Putnam Mathematical Competition, 6 December 2003

Problem A1l

Let n be a fixed positive integer. How many ways are there to write n as a sum of
positive integers,
n=a +ag+- -+ ag,

with k£ an arbitrary positive integer and a1 < as < --- < ax < a; + 17 For example, with
n = 4, there are four ways: 4,242, 14+1+2,1+1+1+1.

Problem A2

Let ay,a9,...,a, and by, bs, ..., b, be nonnegative real numbers. Show that

(aras - "an)l/n + (b1bg - - - bn)l/n < ((a1 +b1)(ag +b2)--- (an + bn))l/n'

Problem A3
Find the minimum value of
|sin x + cos x + tanx + cot x 4 sec x + csc x|

for real numbers .
Problem A4
Suppose that a,b,c, A, B, C are real numbers, a # 0 and A # 0, such that

‘axg + bx+c| < ‘Asc2 + Bx -I-C‘
for all real numbers . Show that

b2 — dac| < B — 4AC].

Problem A5

A Dyck n-path is a lattice path of n upsteps (1,1) and n downsteps (1, —1) that starts
at the origin O and never dips below the z-axis. A return is a maximal sequence of
contiguous downsteps that terminates on the x-axis. For example, the Dyck 5-path
illustrated has two returns, of length 3 and 1 respectively.




Show that there is a one-to-one correspondence between the Dyck n-paths with no return
of even length and the Dyck (n — 1)-paths.

Problem A6

For a set S of nonnegative integers, let 7s(n) denote the number of ordered pairs (s1, s2)
such that s; € S, so € S, 51 # s9, and s1 + so = n. Is it possible to partition the
nonnegative integers into two sets A and B in such a way that r4(n) = rg(n) for all n?



Problem B1
Do there exist polynomials a(z), b(x), c¢(y), d(y) such that

1+ 2y + 2%y = a(z)c(y) + b(z)d(y)

holds identically?

Problem B2

11 1
Let n be a positive integer. Starting with the sequence 1, — ., —, form a new
n

2 ) g, ..
) ) 2n —1 ) )
sequence of n — 1 entries —, —, ..., ———, by taking the averages of two consecutive
4’12 2n(n —1)

entries in the first sequence. Repeat the averaging of neighbors on the second sequence
to obtain a third sequence of n — 2 entries and continue until the final sequence produced

2
consists of a single number z,,. Show that x, < —.
n

Problem B3

Show that for each positive integer n,
n! =[[lem{1,2,..., n/i]}.
i=1

(Here lem denotes the least common multiple, and |z ] denotes the greatest integer < x.)
Problem B4

Let f(2) = az* +b23 +c2?2 +dz+e=a(z —11)(z —r2)(2z — r3)(z — r4) where a,b,c,d, e
are integers, a # 0. Show that if r; 4+ r5 is a rational number, and if 71 + ro # r3 + 74,
then rqry is a rational number.

Problem B5

Let A, B and C be equidistant points on the circumference of a circle of unit radius
centered at O, and let P be any point in the circle’s interior. Let a, b, ¢ be the distances
from P to A, B,C respectively. Show that there is a triangle with side lengths a, b, c,
and that the area of this triangle depends only on the distance from P to O.

Problem B6

Let f(x) be a continuous real-valued function defined on the interval [0, 1]. Show that

/01/01|f(90)+f(y)| dz dy > /01 f(2)] da.



Solutions

D. J. Bernstein, 7 December 2003

Problem A1l

Let n be a fixed positive integer. How many ways are there to write n as a sum of
positive integers,
n=a+az+---+ag,

with k£ an arbitrary positive integer and a1 < as < --- < ap < a; + 1?7 For example, with
n = 4, there are four ways: 4,242, 14+1+2,1+1+1+1.

Solution: There are exactly n ways to write n as such a sum. More precisely, there is
exactly 1 way (a1, aq,...,ax) for each k € {1,2,... n}.

Say aq,as, ..., ak satisfy the stated conditions. Observe first that n > a1 +as+---+ap >
1+1+---+1=ksoke{l,2,...,n}. The inequalities a1 < as < --- < ap < a; +1
imply that all of a1, as,...,ar are in {a1,a; + 1}. Define j as the number of occurrences
ofay +1;thenn=a1 +as+ -+ +ar =kay +j with 0 < j <k —1,s0 a1 = |[n/k| and
j =mnmod k. Thus ay,aq,...,a consist of n mod k occurrences of |n/k| + 1 preceded
by k — (n mod k) occurrences of [n/k|.

