
New speed records

for point multiplication

D. J. Bernstein

Thanks to:

University of Illinois at Chicago

NSF CCR–9983950

Alfred P. Sloan Foundation

640838 Pentium M cycles

to compute a 32-byte secret

shared by Dan and Tanja,

given Dan’s 32-byte secret key �

and Tanja’s 32-byte public key .

All known attacks: 2128 cycles.

This is the new speed record

for high-security Diffie-Hellman.

Encrypt and authenticate messages

using hash of shared secret as key.

Diffie-Hellman is the bottleneck

if total message length is short.

New speed records

for point multiplication

D. J. Bernstein

Thanks to:

University of Illinois at Chicago

NSF CCR–9983950

Alfred P. Sloan Foundation

640838 Pentium M cycles

to compute a 32-byte secret

shared by Dan and Tanja,

given Dan’s 32-byte secret key �

and Tanja’s 32-byte public key .

All known attacks: 2128 cycles.

This is the new speed record

for high-security Diffie-Hellman.

Encrypt and authenticate messages

using hash of shared secret as key.

Diffie-Hellman is the bottleneck

if total message length is short.

640838 Pentium M (695) cycles

to compute � -coordinate of � th

multiple of (� � � �) on Curve25519,

given 0 � 1 � � � � � 2256 � 1 and
� 2254 + 8 0 � 1 � � � � � 2251 � 1 .

Curve25519 is the elliptic curve
2 = � 3 + 486662 � 2 + �

mod the prime 2255 � 19.

624786 Athlon (622) cycles;

832457 Pentium III (686) cycles;

957904 Pentium 4 (f12) cycles.

I anticipate similar cycle counts

for UltraSPARC, PowerPC, etc.

640838 Pentium M cycles

to compute a 32-byte secret

shared by Dan and Tanja,

given Dan’s 32-byte secret key �

and Tanja’s 32-byte public key .

All known attacks: 2128 cycles.

This is the new speed record

for high-security Diffie-Hellman.

Encrypt and authenticate messages

using hash of shared secret as key.

Diffie-Hellman is the bottleneck

if total message length is short.

640838 Pentium M (695) cycles

to compute � -coordinate of � th

multiple of (� � � �) on Curve25519,

given 0 � 1 � � � � � 2256 � 1 and
� 2254 + 8 0 � 1 � � � � � 2251 � 1 .

Curve25519 is the elliptic curve
2 = � 3 + 486662 � 2 + �

mod the prime 2255 � 19.

624786 Athlon (622) cycles;

832457 Pentium III (686) cycles;

957904 Pentium 4 (f12) cycles.

I anticipate similar cycle counts

for UltraSPARC, PowerPC, etc.

640838 Pentium M cycles

to compute a 32-byte secret

shared by Dan and Tanja,

given Dan’s 32-byte secret key �

and Tanja’s 32-byte public key .

All known attacks: 2128 cycles.

This is the new speed record

for high-security Diffie-Hellman.

Encrypt and authenticate messages

using hash of shared secret as key.

Diffie-Hellman is the bottleneck

if total message length is short.

640838 Pentium M (695) cycles

to compute � -coordinate of � th

multiple of (� � � �) on Curve25519,

given 0 � 1 � � � � � 2256 � 1 and
� 2254 + 8 0 � 1 � � � � � 2251 � 1 .

Curve25519 is the elliptic curve
2 = � 3 + 486662 � 2 + �

mod the prime 2255 � 19.

624786 Athlon (622) cycles;

832457 Pentium III (686) cycles;

957904 Pentium 4 (f12) cycles.

I anticipate similar cycle counts

for UltraSPARC, PowerPC, etc.

Immune to timing attacks,

including cache-timing attacks,

including hyperthreading attacks.

No data-dependent branches;

no data-dependent indexing.

Software is in public domain.

16 kilobytes when compiled.

cr.yp.to/ecdh.html

No known patent problems.

For comparison, Brown et al.:

much smaller prime, 2192 � 264 � 1;

780000 PII cycles; given;

no timing-attack protection.

640838 Pentium M (695) cycles

to compute � -coordinate of � th

multiple of (� � � �) on Curve25519,

given 0 � 1 � � � � � 2256 � 1 and
� 2254 + 8 0 � 1 � � � � � 2251 � 1 .

Curve25519 is the elliptic curve
2 = � 3 + 486662 � 2 + �

mod the prime 2255 � 19.

624786 Athlon (622) cycles;

832457 Pentium III (686) cycles;

957904 Pentium 4 (f12) cycles.

I anticipate similar cycle counts

for UltraSPARC, PowerPC, etc.

Immune to timing attacks,

including cache-timing attacks,

including hyperthreading attacks.

No data-dependent branches;

no data-dependent indexing.

Software is in public domain.

16 kilobytes when compiled.

cr.yp.to/ecdh.html

No known patent problems.

For comparison, Brown et al.:

much smaller prime, 2192 � 264 � 1;

780000 PII cycles; given;

no timing-attack protection.

640838 Pentium M (695) cycles

to compute � -coordinate of � th

multiple of (� � � �) on Curve25519,

given 0 � 1 � � � � � 2256 � 1 and
� 2254 + 8 0 � 1 � � � � � 2251 � 1 .

Curve25519 is the elliptic curve
2 = � 3 + 486662 � 2 + �

mod the prime 2255 � 19.

624786 Athlon (622) cycles;

832457 Pentium III (686) cycles;

957904 Pentium 4 (f12) cycles.

I anticipate similar cycle counts

for UltraSPARC, PowerPC, etc.

Immune to timing attacks,

including cache-timing attacks,

including hyperthreading attacks.

No data-dependent branches;

no data-dependent indexing.

Software is in public domain.

