation.

Curve25519 uses a curve
over a large-char field.

“Why not char 27
Squaring is almost for free!
Can exploit Frobenius on curve.”

Answer: Current CPUs include
fast floating-point multipliers
for physics simulation etc.

Can reuse these multipliers for
arithmetic in large-char fields.

Outweighs the char-2 advantages.

Curve25519 uses
y? = 3+ Az?+3

“Why not y? = :
Double (z,y) in
using only 5 field
and 3 extra field

Answer: With y*
can do projective
doubling and adc
using 1 field mul
4 field squarings,
5 extra field mul



Curve25519 uses a curve
over a large-char field.

“Why not char 27

Squaring is almost for free!
Can exploit Frobenius on curve.”

Answer: Current CPUs include
fast floating-point multipliers
for physics simulation etc.

Can reuse these multipliers for
arithmetic in large-char fields.

Outweighs the char-2 advantages.

Curve25519 uses curve shape
y? = 3+ Az’ +z, tiny A € 24+4Z.

“Why not vy = z3 — 3z + ag?
Double (z, y) in Jacobian coords
using only 5 field squarings

and 3 extra field mults!”

Answer: With y? = z3 + Az? + z,
can do projective z-coord
doubling and addition together
using 1 field mult by (A — 2)/4,

4 field squarings,

5 extra field mults. Never need v.



a curve
field.

?
st for freel

enius on curve.’

CPUs include
t multipliers
ation etc.
multipliers for
‘e-char fields.

1ar-2 advantages.

Curve25519 uses curve shape
y? = 3+ Az’ +z, tiny A € 24+4Z.

“Why not y° = z3 — 3z + ag?
Double (z, y) in Jacobian coords
using only 5 field squarings

and 3 extra field mults!”

Answer: With y? = z3 + Az? + z,
can do projective z-coord
doubling and addition together
using 1 field mult by (A — 2)/4,

4 field squarings,

5 extra field mults. Never need v.

Curve25519 uses

“Why not an ext
Adapt extension
to CPU’s multipl
Avoid carries In :

Answer: Extensic
punishes CPUs w
another multiplie
Maybe tolerable
as CPUs converg
carries are a very



Curve25519 uses curve shape
y? = 3+ Az’ +z, tiny A € 24+4Z.

“Why not vy = z3 — 3z + ag?
Double (z, y) in Jacobian coords
using only 5 field squarings

and 3 extra field mults!”

Answer: With y? = z3 + Az? + z,
can do projective z-coord
doubling and addition together
using 1 field mult by (A — 2)/4,

4 field squarings,

5 extra field mults. Never need v.

Curve25519 uses a prime field.

“Why not an extension field?
Adapt extension degree

to CPU’s multiplier size.
Avoid carries in arithmetic!”

Answer: Extension field
punishes CPUs with
another multiplier size.
Maybe tolerable

as CPUs converge—but
carries are a very small cost.



curve shape

-, tiny A€ 2+4Z.

3 — 3z + ag?
Jacobian coords
' squarings

mults!”

=23 + Az? + =z,

. z-coord
lition together
t by (A—2)/4,

's. Never need .

Curve25519 uses a prime field.

“Why not an extension field?
Adapt extension degree

to CPU’s multiplier size.
Avoid carries in arithmetic!”

Answer: Extension field
punishes CPUs with
another multiplier size.
Maybe tolerable

as CPUs converge—but
carries are a very small cost.

Curve25519 uses
extremely close t

specifically, 22°°

“Why not a worg
2256 . 2224 4 2]
Reduce by simple
and subtractions

Answer: Repeate
are more expensi
a multiplication
Also, analogous

to extension fielc



Curve25519 uses a prime field.

“Why not an extension field?
Adapt extension degree

to CPU’'s multiplier size.
Avoid carries in arithmetic!”

Answer: Extension field
punishes CPUs with
another multiplier size.
Maybe tolerable

as CPUs converge—but
carries are a very small cost.

Curve25519 uses
extremely close t
specifically, 22°°

prime
o a power of 2:
— 109.

