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Which public-key systems
are smallest? Fastest?

Real-world cost measures:
Pentium cycles, Athlon cycles,
etc. for generating keys, signing,
verifying, encrypting, decrypting;
key bytes, signed-message bytes,
ciphertext bytes, etc.

More useful than
simplified cost measures,
although harder to analyze.
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eBATS (ECRYPT Benchmarking
of Asymmetric Systems):

new project to measure

time and space consumed by
oublic-key signature systems,
oublic-key encryption systems,
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bublic-key secret-sharing systems.

This talk's scope

Focus on private communications:
ssh, emall, purchasing, etc.

Typical setup:

Each communicating party
has a long-term secret key
and a long-term public key.

Alice authenticates and
encrypts messages to Bob
using Alice's secret key
and Bob's public key.
Bob verifies and decrypts
using Alice's public key
and Bob's secret key.
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This talk's scope

Focus on private communications:
ssh, emall, purchasing, etc.

Typical setup:
Each communicating party
has a long-term secret key

and a long-term public key.

Alice authenticates and
encrypts messages to Bob
using Alice's secret key
and Bob's public key.
Bob verifies and decrypts
using Alice's public key
and Bob's secret key.

This talk’'s recommendations

The “asymmetric’ part:

Alice, Bob use Curve25519 to
compute long-term shared secret
from secret keys, public keys.
Note: minimal asymmetric usage!

The “symmetric” part:
Alice, Bob use shared secret

as key for Poly1305+Salsa20
to authenticate+encrypt packets.

Curve25519 is the bottleneck
if there aren’'t many packets.
This talk focuses on Curve255109.
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The “asymmetric’ part:

Alice, Bob use Curve25519 to
compute long-term shared secret
from secret keys, public keys.
Note: minimal asymmetric usage!

The “symmetric” part:
Alice, Bob use shared secret

as key for Poly1305+Salsa20
to authenticate+encrypt packets.

Curve25519 is the bottleneck
if there aren’'t many packets.
This talk focuses on Curve255109.
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This talk’'s recommendations

The “asymmetric’ part:

Alice, Bob use Curve25519 to
compute long-term shared secret
from secret keys, public keys.

Note: minimal asymmetric usage!

The “symmetric” part:
Alice, Bob use shared secret

as key for Poly1305+Salsa20

to authenticate+encrypt packets.

Curve25519 is the bottleneck
if there aren’'t many packets.

This talk focuses on Curve255109.

Curve25519 secret key: 32 bytes.
Curve25519 public key: 32 bytes.
Time to compute shared secret:
9057904 Pentium 4 cycles or

624786 Athlon cycles or . ..
plus negligible hashing time.

No data-dependent branches.
No data-dependent indexing.

No known patent problems.
Software is in public domain.
http://cr.yp.to/ecdh.html

Best attack known is
more expensive than typical
128-bit brute-force search.
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Curve25519 secret
Curve25519 public
Time to compute s

hared secret:

9057904 Pentium 4 cycles or
624786 Athlon cycles or . ..

plus negligible hashing time.

No data-dependent branches.
No data-dependent indexing.
No known patent problems.

Software is in public domain.
http://cr.yp.to/ecdh.html

Best attack known

1S

more expensive than typical

128-bit brute-force

search.

key: 32 bytes.
key: 32 bytes.

Alice's secret key Is
Integer a; minor restrictions.

Alice's public key is
power 9% in Curve25519 group.

It Bob's secret key is b:

Curve25519 uses hash of 92°
as {Alice, Bob}'s shared secret.

Bob computes shared secret
with just one exponentiation
and one short hash.
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Alice's secret key Is
Integer a; minor restrictions.

Alice's public key is

power 9% in Curve25519 group.

It Bob's secret key is b:
Curve25519 uses hash of 920

as {Alice, Bob}'s shared secret.

Bob computes shared secret
with just one exponentiation
and one short hash.

