Journal of Algorithms, to appear. Final revisions are in progress.

FACTORING INTO COPRIMES
IN ESSENTIALLY LINEAR TIME

DANIEL J. BERNSTEIN

ABSTRACT. Let S be a finite set of positive integers. A “coprime base for
S” means a set P of positive integers such that (1) each element of P is
coprime to every other element of P and (2) each element of S is a product
of powers of elements of P. There is a natural coprime base for S. This
paper introduces an algorithm that computes the natural coprime base for
S in essentially linear time. The best previous result was a quadratic-time
algorithm of Bach, Driscoll, and Shallit. This paper also shows how to factor
S into elements of P in essentially linear time. The algorithms apply to any
free commutative monoid with fast algorithms for multiplication, division, and
greatest common divisors; e.g., monic polynomials over a field. They can be
used as a substitute for prime factorization in many applications.

1. INTRODUCTION

It is not easy to factor integers into primes. The point of this paper is that it s
easy to factor integers into coprimes.

Given a finite set S of positive integers, I can construct a set P, with any two
distinct elements of P coprime, and factor every element of S into elements of P,
in essentially linear time. The best previous result was a quadratic-time algorithm
by Bach, Driscoll, and Shallit in [2]; see section 4 of this paper.

Similar comments apply to monic polynomials over a finite field. Here the Bach-
Driscoll-Shallit algorithm has been superseded, at least in theory, by an algorithm of
Kaltofen and Shoup in [16], which factors polynomials into primes in subquadratic
expected time. I can factor a set of polynomials into coprimes in essentially linear
time.

Applications. Coprimes are often an adequate substitute for primes. The fol-
lowing example is due to Hendrik W. Lenstra, Jr.: given positive integers a, b, c,
one can compute a basis for the Z-module { (3, j, k) € Z* : a’bick = 1} by first fac-
toring a, b, ¢ into coprimes and then doing linear algebra on the exponents in the
factorizations. See [14] for a generalization.

Other applications, listed here in historical order: eliminating quantifiers (see
[11]), converting any set of congruences to a set with coprime moduli (see [13,
Remark 6.8] and [2, page 201]), finding the prime factors of n given the sum of
n’s divisors (see [3]), computing in zero-dimensional rings by lazy localization (see
[12] and [23, section 3.1]), lifting polynomial factorizations (see [15, section 3]),
computing normal bases (see [18]), finding the maximal order in a number field
by lazy factorization (see [19, section 4.6]), finding algebraic dependencies among

Date: 19980108.
1991 Mathematics Subject Classification. Primary 11Y16.
The author was supported by the National Science Foundation under grant DMS—9600083.

1

2 DANIEL J. BERNSTEIN

radicals (see [21]), and performing arithmetic on ideals in a number field by lazy
localization (see [5]).

Acknowledgments. Thanks to Igor Shparlinski for his comments.

Notation. {} is the empty set. #S is the cardinality of S. S — T, when S and T
are sets, means all elements of S that are not in 7. When a proposition appears
inside brackets, it means 1 if the proposition is true, 0 otherwise; for example,
2<3 =1

2. OUTLINE OF THE PAPER
This paper is organized into four parts.

Part I. Existence. Section 4 proves that one can construct a “coprime base” for
any finite set S via division and greatest common divisors. The construction is the
Bach-Driscoll-Shallit algorithm.

Section 6 establishes the useful concept of a “quasiprime.” Section 7 shows that
there is only one coprime base that can be obtained from S via multiplication,
division, and greatest common divisors: the “natural coprime base” for .S, written
cb S.

Rather than state every result twice, once for integers and once for polynomials,
I have abstracted the algebraic properties that make the constructions work. The
most general setting for the Bach-Driscoll-Shallit algorithm is a “Noetherian coid
with cancellation,” defined in section 3. The most general setting for natural co-
prime bases, and for my algorithms, is a “free coid,” defined in section 5. Any free
coid is Noetherian and has cancellation.

Readers not interested in maximum generality may skip sections 3 and 5. The
semigroup of positive integers is a free coid; the semigroup of monic polynomials
over a field is a free coid.

Part II. Two-element sets. Sections 10 through 13 give a series of constructions
culminating in an algorithm, DCBA, to find the natural coprime base for any
two-element set. Each construction takes essentially linear time, given essentially-
linear-time subroutines for multiplication, division, and gcd, as discussed in section
8. Motivation for DCBA appears in section 9.

Part III. Finite sets. Sections 14 through 18 give several further essentially-
linear-time constructions, culminating in an algorithm to find the natural coprime
base for any finite set.

Part IV. Factorization. To factor a set S into coprimes, I first construct a co-
prime base P for S, and then factor S into elements of P. Sections 19 through 21
show how to carry out the factorization, given S and P, in essentially linear time.

PART 1. EXISTENCE
3. CoIDS AND MAXIMAL COMMON DIVISORS

A coid is a set with a commutative associative binary operation, written (a,b) —
ab, and a neutral element, written 1. Commutativity means ab = ba. Associativity
means (ab)c = a(be). Neutrality means la = a = al.

When a = bq for some ¢, a is a multiple of b; a is divisible by b; b divides q;
b is a divisor of a. If a divides b and b divides ¢ then a divides c.

FACTORING INTO COPRIMES IN ESSENTIALLY LINEAR TIME 3

A coid H is Noetherian if any nonempty subset S C H has a minimal element.
(Minimal means not divisible by any other elements of S; maximal means not
dividing any other elements of S; maximum or greatest means divisible by all
elements of S.)

In a Noetherian coid H one may apply Noetherian induction, which states
that if T is a subset of H, and if T" contains ¢ whenever T contains all other divisors
of a, then T'= H. Indeed, H — T has no minimal element, so it must be empty.

A coid has cancellation if ¢ = r whenever bg = br. In other words, when c is
a multiple of b, there is a unique ¢ such that ¢ = bg; this ¢ is denoted ¢/b.

Example. The set of nonsingular ideals in a Noetherian domain, under ideal mul-
tiplication, is a Noetherian coid with cancellation.

Theorem 3.1. Let B be a nonempty subset of a Noetherian coid with cancellation.
Then there ezists a mazimal common divisor of B.

Here a common divisor of B means a divisor of every element of B.

Proof. Select b € B. Define S = {b/d : d is a common divisor of B}. Observe that
b€ S. Thus S has some minimal element, say b/g, where g is a common divisor of
B. If g divides another common divisor d of B, then b/d divides b/g; but b/d € S,
so b/d = b/g by minimality of b/g, so d = g. Hence g is a maximal common
divisor. O

Theorem 3.2. Let a,b,g be elements of a Noetherian coid with cancellation. If g
is @ mazimal common dwisor of {a,b} then a/g is coprime to b/g.

Here c is coprime to d if the only common divisor of {c,d} is 1.

Proof. If d divides a/g and b/g then dg divides a and b. Certainly g divides dg, so
by maximality g = dg, so d = 1 by cancellation. O

Notes. The term “coid” is nonstandard. It may be viewed as an abbreviation
of “commutative semigroup with identity” or as an abbreviation of “commutative
monoid”; here semigroup means a set with an associative operation, and monoid
means a semigroup with a neutral element. “Coid,” like “monoid,” should be
pronounced to rhyme with “overjoyed.”

Under my definition of “Noetherian,” any Noetherian coid is combinatorial:
a = b whenever ¢ and b are associates (i.e., whenever a divides b and b divides a).
One can systematically replace “equal” by “associate” and “minimal” by “minimal
up to associates” and so on, obtaining definitions and results that apply to non-
combinatorial coids. I prefer to avoid unnecessary complexity: given a general coid,
one can simply consider the combinatorial coid of classes of associates.

“Coprime” is also known as “relatively prime.”

4. COPRIME BASES

A set P is coprime if each element of P is coprime to every other element of P.
If P and Q) are coprime sets, and each p € P is coprime to each ¢ € @), then P U @
is a coprime set.

Let P and S be subsets of a Noetherian coid with cancellation. I call P a base
for S if S is contained in the coid generated by P. If P is a base for S then P is a
base for any subset of S.

P is a coprime base for S if P is coprime and P is a base for S.

4 DANIEL J. BERNSTEIN

Theorem 4.1. Let a,b be elements of a Noetherian coid with cancellation. Then
there is a finite set P with an element d such that (1) P is a coprime base for {a,b};
(2) d divides b; (3) if p € P — {d} then p divides a.

Proof. Apply Noetherian induction to ab—i.e., to the set of ¢ such that the desired
conclusion holds whenever ab = c.

Let g be a maximal common divisor of {a,b}. If g =1 then the set {a, b} with
element b satisfies the stated conditions. So assume that g # 1; this implies that
a#1andb#1.

Consider (a/g)g, a divisor of ab; it is different from ab since b # 1. By induction,
there is a finite coprime base P for {a/g, g}, with an element d dividing g, and with
all other elements dividing a/g.