Conversely, take any k € {1,2,...,n}, and build ay, as,...,ar as n mod k occurrences
of [n/k|+ 1 preceded by k — (n mod k) occurrences of |[n/k|. Then a1 < ag < -+ < ag;
ap < [n/k|+1<a+1;and a1 +ag+ -+ ar =k |n/k] + (n mod k) = n.

Problem A2

Let ay,a9,...,a, and by, bs, ..., b, be nonnegative real numbers. Show that

(a1ag -~ an)"/™ + (biba - bn)"™ < ((a1 + by)(az +b2) -+ (an + bn)) /™.

Solution: If a; = b; = 0 then the left side and right side are both 0. So assume that
a; + b; > 0 for each i. By the arithmetic-geometric mean inequality,

ay an, 1/n+ by b, 1/n
a1+b1 an+bn a1+b1 an+bn
1 aq (429 1 bl bn
<- +o += +oo ~ 1.
n \ ai + by ay, + by, n \ ar + b an, + by,

Clear denominators: (ay---an,)"™ 4 (by---bp)"/™ < (a1 +b1) -+ - (an + b)) /™.




This result, Holder’s inequality, is fairly standard course material, so it isn’t a reasonable
Putnam problem.

Problem A3
Find the minimum value of

|sin 2 + cos x + tan x + cot x + sec x + csc x|
for real numbers x.

Solution: The problem does not make sense as stated: the trigonometric functions are
not all defined when z is a multiple of 7/2. I presume that the intent was to say “for real
numbers x where sinz # 0 and cosz # 0,” i.e., for real numbers x that are not multiples
of /2.

The statement of the problem also implies that there is a minimum value of the function.
Are contestants required to prove this, or are they allowed to assume it? I presume that
contestants are required to prove it.

Anyway, the minimum is 2v/2 — 1.

Write y = sinx + cosx. Then y? = (sinz)? + (cosz)? + 2sinx cosz = 1 + 2sinz cos z, so
tan x+cot x = (sinx)?/(sinx cosz)+(cosz)?/(sinz cosx) = 2/(y?—1) and secz+cscx =
(sinz)/(sinz cosz) + (cosz)/(sinx cosx) = 2y/(y? — 1), so sinx + cos x + tan z + cot = +
secx +cscx =y+2/(y> —1)+2y/(y> —1) =y +2/(y —1).

If y > 1 then, by the arithmetic-geometric-mean inequality, (y — 1) + 2/(y — 1) >
2/ —12/(y—1) =22, so y +2/(y — 1) > 22+ 1 > 22— 1. If y < 1 then
similarly (1 — ) +2/(1 —y) > 2v2s0o —(y + 2/(y — 1)) > 2¢/2 — 1. In both cases,
ly4+2/(y —1)] > 2v/2 — 1, so |sinz + cosz + tan x 4 cot x + secx + csc x| > 2v/2 — 1.

To see that the alleged minimum is achieved, note that 1/v/2 — 1 € [~1,1], and set
x = m/4+4arccos(1/y/2—1). Theny = /2 cos(z—m/4) = 1—v2s0 y+2/(y—1) = 1-2v/2.
Problem A4
Suppose that a,b,c, A, B, C are real numbers, a # 0 and A # 0, such that

]a:z;2 +bx+c| < ]A:z;2 +B:1:+C‘
for all real numbers . Show that

62 — dac| < B — 4AC].

Solution: Assume without loss of generality that a > 0. (Otherwise replace (a,b,c)
with (—a, —b, —c); this transformation does not change ‘axZ + bx + c‘, and it does not
change ‘b2 — 4ac‘.) Similarly assume that A > 0.



Observe that lim, .o (Az? 4+ Bz +C)/2* = A. Thus lim,—.o |(Az? + Bz + C)/z?| = A
Similarly lim, oo |(az? + bz + ¢)/2%| = a. Hence a < A.

Now write d = b2 — 4ac and D = B2 — 4AC.

Case 1: D > 0. Writer—( B+ +VD)/2A and s = (—B —
z € {r,s} then Az? + Bz + C = 0 so |az® + bz +¢c| < |0
:a2

Thus az? + bz +c = a(z —r)(x — s); so d = a*(r — s)?

\/_)/ZA thenr;és If
so ax? +bx +c¢ = 0.

| =
(\/_/ )2 = Da?/A%. Hence

0<d<D.
Case 2: D = 0. The functions Az? + Bx + C and —Az? — Bx — C both have value 0 and
derivative 0 for x = —B/2A, so the intermediate function az? + bx + ¢ also has value 0

and derivative 0, i.e., a double root. Hence d = 0.