16 kilobytes when compiled.

cr.yp.to/ecdh.html

No known patent problems.

For comparison, Brown et al.:

much smaller prime, 2192 � 264 � 1;

780000 PII cycles; given;

no timing-attack protection.

Where are the cycles going?

Focus today on Pentium M.

Fastest arithmetic on Pentium M

uses floating-point operations:

fp adds, fp subs, fp mults.

Each Pentium M cycle does

1 fp op.

Point multiplication: 640838 cycles.

589825 fp ops; 0 � 92 per cycle.

Understand cycle counts fairly well

by simply counting fp ops.

Immune to timing attacks,

including cache-timing attacks,

including hyperthreading attacks.

No data-dependent branches;

no data-dependent indexing.

Software is in public domain.

16 kilobytes when compiled.

cr.yp.to/ecdh.html

No known patent problems.

For comparison, Brown et al.:

much smaller prime, 2192 � 264 � 1;

780000 PII cycles; given;

no timing-attack protection.

Where are the cycles going?

Focus today on Pentium M.

Fastest arithmetic on Pentium M

uses floating-point operations:

fp adds, fp subs, fp mults.

Each Pentium M cycle does

1 fp op.

Point multiplication: 640838 cycles.

589825 fp ops; 0 � 92 per cycle.

Understand cycle counts fairly well

by simply counting fp ops.

Immune to timing attacks,

including cache-timing attacks,

including hyperthreading attacks.

No data-dependent branches;

no data-dependent indexing.

Software is in public domain.

16 kilobytes when compiled.

cr.yp.to/ecdh.html

No known patent problems.

For comparison, Brown et al.:

much smaller prime, 2192 � 264 � 1;

780000 PII cycles; given;

no timing-attack protection.

Where are the cycles going?

Focus today on Pentium M.

Fastest arithmetic on Pentium M

uses floating-point operations:

fp adds, fp subs, fp mults.

Each Pentium M cycle does

1 fp op.

Point multiplication: 640838 cycles.

589825 fp ops; 0 � 92 per cycle.

Understand cycle counts fairly well

by simply counting fp ops.

Avoiding all time variability

to stop timing attacks:

1. For 0 � 1 , compute � []

as � [1] + (1 �) � [0] or similar.

Avoids data-dependent indexing.

Costs 36210 fp ops (6%).

2. Compute final reciprocal

by Fermat, not extended Euclid.

Avoids data-dependent branching.

3. Don’t branch for remainders.

Allow non-least remainders.

No cost—this saves time!

Where are the cycles going?

Focus today on Pentium M.

Fastest arithmetic on Pentium M

uses floating-point operations:

fp adds, fp subs, fp mults.

Each Pentium M cycle does

1 fp op.

Point multiplication: 640838 cycles.

589825 fp ops; 0 � 92 per cycle.

Understand cycle counts fairly well

by simply counting fp ops.

Avoiding all time variability

to stop timing attacks:

1. For 0 � 1 , compute � []

as � [1] + (1 �) � [0] or similar.

Avoids data-dependent indexing.

Costs 36210 fp ops (6%).

2. Compute final reciprocal

by Fermat, not extended Euclid.

Avoids data-dependent branching.

3. Don’t branch for remainders.

Allow non-least remainders.

No cost—this saves time!

Where are the cycles going?

Focus today on Pentium M.

Fastest arithmetic on Pentium M

uses floating-point operations:

fp adds, fp subs, fp mults.

Each Pentium M cycle does

1 fp op.

Point multiplication: 640838 cycles.

589825 fp ops; 0 � 92 per cycle.

Understand cycle counts fairly well

by simply counting fp ops.

Avoiding all time variability

to stop timing attacks:

1. For 0 � 1 , compute � []

as � [1] + (1 �) � [0] or similar.

Avoids data-dependent indexing.

Costs 36210 fp ops (6%).

2. Compute final reciprocal

by Fermat, not extended Euclid.

Avoids data-dependent branching.

3. Don’t branch for remainders.

Allow non-least remainders.

No cost—this saves time!

Main loop: 545700 fp ops (92.5%).

2140 times 255 iterations.

Reciprocal: 43821 fp ops (7.4%).

41148 = 254 � 162 for 254 squarings;

2673 = 11 � 243 for 11 more mults.

Additional work: 304 fp ops.

Inside one main-loop iteration:

80 = 8 � 10 for 8 adds/subs;

55 for mult by 121665;

648 = 4 � 162 for 4 squarings;

1215 = 5 � 243 for 5 more mults;

142 for � [1] + (1 �) � [0] etc.

Avoiding all time variability

to stop timing attacks:

1. For 0 � 1 , compute � []

as � [1] + (1 �) � [0] or similar.

Avoids data-dependent indexing.

Costs 36210 fp ops (6%).

2. Compute final reciprocal

by Fermat, not extended Euclid.

Avoids data-dependent branching.

3. Don’t branch for remainders.

Allow non-least remainders.

No cost—this saves time!

Main loop: 545700 fp ops (92.5%).

2140 times 255 iterations.

Reciprocal: 43821 fp ops (7.4%).

41148 = 254 � 162 for 254 squarings;

2673 = 11 � 243 for 11 more mults.

Additional work: 304 fp ops.

Inside one main-loop iteration:

80 = 8 � 10 for 8 adds/subs;

55 for mult by 121665;

648 = 4 � 162 for 4 squarings;

1215 = 5 � 243 for 5 more mults;

142 for � [1] + (1 �) � [0] etc.

Avoiding all time variability

to stop timing attacks:

1. For 0 � 1 , compute � []

as � [1] + (1 �) � [0] or similar.

Avoids data-dependent indexing.

Costs 36210 fp ops (6%).

2. Compute final reciprocal

by Fermat, not extended Euclid.