Next consider d(b/g), a divisor of ab; it is different from ab since a # 1. By
induction, there is a finite coprime base Q for {d,b/g}, with an element e dividing
b/g, and with all other elements dividing d.

Finally, consider R = (P — {d}) U Q, with element e. (1) If p € P — {d} and
q € Q then p and q are coprime. (Indeed, if ¢ # e then ¢ divides d, so g is coprime
to p, since P is a coprime set. If ¢ = e then ¢ divides b/g, but p divides a/g, so p
and q are coprime by Theorem 3.2.) Hence R is a coprime set. (2) Since e divides
b/g it also divides b. (3) Consider ¢ € R — {e}. If ¢ € P — {d} then ¢ divides a/g,
hence a. If g € Q) then ¢ divides d, hence g, hence a. O

Theorem 4.2. Let H be a Noetherian coid with cancellation. Let B be a finite
coprime subset of H, and let a be an element of H. Then there is a finite set E
such that (1) E is a coprime base for BU {a}; (2) each element of E divides an
element of BU {a}.

Proof. Induct on the size of B. If B = {} then {a} satisfies (1) and (2). Otherwise
pick b € B. By Theorem 4.1, there is a finite coprime base P for {a, b}, with an
element d dividing a, and with all other elements dividing b. Next, by induction,
there is a finite set @) such that @ is a coprime base for (B — {b}) U {d}, with every
element of @) dividing an element of (B — {b}) U {d}.

Finally, consider E = (P —{d})UQ. (1) Ifp € P — {d} and ¢ € Q then p and ¢
are coprime. (Indeed, if ¢ divides d then p and ¢ are coprime since P is a coprime
set. If ¢ does not divide d then it divides an element of B— {b}, but p divides b, so p
and g are coprime since B is a coprime set.) Thus E is a coprime set. Furthermore,
the coid generated by E contains d (via @), hence all of P, hence a and b, hence
all of B. So E is a coprime base for B U {a}. (2) Consider ¢ € E. If ¢ € @ then ¢
divides d, which divides a, or ¢ divides an element of B — {b}. If ¢ € P — {d} then
q divides b. Hence in any case ¢ divides an element of B U {a}. (I

Theorem 4.3. Let S be a finite subset of a Noetherian coid with cancellation.
Then there is a finite coprime base for S.

Proof. Induct on the size of S. If S = {} then {} is a coprime base for S. Otherwise
select a € S. By induction, there is a finite coprime base B for S—{a}. By Theorem
4.2, there is a finite coprime base for B U {a}, and hence for S. O

Notes. The proof of Theorem 4.1 is an algorithm introduced by Bach, Driscoll, and
Shallit in [2]. This algorithm is neither the first algorithm for constructing coprime
bases (see [11]) nor the fastest (see section 9), but it is certainly the simplest. I

FACTORING INTO COPRIMES IN ESSENTIALLY LINEAR TIME 5

call it the coprime base algorithm (CBA). Here is a C program that reads two
small positive integers from its input and prints the CBA results:

gcd(a,b) { return b ? gcd(b,alb) : a; }

cba(a,b) { int g = gcd(a,b);
if (g == 1) { printf("%d ",a); return b; }
return cba(cba(a/g,g) ,b/g); }

main() { int a, b; scanf("%d %d",&a,&b);
printf ("%d\n",cba(a,b)); }

The proof of Theorem 4.2 is also an algorithm in [2]; I call it the coprime base
extension algorithm (ECBA).

It is stated in [2] that Gaussian semigroups form a “suitable abstract setting”
for these algorithms. (“Gaussian semigroup,” modulo associates, means free coid;
see section 5.) Noetherian coids with cancellation are substantially more general.

Some authors say “P is pairwise coprime” instead of “P is coprime,” reserving
“P is coprime” for the relatively unimportant concept that gcd P = 1.

5. FREE COIDS AND GREATEST COMMON DIVISORS

A free coid is a Noetherian coid with cancellation in which a is coprime to bc
whenever a is coprime to both b and c.

Example. The nonzero ideals in a Dedekind domain form a free coid. Indeed, in
a Dedekind domain, the sum of two ideals a and b is a common divisor of {a, b},
hence a maximal common divisor; ifa+b=1and a+c=1thenl=a+b(a+c)=
a+ ba 4+ bc = a + be by elementary ideal arithmetic.

Theorem 5.1. In a free coid, if a divides bc, with a coprime to b, then a divides
c.

Proof. Let g be a maximal common divisor of {a,c}. By Theorem 3.2, a/g is
coprime to ¢/g. By hypothesis a/g is coprime to b; so a/g is coprime to b(c/g) =
bc/g. But a/g divides bc/g, so a/g must be 1. Thus a = g divides c. O

Theorem 5.2. In a free coid, if x and y divide z, and h is a mazimal common
divisor of {z,y}, then zy/h divides z.

Proof. Write z = qy. Then z/h divides z/h = q(y/h). By Theorem 3.2, z/h and
y/h are coprime. By Theorem 5.1, z/h divides q. Hence zy/h = (z/h)y divides
qy = z. O

Theorem 5.3. Let B be a nonempty subset of a free coid. Then there exists a
greatest common divisor of B.

The greatest common divisor of B is denoted gcd B.

Proof. Let g be a maximal common divisor of B, and let d be any common divisor
of B. Let h be a maximal common divisor of {g,d}. By Theorem 5.2, gd/h is a
common divisor of B. But g is maximal, so g = gd/h, so d = h, so d divides g as
claimed. O

6 DANIEL J. BERNSTEIN

Notes. Theorem 5.1, in the case of the positive integers, is the fundamental
theorem of arithmetic. It implies that factorizations into primes are unique; see
Theorem 6.4. The reader may enjoy showing that every element of a Noetherian
coid with cancellation has a factorization into irreducibles, and that irreducibles in
free coids are primes; hence every element of a free coid has a unique factorization
into primes. Thus a free coid is free in the usual sense. The converse is also true.

6. QUASIPRIMES AND THE ord FUNCTION

Let p and a be elements of a free coid, with p # 1. If a/p™ is coprime to p for
some integer m > 0 then p is a quasiprime for a. Observe that m is determined
by p and a; it is denoted ord, a.

If p is a quasiprime for every element of a set S then p is a quasiprime for S.

Theorem 6.1. Let a,b be elements of a free coid. If p is a quasiprime for {a,b}
then p is a quasiprime for ab with ord, ab = ord, a + ord, b.

Proof. By assumption a = up™ and b = vp™ where p is coprime to v and v. Then
p is coprime to uv, so p is a quasiprime for ab = uwvp™*™", with ord,ab=m+n =
ordy, a + ordy b. O

Theorem 6.2. Let a,b be elements of a free coid. If p is a quasiprime for {a,ab}
then p is a quasiprime for b.

Proof. By assumption a = up™ and ab = vp™ where p is coprime to 4 and v. Then
p™ is coprime to v, and p™ divides vp™, so p™ divides p", so m < n. Next u divides
vp™ ™™, and u is coprime to p"~ ™, so u divides v. Finally b = (v/u)p™~ ™. O

Theorem 6.3. Let a,b be elements of a free coid. Define g = gcd{a,b}. Ifp is a
quasiprime for {a, b} then p is a quasiprime for g with ord, g = min{ord, a, ord, b}.

Proof. By assumption a = up™ and b = vp™ where p is coprime to u and v. Without
loss of generality assume m < n. Since p™ is a common divisor of a and b, it divides
g; write g = zp™. Then z divides u, so p is coprime to x. O

Theorem 6.4. Let P be a finite coprime subset of a free coid. Define a = Hpepp%
where each a, is a nonnegative integer. Fiz g € P — {1}. Then q is a quasiprime
for a, and ordg a = ag.

Hence factorizations into elements of P are unique if P is a finite coprime set

not containing 1: the only factorization of a is Hp cp pordra,

Proof. If p € P, p # g, then p is coprime to g by assumption, so ord,p = 0. Also
ordg ¢ = 1. By Theorem 6.1, ord, prap = Zp apordy p = aq. O

Theorem 6.5. Let a,b be elements of a free coid H. Let S be a finite subset of H.
If ord, a = ord, b whenever p is a quasiprime for S then a =b.

Proof. By Theorem 4.3, there is a finite coprime base P for S U {a,b}. Write
a = [[,epp® and b = [[,cpp’. If p € P — {1} then p is a quasiprime for S so
ap = ord, a = ord, b = b, by Theorem 6.4. Hence a = b. O

Theorem 6.6. Let a,b be elements of a free coid H. Let S be a finite subset of H.
If ordy, a < ord, b whenever p is a quasiprime for S then a divides b.

FACTORING INTO COPRIMES IN ESSENTIALLY LINEAR TIME 7

Proof. Define g = gcd{a,b}. If p is a quasiprime for S then ord,a < ord,b so
ord, g = ord, a by Theorem 6.3. Hence g = a by Theorem 6.5. ([

Theorem 6.7. Let a,b be elements of a free coid H. Let S be a finite subset of H.
If min{ord, a,ord, b} = 0 whenever p is a quasiprime for S then a is coprime to b.