Exponentiation methods

In the previous literature

take more than twice as long

at the Curve25519 security level.
(Other secret-sharing methods:
even slower.)

Many interacting parameters
in design and implementation.
Hard to find optimal parameters.

Remainder of this talk discusses
some of the choices made

in designing and implementing
Curve25519.
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Exponentiation methods
In the previous literature
take more than twice as long

at the Curve25519 security level.

(Other secret-sharing methods:
even slower.)

Many interacting parameters
in design and implementation.

Hard to find optimal parameters.

Remainder of this talk discusses
some of the choices made

in designing and implementing
Curve25519.
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Exponentiation methods
In the previous literature
take more than twice as long

at the Curve25519 security level.

(Other secret-sharing methods:

even slower.)

Many interacting parameters
in design and implementation.

Hard to find optimal parameters.

Remainder of this talk discusses
some of the choices made

in designing and implementing
Curve25519.

Curve25519 uses an
elliptic-curve group.

“Why not unit group 77 or torus
group To or torus group 747
Why not XTR, using only 5.2
mults for each exponent bit?”

Answer: Compared to XTR,
elliptic curves use more mults
in a smaller field.

Overall slightly less expensive.

XTR needs larger field
to protect against NFS.
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Curve25519 uses an
elliptic-curve group.

“Why not unit group 77 or torus
group To or torus group 7g?
Why not XTR, using only 5.2
mults for each exponent bit?”

Answer: Compared to XTR,
elliptic curves use more mults
in a smaller field.

Overall slightly less expensive.

XTR needs larger field
to protect against NFS.
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Curve25519 uses an
elliptic-curve group.

“Why not unit group 77 or torus
group To or torus group 747
Why not XTR, using only 5.2
mults for each exponent bit?”

Answer: Compared to XTR,
elliptic curves use more mults
in a smaller field.

Overall slightly less expensive.

XTR needs larger field
to protect against NFS.

Curve25519 compresses

an elliptic-curve point (z, y)
to a public key .

(Not patented. 1986 Miller.)

“But then you need
an expensive computation of y!
Why not also transmit y?"

Answer: Transmitting vy iIs
often unacceptably expensive.
A square-root computation
Isn’'t terribly expensive—

and Is avoided entirely in the
Curve25519 computation.
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to a public key .

(Not patented. 1986 Miller.)

“But then you need
an expensive computation of y!
Why not also transmit y?"

Answer: Transmitting vy iIs
often unacceptably expensive.
A square-root computation
Isn’'t terribly expensive—

and Is avoided entirely in the
Curve25519 computation.
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Curve25519 compresses

an elliptic-curve point (z, y)
to a public key .

(Not patented. 1986 Miller.)

“But then you need
an expensive computation of y!
Why not also transmit y?"

Answer: Transmitting vy iIs
often unacceptably expensive.
A square-root computation
Isn’'t terribly expensive—

and Is avoided entirely in the
Curve25519 computation.

Curve25519 uses a curve
over a large-char field.

“Why not char 27
Squaring is almost for free!
Can exploit Frobenius on curve.”

Answer: Current CPUs include
fast floating-point multipliers
for physics simulation etc.

Can reuse these multipliers for
arithmetic in large-char fields.
Outweighs the char-2 advantages.
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Curve25519 uses a curve
over a large-char field.

“Why not char 27
Squaring is almost for free!
Can exploit Frobenius on curve.”

Answer: Current CPUs include
fast floating-point multipliers
for physics simulation etc.

Can reuse these multipliers for
arithmetic in large-char fields.

Outweighs the char-2 advantages.

Curve25519 uses
y? = 3+ Az?+3

“Why not y? = :
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Curve25519 uses a curve
over a large-char field.

“Why not char 27

Squaring is almost for free!
Can exploit Frobenius on curve.”

Answer: Current CPUs include
fast floating-point multipliers
for physics simulation etc.

Can reuse these multipliers for
arithmetic in large-char fields.

Outweighs the char-2 advantages.

