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ABSTRACT. This paper compares 21 methods to distinguish prime numbers
from composite numbers. It answers the following questions for each method:
Does the method certify primality? Conjecturally certify primality? Certify
compositeness? Are certificates conjectured to exist for all inputs? Proven
to exist for all inputs? Found deterministically for all inputs? Is a certificate
verified in essentially linear time? Essentially quadratic time? Et cetera. Is a
certificate found immediately? In essentially linear time? Essentially quadratic
time? Et cetera. In brief, how does the method work? When and where was
the method published?

1. INTRODUCTION

This paper summarizes fourteen methods to prove that an integer is prime, three
additional methods to prove that an integer is prime if certain conjectures are true,
and four methods to prove that an integer is composite.

The table in Section 2 of this paper has one row for each method, with five
columns:

e “Method”: a brief summary of a theorem encapsulating the method. For
example, one method is “if n is not a b-prp, i.e., does not divide b™ —b, then
n is composite.” The target integer is always n. An auxiliary input, such
as b in this example, is called a certificate. This column includes various
credits, such as “1986 [39] Goldwasser Kilian” for a method published in
1986 in [39] by Goldwasser and Kilian. When a method is published by one
person with credit to another, the second person is named; for example,
Lenstra and Lenstra in [56, Section 5.10] published a primality-proving
method with credit to Shallit, so the table says “1990 [56, Section 5.10]
Shallit.”

o “Effect of certificate”: what the method tells you about the target integer n.
Either “proves primality” or “conjecturally certifies primality” or “proves
compositeness.” This column sometimes includes separate proof credits;
for example, the table says “1936 [46] Hasse” for the Goldwasser-Kilian
primality-proving method, because the primality proofs rely on a theorem
published by Hasse in 1936.

o “Certificate exists for”: which integers can be handled by the method.
Either “every prime” or “conjecturally every prime” or “every composite”
or “nearly every composite.”

e “Time to verify certificate”: how quickly one can check whether an auxiliary
input is a certificate for n. For example, (Ign)'*°M or (Ign)?T°™M) or
(1gn)©Uslelen)  This column sometimes includes separate credits for proofs
of, or improvements in, the speed of certificate verification; for example, the
table says “1969 [38] Goldfeld” for the Agrawal-Kayal-Saxena primality-
proving method, because the upper bound for certificate-verification time
relies on a theorem published by Goldfeld in 1969.

e “Time to find certificate,” at the same level of detail. The word “random”
indicates a certificate-finding algorithm that uses randomness. This column
sometimes includes separate credits; for example, the table says “1985 [86]
Schoof” for the Goldwasser-Kilian primality-proving method, because the
method finds certificates using an algorithm published by Schoof in 1985.
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Complexity measures. When I say “time” in this paper, I mean “time on a
2-tape Turing machine, using fast subroutines for arithmetic.”

A 2-tape Turing machine is a typical example of a conventional von Neumann
computer. Extra tapes, random access to memory, etc. often save time, but not
enough to matter at the level of detail of run times in this paper. I have followed
the (questionable) tradition of measuring time and ignoring space.

Fast subroutines for arithmetic are surveyed in my paper [17]. In particular,
integer multiplication, division, and gcd can be done in essentially linear time, as
shown by Toom in [90], Cook in [33, pages 81-86], and Knuth in [51] respectively.

Beware that the primality /compositeness literature often uses quadratic-time
subroutines for arithmetic—usually because the authors were writing before the
essentially-linear-time algorithms were known, but sometimes because the authors
inexplicably refused to take advantage of the essentially-linear-time algorithms. In
every case | have retroactively substituted essentially-linear-time algorithms.

Information presented in the chart. A compressed chart appears on the first
page of this paper, summarizing the results achieved by various methods. Thanks
to Eric Bach for suggesting that I include a chart.