Proof. Define g = gcd{a, b}. If p is a quasiprime for .S then min{ord, a,ord, b} =0
so ord, g = 0 = ord, 1 by Theorem 6.3. Hence g =1 by Theorem 6.5.

7. THE NATURAL COPRIME BASE

Fix a subset S of a free coid. The natural coprime base for S, denoted cb S,
is the set of maximal quasiprimes for S.

The coid generated by cb S is everything that can be constructed from S with
multiplication, division, and greatest common divisors; see Theorem 7.5.

Theorem 7.1. Let S be a subset of a free coid. Let P be a coprime base for S,
not containing 1, such that any quasiprime for S is a quasiprime for P. Then
P=cbS.

Proof. Take p € P. By Theorem 6.4, p is a quasiprime for S. Say p divides another
quasiprime d for S. Then d is a quasiprime for p by assumption; since d and p are
not coprime, d must divide p, so d = p. Hence p is maximal.

Conversely, let ¢ be a maximal quasiprime for S. Then ¢ divides some element
of P. (If not, then ¢ must be coprime to every element of P, since ¢ is a quasiprime
for P. Thus q is coprime to every element of S. But then ¢? is a quasiprime for S,
o0 ¢ is not maximal.) Say ¢ divides p € P. By Theorem 6.4, p is a quasiprime for
S, so by maximality q = p. O

Theorem 7.2. Let S be a finite subset of a free coid. Then there is a finite coprime
base P for S such that any quasiprime for S is a quasiprime for P.

Proof. According to Theorem 6.2 and Theorem 6.3, if p is a quasiprime for S, then
p is a quasiprime for anything that can be created from S with division and gcd.
The constructions in Theorems 4.1, 4.2, and 4.3 use solely division and gcd. O

Theorem 7.3. Let S be a finite subset of a free coid. Then cb S is a finite coprime
base for S. Furthermore, any quasiprime for S is a quasiprime for cb S.

Proof. By Theorem 7.2, there is a finite coprime base P for S such that any
quasiprime for S is a quasiprime for P. Define @ = P — {1}; then Q is a co-
prime base for S, not containing 1, and any quasiprime for S is a quasiprime for
Q. By Theorem 7.1, @ =cb S. O

Theorem 7.4. Let Q be a coprime subset of a free coid. Then cb@ = @ — {1}.

Proof. Q — {1} is a coprime base for () not containing 1. Any quasiprime for @ is
certainly a quasiprime for @ — {1}. By Theorem 7.1, Q@ — {1} = cb Q. O

Theorem 7.5. Let QQ be a finite coprime subset of a free coid. Then Q) is a base
for {c} if and only if every quasiprime for Q is a quasiprime for c.

In particular, if @ is a base for {a,b}, then it is also a base for {ab, gcd{a, b}},
since any quasiprime for @ is a quasiprime for {ab,gcd{a,b}} by Theorem 6.4,
Theorem 6.1, and Theorem 6.3. Similarly, if @ is a base for {a, ab} then it is also
a base for {b}.

8 DANIEL J. BERNSTEIN

Proof. If Q is a base for {c} then every quasiprime for @ is a quasiprime for ¢ by
Theorem 6.4.

For the converse, define P = cb(Q U {c}). Any quasiprime for @ is a quasiprime
for @ U {c} by assumption, hence for P. So P = cb@ by Theorem 7.1. Thus
P =@ — {1} by Theorem 7.4. Since P is a base for {c}, @ is too. O

Theorem 7.6. Let S be a finite subset of a free coid. Define P = cbS. If every
element of S divides a then Hpepp divides a.

Proof. Take p € P. If p does not divide any element of S then p is coprime to all
elements of S so p? is a quasiprime for S, contradicting the maximality of p. Thus
p divides a. This is true for all p, so Hpe pp divides a by Theorem 5.2. O

Notes. My definition of the natural coprime base as the set of maximal quasiprimes
is simpler than the characterizations in [15], [13, Remark 6.8], and [2, Theorem 3].

PART II. TWO-ELEMENT SETS
8. LOGARITHMS AND M -TIME

Fix a free coid H. Fix a function lg : H — R such that (1) lgab = lga +1gb
and (2) lga > 1 for any a # 1. Observe that lg1 = 0.

My algorithms use a black box that can multiply a and b, divide ab by b, check
whether a divides b, or compute gcd{a, b} in time at most (1+1gab)u(lg ab), where
1 is a nondecreasing positive function. I write M-time for time spent inside this
black box. I say that the black box supports fast arithmetic when pu(z) € z°().

Examples. For the coid of positive integers, one may take lga as the usual loga-
rithm base 2. For the coid of monic polynomials over a field, one may take Ig a as the
degree of a. In each case there is an algorithm that achieves log u(z) € O(loglog z).

Theorem 8.1. Let p,a be elements of a free coid. If p is a quasiprime for a then
ord,a <lga.

Proof. Put n = ord, a. Then a = up™ for some u, solga =1gu+nlgp > n. O

Notes. See [20] for a fast gcd algorithm for integers. See [7] for a fast gcd algorithm
for polynomials.

Subsequent sections use the above assumptions on lg and p to bound the M-
time used by various algorithms. One can attach a lg function to any free coid by
setting lgp = 1 for each prime p, and one can imagine a black box that performs
each arithmetic operation in constant time. Conclusion: In any free coid, each
algorithm terminates after finitely many arithmetic operations.

My M-time bounds are somewhat pessimistic in practice, for two reasons. First,
one can actually divide ab by b in time depending only on the length of a. Second,
multiplication, division, and divisibility testing are actually much faster than gcd.
(This is also why I treat divisibility testing as a separate primitive, even though it
could be implemented with ged.)

9. FroMm CBA 1o DCBA

The natural coprime base for {p®, p’} is {p?} — {1} where g = gcd{e, f}. Thus
natural coprime bases act on erponents as greatest common divisors.

FACTORING INTO COPRIMES IN ESSENTIALLY LINEAR TIME 9

Consider CBA, the algorithm described in section 4 for computing cb{a, b}. CBA
replaces (a,b) with (a/gcd{a, b}, gcd{a, b}, b/gcd{a,b}); it focuses on the left pair
in this triple and then on the right pair. If (a,b) = (p° pf) then this triple is
(pe=f,pf 1) if e > f or (1,p% pf~¢) if e < f. Observe that the exponent pair (e, f)
has been replaced with (e — f, f) or (e, f —e). Thus CBA uses Euclid’s subtractive
algorithm to compute greatest common divisors of exponents.

Euclid’s subtractive algorithm is a dangerous way to compute greatest common
divisors: the number of steps is the sum of the quotients in the continued fraction
for e/f. A much safer alternative is Euclid’s repeated-division algorithm, where
the number of steps is at worst logarithmic in e 4+ f. Writing out the usual base-2
division algorithm inside Euclid’s algorithm produces “Brent’s left-shift binary gcd
algorithm,” which replaces (e, f) with (e — 2% f, f) for the largest possible value of
k, or with (f,e) ife < f.

How DCBA operates on exponents. Define a function s on pairs of nonnega-
tive integers as follows:

f—ee) ife<f

e—f,f) iff<e<2f

e—2f,f) if2f <e<Af

e—Af,f) ifdf <e<8f

Write «¢ for the ith iterate of x. Define A(a,b) as the smallest n > 0 such that, for
every quasiprime p for {a, b}, the second component of x"(ord, a,ord, d) is 0.

Theorem 9.1. If (¢, f') = k(e, f) then € +2f < (e +V2f)/V2.
Proof. If e < f then v2¢’ +2f —e —v/2f = (1 — v/2)e < 0. Otherwise 2Ff < e <
2k+1f for some k > 0, s0 v2e' +2f' —e—V2f = (V2 —1)e— (2Fv/2+v/2-2)f <
PH(yE - 1)] — (V3 +vE—2)f = (1-29)(2— V) <. .
Theorem 9.2. Ifn > 0 and lga +/21gb < \/§n+l then A(a,b) < n.

Proof. Let p be a quasiprime for {a,b}. Define e = ord, a, f = ord, b, and (¢, ') =
K" (e, f). Then € +v2f' < (e +v2f)/v/2" < v/2 by Theorem 9.1, 50 f' =0. O

Theorem 9.3. If A(a,b) =0 then b=1.

Proof. If p is a quasiprime for {a, b} then ord, b = 0 by definition of A\. By Theorem
6.5, b= 1. 0

Notes. See [17, sections 4.5.2 and 4.5.3] for a thorough discussion of Euclid’s sub-
tractive gcd algorithm and Euclid’s repeated-division ged algorithm.

10. COMPUTING POWERS

Algorithm T. Given (a,n), with n a nonnegative integer, to print a":
1. If n = 0: Print a and stop.
2. Set a <+ a®. Set n < n — 1. Return to step 1.