Avoids data-dependent branching.

3. Don’t branch for remainders.

Allow non-least remainders.

No cost—this saves time!

Main loop: 545700 fp ops (92.5%).

2140 times 255 iterations.

Reciprocal: 43821 fp ops (7.4%).

41148 = 254 � 162 for 254 squarings;

2673 = 11 � 243 for 11 more mults.

Additional work: 304 fp ops.

Inside one main-loop iteration:

80 = 8 � 10 for 8 adds/subs;

55 for mult by 121665;

648 = 4 � 162 for 4 squarings;

1215 = 5 � 243 for 5 more mults;

142 for � [1] + (1 �) � [0] etc.

An integer mod 2255 � 19 is

represented in radix 225 � 5

as a sum of 10 fp numbers

in specified ranges.

Add/sub: 10 fp adds/subs.

Delay reductions and carries!

Mult: poly mult using

102 fp mults, 92 fp adds;

reduce using 9 fp mults, 9 fp adds;

carry 11 times, each 4 fp adds;

overall 2 � 102 + 4 � 10 + 3 fp ops.

Squaring: start with 9 fp doublings;

then eliminate 92 + 9 fp ops;

overall 1 � 102 + 6 � 10 + 2 fp ops.

Main loop: 545700 fp ops (92.5%).

2140 times 255 iterations.

Reciprocal: 43821 fp ops (7.4%).

41148 = 254 � 162 for 254 squarings;

2673 = 11 � 243 for 11 more mults.

Additional work: 304 fp ops.

Inside one main-loop iteration:

80 = 8 � 10 for 8 adds/subs;

55 for mult by 121665;

648 = 4 � 162 for 4 squarings;

1215 = 5 � 243 for 5 more mults;

142 for � [1] + (1 �) � [0] etc.

An integer mod 2255 � 19 is

represented in radix 225 � 5

as a sum of 10 fp numbers

in specified ranges.

Add/sub: 10 fp adds/subs.

Delay reductions and carries!

Mult: poly mult using

102 fp mults, 92 fp adds;

reduce using 9 fp mults, 9 fp adds;

carry 11 times, each 4 fp adds;

overall 2 � 102 + 4 � 10 + 3 fp ops.

Squaring: start with 9 fp doublings;

then eliminate 92 + 9 fp ops;

overall 1 � 102 + 6 � 10 + 2 fp ops.

Main loop: 545700 fp ops (92.5%).

2140 times 255 iterations.

Reciprocal: 43821 fp ops (7.4%).

41148 = 254 � 162 for 254 squarings;

2673 = 11 � 243 for 11 more mults.

Additional work: 304 fp ops.

Inside one main-loop iteration:

80 = 8 � 10 for 8 adds/subs;

55 for mult by 121665;

648 = 4 � 162 for 4 squarings;

1215 = 5 � 243 for 5 more mults;

142 for � [1] + (1 �) � [0] etc.

An integer mod 2255 � 19 is

represented in radix 225 � 5

as a sum of 10 fp numbers

in specified ranges.

Add/sub: 10 fp adds/subs.

Delay reductions and carries!

Mult: poly mult using

102 fp mults, 92 fp adds;

reduce using 9 fp mults, 9 fp adds;

carry 11 times, each 4 fp adds;

overall 2 � 102 + 4 � 10 + 3 fp ops.

Squaring: start with 9 fp doublings;

then eliminate 92 + 9 fp ops;

overall 1 � 102 + 6 � 10 + 2 fp ops.

How was the prime chosen?

Use prime close to power of 2

to save time in field operations.

Also reduces NFS exponent,

so would need larger prime for

traditional discrete-log systems;

but doesn’t seem to affect ECDL.

Use prime not far below 232
�

to avoid wasting bandwidth.

Comfortable security, = 8:

2253 + 39, 2253 + 51, 2254 + 79,

2255 � 31, 2255 � 19, 2255 + 95.

An integer mod 2255 � 19 is

represented in radix 225 � 5

as a sum of 10 fp numbers

in specified ranges.

Add/sub: 10 fp adds/subs.

Delay reductions and carries!

Mult: poly mult using

102 fp mults, 92 fp adds;

reduce using 9 fp mults, 9 fp adds;

carry 11 times, each 4 fp adds;

overall 2 � 102 + 4 � 10 + 3 fp ops.

Squaring: start with 9 fp doublings;

then eliminate 92 + 9 fp ops;

overall 1 � 102 + 6 � 10 + 2 fp ops.

How was the prime chosen?

Use prime close to power of 2

to save time in field operations.

Also reduces NFS exponent,

so would need larger prime for

traditional discrete-log systems;

but doesn’t seem to affect ECDL.

Use prime not far below 232
�

to avoid wasting bandwidth.

Comfortable security, = 8:

2253 + 39, 2253 + 51, 2254 + 79,

2255 � 31, 2255 � 19, 2255 + 95.

An integer mod 2255 � 19 is

represented in radix 225 � 5

as a sum of 10 fp numbers

in specified ranges.

Add/sub: 10 fp adds/subs.

Delay reductions and carries!

Mult: poly mult using

102 fp mults, 92 fp adds;

reduce using 9 fp mults, 9 fp adds;

carry 11 times, each 4 fp adds;

overall 2 � 102 + 4 � 10 + 3 fp ops.

Squaring: start with 9 fp doublings;

then eliminate 92 + 9 fp ops;

overall 1 � 102 + 6 � 10 + 2 fp ops.

How was the prime chosen?

Use prime close to power of 2

to save time in field operations.

Also reduces NFS exponent,

so would need larger prime for

traditional discrete-log systems;

but doesn’t seem to affect ECDL.

Use prime not far below 232
�

to avoid wasting bandwidth.