Curve25519 uses curve shape
y? = 3+ Az’ +z, tiny A € 24+4Z.

“Why not vy = z3 — 3z + ag?
Double (z, y) in Jacobian coords
using only 5 field squarings

and 3 extra field mults!”

Answer: With y? = z3 + Az? + z,
can do projective z-coord
doubling and addition together
using 1 field mult by (A — 2)/4,

4 field squarings,

5 extra field mults. Never need v.
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y? = 3+ Az’ +z, tiny A € 24+4Z.

“Why not y° = z3 — 3z + ag?
Double (z, y) in Jacobian coords
using only 5 field squarings

and 3 extra field mults!”

Answer: With y? = z3 + Az? + z,
can do projective z-coord
doubling and addition together
using 1 field mult by (A — 2)/4,

4 field squarings,

5 extra field mults. Never need v.
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Curve25519 uses curve shape
y? = 3+ Az’ +z, tiny A € 24+4Z.

“Why not vy = z3 — 3z + ag?
Double (z, y) in Jacobian coords
using only 5 field squarings

and 3 extra field mults!”

Answer: With y? = z3 + Az? + z,
can do projective z-coord
doubling and addition together
using 1 field mult by (A — 2)/4,

4 field squarings,

5 extra field mults. Never need v.

Curve25519 uses a prime field.

“Why not an extension field?
Adapt extension degree

to CPU’s multiplier size.
Avoid carries in arithmetic!”

Answer: Extension field
punishes CPUs with
another multiplier size.
Maybe tolerable

as CPUs converge—but
carries are a very small cost.
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Curve25519 uses a prime field.

“Why not an extension field?
Adapt extension degree

to CPU’s multiplier size.
Avoid carries in arithmetic!”

Answer: Extension field
punishes CPUs with
another multiplier size.
Maybe tolerable

as CPUs converge—but
carries are a very small cost.
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Curve25519 uses a prime field.

“Why not an extension field?
Adapt extension degree

to CPU’'s multiplier size.
Avoid carries in arithmetic!”

Answer: Extension field
punishes CPUs with
another multiplier size.
Maybe tolerable

as CPUs converge—but
carries are a very small cost.

Curve25519 uses
extremely close t
specifically, 22°°

prime
o a power of 2:
— 109.

“Why not a word-aligned prime,
2256 L 2224 4 2192 4 296 17
Reduce by simple word additions

and subtractions

Answer: Repeated additions

are more expensi
a multiplication
Also, analogous
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oy 19.
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to extension fielc
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Curve25519 uses prime
extremely close to a power of 2:
specifically, 2295 __ 109,

“Why not a word-aligned prime,
2256 L 2224 4 2192 4 296 17
Reduce by simple word additions
and subtractions!”

Answer: Repeated additions
are more expensive than

a multiplication by 19.

Also, analogous problem

to extension fields.

Curve25519 computation uses
largest convenient radix 2255/w

with integer w.

Example: With 64-bit x86
floating-point mantissas,
Curve25519 uses radix 22°-, i.e.,
S, small multiple of 2/25-5¢]

225, or radix

“Why not use radix
220? Doesn’t the exponent have

to be an integer?”

Answer: No, exponent doesn't
have to be an integer.
Radix 22°-° saves time in

reduction mod 2%°° — 19.
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Curve25519 computation uses
largest convenient radix 2255/w

with integer w.

Example: With 64-bit x86
floating-point mantissas,
Curve25519 uses radix 22°-, i.e.,
S, small multiple of 2/25-5¢]

225, or radix

“Why not use radix
220? Doesn’t the exponent have

to be an integer?”

Answer: No, exponent doesn't
have to be an integer.

Radix 22°° saves time in
reduction mod 22°° — 10.
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Curve25519 computation uses
largest convenient radix 2255/w

with integer w.

Example: With 64-bit x86
floating-point mantissas,
Curve25519 uses radix 22°-, i.e.,
S, small multiple of 2/25-5¢]

“Why not use radix 222, or radix
220? Doesn’t the exponent have
to be an integer?”