The chart is, conceptually, three-dimensional. The first dimension indicates what
the certificates do—for example, prove primality—and how reliably the certificates
are found; the second dimension indicates how quickly certificates are found; the
third dimension indicates how quickly certificates are verified. Specifically:

(13

e In the outer labels (rc, dec, dpc, dp, rp, 7p), “p” means that certificates
prove primality; “c” means that certificates prove compositeness; “?” means
that certificates are conjectured to be found for every n (every prime n for
primality-proving methods, or every composite n for compositeness-proving
methods); “r” means that certificates are provably found for every n; “d”
means that certificates are provably deterministically found for every n.
Certificates not believed to exist for every n are not included in the chart;
certificates that are merely conjectured to imply primality are not included
in the chart.

e The row labels (o(1), 2+0(1), 4+0(1), 5+0(1), O(1), big) are proven upper
bounds for exponents in times to (provably deterministically, or provably
randomly, or conjecturally) find certificates.

e The column labels (140(1), 240(1), ..., 640(1), O(1), O(lglglgn), big) are
proven upper bounds for exponents in times to (provably deterministically)
verify certificates.

Each chart entry is the publication year for a method achieving that combination of
speed and results. For example, the entry 1992 at position (rp, O(1),3+0(1)) refers
to a method published in 1992 that proves primality of every prime n, provably finds
certificates (perhaps using randomness) in time (Ign)?™), and provably verifies
certificates (deterministically) in time (Ign)3t°(M): namely, the Adleman-Huang
method in [4] of proving primality with genus-2-hyperelliptic-curve factors.

Often one cares only about the total time to find and verify certificates. Chart
entries are separated by horizontal or vertical lines if their total times are different
at this level of detail. For example, 1990 at position (?p,4+o0(1),4+o0(1)) indicates
that a method published in 1990 is conjectured to find and verify a certificate of
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primality in total time (lgn)*T°(M); 2003 at position (?p,2+ o(1),4 + o(1)) has the
same total time (Ign)*+°(1); there is no line separating these entries in the chart.
Here are the methods shown in the chart:

e (dc,big, 1+ 0(1)) —oo, proving compositeness with factorization. Can also
be used to prove primality: (dpc,o(1),big). “PRIMES is in coNP” refers
to (dc, big, O(1)).

e (dp,big,3+40(1)) 1914 [78] Pocklington, proving primality with unit-group
factors. “PRIMES is in NP” refers to (dp, big, O(1)).

e (rc,2+0(1),240(1)) 1966 [9] Artjuhov, proving compositeness with Fermat.
“PRIMES is in coRP” refers to (rc, O(1),0(1)).

e (dpc,0(1),0(1glglgn)) 1983 [5] Adleman Pomerance Rumely (announced
in 1979), proving primality with unit-group factors.

e (7p,0O(1),3 4+ o(1)) 1986 [39] Goldwasser Kilian, proving primality with
elliptic-curve factors.

e (dp,big,2+40(1)) 1987 [80] Pomerance, proving primality with elliptic-curve
factors.

e (p,5+0(1),340(1)) 1988 [69] Atkin, proving primality with elliptic-curve
factors.

e (?p,4+0(1),3+0(1)) 1990 [56, Section 5.10] Shallit, proving primality with
elliptic-curve factors.

e (rp,O(1),3+0(1)) 1992 [4] Adleman Huang, proving primality with genus-
2-hyperelliptic-curve factors. “PRIMES is in RP” refers to (rp, O(1),O(1)).

e (dpc,0(1),0(1))—“PRIMES is in P”—2002 [6] Agrawal Kayal Saxena,
proving primality with combinatorics. Also (?7p,o(1),6 + o(1)).

e (rp,2+0(1),4 4+ o(1)) 2003 [18] Bernstein, proving primality with combi-
natorics.

e (dpc,0(1),6+0(1)) 2004 [44, Section 7] Lenstra Pomerance (announced in
2003.03), proving primality with combinatorics. Can also be used to prove
compositeness: (dc,6 + o(1),4 + o(1)).

