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640838 Pentium M cycles

to compute a 32-byte secret
shared by Dan and Tanja,
given Dan’s 32-byte secret key n

and Tanja’'s 32-byte public key K.
All known attacks: > 2128 cycles.

This is the new speed record
for high-security Ditfie-Hellman.

Encrypt and authenticate messages
using hash of shared secret as key.

Diffie-Hellman 1s the bottleneck

if total message length is short.
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640838 Pentium M cycles

to compute a 32-byte secret
shared by Dan and Tanja,

given Dan’s 32-byte secret key n

and Tanja’'s 32-byte public key K.
All known attacks: > 2128 cycles.

This is the new speed record
for high-security Ditfie-Hellman.

Encrypt and authenticate messages
using hash of shared secret as key.

Diffie-Hellman i1s the bottleneck

if total message length is short.

640838 Pentium M (695) cycles

to compute z-coordinate of nth
multiple of (K,...) on Curve25519,
given K € {O, 1. ... 2290 _ 1} and
n € 2%% +8{0,1,...,2%1 — 1},

Curve25519 is the elliptic curve
y? = z3 4 486662z° +
mod the prime 22°° — 19.

624786 Athlon (622) cycles;
832457 Pentium Il (686) cycles;
957904 Pentium 4 (f12) cycles.

| anticipate similar cycle counts
for UltraSPARC, PowerPC, etc.
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to compute z-coordinate of nth

multiple of (K,...) on Curve25519,

given K € {O, 1. ... 2290 _ 1} and
n € 2%% +8{0,1,...,2%1 — 1},

Curve25519 is the elliptic curve
y? = z3 4 486662z° +
mod the prime 22°° — 19

624786 Athlon (622) cycles;
832457 Pentium Il (686) cycles;
957904 Pentium 4 (f12) cycles.

| anticipate similar cycle counts
for UltraSPARC, PowerPC, etc.
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640838 Pentium M (695) cycles Immune to timing attacks,

to compute z-coordinate of nth including cache-timing attacks,
multiple of (K,...) on Curve25519, including hyperthreading attacks.
given K € {O, 1. ... 2290 _ 1} and No data-dependent branches;

n € 2224 4 8{0, 1,...,2%1 _ 1}. no data-dependent indexing.
Curve25519 is the elliptic curve Software is in public domain.

y? = 3 4 486662z° + 16 kilobytes when compiled.

mod the prime 22°° — 19 cr.yp.to/ecdh.html

624786 Athlon (622) cycles; No known patent problems.

832457 Pentium Il (686) cycles;
957904 Pentium 4 (f12) cycles.

| anticipate similar cycle counts
for UltraSPARC, PowerPC, etc.

For comparison, Brown et al.:

much smaller prime, 2192 264 1;

(80000 PII cycles; y given;
no timing-attack protection.
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Immune to timing attacks,

including cache-timing attacks,

including hyperthreading attacks.
No data-dependent branches;
no data-dependent indexing.

Software is in public domain.
16 kilobytes when compiled.
cr.yp.to/ecdh.html

No known patent problems.

For comparison, Brown et al.:
much smaller prime, 2192 264 _ 1;

(80000 PII cycles; y given;
no timing-attack protection.

Where are the cyc

Focus today on Pe

Fastest arithmetic
uses floating-point

fp adds, fp subs, f

Each Pentium M «
<1 fp op.

Point multiplicatic
589825 fp ops; ~

Understand cycle «
by simply counting



Immune to timing attacks,

including cache-timing attacks,

including hyperthreading attacks.
No data-dependent branches;
no data-dependent indexing.

Software is in public domain.
16 kilobytes when compiled.
cr.yp.to/ecdh.html

No known patent problems.

For comparison, Brown et al.:
much smaller prime, 2192 264 _ 1;

780000 PII cycles; y given;
no timing-attack protection.

Where are the cycles going?

Focus today on Pentium M.

Fastest arithmetic on Pentium M
uses floating-point operations:

fp adds, fp subs, fp mults.

Each Pentium M cycle does
<1 fp op.

Point multiplication: 640838 cycles.
589825 fp ops; ~ 0.92 per cycle.

Understand cycle counts fairly well
by simply counting fp ops.
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Where are the cycles going?

Focus today on Pentium M.

Fastest arithmetic on Pentium M
uses floating-point operations:

fp adds, fp subs, fp mults.

Each Pentium M cycle does
<1 fp op.

Point multiplication: 640838 cycles.

589825 fp ops; ~ 0.92 per cycle.