Case 3: D < 0. Then Az? + Bz +C = A(x + B/2A)? — D/4A > 0 for all real numbers
x, 50 (ax? + bxr +¢) < Az? + Bz + C for all z, so (AF a)z? + (BFb)z+ (CFec) <0
for all z, so (BFb)? <4(AFa)(CFec),ie., BEF2Bb+b* < 4AC + 4ac F (4Ac+ 4aC).
Average F = + and F = — to see that B2 + b? < 4AC + 4ac, ie., d < —D.

On the other hand, take x = —B/2A to see that —d/4a < a(z + b/2a)? — d/4a =
ar® +br +c < Ax? + Bz +C = —D/44;ie., —d < —Da/A < —D.

Problem A5

A Dyck n-path is a lattice path of n upsteps (1,1) and n downsteps (1, —1) that starts
at the origin O and never dips below the z-axis. A return is a maximal sequence of
contiguous downsteps that terminates on the x-axis. For example, the Dyck 5-path
illustrated has two returns, of length 3 and 1 respectively.

)

Show that there is a one-to-one correspondence between the Dyck n-paths with no return
of even length and the Dyck (n — 1)-paths.

Solution: The problem fails to specify the range of n. The definition of a (—1)-path
is unclear, so I presume that the definition of n-paths is for all n > 0 and that the
conclusion is for all n > 1.

Fix n > 1. If k € {1,2,...,n} then any (n — k)-path, followed by an upstep, followed
by any (k — 1)-path, followed by a downstep, forms an n-path. Every n-path is obtained
in this way from a unique k, a unique (n — k)-path, and a unique (k — 1)-path. (The
upstep, (k — 1)-path, and downstep are the last mountain in the n-path.)



Hence C,, = C,,_1Cy + C),_2C1 + - -+ + CyC,_1 for n > 1, where C), is the number of
n-paths. Note that Cy = 1.

Next define O,, as the number of n-paths having a final return of odd length. Note that
Og = 0. For n > 1, every such path is obtained from a unique k£ € {1,2,...,n}, a unique
(n — k)-path, and a unique (k — 1)-path that does not have a final return of odd length;
hence O,, = C},—1(Co — Op) + Cp—2(C1 — O1) + - - + Cp(Crom1 — Op—1).

Next define X,, as the number of n-paths having no return of even length. Note that
Xo = 1. For n > 1, every such path is obtained from a unique k € {1,2,...,n}, a unique
(n — k)-path having no return of even length, and a unique (k — 1)-path that does not
have a final return of odd length; hence X,, = X,,_1(Co — Op) + X,,—2(C1 —O1) +--- +
XO(Cn—l - On—l)-

In particular, X; = Xo(Cy — Op) = 1(1 — 0) = 1 = Cy as desired.

Assume inductively that X; = Cy, Xo = Cq, and so on through X,, = C,,_1. Then
Xng1 = Xn(Co — O0g) + Xpno1(C1 — O1) + -+ + X1(Crim1 — Opq) + Xo(C, — Op) =
Cn—l(CO_OO)+Cn—2<Cl_Ol)+' : '+CO<Cn—1_On—1>+(Cn_On) = On+Cn_On = Cn

In other words, the number of n-paths with no return of even length is the same as the
number of (n — 1)-paths; i.e., there is a one-to-one correspondence between the two sets.

Problem A6

For a set S of nonnegative integers, let 7s(n) denote the number of ordered pairs (s1, s2)
such that s € S, so € S, 51 # s9, and s1 + so = n. Is it possible to partition the
nonnegative integers into two sets A and B in such a way that r4(n) = rg(n) for all n?

Solution: Yes.

Define A = {0,3,5,6,9,...} as the set of nonnegative integers n whose binary expansions
have an even number of 1’s, and define B = {1,2,4,7,8,...} as the set of nonnegative
integers n whose binary expansions have an odd number of 1’s.

Define f as the formal power series ) ., «". Similarly define g =3 _p2™.

Now f(z )+ rg(z?) = ZneA z2n 4 Zn gt = S onea 227 + Z%El AxZn—l—l _
> om A = f. Slmllarly g(2?) + 2 f(2?) = g. Hence f — g = f( 2) — g(2?) + zg(a?) —
zf(2?) = (1 —2)(f(2?) — g(z?)).

Furthermore, f+g =Y 2" =1/(1—z). Hence f2—g¢* = (f—g)(f+g) = f($2) g(z?).