The chart poses several challenges. For example, can we find an (rp, big, 1+0(1))
algorithm—an algorithm that verifies a certificate of primality in essentially linear
time? Similarly, can we find an (rc, O(1),1 4 o(1)) algorithm—an algorithm that
finds certificates of compositeness in polynomial time and verifies them in essentially
linear time? Can we find a (7p,3 + o(1),3 + o(1)) algorithm—an algorithm that
proves primality in, conjecturally, essentially cubic time?

Different perspectives. This paper discusses time at a particular level of detail—
not always enough detail to figure out which method is fastest. Is proving primality
with combinatorics faster than proving primality with elliptic-curve factors? To
answer this question, one needs to carry out a more detailed run-time analysis;
what this paper says is that the first method (provably) takes essentially quartic
time, and that the second method (conjecturally) takes essentially quartic time.
This paper’s viewpoint is ruthlessly asymptotic, considering only what happens
for extremely large values of n. For example, any constant is viewed as being better
than Iglglgn. But lglglgn is actually rather small for reasonable values of n. Is
proving primality with unit-group factors faster, for reasonable values of n, than
proving primality with elliptic-curve factors? The exponent bounds O(lglglgn)
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and 4 + o(1) are of no use in answering this question; one needs a much more
detailed run-time analysis.

Small values of n also raise interest in “non-uniform” algorithms: algorithms
that perform precomputations for a range of inputs n, with the precomputation
time measured separately. For example, a positive integer n below 24% is prime
if and only if it is a 2-sprp, 3-sprp, 5-sprp, 7-sprp, 11-sprp, 13-sprp, and 17-sprp;
Jaeschke in [49] proved this by a large computation. The test of [61, Theorem 2] is
somewhat less efficient but uses less precomputation; this test, in combination with
a large “pseudosquare” computation by Williams and Wooding using my algorithm
in [15, Section 4], now allows primes up to 21% to be quickly proven prime.

This paper focuses primarily on upper bounds for time. Some algorithms, for
some inputs, take much less time than the upper bounds indicate. For example, for
many primes n, Pocklington’s 1914 method finds a certificate of primality for n in
polynomial time and verifies the certificate in essentially quadratic time. This set of
primes n has been considerably expanded, thanks to an application of lattice-basis
reduction by Lenstra, Konyagin, Pomerance, Coppersmith, Howgrave-Graham, and
Nagaraj; see my exposition [19, Section 5], or the original papers [57], [52], and [47,
Section 5.5]. This information is absent from the chart in this paper, and is covered
only briefly in the table.

2. THE TABLE

Method Effect of Certificate exists for|Time to Time to find
certificate verify certificate
certificate
proving proves every composite n | (Ign)+°M) |very slow; but
compositeness |compositeness (1gn)°M for
with most n

factorization: if
b divides n and
1< b<nthenn
is composite

proving proves nearly every (Ign)?t°™ [random
compositeness |compositeness|composite n; (Ig n)2+°(1)
with Fermat: if however, there are

n is not a b-prp, infinitely many

i.e., does not composites n that

divide b™ — b, are all-b-prp (1994

then n is [7] Alford Granville

composite Pomerance)




2 [lgn] prime
numbers b, then
n seems to be
prime (folklore;
simpler variant:
1995 [61,
Theorem 2]
Lukes Patterson
Williams)
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Method Effect of Certificate| Time to Time to find
certificate exists for |verify certificate
certificate
if n is not a proves every (Ign)?t°M [random (Ign)2FToM)
b-sprp, i.e., does |compositeness composite (1976 [84] Rabin,
not divide any n independently 1980
of the most [67] Monier,
obvious factors independently 1982
of b — b, then n [11] Atkin Larson;
is composite inferior variant:
(1966 [9] 1976 [55] Lehmer,
Artjuhov) independently 1977
[89] Solovay
Strassen; other
variants: 1998 [42]
Grantham, 2001 [43]
Grantham, 2000 [73]
Miiller, 2001 [74]
Miiller, 2003 [34]
Damgard Frandsen)
conjecturally |conjecturally every (Ign)*+t°M |instant
testing certifies prime n
primality: if n |primality;
is a b-sprp for  |conjecture follows
every prime from GRH (1985
number b [13] Bach;
between 1 and (35 [lg n]2
[lg Mz, then »  |announced but
seems to be not proven 1979
prime (basic Oesterlé;
idea: 1975 [65] |O([lgn]?),
Miller) without explicit
O constant: 1952
[8] Ankeny, 1971
[68] Montgomery,
1978 [94] Vélu)
if n is a b-sprp |conjecturally every (Ign)3T°M) [instant
for the first certifies primality |prime n
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Method Effect of Certificate| Time to Time to find