Comfortable security, = 8:

2253 + 39, 2253 + 51, 2254 + 79,

2255 � 31, 2255 � 19, 2255 + 95.

Bender, Castagnoli, CRYPTO ’89:

“2127 + 24933 is prime.

� � � For this curve which is

convenient in computer arithmetic

we also give � � � ”

I use the prime 2255 � 19,

convenient for the same reasons.

No trouble from “shift and add”

patent 5159632 filed 1991.09.17.

How was the prime chosen?

Use prime close to power of 2

to save time in field operations.

Also reduces NFS exponent,

so would need larger prime for

traditional discrete-log systems;

but doesn’t seem to affect ECDL.

Use prime not far below 232
�

to avoid wasting bandwidth.

Comfortable security, = 8:

2253 + 39, 2253 + 51, 2254 + 79,

2255 � 31, 2255 � 19, 2255 + 95.

Bender, Castagnoli, CRYPTO ’89:

“2127 + 24933 is prime.

� � � For this curve which is

convenient in computer arithmetic

we also give � � � ”

I use the prime 2255 � 19,

convenient for the same reasons.

No trouble from “shift and add”

patent 5159632 filed 1991.09.17.

How was the prime chosen?

Use prime close to power of 2

to save time in field operations.

Also reduces NFS exponent,

so would need larger prime for

traditional discrete-log systems;

but doesn’t seem to affect ECDL.

Use prime not far below 232
�

to avoid wasting bandwidth.

Comfortable security, = 8:

2253 + 39, 2253 + 51, 2254 + 79,

2255 � 31, 2255 � 19, 2255 + 95.

Bender, Castagnoli, CRYPTO ’89:

“2127 + 24933 is prime.

� � � For this curve which is

convenient in computer arithmetic

we also give � � � ”

I use the prime 2255 � 19,

convenient for the same reasons.

No trouble from “shift and add”

patent 5159632 filed 1991.09.17.

How was the curve chosen?

Use Montgomery shape
2 = � 3 + � 2 + �

to save time in curve operations

and to avoid square roots.

Choose (� 2) 4 as small integer

to save time in curve operations.

Montgomery’s recursion: � 1 = ;
�
1 = 1; � 2 � = (� 2

�
� � 2

�)2;
�
2 � = 4 � �

�
� (� 2

� + � �
�

� + � 2
�);

� 2 � +1 = 4(� � � � +1
� �

�
�

� +1)
2;

�
2 � +1 = 4(� �

�
� +1

� �
� � � +1)

2 ;

then � (� � � �) = (� �
�

� � � � �).

Bender, Castagnoli, CRYPTO ’89:

“2127 + 24933 is prime.

� � � For this curve which is

convenient in computer arithmetic

we also give � � � ”

I use the prime 2255 � 19,

convenient for the same reasons.

No trouble from “shift and add”

patent 5159632 filed 1991.09.17.

How was the curve chosen?

Use Montgomery shape
2 = � 3 + � 2 + �

to save time in curve operations

and to avoid square roots.

Choose (� 2) 4 as small integer

to save time in curve operations.

Montgomery’s recursion: � 1 = ;
�
1 = 1; � 2 � = (� 2

�
� � 2

�)2;
�
2 � = 4 � �

�
� (� 2

� + � �
�

� + � 2
�);

� 2 � +1 = 4(� � � � +1
� �

�
�

� +1)
2;

�
2 � +1 = 4(� �

�
� +1

� �
� � � +1)

2 ;

then � (� � � �) = (� �
�

� � � � �).

Bender, Castagnoli, CRYPTO ’89:

“2127 + 24933 is prime.

� � � For this curve which is

convenient in computer arithmetic

we also give � � � ”

I use the prime 2255 � 19,

convenient for the same reasons.

No trouble from “shift and add”

patent 5159632 filed 1991.09.17.

How was the curve chosen?

Use Montgomery shape
2 = � 3 + � 2 + �

to save time in curve operations

and to avoid square roots.

Choose (� 2) 4 as small integer

to save time in curve operations.

Montgomery’s recursion: � 1 = ;
�
1 = 1; � 2 � = (� 2

�
� � 2

�)2;
�
2 � = 4 � �

�
� (� 2

� + � �
�

� + � 2
�);

� 2 � +1 = 4(� � � � +1
� �

�
�

� +1)
2;

�
2 � +1 = 4(� �

�
� +1

� �
� � � +1)

2 ;

then � (� � � �) = (� �
�

� � � � �).

� �

�� ##GG
GG

GG

�
�

{{ww
ww

ww

��

� � +1

&&LLLLLLL

��

�
� +1

xxrrrrrrr

��
+

���� ,,XXXXXXXXXXXXXXXXXXXXXXX �

���� %%JJJJJJJ +

��

�

���

��-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

�� ##GG
GG

GG
�

��{{ww
ww

ww

�

�� &&LLLLLLLL
�

��xxrrrrrrrr

�

��

�

��

��

+

����

�

�����

��

�

��

�

��
+

��

� �
2

4

ccHHHHHH
�

��

�

��

99tttttttt

� 2 �
�
2 � � 2 � +1

�
2 � +1

How was the curve chosen?

Use Montgomery shape
2 = � 3 + � 2 + �

to save time in curve operations

and to avoid square roots.

Choose (� 2) 4 as small integer

to save time in curve operations.

Montgomery’s recursion: � 1 = ;
�
1 = 1; � 2 � = (� 2

�
� � 2

�)2;
�
2 � = 4 � �

�
� (� 2

� + � �
�

� + � 2
�);

� 2 � +1 = 4(� � � � +1
� �

�
�

� +1)
2;

�
2 � +1 = 4(� �

�
� +1

� �
� � � +1)

2 ;

then � (� � � �) = (� �
�

� � � � �).