Theorem 10.1. Algorithm T computes a®" in M-time at most
(n+2(2" —1)lga)u(2™1ga).

10 DANIEL J. BERNSTEIN

Proof. For n = 0, Algorithm T uses no M-time, and n + 2(2" — 1)lga = 0. For
n > 1, Algorithm T first computes a?, using M-time at most (1+21ga)u(2lga) <
(1+2lga)u(2"1ga). It then computes (a2)2" ", using M-time at most

(n—1+22" ! - 1)1ga®)u(2" 'lga®) = (n — 1+ 2(2" — 2)Iga)u(2"1ga)
by induction. Finally 1+ 2lga+n—142(2" —2)lga=n+2(2" —1)lga. O

Notes. Algorithm T is well known. For generalizations see [17, section 4.6.3].

11. THE ppi, ppo, ppg, AND pple FUNCTIONS
The defining properties of ppi(a, b), ppo(a, b), ppg(a,b), and pple(a,b) are that

ord, ppi(a, b) = (ord, a)[ord, b > 0]
ord, ppo(a,b) = (ord, a)[ord, b = 0]
ord, ppg(a,b) = (ord, a)[ord, a > ordy, b]
ord,, pple(a, b) = (ord, a)ord, a < ord b]

whenever p is a quasiprime for both a and b. Constructive proofs of existence appear
in Theorem 11.2 and Theorem 11.3 below. Uniqueness follows from Theorem 6.5.

Theorem 11.1. Let a,c,xzq,yo be elements of a free coid, with xoyo = a and xy =

ged{a,c}. For n > 0 define gny1 = gcd{Zn,Yn}, Tnt1 = Tngn+1, and Ypy1 =
Yn/gn+1. If p is a quasiprime for {a,c} then ord, x, = min{ord, a, 2" ord, c}.

Note that z,y, = a.

Proof. Write e = ordp a and f = ord, c. Then ord, zo = min{e, f}.

Assume inductively that ord, z, = min{e, 2" f}. If e < 2" f then ord, z, = € so
ord, yn = 0 s0 ordp gnt1 = min{0, e} = 0; thus ord, zp+1 = € = min{e, 2" f}. If
e > 2" f then ord, x,, = 2" f so ord, y, = e—2"f so ordp gn+1 = min{e — 2" f,2" f};
thus ord, z,+1 = 2" f + min{e — 2" f,2" f} = min{e, 2" f}. O

Theorem 11.2. Let a,c be elements of a free coid. Define zy = gcd{a,c} and yo =
CL/xO- Forn >0 deﬁne gn+1 = ng{xn’ yn}; Tn+1l = Tndnit1, and Yn+1 = yn/gn—i-l-
If gnt1 =1 then z, = ppi(a, ¢) and y, = ppo(a,c).

Proof. Select a quasiprime p for {a, c}; write e = ord,a and f = ord,c. If g,41 =1
then z, = zn41 so min{e,2"f} = min{e, 2" f} by Theorem 11.1. If f = 0 then
ord, z, = min{e,0} = 0. If f > 0 then 2" f < 2"*! f so e < 2" f; thus ord, z, = e.
Hence in general ord, z,, = e[f > 0] and ord, y, = e — ord, z, = e[f = 0]. O

Theorem 11.3. Let a,b be elements of a free coid. Define yo = ged{a,b} and zy =
a/yo. Forn >0 define gn+1 = gcd{Tn,Yn}, Tnt1 = Tngn+1, and Yni1 = Yn/gn+1-
If gnt1 = 1 then z, = ppg(a,b) and y, = pple(a,d).

Proof. Define ¢ = zg. Then z, = ppi(a,c) and y, = ppo(a,c) by Theorem 11.2.
Select a quasiprime p for {a,b}; write e = ord, a and f = ord, b. Then ord, yo =
min{e, f}, so ord, ¢ is 0 exactly when e < f. Thus ord, z,, = e[ord, ¢ > 0] = e[e >
f] and ord, y, = eford, c = 0] = e[e < f]. O

Theorem 11.4. In the situation of Theorem 11.1, if k > 0 and 2* > lga then
gk+1 = 1.

FACTORING INTO COPRIMES IN ESSENTIALLY LINEAR TIME 11

Proof. Say p is a quasiprime for {a,c}. By Theorem 8.1, ord, a < lg a. By Theorem
11.1, ord, 2, = min{ordp a,2* ord, c}. If ord, ¢ = 0 then ord, z = 0 = ord, Tg41.
If ord, ¢ > 0 then 2 ord, ¢ > 2% > 1ga > ord, a so ord, = = ord,a = ordy, Tj1.
Hence ord, gx4+1 = ord, g1 — ord, zx = 0. This is true for all p, so g1 =1. O

The following two algorithms include n solely for expository purposes.
Algorithm PPIO. Given (a,c), to print gcd{a, c}, ppi(a,c), and ppo(a, c):
1. Set ¢ « gcd{a,c}. Print . Set y < a/z. Set n « 0.
2. (Now (z,y) = (zn,¥yn) in Theorem 11.2.) Set g < ged{z,y}. If g = 1: print
z, print y, and stop.
3. Set z < xzg and y < y/g. Set n + n+ 1. Return to step 2.

Algorithm PPGLE. Given (a,b), to print gcd{a, b}, ppg(a,b), and pple(a, b):
1. Set y < gcd{a, b}. Print y. Set = < a/y. Set n + 0.
2. (Now (z,y) = (@, yn) in Theorem 11.3.) Set g < gcd{z,y}. If g = 1: print
x, print y, and stop.
3. Set z + zg and y + y/g. Set n + n+ 1. Return to step 2.

Theorem 11.5. Let a,c be elements of a free coid. Algorithm PPIO computes
(ged, ppi, ppo)(a, c) in M-time at most (3k+3+ (2k+4)1ga+lgc)u(lgac) if k >0
and 2F > Iga.

Proof. By Theorem 11.4, gi+1 = 1, so the algorithm stops when n = k if not
earlier. It thus performs step 2 for n € {0,1,...,k} at most, and step 3 for n €
{0,1,...,k — 1} at most.

Step 1 uses M-time at most (1+1gac)u(lg ac) to compute ged{a, c} and M-time
at most (1+1ga)u(lga) to compute a/z.

Each iteration of step 2 uses M-time at most (1+1ga)u(lga) since zy = z,y, =
a. The total is at most (k + 1)(1 +1ga)u(lga).

An iteration of step 3 uses M-time at most (1+1gzg)u(lgzg)+(1+1lgy)u(lgy) <
(2 4+ lgzpy1 + 1gyn)u(lga). The total for n € {0,1,2,...,k — 1} telescopes to
(2k +1gzi + (k— 1) lga + g yo)u(lg a), which is at most (2k + (k+ 1)1ga)u(lga).

Add: (1+1gac)+ (1+1ga)+ (k+1)(1+1ga)+ (2k+ (k+1)lga) =3k + 3 +
(2k +4)1ga +1gc. O

Theorem 11.6. Let a,b be elements of a free coid. Algorithm PPGLE computes
(ged, ppg, pple)(a, b) in M -time at most (3k+3+(2k+4)1ga+1gb)u(lgad) if k >0
and 2F > Iga.

Proof. Same analysis as in Theorem 11.5. O

Notes. The ppo function is the subject of [18]. Write r = ppo(a,b). Then r is a
divisor of a, coprime to b, such that each quasiprime for {a,b} dividing a/r also
divides b. Liineburg’s algorithm in [18] takes quadratic time on inputs (p", p).

The ppg function is the subject of [22, section 19]. Write A = ppg(a,b) and
B = b/gcd{A,b}. Then A divides a, and B divides b; A and B are coprime; and
AB is the least common multiple of a and b. Stieltjes’s algorithm in [22] takes
quadratic time on inputs (p"*1, p™).

The notation ppi(a,b) stands for “powers in a of primes inside b”; ppo(a,b) is
“powers in a of primes outside b”; ppg(a, b) is “prime powers in a greater than those
in b”; and pple(a, b) is “prime powers in a less than or equal to those in b.”

12 DANIEL J. BERNSTEIN

12. THE ls FUNCTION

Fix a, bin a free coid. Definels, (a, b) as the triple (gn, hn, cn), where (go, ho,co) =
(ged, ppg, pple) (ppi(a, b),b) and (gnt1, hn+1, cnt1) = (ged, ppg, pple) (hn, g3)-

Theorem 12.1. Let a,b be elements of a free coid. Let p be a quasiprime for
{a,b}. Define e = ord,a and f = ord,b. Define (gn,hn,cn) = Is,(a,b). Then
(ordy gn,ordy hn,ordy c,) = [0 < 2" f < e](min{e, 2" f}, e[e > 27 f],ele < 2" f])
forn > 1.

Proof. Notice that ordy, gnt1, ord, hny1, and ord, c,41 are all bounded by ord, hy,.
Therefore if ord, h,, = 0 then ord, g, = ord, hy, = ord, ¢, =0 for all n > m.