certificate exists for |verify certificate
certificate

if n is a 2-sprp and |conjecturally every (Ign)?t°M |instant

passes a similar certifies prime n

quadratic test, then |primality;

n seems to be prime |conjecture is

(1980 [14] Baillie implausible for

Wagstaff, 1980 [81] |very large n

Pomerance Selfridge | (1984 [79]

Wagstaff; variant Pomerance), but

also including a no

cubic test: 1998 [10] | counterexamples

Atkin) are known

proving primality |proves primality |every at most very slow; but

with unit-group prime n [(Ign)3>+°(M); | conjectured to be

factors: if "1 =1 usually (1gn)°® for

in Z/n, and (Ign)?t°M) |infinitely many n

p(n=1)/a _ 1 ig

nonzero in Z/n for

every prime divisor

q of n — 1, then n is

prime (1876 [59]

[60] Lucas, except

that the switch

from “divisor ¢ > 1”7

to “prime divisor ¢”

is from 1927 [53]

Lehmer by analogy

to 1914 [78]

Pocklington)

if "1 = 11in Z/n, |proves primality |every at most very slow; but

F is a divisor of prime n | (Ign)3+°(M); |fast for more n’s

n — 1, and usually than above;

bn=D/a _1is a (Ign)?t°e@ |(1gn)°M for

unit in Z/n for
every prime divisor
q of F', then every
divisor of n is in
{1,F+1,...},s0if
(F+1)? > n then n
is prime (1914 [78§]
Pocklington);
similar test for F

down to roughly
nl/4

infinitely many n
(1989 [77] Pintz
Steiger
Szemeredi;
variant: 1992 [35]
Fellows Koblitz;
another variant:
1997 [52]
Konyagin
Pomerance)
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Method Effect of |Certificate Time to verify Time to find

certificate |exists for certificate certificate
Pocklington- proves every prime |at most very slow; but fast
type test with |primality |n (1gn)3+t°(); usually |for more n’s than
quadratic (1gn)?+e) above

extensions of
Z/n (1876 [59]
Lucas, 1930
[54] Lehmer,
1975 [72]
Morrison, 1975
[88] Selfridge

Wunderlich,
1975 [25]
Brillhart
Lehmer
Selfridge)
Pocklington-  |proves every prime |(Ign)0Uslelen) instant
type test with |primality |n using distribution
higher-degree of divisors of n¢ — 1
extensions of (1983 [5] Odlyzko
Z/n (degrees 4 Pomerance; weaker
and 6: 1976 bound: 1955 [82]
[97] Williams Prachar; best
Judd; general known bound:
degrees: 1983 2000 [76] Pelikan
[5] Adleman Pintz Szemeredi);
Pomerance many speedups
Rumely) available (1978 [96]

Williams Holte,

1984 [32] Cohen

Lenstra, 1985 [30]