� �

�� ##GG
GG

GG

�
�

{{ww
ww

ww

��

� � +1

&&LLLLLLL

��

�
� +1

xxrrrrrrr

��
+

���� ,,XXXXXXXXXXXXXXXXXXXXXXX �

���� %%JJJJJJJ +

��

�

���

��-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

�� ##GG
GG

GG
�

��{{ww
ww

ww

�

�� &&LLLLLLLL
�

��xxrrrrrrrr

�

��

�

��

��

+

����

�

�����

��

�

��

�

��
+

��

� �
2

4

ccHHHHHH
�

��

�

��

99tttttttt

� 2 �
�
2 � � 2 � +1

�
2 � +1

How was the curve chosen?

Use Montgomery shape
2 = � 3 + � 2 + �

to save time in curve operations

and to avoid square roots.

Choose (� 2) 4 as small integer

to save time in curve operations.

Montgomery’s recursion: � 1 = ;
�
1 = 1; � 2 � = (� 2

�
� � 2

�)2;
�
2 � = 4 � �

�
� (� 2

� + � �
�

� + � 2
�);

� 2 � +1 = 4(� � � � +1
� �

�
�

� +1)
2;

�
2 � +1 = 4(� �

�
� +1

� �
� � � +1)

2 ;

then � (� � � �) = (� �
�

� � � � �).

� �

�� ##GG
GG

GG

�
�

{{ww
ww

ww

��

� � +1

&&LLLLLLL

��

�
� +1

xxrrrrrrr

��
+

���� ,,XXXXXXXXXXXXXXXXXXXXXXX �

���� %%JJJJJJJ +

��

�

���

��-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

�� ##GG
GG

GG
�

��{{ww
ww

ww

�

�� &&LLLLLLLL
�

��xxrrrrrrrr

�

��

�

��

��

+

����

�

�����

��

�

��

�

��
+

��

� �
2

4

ccHHHHHH
�

��

�

��

99tttttttt

� 2 �
�
2 � � 2 � +1

�
2 � +1

Reject unless curve and twist

orders are 4 � prime � 8 � prime .

Montgomery shape forces 4;

characteristic in 4Z + 1 forces 4 � 8.

For = 486662: Curve has order

8 times prime 1 = 2252 + � � � .

The twist has order

4 times prime 2 = 2253 �
� � � .

� �

�� ##GG
GG

GG

�
�

{{ww
ww

ww

��

� � +1

&&LLLLLLL

��

�
� +1

xxrrrrrrr

��
+

���� ,,XXXXXXXXXXXXXXXXXXXXXXX �

���� %%JJJJJJJ +

��

�

���

��-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

�� ##GG
GG

GG
�

��{{ww
ww

ww

�

�� &&LLLLLLLL
�

��xxrrrrrrrr

�

��

�

��

��

+

����

�

�����

��

�

��

�

��
+

��

� �
2

4

ccHHHHHH
�

��

�

��

99tttttttt

� 2 �
�
2 � � 2 � +1

�
2 � +1

Reject unless curve and twist

orders are 4 � prime � 8 � prime .

Montgomery shape forces 4;

characteristic in 4Z + 1 forces 4 � 8.

For = 486662: Curve has order

8 times prime 1 = 2252 + � � � .

The twist has order

4 times prime 2 = 2253 �
� � � .

� �

�� ##GG
GG

GG

�
�

{{ww
ww

ww

��

� � +1

&&LLLLLLL

��

�
� +1

xxrrrrrrr

��
+

���� ,,XXXXXXXXXXXXXXXXXXXXXXX �

���� %%JJJJJJJ +

��

�

���

��-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

�� ##GG
GG

GG
�

��{{ww
ww

ww

�

�� &&LLLLLLLL
�

��xxrrrrrrrr

�

��

�

��

��

+

����

�

�����

��

�

��

�

��
+

��

� �
2

4

ccHHHHHH
�

��

�

��

99tttttttt

� 2 �
�
2 � � 2 � +1

�
2 � +1

Reject unless curve and twist

orders are 4 � prime � 8 � prime .

Montgomery shape forces 4;

characteristic in 4Z + 1 forces 4 � 8.

For = 486662: Curve has order

8 times prime 1 = 2252 + � � � .

The twist has order

4 times prime 2 = 2253 �
� � � .

For = 358990:

One prime is 2252 �
� � � ,

so user’s secret key
� 2254 + 8 0 � 1 � � � � � 2251 � 1

could be 8 times that prime.

Extremely unlikely,

but annoys implementors,

so reject this .

Reject unless curve and twist

orders are 4 � prime � 8 � prime .

Montgomery shape forces 4;

characteristic in 4Z + 1 forces 4 � 8.

For = 486662: Curve has order

8 times prime 1 = 2252 + � � � .

The twist has order

4 times prime 2 = 2253 �
� � � .

For = 358990:

One prime is 2252 �
� � � ,

so user’s secret key
� 2254 + 8 0 � 1 � � � � � 2251 � 1

could be 8 times that prime.

Extremely unlikely,

but annoys implementors,

so reject this .

Reject unless curve and twist

orders are 4 � prime � 8 � prime .

Montgomery shape forces 4;

characteristic in 4Z + 1 forces 4 � 8.

For = 486662: Curve has order

8 times prime 1 = 2252 + � � � .

The twist has order

4 times prime 2 = 2253 �
� � � .

For = 358990:

One prime is 2252 �
� � � ,

so user’s secret key
� 2254 + 8 0 � 1 � � � � � 2251 � 1

could be 8 times that prime.

Extremely unlikely,

but annoys implementors,

so reject this .

Note on comparing curves

and comparing coordinate systems:

Count fp ops, not field ops!

Otherwise you make bad choices.