Case 1: f = 0. Then ord, ppi(a,b) = 0 so ord, g, = ord, h,, = ord, c,, = 0 for
all n.

Case 2: e < f. Then ord, ppi(a,b) = e, so ord, hg = e[e > f] =0, so ord, g, =
ordy, hy, = ord, ¢, =0 for all n > 1.

Case 3: e > f > 0. Then ord, ppi(a,b) = e, so ord, hy = e and ord, go = f.
Thus ord, g; = min{e, 2f}; ord, h; = e[e > 2f]; and ord, c; = e[e < 2f].

Assume inductively ord, g, = [2"~' f < €] min{e, 2" f} and ord, h,, = e[e > 2" f].
If e < 2" f then ord, hy, = 0 50 ordy, gn4+1 = ordy Apy1 = ordy, cpy1 = 0 as desired. If
e > 2" f then (ord, gn,ord, h,) = (2" f, €) so ordy, g,+1 = min{e, 2"*! f} as desired;
ord, hpt1 = efe > 2"F1 f] as desired; and ord, c,+1 = e[e < 2"T! f] as desired. O

Theorem 12.2. Let a,b be elements of a free coid. Define (gn,hn,cn) =1sn(a,b).
Ifm>1and hy,, =1 thena = cocy - .. ¢ Ppo(a, b). Furthermore, any two members
of the sequence cg,cy,. .., Cm,ppo(a,b) are coprime.

Proof. Let p be a quasiprime for {a,b}. Write e = ord,a and f = ord,b. T will
show that the sum of the numbers ord, ¢o,ord, c1,...,ord, ¢m, ord, ppo(a, b) is e,
and that at most one of the numbers is nonzero.

Case 1: f = 0. Then ord, ppi(a,b) = 0 so ord, cop = 0; ord, ¢, = 0 for n > 1;
and ord,, ppo(a,b) = e.

Case 2: e < f. Then ord, ppo(a,b) = 0; ord, cy = ele < f] = e; and ord, ¢, =0
for n > 1.

Case 3: e > f > 0. Then ord,ppo(a,b) = 0; ord,co = 0; and ord,c, =
e[2""1f < e < 2f] for n > 1. There is exactly one value of k > 1 for which
2k—1f < ¢ < 2k f. Furthermore ord, hy, =0s0 e <2™f so k <m. O

Theorem 12.3. Let a,b be elements of a free1 coid. Define (gn,hn,cn) =1s,(a,b).
Define d,, = ged{cp,b} for n > 1. Then d2" divides c,,. Furthermore, if m > 1
and hy, =1, then cod1ds .. .d, divides b, and b/d1ds . ..d,, is coprime to a/cy.

Proof. Let p be a quasiprime for {a,b}. Write e = ord,a and f = ord,b. Then
ord, ¢, = e[2" 71 f < e < 2"f] by Theorem 12.1, so ord, d,, = f[2" "' f < e < 27f],
s0 2" Lord, d,, < e[2""!f < e < 2"f] = ord, c,,. Thus d2" " divides c,.

Next, ord, dids ...d,, = f[f <e <2™f], and ord, co = ele < f] < fle < f], so
ord, codidy ... dm < fle < 2™ f] < f. Thus codids . ..dn, divides b.

If Ay, =1 then f =0 or e < 2™f. Either way ord, didz...dn, = f[f < €], so
ord,(b/didz...dn) = fle < f]. On the other hand ord,(a/co) = e[e > f]. Thus
b/dids...d,, and a/cy are coprime. O

Notes. The name Is stands for “left shift.” This function splits up the quasiprimes
in @ according to the cases in the definition of x in section 9.

FACTORING INTO COPRIMES IN ESSENTIALLY LINEAR TIME 13

13. COMPUTING A COPRIME BASE FOR A TWO-ELEMENT SET

This section introduces a fast algorithm, DCBA, to compute the natural coprime
base for {a,b}. For the correctness of DCBA, see Theorem 13.1. For speed, see
Theorem 13.3.

Theorem 13.1. Let a,b be elements of a free coid. Define (gn,hn,cn) =1sn(a,b).
Define d,, = ged{c,,b} for n > 1. Assume that h,, = 1 with m > 1. Define
P, = cb{cn/dinfl,dn} for 1 <n < m. Define Q@ = cb{b/cod1ds...dm,co}. Define
R = cb{ppo(a,b)}. Then P = |J P, is a disjoint union; P UQ U R is a disjoint
union; and PUQ U R = cb{a, b}.

Proof. By construction d,, divides ¢,,, so each element of P, divides c,. Hence, by
Theorem 12.2, elements of P, are coprime to elements of P for k # n. Natural

coprime bases do not contain 1, so Py, Ps, ..., P, are disjoint, and their union P is
a coprime set.
Next, by Theorem 12.2 again, c¢;,ca,...,cy, are coprime to ppo(a,b), so P is

disjoint from R, and P U R is a coprime set.

Next, each element of @ divides b/dids...d,, hence is coprime to a/cy =
€1C3 . .. ¢y PPO(a, b) by Theorem 12.3 and Theorem 12.2. Thus @Q is disjoint from
PUR,and PUQU R is a coprime set.

Next, the coid generated by P U @Q U R contains b/cyd1ds . . . d, (via Q), ¢p (via
Q), and each d,, (via P,), so it contains b. It also contains ¢,/d2" and thus ¢,
(via P,), as well as ppo(a,b) (via R), so it contains cpc; .. .cm ppo(a,b) = a by
Theorem 12.2.

Finally, naturalness follows from Theorem 7.1. O

Algorithm DCB (DCBA). Given (a,b), to print cb{a,b}:
1. If b = 1: Print a if a # 1. Stop.

Compute (a,r) < (ppi, ppo)(a,b) by Algorithm PPIO.
Print r if r # 1.
Compute (g, h, ¢) < (gcd, ppg, pple)(a, b) by Algorithm PPGLE.
Set ¢y «+ c¢. Set z < cp.
Set n « 1.
Compute (g, h, ¢) « (gcd, ppg, pple)(h, %) by Algorithm PPGLE.
Set d « ged{c, b}.

9. (Now (g,h,c,d) = (gn, hn,Cn,dn).) Set z <+ zd.
10. Compute y + d2"~ by Algorithm T.
11. Recursively apply DCBA to (c/y, d).
12. If h # 1: Set n < n+ 1. Return to step 7.
13. Recursively apply DCBA to (b/z,cp).-

Beware that the order of arguments is important in DCBA’s recursive calls.

Theorem 13.2. Let a,b be elements of a free coid. Define (gn,hn,cn) =1sn(a,b).
Ifm>1and 2™ ! >Iga then h,, = 1.

e B o

Proof. Say p is a quasiprime for {a,b}. Write e = ord,a and f = ord, b. Then
e <lga < 2™~! by Theorem 8.1. If f = 0 then ord,h, = 0; if f > 1 then
e < 2™71f so again ord, hy, = 0. O

Theorem 13.3. Let a,b be elements of a free coid. If m > 1 and 2™ ' > lgab
then DCBA finishes in M -time at most A(a,b)(4m? + 12m + 4)(1g ab) u(31g ab).

14 DANIEL J. BERNSTEIN

Proof. If b = 1 then DCBA stops immediately, using no M-time. Otherwise
A(a,b) > 1 by Theorem 9.3.

The point here is that A(a, b) decreases at each level of the recursion: A(c/y,d) <
A(a,b) — 1 in step 11, and A(b/z,c0) < A(a,b) — 1 in step 13. Indeed, let p
be a quasiprime for {a,b}. Write e = ord,a and f = ord,b. Then the pair
(ord,(cn/d2" "), 0rd, dy) is (e — 2771, f) = K(e, f) if 2771f < e < 27f, (0,0)
otherwise. The pair (ord,(b/codids .. .dm),ord, co) is (f —e,e) = k(e, f) if e < f,
(0,0) otherwise.

So induct on A(a,b). The product of the inputs to DCBA in step 11 and step 13
isb]],>,(cn/ d2"™"), which divides ab by Theorem 12.2. By induction, all the recur-
sive calls together use M-time at most (A(a,b) —1)(4m? +12m +4)(lg ab)u(3 g ab).
It therefore suffices to prove that the non-recursive work in DCBA takes M-time
at most (4m? + 12m + 4)(lg ab)u(3 g ab).

Step 2 and step 4 each use M-time at most (3m + (2m + 2) 1ga + 1g b) u(lg ab) by
Theorem 11.5 and Theorem 11.6 respectively. The division in step 13 uses M-time
at most (1 +1gb)u(lgb).

Steps 7 through 12 are performed for n € {1,2,...,m} at most, since h,, = 1 by
Theorem 13.2. Step 7 uses M-time at most (3m + (2m + 2)lgh +1g g?)u(lg hg?) <
(3m + (2m + 4)lga)u(lg a®) per iteration by Theorem 11.5 since h and g divide a.