Understand cycle counts fairly well
by simply counting fp ops.
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Where are the cycles going?

Focus today on Pentium M.

Fastest arithmetic on Pentium M
uses floating-point operations:

fp adds, fp subs, fp mults.

Each Pentium M cycle does
<1 fp op.

Point multiplication: 640838 cycles.

589825 fp ops; ~ 0.92 per cycle.

Understand cycle counts fairly well
by simply counting fp ops.

Avoiding all time variability
to stop timing attacks:

1. For 6 € {0,1}, compute z
as bz[1] + (1 — b)z[0] or simi

0]

dar.

Avoids data-dependent indexing.

Costs 36210 fp ops (6%).

2. Compute final reciprocal
by Fermat, not extended Euc
Avoids data-dependent branc

id.

ning.

3. Don't branch for remainders.

Allow non-least remainders.
No cost—this saves time!
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Avoiding all time variability
to stop timing attacks:

1. For 6 € {0,1}, compute z
as bz[1] + (1 — b)z[0] or simi

0]

dar.

Avoids data-dependent indexing.

Costs 36210 fp ops (6%).

2. Compute final reciprocal
by Fermat, not extended Euc
Avolids data-dependent branc

id.

ning.

3. Don't branch for remainders.

Allow non-least remainders.

No cost—this saves timel

Main loop: 545700 fp ops (92.5%).
2140 times 255 iterations.

Reciprocal: 43821 fp ops (7.4%).
41148 = 254 - 162 for 254 squarings;
2073 = 11 - 243 for 11 more mults.

Additional work: 304 fp ops.

Inside one main-loop iteration:
80 = 8 - 10 for 8 adds/subs;

55 for mult by 121665;

0648 = 4 - 162 for 4 squarings;
1215 =5 - 243 for 5 more mults;
142 for bx[1] + (1 — b)z[0] etc.
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Main loop: 545700 fp ops (92.5%).
2140 times 255 iterations.

Reciprocal: 43821 fp ops (7.4%).

41148 = 254 - 162 for 254 squarings;

2673 = 11 - 243 for 11 more mults.
Additional work: 304 fp ops.

Inside one main-loop iteration:
80 = 8- 10 for 8 adds/subs;

55 for mult by 121665;

048 = 4 - 162 for 4 squarings;
1215 =5 - 243 for 5 more mults;
142 for bx[1] + (1 — b)z[0] etc.
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as a sum of 10 fp
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Main loop: 545700 fp ops (92.5%).
2140 times 255 iterations.

Reciprocal: 43821 fp ops (7.4%).

41148 = 254 - 162 for 254 squarings;

20673 = 11 - 243 for 11 more mults.
Additional work: 304 fp ops.

Inside one main-loop iteration:
80 = 8- 10 for 8 adds/subs;

55 for mult by 121665;

0648 = 4 - 162 for 4 squarings;
1215 =5 - 243 for 5 more mults;
142 for bx[1] + (1 — b)z[0] etc.

An integer mod 22°° — 19 is

represented in radix 22°-

as a sum of 10 fp numbers
in specified ranges.

Add/sub: 10 fp adds/subs.
Delay reductions and carries!

Mult: poly mult using

102 fp mults, 92 fp adds;

reduce using 9 fp mults, 9 fp adds;
carry 11 times, each 4 fp adds;
overall 2-10% +4 .10+ 3 fp ops.

Squaring: start with 9 fp doublings;
then eliminate 92 + 9 fp ops:
overall 1-10% +6-10 + 2 fp ops.
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An integer mod 22°° — 19 is

represented in radix 22°-2
as a sum of 10 fp numbers
in specified ranges.

Add/sub: 10 fp adds/subs.
Delay reductions and carries!

Mult: poly mult using

102 fp mults, 92 fp adds;

reduce using 9 fp mults, 9 fp adds;
carry 11 times, each 4 fp adds;
overall 2-10% +4 10+ 3 fp ops.

Squaring: start with 9 fp doublings;

then eliminate 92 + 9 fp ops:
overall 1-10% +6-10 + 2 fp ops.
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An integer mod 22°° — 19 is

represented in radix 22°-
as a sum of 10 fp numbers
in specified ranges.

Add/sub: 10 fp adds/subs.
Delay reductions and carries!

Mult: poly mult using

102 fp mults, 92 fp adds;

reduce using 9 fp mults, 9 fp adds;
carry 11 times, each 4 fp adds;
overall 2-10% +4 .10+ 3 fp ops.

Squaring: start with 9 fp doublings;

then eliminate 92 + 9 fp ops:
overall 1-10% +6-10 + 2 fp ops.