“Why not a word-aligned prime,
2256 L 2224 4 2192 4 296 17
Reduce by simple word additions

and subtractions

Answer: Repeated additions

are more expensi
a multiplication
Also, analogous

ve than
oy 19.
broblem

to extension fielc

S.



a prime field.

ension field?
degree

ler size.
yrithmeticl!”

n field
nth
r size.

e—Dbut
small cost.

Curve25519 uses

prime

extremely close to a power of 2:

specifically, 22°°

— 19.

“Why not a word-aligned prime,
2256 L 2224 4 2192 4 296 17
Reduce by simple word additions

and subtractions

Answer: Repeated additions

are more expensi
a multiplication
Also, analogous

ve than
oy 19.
broblem

to extension fielc

S.

Curve25519 com
largest convenier
with integer w.

Example: With ¢
floating-point ma:
Curve25519 uses
>, small multipl

“Why not use ra
2206? Doesn't the
to be an integer?

Answer: No, exp
have to be an In1

Radix 222 saves
reduction mod 2



Curve25519 uses prime
extremely close to a power of 2:
specifically, 2295 __ 109,

“Why not a word-aligned prime,
2256 L 2224 4 2192 4 296 17
Reduce by simple word additions
and subtractions!”

Answer: Repeated additions
are more expensive than

a multiplication by 19.

Also, analogous problem

to extension fields.

Curve25519 computation uses
largest convenient radix 2255/w

with integer w.

Example: With 64-bit x86
floating-point mantissas,
Curve25519 uses radix 22°-, i.e.,
S, small multiple of 2/25-5¢]

225, or radix

“Why not use radix
220? Doesn’t the exponent have

to be an integer?”

Answer: No, exponent doesn't
have to be an integer.
Radix 22°-° saves time in

reduction mod 2%°° — 19.



prime
o a power of 2:
— 109.

l-aligned prime,
92 4 296 17

> word additions
!11

d additions
ve than

oy 19.
oroblem

S.

Curve25519 computation uses
largest convenient radix 2255/w

with integer w.

Example: With 64-bit x86
floating-point mantissas,
Curve25519 uses radix 22°-, i.e.,
S, small multiple of 2/25-5¢]

225, or radix

“Why not use radix
220? Doesn’t the exponent have

to be an integer?”

Answer: No, exponent doesn't
have to be an integer.

Radix 22°° saves time in
reduction mod 22°° — 10.

Curve25519 com
coefficients slight

than the radix.

“Why not use ca
with minimal coe
Smaller coefficiel
allow faster arith

Answer: Convers
to canonical forn
Making coetficier
IS much less expe
than making thel
Has most of the



Curve25519 computation uses
largest convenient radix 2255/w

with integer w.

Example: With 64-bit x86
floating-point mantissas,
Curve25519 uses radix 22°-, i.e.,
S, small multiple of 2/25-5¢]

“Why not use radix 222, or radix
220? Doesn’t the exponent have
to be an integer?”

Answer: No, exponent doesn't
have to be an integer.

Radix 22°° saves time in
reduction mod 22°° — 10.

Curve25519 computation allows
coefficients slightly larger
than the radix.

“Why not use canonical form,
with minimal coefficients?
Smaller coefficients

allow faster arithmetic!”

Answer: Conversion

to canonical form is expensive.
Making coefficients small

Is much less expensive

than making them smallest.
Has most of the same benefit.



putation uses

t radix 22°5/w
4-bit x86
yntissas,

radix 222 i.e.,

e of 2125.51]

dix 22° or radix

> exponent have

)17

onent doesn't
eger.

, time In

2 — 19,

Curve25519 computation allows
coefficients slightly larger
than the radix.

“Why not use canonical form,
with minimal coefficients?
Smaller coefficients

allow faster arithmetic!”

Answer: Conversion

to canonical form is expensive.
Making coefficients small

Is much less expensive

than making them smallest.
Has most of the same benefit.

Curve25519 cony
iIndexing into arit
given P|[0], P[1],
P[b] as bP[1] + (

“Why not simply
index? Skip the
b,1 — b and the :

Answer: This ari
of the Curve255]
Protects against
such as hyperthr
Less expensive tl
variable array inc



Curve25519 computation allows
coefficients slightly larger
than the radix.