Reality: mult by small constant

is as expensive as several adds.

Reality: square-to-multiply ratio

is 2 3 for this field, not 4 5.

Reality: � 2 + 2 + � 2 is

faster than (� 2 � 2 ��� 2).

For = 358990:

One prime is 2252 �
� � � ,

so user’s secret key
� 2254 + 8 0 � 1 � � � � � 2251 � 1

could be 8 times that prime.

Extremely unlikely,

but annoys implementors,

so reject this .

Note on comparing curves

and comparing coordinate systems:

Count fp ops, not field ops!

Otherwise you make bad choices.

Reality: mult by small constant

is as expensive as several adds.

Reality: square-to-multiply ratio

is 2 3 for this field, not 4 5.

Reality: � 2 + 2 + � 2 is

faster than (� 2 � 2 ��� 2).

For = 358990:

One prime is 2252 �
� � � ,

so user’s secret key
� 2254 + 8 0 � 1 � � � � � 2251 � 1

could be 8 times that prime.

Extremely unlikely,

but annoys implementors,

so reject this .

Note on comparing curves

and comparing coordinate systems:

Count fp ops, not field ops!

Otherwise you make bad choices.

Reality: mult by small constant

is as expensive as several adds.

Reality: square-to-multiply ratio

is 2 3 for this field, not 4 5.

Reality: � 2 + 2 + � 2 is

faster than (� 2 � 2 ��� 2).

How was the key range chosen?

Public key for secret key �

is � -coordinate of � th multiple

of standard base point (9 � � � �).

Base-point order is 1 2252,

so uniform random � in

2251 + 0 � 1 � 2 � � � � � 2251 � 1

produces almost exactly uniform

random public key from

among 2251 possibilities.

The addition of 2251 avoids

and avoids timing attacks.

Note on comparing curves

and comparing coordinate systems:

Count fp ops, not field ops!

Otherwise you make bad choices.

Reality: mult by small constant

is as expensive as several adds.

Reality: square-to-multiply ratio

is 2 3 for this field, not 4 5.

Reality: � 2 + 2 + � 2 is

faster than (� 2 � 2 ��� 2).

How was the key range chosen?

Public key for secret key �

is � -coordinate of � th multiple

of standard base point (9 � � � �).

Base-point order is 1 2252,

so uniform random � in

2251 + 0 � 1 � 2 � � � � � 2251 � 1

produces almost exactly uniform

random public key from

among 2251 possibilities.

The addition of 2251 avoids

and avoids timing attacks.

Note on comparing curves

and comparing coordinate systems:

Count fp ops, not field ops!

Otherwise you make bad choices.

Reality: mult by small constant

is as expensive as several adds.

Reality: square-to-multiply ratio

is 2 3 for this field, not 4 5.

Reality: � 2 + 2 + � 2 is

faster than (� 2 � 2 ��� 2).

How was the key range chosen?

Public key for secret key �

is � -coordinate of � th multiple

of standard base point (9 � � � �).

Base-point order is 1 2252,

so uniform random � in

2251 + 0 � 1 � 2 � � � � � 2251 � 1

produces almost exactly uniform

random public key from

among 2251 possibilities.

The addition of 2251 avoids

and avoids timing attacks.

Miller, CRYPTO ’85:

“For the key exchange � � �

only the � -coordinate needs to be

transmitted. The formulas for

multiples of a point cited in the

first section make it clear that the

� -coordinate of a multiple depends

only on the � -coordinate of the

original point.”

This is the compression method I

use. No trouble from “point

compression” patent 6141420 filed

1994.07.29.

How was the key range chosen?

Public key for secret key �

is � -coordinate of � th multiple

of standard base point (9 � � � �).

Base-point order is 1 2252,

so uniform random � in

2251 + 0 � 1 � 2 � � � � � 2251 � 1

produces almost exactly uniform

random public key from

among 2251 possibilities.

The addition of 2251 avoids

and avoids timing attacks.

Miller, CRYPTO ’85:

“For the key exchange � � �

only the � -coordinate needs to be

transmitted. The formulas for

multiples of a point cited in the

first section make it clear that the

� -coordinate of a multiple depends

only on the � -coordinate of the

original point.”

This is the compression method I

use. No trouble from “point

compression” patent 6141420 filed

1994.07.29.

How was the key range chosen?

Public key for secret key �

is � -coordinate of � th multiple

of standard base point (9 � � � �).

Base-point order is 1 2252,

so uniform random � in

2251 + 0 � 1 � 2 � � � � � 2251 � 1

produces almost exactly uniform

random public key from

among 2251 possibilities.

The addition of 2251 avoids

and avoids timing attacks.

Miller, CRYPTO ’85:

“For the key exchange � � �

only the � -coordinate needs to be

transmitted. The formulas for

multiples of a point cited in the

first section make it clear that the

� -coordinate of a multiple depends

only on the � -coordinate of the

original point.”

This is the compression method I

use. No trouble from “point

compression” patent 6141420 filed

1994.07.29.

Insert factor of 8 into �

in case (� � � �) is not actually

in this group of order 1.

Three possibilities for 8(� � � �):

, output as 0;

or a nontrivial point

in the desired prime group;

or a nontrivial point

in the twist prime group.

Don’t spend time

“validating” , i.e.,

checking it’s in desired group.

Miller, CRYPTO ’85:

“For the key exchange � � �

only the � -coordinate needs to be

transmitted. The formulas for

multiples of a point cited in the

first section make it clear that the

� -coordinate of a multiple depends

only on the � -coordinate of the

original point.”

This is the compression method I

use. No trouble from “point

compression” patent 6141420 filed

1994.07.29.

Insert factor of 8 into �

in case (� � � �) is not actually

in this group of order 1.