On the other hand, f? = Y7 4 ,ca %" = 2 a7 + Y caren o 5Tt = f(2?)
>, ra(n)z™. Similarly ¢* = g(2?) + >, rp(n)z™. Hence Y. ra(n)z™ = f? — f(z?) =
g% —g(@?) =, re(n)z™; ie., ra(n) = rg(n) for all n.



Problem B1
Do there exist polynomials a(z), b(x), c¢(y), d(y) such that

1+ 2y + 2%y = a(z)c(y) + b(z)d(y)

holds identically?
Solution: No.

Suppose that 1+xzy+22y? = a(z)c(y)+b(z)d(y). Write a(x), b(z), c(y), d(y) respectively
as ag +a1x +agx® + - b b1z +box® + - oty + oy’ + - do+diy +day® 4
Then

1+ oy +a2y? = (agco + bodp) + (apcr + body )y + (apes + bodg)gf

+ (ayco + bido)x + (arcy + bidy)xy + (ayca + bicy)xy?
+ (agco + bzco)x2 + (a1 + bgcl)xzy + (agcs + bch)g;2y2 4o

Extract coefficients: agco + bodg = 1, so agcger + bocidy = ¢1; and agey + bgdy = 0,
so agcper + bocody = 0, so bo(crdp — codr) = ¢1. Similarly bg(c1de — dic2) = 0 and
b2(C1d2 — dlcg) = C1. If bo = 0 then C1 = 0; if b() 7& 0 then Cldg — dlcg =0 so C1 = 0.
Either way, ¢c; = 0. Exchange a, ¢ with b, d to see that d; = 0. Hence 1 = ay¢; +b1dy = 0;
contradiction.

Problem B2

11 1
Let n be a positive integer. Starting with the sequence 1, — ,—, form a new

2737 'n
) ) 2n —1 X .
sequence of n — 1 entries —, —, ..., ——— by taking the averages of two consecutive
4’12 2n(n — 1)

entries in the first sequence. Repeat the averaging of neighbors on the second sequence
to obtain a third sequence of n — 2 entries and continue until the final sequence produced

2
consists of a single number x,,. Show that x, < —.

n
Solution: The kth repeated average of ui,us,... is ((g)ul + (’f)uQ + o+ (Z)uk)/Qk,
(Suz + (Fus + -+ (F)urs+1)/25, ..., by induction on k.
In particular, the (n — 1)st repeated average of 1,1/2,...,1/n, namely z,, is
on—1 i )i+l n-2n i Ji+1
0<i<n—1 0<i<n—1

2 n 2 2
= = 2" —1) < —.
n-2" Z (i—l—l) n-2”( ) n

0<i<n—1



Problem B3

Show that for each positive integer n,
n! =[[lem{1,2,..., n/i]}.
i=1

(Here lem denotes the least common multiple, and | x| denotes the greatest integer < x.)

Solution: Let p be a prime number. For any positive integer u, write ord, u for the
largest nonnegative integer e such that p® divides w.

If p¢ < m < p®*! then ord,lem {1,2,...,m} = e. Indeed, p¢ appears in {1,2,...,m},
so it divides lem {1,2,...,m}, while pT! divides none of {1,2,...,m}, and hence does
not divide lem{1,2,...,m}.

Hence ord,lem {1,2, ..., |[n/i]} = e exactly when p® < |n/i| < p®*1.

Next consider the sum [i < n/p]+[i <n/p?|+[i < n/p3]+---, where [ -] means 1 when
- is true, 0 otherwise. This sum is e exactly when i < n/p® but i > n/p°*! i.e., when
p° < |n/i] < pTt. Hence

ordpnlcm{l,Q,..., In/i]} = Zordplcm{l,Q,..., In/i|}
= > (i <n/pl+ < nfp 4 <n/p)+ )

= |n/p] + |n/p?| + [n/p*] + -+ = ord, nl.
This is true for every prime p, so [[,lem{1,2,...,[n/i]} = nl.

Problem B4

Let f(2) =azt+ b2 +cz2 +dz+e=a(z —r1)(z —r2)(z — r3)(z — r4) where a,b,c,d, e
are integers, a # 0. Show that if r; 4+ ro is a rational number, and if 71 + ro # r3 + 74,
then rqr9 is a rational number.

Solution: Abbreviate r; 4+ r9 as u, and r3 + r4 as v. Then

2 2
f(z)Ja=(z—r1)(z—1r2)(z —713)(z —14) = (2° —uz 4+ r17r2)(2° — vz +137y4)
4 3 2
= 2" — (u4v)z° + (uv + rirg + r3ry)z” — (ursry + vrire)z + rirarsry.