How was the prime chosen?

Use prime close to power of 2
to save time in field operations.

Also reduces NFS exponent,

so would need larger prime for
traditional discrete-log systems;
but doesn’t seem to affect ECDL.

Use prime not far below 232%
to avoid wasting bandwidth.

Comfortable security, £ = 8:
2293 4 30, 2293 4 51, 2% 1 79,
2255 _ 31, 225 _ 19 225 4 05,
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How was the prime chosen?

Use prime close to power of 2
to save time in field operations.

Also reduces NFS exponent,
so would need larger prime for
traditional discrete-log systems;

but doesn’t seem to affect ECDL.

Use prime not far below 232%
to avoid wasting bandwidth.
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How was the prime chosen?

Use prime close to power of 2
to save time in field operations.

Also reduces NFS exponent,
so would need larger prime for
traditional discrete-log systems;

but doesn’t seem to affect ECDL.

Use prime not far below 232%
to avoid wasting bandwidth.

Comfortable security, £ = 8:
2293 4 30, 2293 4 51, 2% 1 79,
2255 _ 31, 225 _ 19 225 4 05

Bender, Castagnoli, CRYPTO '89:

2127 1 24933 is prime.

... For this curve which is
convenient in computer arithmetic
we also give ..."

| use the prime 2%°° — 19,

convenient for the same reasons.
No trouble from “shift and add"”
patent 5159632 filed 1991.09.17.
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Bender, Castagnoli, CRYPTO '89:

2127 1 24933 is prime.

... For this curve which is
convenient in computer arithmetic
we also give ..."

| use the prime 2%°° — 19,
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No trouble from “shift and add”
patent 5159632 filed 1991.09.17.
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Bender, Castagnoli, CRYPTO '89: How was the curve chosen?

2127 1 24933 is prime. Use Montgomery shape

... For this curve which is 2 =1z3+ Az? + 1

convenient in computer arithmetic to save time In curve operations
we also give ..." and to avoid square roots.

| use the prime 22°° — 19, Choose (A — 2)/4 as small integer
convenient for the same reasons. to save time In curve operations.

No trouble from “shift and add”

| Montgomery's recursion: =1 = K;
patent 5159632 filed 1991.09.17.

z1=1; o, = (:c%n — zfn)2;
Zom = 4mmzm(:c72n + AT 2m +z$n);
Lo2m+1 = 4($m$m+1 — zmzm+1)2;

Zom i1 = HTmZmi1—2ZmTm+1)°K;
then n(K,...) = (zn/2n,...).
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How was the curve chosen?

Use Montgomery shape

y> =23 + Az’ 4

to save time In curve operations
and to avoid square roots.

Choose (A — 2)/4 as small integer
to save time In curve operations.

Montgomery's recursion: =1 = K;
. 2 2 \2.
z1 =1, Top = (xm — zm) '

Zom = 4mmzm(:c72n + AT 2 + z,%n);

2.
Tomi1 = HTmTmal — ZmZmr1)”;

2 4
2om+1 = HTmzmi1 —2mTm+1)° K,

then n(K,...) = (zn/2n,...).




How was the curve chosen?

Use Montgomery shape

y> =23 + Az’ 4

to save time In curve operations
and to avoid square roots.

Choose (A — 2)/4 as small integer
to save time In curve operations.

Montgomery's recursion: =1 = K;
. 2 2 \2.
z1 =1, Top = (xm — zm) '

Zom = 4mmzm(:c72n + AT 2 + z,%n);

2.
Tomi1 = HTmTmal — ZmZmr1)”;

2 4
Zom+1 = HTmzmi1 —2mTm+1)° K,

then n(K,...) = (zn/2n,...).
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Z22m+1

Reject A unless curve and twist
orders are {4 - prime, 8 - prime}.
Montgomery shape forces 4;

characteristic in 4Z + 1 forces 4, 8.

For A = 486662: Curve has order
8 times prime p; = 222 + .- ..
The twist has order

4 times prime py = 2293 _ ...
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Montgomery shape forces 4;

characteristic in 4Z + 1 forces 4, 8.
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Reject A unless curve and twist
orders are {4 - prime, 8 - prime}.
Montgomery shape forces 4;

characteristic in 4Z + 1 forces 4, 8.

For A = 486662: Curve has order
8 times prime p; = 2222 + .- ..
The twist has order

4 times prime py = 2293 _ ...

For A = 358990:

One prime is 2222 — ...