Cohen Lenstra,

1990 [23] Bosma

van der Hulst, 1998

[63] Mihailescu)
proving proves nearly every |(Ign)3to) (1gn)°W | using
primality primality, | prime n; polynomial-time
with using conjecturally, elliptic-curve
elliptic-curve |bounds |every prime point counting
factors: on n (1985 [86]
similar test elliptic- Schoof); many
using elliptic curve speedups available
curves (1986  |sizes (1995 [87] Atkin
[39] Goldwasser |(1936 [46] Elkies; 1995 [58]
Kilian) Hasse) Lercier Morain)
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Method Effect of Certificate Time to |Time to find
certificate |exists for verify certificate
certificate
similar test with proves every prime n | (Ign)?t°M |very slow
elliptic curves primality,
having order using
divisible by a large |bounds on
power of 2 (1987 [80]|elliptic-
Pomerance) curve sizes
(1936 [46]
Hasse)
similar test with proves every prime n |at most random (1gn)°™,
Jacobians of genus-2 |primality, (Ign)3+teM lusing distribution
hyperelliptic curves |using of primes in
(1992 [4] Adleman |bounds on interval of width
Huang) Jacobian 23/4 around x
sizes (1948 (1979 [48] Iwaniec
[95] Weil) Jutila), and
distribution of
Jacobian sizes
(1992 [4] Adleman
Huang)
similar test with proves conjecturally, |at most at most
small-discriminant ~ |primality, |every prime n |(Ign)3T°™M) | (1gn)>+o™)
complex- using
multiplication bounds on
elliptic curves (1988 |elliptic-
[69] Atkin; special |curve sizes
cases: 1985 [21] (1936 [46]
Bosma, 1986 [29] Hasse)
Chudnovsky
Chudnovsky)
similar test with proves conjecturally, |at most at most
small-discriminant  |primality, |every prime n |(Ign)3T°M | (Ign)*T°M); many
complex- using speedups available
multiplication bounds on (1988 [69] Morain,
elliptic curves, elliptic- 1989 [50] Kaltofen
merging square-root |curve sizes Valente Yui, 1990
computations for (1936 [46] [70] Morain, 1993
many discriminants |Hasse) [12] Atkin Morain,

(1990 [56, Section
5.10] Shallit)

1998 [71] Morain,
2003 [37] Franke

Kleinjung Morain
Wirth)
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Method Effect of |Certificate Time to verify Time to
certificate |exists for certificate find
certificate

proving proves every prime n |(lg n)O(l), using instant
primality with primality analytic fact that, for
combinatorics: if some ¢ > 1/2, many
we can write down primes r have prime
many elements of a divisor of r — 1 above
particular rc (1969 [38]
subgroup of a Goldfeld); at most
prime cyclotomic (Ign)t2+eM)  using
extension of Z/n analytic fact that
then n is a power many primes r have
of a prime (2002.08 prime divisor of r — 1
[6] Agrawal Kayal above 72/3 (1985 [36]
Saxena) Fouvry); conjecturally

(lg n)6+o(1)
variant using proves every prime n |at most (lg n)12+0(1), instant
arbitrary primality using crude bound on
cyclotomic distribution of primes
extensions (2003.01 (1850 Chebyshev); at
[16, Theorem 2.3] most (Ign)8+e),
Lenstra) using analytic facts as

above; conjecturally

(lg n)ﬁ—i—o(l)
variant using proves every prime n |at most instant

cyclotomic
extensions with
better bound on
group structure
(2002.12 [62]
Macaj,
independently 2003
Agrawal)

primality

(lg n)10,5+o(1), using
crude bound on
distribution of primes
(1850 Chebyshev); at
most (lg n)7.5+0(1)7
using analytic facts as

above; conjecturally
(lg n) 6+0(1)
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Method Effect of Certificate Time to verify Time to find
certificate exists for certificate certificate
variant using proves every prime n |(Ign)*T°1) | using [random
random primality distribution of (1gn)?+e
Kummer divisors of n¢ — 1
extensions (overkill: 1983 [5]
(2003.01 [18] Odlyzko
Bernstein; Pomerance)
independently
2003.03 [64]
Mihailescu
Avanzi; idea
and
2-power-degree
case: 2002.12
[20]
Berrizbeitia;
prime-degree
case: 2003.01
28] Cheng)
variant using proves every prime n |(lg n)6+0(1), using |instant
Gaussian primality various analytic
periods (2004 facts
[44, Section 7]
Lenstra
Pomerance)
if n fails any of |proves every at most at most
the Fermat-type |compositeness |composite n | (Ign)*t°(M) | using | (1gn )8+,
tests in these analytic facts as |using analytic
methods then n above facts as above
is composite
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