Three possibilities for 8(� � � �):

, output as 0;

or a nontrivial point

in the desired prime group;

or a nontrivial point

in the twist prime group.

Don’t spend time

“validating” , i.e.,

checking it’s in desired group.

Miller, CRYPTO ’85:

“For the key exchange � � �

only the � -coordinate needs to be

transmitted. The formulas for

multiples of a point cited in the

first section make it clear that the

� -coordinate of a multiple depends

only on the � -coordinate of the

original point.”

This is the compression method I

use. No trouble from “point

compression” patent 6141420 filed

1994.07.29.

Insert factor of 8 into �

in case (� � � �) is not actually

in this group of order 1.

Three possibilities for 8(� � � �):

, output as 0;

or a nontrivial point

in the desired prime group;

or a nontrivial point

in the twist prime group.

Don’t spend time

“validating” , i.e.,

checking it’s in desired group.

Even if attacker were given

same � times point on twist,

would still need to break

hash-Diffie-Hellman for product

of these two prime groups.

For uniform random exponent,

provably requires breaking

at least one of the prime groups.

Curve and twist both seem secure.

No known way to exploit

limited exponent range.

Often used in Diffie-Hellman

for multiplicative group.

Insert factor of 8 into �

in case (� � � �) is not actually

in this group of order 1.

Three possibilities for 8(� � � �):

, output as 0;

or a nontrivial point

in the desired prime group;

or a nontrivial point

in the twist prime group.

Don’t spend time

“validating” , i.e.,

checking it’s in desired group.

Even if attacker were given

same � times point on twist,

would still need to break

hash-Diffie-Hellman for product

of these two prime groups.

For uniform random exponent,

provably requires breaking

at least one of the prime groups.

Curve and twist both seem secure.

No known way to exploit

limited exponent range.

Often used in Diffie-Hellman

for multiplicative group.

Insert factor of 8 into �

in case (� � � �) is not actually

in this group of order 1.

Three possibilities for 8(� � � �):

, output as 0;

or a nontrivial point

in the desired prime group;

or a nontrivial point

in the twist prime group.

Don’t spend time

“validating” , i.e.,

checking it’s in desired group.

Even if attacker were given

same � times point on twist,

would still need to break

hash-Diffie-Hellman for product

of these two prime groups.

For uniform random exponent,

provably requires breaking

at least one of the prime groups.

Curve and twist both seem secure.

No known way to exploit

limited exponent range.

Often used in Diffie-Hellman

for multiplicative group.

Bernstein, sci.crypt, 2001.11.09:

“You can happily skip both the

transmission and the square root.

In fact, if both the curve and its

twist have nearly prime order, then

you can even skip square testing.”

I use a curve of this type.

No trouble from rumored new

“public-key validation” patent

filed 2003.

Even if attacker were given

same � times point on twist,

would still need to break

hash-Diffie-Hellman for product

of these two prime groups.

For uniform random exponent,

provably requires breaking

at least one of the prime groups.

Curve and twist both seem secure.

No known way to exploit

limited exponent range.

Often used in Diffie-Hellman

for multiplicative group.

Bernstein, sci.crypt, 2001.11.09:

“You can happily skip both the

transmission and the square root.

In fact, if both the curve and its

twist have nearly prime order, then

you can even skip square testing.”

I use a curve of this type.

No trouble from rumored new

“public-key validation” patent

filed 2003.

Even if attacker were given

same � times point on twist,

would still need to break

hash-Diffie-Hellman for product

of these two prime groups.

For uniform random exponent,

provably requires breaking

at least one of the prime groups.

Curve and twist both seem secure.

No known way to exploit

limited exponent range.

Often used in Diffie-Hellman

for multiplicative group.

Bernstein, sci.crypt, 2001.11.09:

“You can happily skip both the

transmission and the square root.

In fact, if both the curve and its

twist have nearly prime order, then

you can even skip square testing.”

I use a curve of this type.

No trouble from rumored new

“public-key validation” patent

filed 2003.

How was the software built?

Common phenomenon:

Write fp op sequence in C.

Feed it to C compiler

to produce machine language.

Observe that cycles fp ops

is much larger than 1:

sometimes 5 or more!

Have faith. Don’t accept 1 � 1.

Understand and eliminate

non-fp-op cycles.

(I have more work to do here for

Athlon et al. Expect speedups.)

Bernstein, sci.crypt, 2001.11.09:

“You can happily skip both the

transmission and the square root.

In fact, if both the curve and its

twist have nearly prime order, then

you can even skip square testing.”

I use a curve of this type.

No trouble from rumored new

“public-key validation” patent

filed 2003.

How was the software built?

Common phenomenon:

Write fp op sequence in C.

Feed it to C compiler

to produce machine language.

Observe that cycles fp ops

is much larger than 1:

sometimes 5 or more!

Have faith. Don’t accept 1 � 1.

Understand and eliminate

non-fp-op cycles.

(I have more work to do here for

Athlon et al. Expect speedups.)

Bernstein, sci.crypt, 2001.11.09:

“You can happily skip both the

transmission and the square root.

In fact, if both the curve and its

twist have nearly prime order, then

you can even skip square testing.”

I use a curve of this type.

No trouble from rumored new

“public-key validation” patent

filed 2003.

How was the software built?

Common phenomenon:

Write fp op sequence in C.

Feed it to C compiler

to produce machine language.

Observe that cycles fp ops

is much larger than 1:

sometimes 5 or more!

Have faith. Don’t accept 1 � 1.

Understand and eliminate

non-fp-op cycles.

(I have more work to do here for

Athlon et al. Expect speedups.)

Some important delays:

� 3-cycle “load” latency,

copying data from “cache” to

“register” for arithmetic.