SO user's secret key
n€2%*4+8{0,1,...,2°1 —1}
could be 8 times that prime.
Extremely unlikely,

but annoys implementors,

so reject this A.



rve and twist For A = 358990: Note on comparin;

ne, 8 - prime}. One prime is 2222 — ..., and comparing cos
e forces 4; so user's secret key Count fp ops, not
7 + 1 forces 4, 8. n € 22°% 4 8{0, 1,...,2%1 _ 1} Otherwise you ma

could be 8 times that prime.

Curve has order Reality: mult by s

Extremely unlikely, IS as expensive as

but annoys implementors,

_ 9253 _ so reject this A. Reality: square-to-
| is 2/3 for this fielc
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For A = 353990: Note on comparing curves

One prime is 22°2 — ..., and comparing coordinate systems:
so user's secret key Count fp ops, not field ops!
n € 22°% 4 8{0, 1,...,2%1 _ 1} Otherwise you make bad choices.

could be 8 times that prime. .
Reality: mult by small constant

Extremely unlikely, . .
Y Y IS as expensive as several adds.

but annoys implementors,
so reject this A. Reality: square-to-multiply ratio
is 2/3 for this field, not 4/5.

Reality: a? + 6% + ¢? is
faster than (a2, b c2).
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Note on comparing curves

and comparing coordinate systems:

Count fp ops, not field ops!
Otherwise you make bad choices.

Reality: mult by small constant
IS as expensive as several adds.

Reality: square-to-multiply ratio
is 2/3 for this field, not 4/5.
Reality: a? + 6% + ¢ is

faster than (a2, b c2).
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Note on comparing curves

and comparing coordinate systems:

Count fp ops, not field ops!
Otherwise you make bad choices.

Reality: mult by small constant
IS as expensive as several adds.

Reality: square-to-multiply ratio
is 2/3 for this field, not 4/5.
Reality: a? + 6% + ¢® is

faster than (a2, b c2).

How was the key range chosen?

Public key for secret key n
is z-coordinate of nth multiple
of standard base point (9, ...).

Base-point order Is p1 ~ 2252,
so uniform random 7 in

2251 1. {0,1,2,...,2%t —1}
produces almost exactly uniform

random public key from

2251

among ~ possibilities.

The addition of 22°1 avoids oo
and avoids timing attacks.
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How was the key range chosen?

Public key for secret key n
is z-coordinate of nth multiple
of standard base point (9, ...).

Base-point order Is p1 ~ 2252,
so uniform random 7 in

2251 1 £0,1,2,...,2%°1 — 1}
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random public key from
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How was the key range chosen?

Public key for secret key n
is z-coordinate of nth multiple
of standard base point (9, ...).

Base-point order Is p1 ~ 2252,
so uniform random 7 in

2251 1. {0,1,2,...,2%t —1}
produces almost exactly uniform

random public key from

2251

among ~ possibilities.

The addition of 22°1 avoids oo
and avoids timing attacks.

Miller, CRYPTO '85:

“For the key exchange . ..

only the z-coordinate needs to be
transmitted. The formulas for
multiples of a point cited in the
first section make it clear that the
z-coordinate of a multiple depends
only on the z-coordinate of the
original point.”

This 1s the compression method |
use. No trouble from “point
compression” patent 6141420 filed
1994.07.29.
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Miller, CRYPTO '85:

"For the key exchange . ..

only the z-coordinate needs to be
transmitted. The formulas for
multiples of a point cited in the
first section make it clear that the
z-coordinate of a multiple depends
only on the z-coordinate of the
original point.”

This 1s the compression method |
use. No trouble from “point
compression” patent 6141420 filed
1994.07.29.
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Miller, CRYPTO '85:

"For the key exchange . ..

only the z-coordinate needs to be

transmitted. The formulas for

multiples of a

point cited In the

first section make it clear that the

z-coordinate of a multiple depends

only on the z-coordinate of the

original point.’

This Is the compression method |

use. No troub
compression”

1994.07.29.

e from “point

vatent 6141420 filed

Insert factor of 8 into n
in case (K, ...) is not actually
in this group of order p;.

Three possibilities for 8( K, .. .):
o0, output as O;

or a nontrivial point

in the desired prime group:;
or a nontrivial point

in the twist prime group.

Don't spend time
“validating” K, i.e.,
checking it's in desired group.
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Insert factor of 8 into n
in case (K, ...) is not actually
in this group of order p;.

Three possibilities for 8( K, .. .):

00, output as O;

or a nontrivial point

in the desired prime group:;
or a nontrivial point

in the twist prime group.