Thus u + v is rational, and by hypothesis u is rational, so v is rational, so uv and u — v
are rational. Furthermore, uv + ri7ry + r3ry is rational, so r1re 4+ r3ry is rational, so
uriry + ursry is rational. Next, ursry + vrqre is rational, so (u — v)ryry is rational. By
hypothesis u — v is nonzero, so 17y is rational.



This is too easy for a B4 problem.

Problem B5

Let A, B and C be equidistant points on the circumference of a circle of unit radius
centered at O, and let P be any point in the circle’s interior. Let a, b, ¢ be the distances
from P to A, B, C respectively. Show that there is a triangle with side lengths a, b, ¢,
and that the area of this triangle depends only on the distance from P to O.

Solution: Put the circle into the complex plane, translated so that O = 0 and rotated
so that A =1. Then B and C are the two primitive cube roots of 1.

Define A = 2a%b? 4 2a%¢? + 2b%¢? — a* — b* — ¢*. Heron’s theorem states that a, b, ¢ are
the side lengths of a triangle if and only if A > 0, and that the triangle has area v/A/4.

Write P as ru where r is a nonnegative real number and u is a complex number of
absolute value 1. Then a2 = [P— AP = |ru—1° = (ru — 1)(r/u—1) = s —ru—r/u
where s = 1412 b2 = [P — B]* = |ru — B)® = (ru — B)(r/u — C) = s — Cru — Br/u;
and 2 = |P—C|° = |ru—C)* = (ru— C)(r/u — B) = s — Bru — Cr/u.

Square to obtain a*,b* ¢*, and add. All of the u’s drop out of the resulting formula,
since 1+ B+ C = 0 and 1+ B? + C? = 0. (For example, the cross-terms 2rsu,
2Crsu, and 2Brsu add up to 0.) Hence a* + b* + ¢* = 3(s? + 2r?). By a similar
computation, a?b? + a?c? + b*c® = 352 + (2B + 2C + B% + C?)r? = 3(s?> — r?). Hence
A = 3(s? —4r?) = 3(1 — r?)%

By hypothesis P is in the interior of the unit circle; i.e., 0 < r < 1. Hence A > 0. The
area of the triangle is (1 — 72)v/3/4, which is determined by r = | P| as claimed.

Problem B6

Let f(x) be a continuous real-valued function defined on the interval [0, 1]. Show that
1,1 1
| [ @+ sl dedy = [ 1) do
o Jo 0

Solution: If z4,...,x, are real numbers in [0, 1] then

> 20f (@) fla;) < OJmin {|f ()], |f (25)]} < nz £ ()]

i#]

by Lemma 1 below. Integrate over all x1,...,z,:

n(n — 1) / / 20 (2)f(y) < Ol min {|f (@), |f ()]} dedy < n / f(@)] da.



Divide by n?:

L[ 2151w < omin (@) W) dedy < [ 170 a

Take the limit as n — oo:

[ 2@ < omin (£@) 17w} dody < [ 1) do

Finally, |u + v| = |u| + |v| — 2[uv < 0] min {|u|, |v|}, so

| [ 11@+ 1) deay

— [1r@ s+ [17@ldy=2 [ [(1@)7) < omin {1 @) 17} dody

2/U@My

as claimed.
Lemma 1: 3, 2[r;r; < O]min{|r;|,[rj|[} <n)_;|r;| for any real numbers ri, 72, ..., 7.

Proof: Without loss of generality assume that |rq1| > |re| > -+ > |r,|. Then the sum on
the left is equal to >, 4rir; < 0][r;].

Define a; for j > 0 as the number of positive entries in ry,79,...,7;. Define b; for
J = 0 as the number of negative entries in rq,72,...,7;. The product a;b; is at most

(7/2) < (n/2)(4/2), so

(a1b1 — aobo> ’7“1’ + (a2b2 — a1b1> ’7'2’ + -+ (anbn — an_lbn_l) ‘T‘n’
= aibi(|r1| — |r2]) + a2ba(|re| — |73]) + - + an—1bn—1(|rn—1| = |Tn|) + anbn(|rnl)

nl n 2 nn—1 nn
SQQwﬂ—vm+§5Wﬂ—mo+m+§ ——(lrnal = Iral) + 2 2 (Irl)
n
= !?"1!+ \T2\+ [raf 4o+l

Next observe that a;b; — a;_1b;—1 is exactly b;_; if r; > 0; a;—; if r; < 0; and O if
r; = 0. In other words, a;jb; —a;_1bj—1 is the number of ¢ < j such that r;r; < 0. Hence
Doicj Ariry <O]|rj| =325 4(ab; — aj—1bj—1) [rj| < n -, |r;| as claimed.