Step 8 uses M-time at most (1 + lgab)u(lg ab) per iteration since ¢ divides a.

Step 9 uses M-time at most (1+1gb)u(lgbd) per iteration since the final value of
z divides b.

By Theorem 10.1, step 10 uses M-time at most (n—1+(2"—2)1lgd)u(2""11gd) <
(m — 1+ 2lga)u(lga) per iteration.

Finally, the division in step 11 uses M-time at most (1+1g a)u(lga) per iteration.

The total is at most u(lga®b) times 4m? + 8m + 1 + (2m? + 12m + 4)1ga +
(2m + 3)1gb, which is at most (2m? + 12m + 4)lga + (4m? + 10m + 4)Igh <
(4m? + 12m + 4) lg ab since Igb > 1. O

Theorem 13.4. Let a,b be elements of a free coid. If m > 1 and 2™ ' > lgab
then DCBA finishes in M-time at most 8m(m? + 3m + 1)(1gab)u(31g ab).

Proof. By Theorem 9.2, A(a,b) < 2m. O

Notes. Although DCBA is much faster than CBA in the worst case, CBA is faster
on average for many input distributions. In practice one should start with CBA,
switching to DCBA after a few steps.

PArT III. FINITE SETS
14. THE prod FUNCTION

For any finite set S define prod S = [[,.g a. The following algorithm computes
prod S by binary splitting:
Algorithm P. Given a finite set S, to print prod S:

1. If S = {}: Print 1. Stop.

If #5 = 1: Find a € S. Print a. Stop.

Select T' C S with #T = |#S5/2].

Compute X < prod T by Algorithm P recursively.
Compute Y <« prod(S — T') by Algorithm P recursively.
Print XY

S Ot W

FACTORING INTO COPRIMES IN ESSENTIALLY LINEAR TIME 15

Theorem 14.1. Let S be a finite subset of a free coid. If 2™ > #S > 1 then
Algorithm P computes prod S in M -time at most (#S5—1+mlgprod S)u(lgprod S).

Proof. Induct on m.
Case 1: #S = 1. Algorithm P uses no M-time; and #S — 1+ mlgprod.S > 0.
Case 2: #S > 2. Then m > 1. In Algorithm P, #T = |#5/2], so #T < 2m~!
and #(S — T) < 2™~L. In steps 4 and 5, by induction, Algorithm P uses M-time
at most

(#T — 14 (m —1)1gprod T')u(lgprod T')
+(#(S—T)—1+ (m —1)1gprod(S — T))u(lg prod(S — T))
< (#S -2+ (m —1)1gprod S)u(lg prod S)

since 1g prod T'+1g prod(S — T') = lgprod S. In step 6, Algorithm P uses M-time at
most (1+1gprod S)u(lgprod S). Add: #S—2+(m —1)lgprod S+ 1+1gprod S =
#S —1+mlgprodS. O

Notes. Algorithm P is well known; it appears in, e.g., [6, exercise 6.4-10(a)].

15. THE split FUNCTION

For any coprime set P define split(a, P) = {(p, ppi(a,p)) : p € P}. Algorithm S
below computes split(a, P).

Theorem 15.1. Let b be an element of a free coid H. Let P be a finite coprime
subset of H. Then b = ppo(b, prod P) [, p ppi(b, p).

Proof. Let ¢ be a quasiprime for PU {b}. I will show that ord, b = ord, ppo(b, z) +
ZpGP ord, ppi(b, p) where x = prod P.

Case 1: ¢ divides some p € P. Then ordyz > 0 so ordyppo(b,z) = 0, and
ordy p > 0 so ord, ppi(b,p) = ord, b. If p’ € P with p’ # p then p' is coprime to p
by assumption, so ord, p’ = 0, so ord, ppi(b,p’) = 0.

Case 2: ¢ does not divide any p € P. Then ordyp = 0 so ord, ppi(b,p) = 0. Also
ordg z = 0, so ord, ppo(b, z) = ordy b. O

Theorem 15.2. Let a,z,y be elements of a free coid. Set b = ppi(a,zy). Then
ppi(b, z) = ppi(a, z).

Proof. Let p be a quasiprime for {a,z,y}, and write e = ord,a. Then ord,b =
elord, zy > 0], so ord, ppi(b, z) = eordp, zy > O][ordpz > 0] = efordp,z > 0] =
ord, ppi(a, z). O

Theorem 15.3. Let a be an element of a free coid H. Let P be a finite subset of
H. Define b = ppi(a, prod P). Then split(a, P) = split(b, P).

Proof. If p € P then p divides prod P so ppi(b,p) = ppi(a,p) by Theorem 15.2. [

Algorithm S. Given (a, P), to print split(a, P):

1. If P = {}: Stop.
Compute b + ppi(a, prod P).
If #P = 1: find p € P, print (p,b), and stop.
Select @ C P with #Q = [#P/2].
Print split(b, Q) by Algorithm S recursively.
Print split(b, P — @) by Algorithm S recursively.

S Ok W

16 DANIEL J. BERNSTEIN

Theorem 15.4. Let a be an element of a free coid H. Let P be a finite coprime

subset of H. Define x = prod P and b = ppi(a,z). Then Algorithm S computes

split(a, P) in M-time at most

(m+1)(m+2)
2

times p(lgazx) if k > 0, 28 > 1ga, and 2™ > #P > 1.

Proof. Induct on m. Write y = prod @ and z = prod(P — @). Then y and z are
coprime since P is coprime, so 1g ppi(b,y) + lgppi(b, z) < lgb by Theorem 15.1.
Algorithm S spends M-time at most (#P —1+mlgz)u(lgxz) computing prod P
by Theorem 14.1, and M-time at most (3k+3+(2k+4) lg a+lg z) u(lg axz) computing
b by Theorem 11.5.
Case 1: #P = 1. Then Algorithm S stops in step 3. The total M-time is at
most u(lgaz) times

(2k+4)(lga +2mlgb) + lgz + (m+5+6k)#P — 3k — 2

+(m+1)2(m+2)

3k+3+4(2k+4)lga+lgx < (2k+4)(lga+2mlgh) lgz+m-+3+3k

as claimed.
Case 2: #P > 2. Then Algorithm S performs two recursive calls. By induction
the first uses M-time at most

(2k + 4)(gb + 2(m — 1) 1g ppi(b, y)) + @gw (m+ 4+ 6k)#Q — 3k — 2

times p(lgby) and the second uses M-time at most
m(m+1)
2
times p(lgbz). Thus the total M-time is at most u(lgazx) times
(#P—-1+mlgz)+ (3k +3+ (2k +4)1ga +1gx)

1
+ (2k +4)(21gb+2(m — 1) 1gb) + Mlgw+(m+4+6k)#P—6k—4,

(2k+4)(1gb+2(m —1)lgppi(b, 2)) + lgz+ (m+4+6k)#(P—Q)—3k—2

which equals the claimed bound. ([l

Notes. There is some redundancy in Algorithm S. Step 5 and step 6 recursively
calculate products of various subsets of P; so does step 2. One could save time by
storing products in step 2 for later use.

16. EXTENDING A COPRIME BASE
Given a coprime set P, EDCBA below finds the natural coprime base for PU{b}.

Theorem 16.1. Let b be an element of a free coid H. Let P be a finite coprime
subset of H. Define x = prod P. For each p € P define Q, = cb{p,ppi(b,p)}.
Define R = cb{ppo(b,z)}. Then Q =J Q) is a disjoint union; QU R is a disjoint
union; and Q U R = cb(P U {b}).

Proof. If p and p’ are distinct elements of P then p and p’ are coprime so ppi(b, p)
and ppi(b,p’) are coprime. Thus @, and @, are disjoint, and @ is a coprime set.

If p € P then p divides z so both p and ppi(b, p) are coprime to ppo(b,z). Thus
Q@ and R are disjoint, and Q U R is a coprime set.

The coid generated by QU R contains each p € P (via Q). It also contains each
ppi(b, p) and ppo(b, z), hence b by Theorem 15.1.

Naturalness follows from Theorem 7.1. O

FACTORING INTO COPRIMES IN ESSENTIALLY LINEAR TIME 17

Algorithm EDCB (EDCBA). Given (P,b), P coprime, to print cb(P U {b}):
1. Compute z < prod P by Algorithm P.

Compute (a,r) + (ppi, ppo)(b, z) by Algorithm PPIO.

Print r if r # 1.

Compute S < split(a, P) by Algorithm S.

For each (p,c) € S: Apply DCBA to (p,c).

CL N

Theorem 16.2. Let b be an element of a free coid H. Let P be a nonempty finite
coprime subset of H. Define x = prod P. EDCBA finishes in M-time at most
Tm#P + (8m3 + 28m? + 16m + 4)lgb + (8m3 + 24.5m? + 10.5m + 2)lgz times
p(3lgbz) if m > 1 and 2™~ > Igbz.