Don't spend time
“validating” K, i.e.,
checking it's in desired group.

Even if attacker were given
same n times point on twist,
would still need to break
hash-Diffie-Hellman for product

of these two prime groups.

For uniform random exponent,
provably requires breaking

at least one of the prime groups.
Curve and twist both seem secure.

No known way to exploit
limited exponent range.
Often used in Diffie-Hellman
for multiplicative group.
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Even if attacker were given
same n times point on twist,
would still need to break
hash-Diffie-Hellman for product

of these two prime groups.

For uniform random exponent,
provably requires breaking
at least one of the prime groups.

Curve and twist both seem secure.

No known way to exploit
limited exponent range.
Often used in Diffie-Hellman
for multiplicative group.

Bernstein, sci.crypt, 2001.11.09:

“You can happily skip both the y

transmission and the square root.

In fact, if both the curve and its

twist have nearly prime order, then

you

can even skip square testing.”

| use a curve of this type.

No trouble from rumored new
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olic-key validation” patent

filec

2003.
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Bernstein, sci.crypt, 2001.11.09:

“You can happily skip both the y
transmission and the square root.

In fact, if both the curve and its
twist have nearly prime order, then
you can even skip square testing.”

| use a curve of this type.
No trouble from rumored new

public-key validation” patent
filed 2003.

How was the software built?

Common phenomenon:

Write fp op sequence in C.
Feed it to C compiler

to produce machine language.
Observe that cycles/fp ops

Is much larger than 1:
sometimes 5 or more!

Have faith. Don't accept > 1.1.
Understand and eliminate
non-fp-op cycles.

(I have more work to do here for

Athlon et al. Expect speedups.)
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How was the software built? Some important delays:

Common phenomenon: e 3-cycle “load” latency,

Write fp op sequence in C. copying data from “cache” to
Feed it to C compiler “register” for arithmetic.

to produce machine language. Only 8 registers.

Observe that cycles/fp ops e 3-cycle fp add latency.

is much larger than 1: e b-cycle fp mult latency.

sometimes 5 or more! o
An op waits if its inputs

Have faith. Don't accept > 1.1. aren't ready. CPU has some
Understand and eliminate ability to reorder ops, but
non-fp-op cycles. uses greedy algorithm; suboptimal.

(I have more work to do here for

Athlon et al. Expect speedups.)
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copying data from “cache” to
“register’ for arithmetic.
Only 8 registers.

e 3-cycle fp add latency.
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An op waits if its inputs
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Some important delays:

e 3-cycle “load” latency,

copying data from “cache” to
“register’ for arithmetic.
Only 8 registers.

e 3-cycle fp add latency.

e b-cycle fp mult latency.

An op waits if its inputs

aren't ready. CPU has some
ability to reorder ops, but

uses greedy algorithm; suboptimal.

Can't rely on C compiler
to sensibly permute fp ops.

Sometimes r < a + b;
r<r+cr+<r+dis
a sequence of exact fp adds

best done as, e.g., 7 < b+ d;
S<—a—+¢C T T+S.

But sometimes r «— r + ¢
IS @ hon-assoclative
deliberately rounded fp add!

The C language has no way
to express this distinction.
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Can't rely on C compiler
to sensibly permute fp ops.

Sometimes r < a + b;
r<r+cr+<r+dis
a sequence of exact fp adds

best done as, e.g., 7 < b+ d;
S<—a—+¢C T T+S.

But sometimes r «— r + ¢
IS @ hon-assoclative
deliberately rounded fp add!

The C language has no way
to express this distinction.

Curve25519 implementation

Is actually in ghasm,

new programming language

for high-speed computations.

Language allows declaration

and propagation of fp ranges;
guided register allocation; et al.

Lets me write desired code

with much less human time than
traditional asm and C compiler.
Have also used for fast AES,
fast Poly1305, fast Salsa20, etc.
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Curve25519 implementation

Is actually in ghasm,

new programming language

for high-speed computations.

Language allows declaration

and propagation of fp ranges;

guided register allocation; et al.

| ets me write desired code

with much less human time than

traditional asm and C compiler.

Have a
fast Po

so used for fast AES,
y1305, fast Salsa20, etc.

What's next?

Culmination of extensive work
on eliminating field mults for
genus-2 hyperelliptic curves:
25 mults per bit. Gaudry,
eprint.iacr.org/2005/314

Half-size prime: e.g., 2127 — 1.
Select curve to make some
mults easier, like choosing A.

Should count fp ops instead.
Prediction: this will beat genus 1.