Answer: No, exponent doesn't
have to be an integer.

Radix 22°° saves time in
reduction mod 22°° — 10.

Curve25519 computation allows
coefficients slightly larger
than the radix.

“Why not use canonical form,
with minimal coefficients?
Smaller coefficients

allow faster arithmetic!”

Answer: Conversion

to canonical form is expensive.
Making coefficients small

Is much less expensive

than making them smallest.
Has most of the same benefit.
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Curve25519 computation allows
coefficients slightly larger
than the radix.

“Why not use canonical form,
with minimal coefficients?
Smaller coefficients

allow faster arithmetic!”

Answer: Conversion

to canonical form is expensive.
Making coefficients small

Is much less expensive

than making them smallest.
Has most of the same benefit.
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Curve25519 computation allows
coefficients slightly larger
than the radix.

“Why not use canonical form,
with minimal coefficients?
Smaller coefficients

allow faster arithmetic!”

Answer: Conversion

to canonical form is expensive.
Making coefficients small

Is much less expensive

than making them smallest.
Has most of the same benefit.

Curve25519 converts variable
iIndexing Iinto arithmetic: e.g.,
given P[0], P[1], bit b, compute
P[b] as bP[1] + (1 — b) P|O].

“Why not simply use 6 as an array
index? Skip the multiplications by
b,1 — b and the addition!”

Answer: This arithmetic is 6%
of the Curve25519 computation.
Protects against timing attacks,
such as hyperthreading attacks.
Less expensive than protecting
variable array indexing.
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Curve25519 converts variable
iIndexing Iinto arithmetic: e.g.,
given P[0], P[1], bit b, compute
P[b] as bP[1] + (1 — b) P|O].

“Why not simply use 6 as an array
index? Skip the multiplications by
b,1 — b and the addition!”

Answer: This arithmetic is 6%
of the Curve25519 computation.
Protects against timing attacks,
such as hyperthreading attacks.
Less expensive than protecting
variable array indexing.
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Curve25519 converts variable
iIndexing Iinto arithmetic: e.g.,
given P[0], P[1], bit b, compute
P[b] as bP[1] + (1 — b) P|O].

“Why not simply use 6 as an array
index? Skip the multiplications by
b,1 — b and the addition!”

Answer: This arithmetic is 6%
of the Curve25519 computation.
Protects against timing attacks,
such as hyperthreading attacks.
Less expensive than protecting
variable array indexing.

Curve25519 uses a secure curve
with a secure twist:

y? = z3 + 486662z° + .
Group order 8 - prime.

Twist group order 4 - prime.

“Why worry about twist order?
Why not simply prohibit
keys on the twist?”

Answer: Prohibiting keys on the
twist means checking for them
(“validating keys” ). Eliminate this
cost by choosing curve carefully.
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Curve25519 uses a secure curve
with a secure twist:

y? = 3 + 486662z° + .
Group order 8 - prime.

Twist group order 4 - prime.

“Why worry about twist order?
Why not simply prohibit
keys on the twist?”

Answer: Prohibiting keys on the
twist means checking for them
(“validating keys” ). Eliminate this
cost by choosing curve carefully.
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Curve25519 uses a secure curve
with a secure twist:

y? = z3 + 486662z° + .
Group order 8 - prime.

Twist group order 4 - prime.

“Why worry about twist order?
Why not simply prohibit
keys on the twist?”

Answer: Prohibiting keys on the
twist means checking for them
(“validating keys” ). Eliminate this
cost by choosing curve carefully.

What's next?

Culmination of extensive work
on eliminating field mults for
genus-2 hyperelliptic curves:
25 mults per bit. Gaudry,
eprint.iacr.org/2005/314

Half-size prime: e.g., 2127 — 1.
Select curve to make some
mults easier, like taking tiny A;
this needs faster point counting!

Should analyze cycles
instead of field mults.
Prediction: this will beat genus 1.