A simpler bound when 1 ¢ P is (8m® + 28m? + 18m + 4)(Ig bz)u(3 g bz).

Proof. Note that #P < 1+1gx <1+2m1 < 2™,

Step 1 takes M-time at most (#P — 1+ mlgz)u(lgz) by Theorem 14.1.

Step 2 takes M-time at most (3m+ (2m+2)lgb+1g z)u(lg bz) by Theorem 11.5.

Step 4 takes M-time at most (2m+2)(2m+1)1gb+ (1/2)(m +1)(m+2)1gz +
(Tm — 1)#P — 3m + 1 times u(lgbz) by Theorem 15.4.

By Theorem 13.4, the application of DCBA to (p,c) in step 5 takes M-time at
most 8m(m? + 3m + 1)(lg cp)u(31g cp). The sum of 1g cp is at most lg bz, since the
product of ¢’s divides b by Theorem 15.1. (]

17. MERGING COPRIME BASES

Algorithm U below finds cb(P U Q) if P is coprime and @ is coprime.
Let k be a nonnegative integer. I define bit; k as the ith bit in k’s binary
expansion; thus k = .., 2* bit; k, with bit; k € {0,1}.

Theorem 17.1. Let qo,q1,.-.,qn—1 be elements of a free coid, with q; coprime
to qx for j # k. Let b > 1 be an integer such that 2° > n. Define z(e,i) =
prod{gx : bit; k = e}. Then a coprime set P is a base for {qo, - .-, qn-1} if and only
if it is a base for {x(0,0),2(0,1),...,2(0,b —1),2(1,0),2(1,1),...,2(1,b —1)}.

Proof. The point is that gx = ged{z(bit; k,7) : 0 < i < b}. Indeed, the ged is a
product of ¢’s by Theorem 7.5. It is divisible by g; if and only if g; divides each
z(bit; k,1), i.e., bit; j = bit; k for each i, i.e., j = k.

Now if P is a base for all z(e, ¢) then P is a base for gcd{z(bit; k,7) : 0 <i < b} =
qx by Theorem 7.5.

Conversely, if P is a base for all the ¢’s then it is also a base for the x’s, since
each z(e, 1) is a product of ¢’s. O

Algorithm U. Given (P,Q), with P coprime and @ coprime, to print cb(P U Q):

1. Set n = #@Q. Label the elements of Q) as qo,q1,.-+,qn_1-
Find the smallest b > 1 with 2° > n. Set S < P. Set i + 0.
If 4 > b: Print S. Stop.

Compute z <+ prod{g : bit; k = 0} by Algorithm P.
Compute T « cb(S U {z}) by EDCBA.

Compute z <+ prod{g : bit; k = 1} by Algorithm P.
Compute S < cb(T'U {z}) by EDCBA.

Set i + i + 1. Return to step 3.

e B e

18 DANIEL J. BERNSTEIN

Theorem 17.2. Let P and Q) be finite coprime subsets of a free coid. Then Algo-
rithm U prints cb(P U Q).

Proof. Apply Theorem 17.1. The set S printed by Algorithm U is a coprime base for
Pu{z(0,0),z(0,1),...,2(0,b —1),2(1,0),z(1,1),...,2(1,b — 1)} by construction,
and therefore a coprime base for P U @. Naturalness follows from Theorem 7.1. [

Theorem 17.3. Let P and Q be finite coprime subsets of a free coid, with 1 ¢
PUQ. Define z = (prod P)(prod Q)%. If m > 1 and 2™~ > lg 2 then Algorithm
U finishes in M -time at most 2m(8m3> + 28m? + 19m + 4)(Ig z)u(31g 2).

Proof. By Theorem 7.6, prod S always divides (prod P)(prod Q); and z divides
prod Q. Thus step 5 uses M-time at most (8m? + 28m? + 18m + 4)(1g z) u(3 1g 2)
per iteration by Theorem 16.2. Step 4 uses M-time at most m(lgz)u(lgz) by
Theorem 14.1. Similar comments apply to step 7 and step 6. O

Notes. Theorem 17.1 is crucial to my improvement over [2]. One can simply apply
EDCBA to each element of @ in turn, as in Theorem 4.3, but this is far too slow
when #Q@ is large. The trick here is to replace @ with a new set that has far fewer
elements but has () as its natural coprime base. One disadvantage of this trick is
that the new set takes b times as much space as Q.

There are many ways to reduce the time spent in steps 4 and 6 of Algorithm U.
However, steps 5 and 7 dominate the computation time.

18. COMPUTING A COPRIME BASE FOR A FINITE SET

The following algorithm uses binary splitting and Algorithm U to compute the
natural coprime base for any finite set.
Algorithm M. Given S, to print cb S:
1. If S = {}: Stop.
If #5S = 1: Find @ € S. Print a if a # 1. Stop.
Select T C S with #T = |#S5/2].
Compute P < cbT by Algorithm M recursively.
Compute Q < cb(S — T') by Algorithm M recursively.
Print cb(P U Q) by Algorithm U.

S Gtk W

Theorem 18.1. Let S be a finite subset of a free coid. Then Algorithm M prints
cb S.

Proof. By construction the output is a coprime base for T and for S — T, hence for
S. Naturalness follows from Theorem 7.1. O

Theorem 18.2. Let S be a finite susbet of a free coid. Define x = prodS. If
m>1,2m 1 > 2lgz, and 28 > #8 > 1 then Algorithm M finishes in M-time at
most 4mk(8m3 + 28m? + 19m + 4)(1gz)u(61g z).

Proof. If #S = 1 then Algorithm M uses no M-time. Otherwise, by induction on k&,
step 4 uses M-time at most 4m(k—1)(8m>+28m?+19m+4)(Ig prod T)u(61g x), and
step 5 uses M-time at most 4m(k—1)(8m>3+28m>+19m-+4)(Ig prod(S—T))u(6 g z).
Step 6 uses M-time at most 2m(8m? +28m? +19m +4)(21g z)u(6 lg z) by Theorem
17.3. Add. O

FACTORING INTO COPRIMES IN ESSENTIALLY LINEAR TIME 19

PART IV. FACTORIZATION
19. COMPUTING ord

Let p and a be elements of a free coid, with p # 1. I define reduce(p, a) = (i,a/p"),
where i is the largest integer such that p® divides a. In particular i = ord, a if p is
a quasiprime for a.

Algorithm E. Given (p,a), to print reduce(p, a):

1. If p does not divide a: Print (0,a) and stop.

2. Compute (j,b) < reduce(p?,a/p) by Algorithm E recursively.
3. If p divides b: Print (25 + 2,b/p) and stop.

4. Print (25 + 1,b).

Theorem 19.1. Let p and a be elements of a free coid, withp # 1. Then Algorithm
E prints reduce(p, a).

Proof. Induct on a.

If p does not divide a then reduce(p, a) = (0,a/p°) = (0, a).

After step 2, by induction, a/p = (p?)’b, with p? not dividing b. If p divides
b then a = p¥*2(b/p), with p not dividing b/p, so reduce(p,a) = (2§ + 2,b/p).
Otherwise a = p?/*1b, with p not dividing b, so reduce(p, a) = (25 + 1,b). O

Theorem 19.2. Let p and a be elements of a free coid, with p # 1. Define (i,c) =
reduce(p,a). If 28 > i + 1 then Algorithm E computes (i,c) in M-time at most
(4% — 3)(1 + g ap)u(lg ap).

Proof. Induct on k. Note that k£ > 1 since 2k >i4+2>2.

Case 1: 7 is zero. Algorithm E uses M-time at most (1 + lg ap)u(lgap) in step
1; it then stops, since p does not divide a. Finally 4k — 3 > 1.

Case 2: iis odd. Then j = (i—1)/2in step 2 of Algorithm E so j+1 = (i+1)/2 <
2k=1. By induction Algorithm E uses M-time at most (4k — 7)(1 + lgap)u(lg ap)
for the recursive call. It also uses M-time at most (1 + lgap)u(lgap) in step 1,
(1+1gp?)u(lgp?) + (1 +lga)pu(lga) for the computations of p? and a/p in step 2,
and (1 + lgbp)u(lgbp) in step 3.

The total is at most p(lg ap) times (4k —7)(1+1gap)+1+1gap+1+21gp+1+
lga+1+1gbp = 4k—3+(4k—4)lga+(4k—3—i)lgp = (4k—3)(1+1lgap)—lga—ilgp.

Case 3: i is even and nonzero. As before the recursive call uses M-time at
most (4k — 7)(1 + lgap)u(lgap). The other computations use M-time at most
(1 +1gap)p(lgap) in step 1, (1 +1gp?)u(lgp?) + (1 + lga)u(lga) in step 2, and
(1+1gbp)u(lgbp) + (1 +1gb)u(lgb) in step 3.

The total is at most p(lgap) times (4k —7)(1+1gap)+1+1gap+1+21gp+1+
lga+1+1gbp+1+1gb = (4k—3)(1+lgap)+1+(2—27)lgp. Finally (2i—2)Igp > 1
since 1gp > 1. O

Notes. Algorithm E is a simplified version of the algorithm I outlined in [4, section
22].