“Why not use canonical form,
with minimal coefficients?
Smaller coefficients

allow faster arithmetic!”

Answer: Conversion

to canonical form is expensive.
Making coefficients small

Is much less expensive

than making them smallest.
Has most of the same benefit.

Curve25519 converts variable
iIndexing Iinto arithmetic: e.g.,
given P[0], P[1], bit b, compute
P[b] as bP[1] + (1 — b) P|O].

“Why not simply use 6 as an array
index? Skip the multiplications by
b,1 — b and the addition!”

Answer: This arithmetic is 6%
of the Curve25519 computation.
Protects against timing attacks,
such as hyperthreading attacks.
Less expensive than protecting
variable array indexing.



putation allows
ly larger

nonical form,
fficients?

1tS

metic!”

on

1 IS expensive.
1ts small
nsive

m smallest.
same benefit.

Curve25519 converts variable
iIndexing Iinto arithmetic: e.g.,
given P[0], P[1], bit b, compute
P[b] as bP[1] + (1 — b) P|O].

“Why not simply use 6 as an array
index? Skip the multiplications by
b,1 — b and the addition!”

Answer: This arithmetic is 6%
of the Curve25519 computation.
Protects against timing attacks,
such as hyperthreading attacks.
Less expensive than protecting
variable array indexing.

Curve25519 uses
with a secure twi
y? = z3 + 48666
Group order 8 - p
Twist group orde

“Why worry abo!
Why not simply
keys on the twist

Answer: Prohibit
twist means chec
(“validating keys
cost by choosing



Curve25519 converts variable
iIndexing Iinto arithmetic: e.g.,
given P[0], P[1], bit b, compute
P[b] as bP[1] + (1 — b) P|O].

“Why not simply use 6 as an array
index? Skip the multiplications by
b,1 — b and the addition!”

Answer: This arithmetic is 6%
of the Curve25519 computation.
Protects against timing attacks,
such as hyperthreading attacks.
Less expensive than protecting
variable array indexing.

Curve25519 uses a secure curve
with a secure twist:

y? = z3 + 486662z° + .
Group order 8 - prime.

Twist group order 4 - prime.

“Why worry about twist order?
Why not simply prohibit
keys on the twist?”

Answer: Prohibiting keys on the
twist means checking for them
(“validating keys” ). Eliminate this
cost by choosing curve carefully.



rerts variable
hmetic: e.g.,

bit b, compute
1 — b6)PJO0].

use b as an array
multiplications by
addition!”

thmetic is 6%
9 computation.
timing attacks,
cading attacks.
1an protecting
lexing.

Curve25519 uses a secure curve
with a secure twist:

y? = 3 + 486662z° + .
Group order 8 - prime.

Twist group order 4 - prime.

“Why worry about twist order?
Why not simply prohibit
keys on the twist?”

Answer: Prohibiting keys on the
twist means checking for them
(“validating keys” ). Eliminate this
cost by choosing curve carefully.

What's next?

Culmination of e
on eliminating fie
genus-2 hyperell
25 mults per bit.

eprint.iacr. o1

Half-size prime:

Select curve to n
mults easier, like
this needs faster

Should analyze c
iInstead of field n
Prediction: this \



Curve25519 uses a secure curve
with a secure twist:

y? = z3 + 486662z° + .
Group order 8 - prime.

Twist group order 4 - prime.

“Why worry about twist order?
Why not simply prohibit
keys on the twist?”

Answer: Prohibiting keys on the
twist means checking for them
(“validating keys” ). Eliminate this
cost by choosing curve carefully.

What's next?

Culmination of extensive work
on eliminating field mults for
genus-2 hyperelliptic curves:
25 mults per bit. Gaudry,
eprint.iacr.org/2005/314

Half-size prime: e.g., 2127 — 1.
Select curve to make some
mults easier, like taking tiny A;
this needs faster point counting!

Should analyze cycles
instead of field mults.
Prediction: this will beat genus 1.