Only 8 registers.
� 3-cycle fp add latency.
� 5-cycle fp mult latency.

An op waits if its inputs

aren’t ready. CPU has some

ability to reorder ops, but

uses greedy algorithm; suboptimal.

How was the software built?

Common phenomenon:

Write fp op sequence in C.

Feed it to C compiler

to produce machine language.

Observe that cycles fp ops

is much larger than 1:

sometimes 5 or more!

Have faith. Don’t accept 1 � 1.

Understand and eliminate

non-fp-op cycles.

(I have more work to do here for

Athlon et al. Expect speedups.)

Some important delays:

� 3-cycle “load” latency,

copying data from “cache” to

“register” for arithmetic.

Only 8 registers.
� 3-cycle fp add latency.
� 5-cycle fp mult latency.

An op waits if its inputs

aren’t ready. CPU has some

ability to reorder ops, but

uses greedy algorithm; suboptimal.

How was the software built?

Common phenomenon:

Write fp op sequence in C.

Feed it to C compiler

to produce machine language.

Observe that cycles fp ops

is much larger than 1:

sometimes 5 or more!

Have faith. Don’t accept 1 � 1.

Understand and eliminate

non-fp-op cycles.

(I have more work to do here for

Athlon et al. Expect speedups.)

Some important delays:

� 3-cycle “load” latency,

copying data from “cache” to

“register” for arithmetic.

Only 8 registers.
� 3-cycle fp add latency.
� 5-cycle fp mult latency.

An op waits if its inputs

aren’t ready. CPU has some

ability to reorder ops, but

uses greedy algorithm; suboptimal.

Can’t rely on C compiler

to sensibly permute fp ops.

Sometimes � � + ;

� � + � ; � � + is

a sequence of exact fp adds

best done as, e.g., � + ;
� � + � ; � � + � .

But sometimes � � + �

is a non-associative

deliberately rounded fp add!

The C language has no way

to express this distinction.

Some important delays:

� 3-cycle “load” latency,

copying data from “cache” to

“register” for arithmetic.

Only 8 registers.
� 3-cycle fp add latency.
� 5-cycle fp mult latency.

An op waits if its inputs

aren’t ready. CPU has some

ability to reorder ops, but

uses greedy algorithm; suboptimal.

Can’t rely on C compiler

to sensibly permute fp ops.

Sometimes � � + ;

� � + � ; � � + is

a sequence of exact fp adds

best done as, e.g., � + ;
� � + � ; � � + � .

But sometimes � � + �

is a non-associative

deliberately rounded fp add!

The C language has no way

to express this distinction.

Some important delays:

� 3-cycle “load” latency,

copying data from “cache” to

“register” for arithmetic.

Only 8 registers.
� 3-cycle fp add latency.
� 5-cycle fp mult latency.

An op waits if its inputs

aren’t ready. CPU has some

ability to reorder ops, but

uses greedy algorithm; suboptimal.

Can’t rely on C compiler

to sensibly permute fp ops.

Sometimes � � + ;

� � + � ; � � + is

a sequence of exact fp adds

best done as, e.g., � + ;
� � + � ; � � + � .

But sometimes � � + �

is a non-associative

deliberately rounded fp add!

The C language has no way

to express this distinction.

Curve25519 implementation

is actually in qhasm,

new programming language

for high-speed computations.

Language allows declaration

and propagation of fp ranges;

guided register allocation; et al.

Lets me write desired code

with much less human time than

traditional asm and C compiler.

Have also used for fast AES,

fast Poly1305, fast Salsa20, etc.

Can’t rely on C compiler

to sensibly permute fp ops.

Sometimes � � + ;

� � + � ; � � + is

a sequence of exact fp adds

best done as, e.g., � + ;
� � + � ; � � + � .

But sometimes � � + �

is a non-associative

deliberately rounded fp add!

The C language has no way

to express this distinction.

Curve25519 implementation

is actually in qhasm,

new programming language

for high-speed computations.

Language allows declaration

and propagation of fp ranges;

guided register allocation; et al.

Lets me write desired code

with much less human time than

traditional asm and C compiler.

Have also used for fast AES,

fast Poly1305, fast Salsa20, etc.

Can’t rely on C compiler

to sensibly permute fp ops.

Sometimes � � + ;

� � + � ; � � + is

a sequence of exact fp adds

best done as, e.g., � + ;
� � + � ; � � + � .

But sometimes � � + �

is a non-associative

deliberately rounded fp add!

The C language has no way

to express this distinction.

Curve25519 implementation

is actually in qhasm,

new programming language

for high-speed computations.

Language allows declaration

and propagation of fp ranges;

guided register allocation; et al.

Lets me write desired code

with much less human time than

traditional asm and C compiler.

Have also used for fast AES,

fast Poly1305, fast Salsa20, etc.

What’s next?

Culmination of extensive work

on eliminating field mults for

genus-2 hyperelliptic curves:

25 mults per bit. Gaudry,

eprint.iacr.org/2005/314

Half-size prime: e.g., 2127 � 1.

Select curve to make some

mults easier, like choosing .

Should count fp ops instead.

Prediction: this will beat genus 1.

Curve25519 implementation

is actually in qhasm,

new programming language

for high-speed computations.

Language allows declaration

and propagation of fp ranges;

guided register allocation; et al.

Lets me write desired code

with much less human time than

traditional asm and C compiler.

Have also used for fast AES,

fast Poly1305, fast Salsa20, etc.

What’s next?

Culmination of extensive work

on eliminating field mults for

genus-2 hyperelliptic curves:

25 mults per bit. Gaudry,

eprint.iacr.org/2005/314

Half-size prime: e.g., 2127 � 1.

Select curve to make some

mults easier, like choosing .

Should count fp ops instead.

Prediction: this will beat genus 1.