20. FACTORING OVER A COPRIME BASE

Fix a. Let P be a coprime set not containing 1. Algorithm F below factors a
into powers of elements of P, if possible; otherwise it proclaims failure.

Algorithm F prints the factorization of a as a list of pairs (p,n) meaning p”
where p € P. In practice one could represent p in this pair by a pointer into P.

20 DANIEL J. BERNSTEIN

Algorithm F. Given (a, P), with P coprime and 1 ¢ P, to print the factorization
of a into elements of P:

1. If P = {}: Proclaim failure if a # 1. Stop.

2. If #P = 1: Find p € P. Compute (n,c) < reduce(p,a) by Algorithm E. If

¢ # 1, proclaim fajlure and stop. Otherwise print (p,n) and stop.

Select @ C P with #Q = |#P/2].

Compute y < prod @ by Algorithm P.

Compute (b, ¢) < (ppi, ppo)(a, y) by Algorithm PPIO.

Apply Algorithm F to (b, Q) recursively. If Algorithm F fails, proclaim failure

and stop.

7. Apply Algorithm F to (¢, P — Q) recursively. If Algorithm F fails, proclaim
failure and stop.

S otk w

Theorem 20.1. Let H be a free coid. Let P be a finite coprime subset of H not
containing 1. Let a be an element of H. If P is a base for {a} then Algorithm F
prints the factorization of a into elements of P. Otherwise Algorithm F proclaims
failure.

Proof. Induct on #P.

Case 1: P = {}. Algorithm F correctly proclaims failure for a # 1, and correctly
prints nothing for a = 1.

Case 2: P = {p}. If Algorithm F does not proclaim failure, then it prints (p,n);
and a/p™ = ¢ =1 so a = p". Conversely, if a = p™ for some n, then Algorithm E
returns (n,1), so Algorithm F does not proclaim failure.

Case 3: #P > 2. Say P is a base for {a}. P is also a base for {y}, so P is a base
for {b,c} by Theorem 7.5. If p ¢ Q then ord,y = 0 so ord, b = 0; thus @ is a base
for {b}. Similarly P — Q@ is a base for {c}. By induction, Algorithm F prints the
factorizations of b and ¢ into elements of () and P — @ respectively, which together
form a factorization of a since bc = a; and Algorithm F does not proclaim failure.

Conversely, if Algorithm F does not proclaim failure, then P is a base for {b, c}
by induction, hence for {a}. O

Theorem 20.2. Let H be a free coid. Let P be a finite coprime subset of H not
containing 1. Define x = prod P. Let a be an element of H. If 2™ > #P > 1 and
2% > 1ga + 1 then Algorithm F finishes in M-time at most

m(m + 1)

(4k — 3 +m(2k +4))lga+ <4k—3+ 5

)lgw+<7k—1+%) 4P —3k—2

times p(lgax).

Proof. Induct on m.

Case 1: #P = 1. Algorithm F uses M-time at most (4% — 3)(1 + lg ap)u(lg ap)
in step 2 by Theorem 19.2.

Case 2: #P > 2. Then m > 1, 2™~1 > #Q > 1, and 2™ > #(P - Q) > 1.
Define y = prod Q and z = prod(P — Q). Also write T =4k —3+ (m — 1)(2k + 4)
and U =4k — 3+ (m — 1)m/2.

Algorithm F uses M-time at most (3#P — 1+ (m — 1)lgz)u(lgz) in step 4 by
Theorem 14.1 since #Q < %#P and lgy < lgz. In step 5 it uses M-time at most
(3k+3+(2k+4)1lga+lgz)u(lg ax) by Theorem 11.5. By induction it uses M-time
at most (Tlgb+ Ulgy + (7k — 1+ 1(m — 1))#Q — 3k — 2) u(Igby) in step 6 and

FACTORING INTO COPRIMES IN ESSENTIALLY LINEAR TIME 21

(Tlgec+Ulgz+ (Tk — 1+ 3(m — 1))#(P — Q) — 3k — 2)pu(lgcz) in step 7. The
total is at most u(lgaz) times

(3#P -1+ (m—1)lgz) + (3k+ 3+ (2k + 4)lga + g)
+(Tiga+Ulgz + (Tk — 1+ 5(m — 1)) #P — 6k — 4),

which equals the claimed bound. [l

21. FACTORING A SET OVER A COPRIME BASE

Let S be a set, and let P be a coprime set not containing 1. Algorithm G below
factors each element a € S into elements of P if P is a base for S; otherwise it
proclaims failure.

Theorem 21.1. Let H be a free coid. Let P be a finite coprime subset of H not
containing 1. Let S be a finite subset of H. Define x = prod P, y = prod S, and
z = ppi(z,y). Define Q = {p € P : ppi(z,p) = p}. Then P is a base for S if and
only if Q is a base for S. Furthermore each element of Q divides y.

Thus @ contains only the elements of P that are relevant to S.

Proof. Q C P, so if @ is a base for S then P is a base for S.

Conversely, say P is a base for S. Take any p € P dividing some element of S.
Then ord, z =1 and ord, y > 0, so ord, z = 1, so ord, ppi(z,p) = 1. For any ¢ € P
other than p, ord, p = 0 so ord, ppi(z,p) = 0. Thus ppi(z,p) = p; i.e., p € Q.

Finally, if p € @ then ppi(z,p) = p so ord, z = 1so ord,y > 0 so p divides y. O

Algorithm G. Given (S, P), with P coprime and 1 ¢ P, to print the factorization
of each element of S into elements of P:
1. If S = {}: Stop.

Compute z < prod P by Algorithm P.
Compute y < prod S by Algorithm P.
Compute z + ppi(z,y) by Algorithm PPIO.
Compute D < split(z, P) by Algorithm S.
Compute Q < {p € P: (p,p) € D}.
If #S = 1: Apply Algorithm F to (y, @), proclaiming failure if Algorithm F
fails. Stop.

8. Select T C S with #T = |#S5/2].

9. Apply Algorithm G to (T, Q) recursively.
10. Apply Algorithm G to (S — T, Q) recursively.

NS oUk N

Theorem 21.2. Let S be a finite subset of a free coid. Let P be a finite coprime
base for S, with 1 ¢ P. Then Algorithm G prints the factorization of each element
of S into elements of P.

Proof. By Theorem 21.1, @) is a base for S. Induct on #S. If #S =1 then S = {y}
and step 7 prints the factorization of y. If #S > 2 then @ is a base for 7" and for
S — T; hence, by induction, Algorithm G prints the factorization of each element
of T in step 9 and each element of S — T in step 10. O

Theorem 21.3. Let S be a finite subset of a free coid. Let P be a finite coprime
base for S, with 1 ¢ P. Define ¢ = prod P and y = prod S. Algorithm G finishes

22 DANIEL J. BERNSTEIN

in M-time at most u(lgz%y) times

3m + 3+ (6k +6)(#S — 1) + (4.5m? + 21.5m + 15) gz
+ ((9%* + 44k + 32)n + 2.5k + 21k — 5)1gy

if2n > #8>1,28>1gy+1,2m > gz, and m > 0.

Proof. Induct on n. Note that #S — 1 < lgy. Similarly #P < lgz since 1 ¢ P,
and #@Q <lgprod Q < lgy by Theorem 21.1. Write z = ppi(z, y).

Step 2 uses M-time at most (m + 1)(Igz)u(lgx). This follows from Theorem
14.1 for #P > 1. (For #P = 0, Algorithm P uses no M-time.) Similarly, step 3
uses M-time at most (k + 1)(Igy)u(lgy).

Step 4 uses M-time at most (3m + 3+ (2m +4)lgz + g y)u(lg zy) by Theorem
11.5.

Step 5 uses M-time less than (4.5m? + 18.5m + 10)(Igz)u(lgz?). This follows
from Theorem 15.4 for #P > 1, since lgz < lgz. (For #P = 0, Algorithm S uses
no M-time.)

The total so far is at most u(lg z%y) times 3m + 3 + (4.5m? 4+ 21.5m + 15) lgz +
(k+2)1gy. This leaves

((6k + 6)(#S — 1) + ((9%” + 44k + 32)n + 2.5k* + 20k — 7)1gy) p(lgz’y)

unaccounted for in the claimed run time.

Case 1: #S = 1. Then step 7 uses M-time at most (2.5k> + 20k — 7)Igy times
p(lg z%y). This follows from Theorem 20.2 for #Q > 1, since 2 > #@Q. (For
#@Q = 0, Algorithm F uses no M-time; note that 2.5k? + 20k — 7 > 0 since k > 1.)

Case 2: #S > 2. Then step 9 uses M-time at most p(lg z%y) times

3k + 3+ (6k + 6)(#7T — 1) + (4.5k* +21.5k + 15) Igy
+ ((9%* + 44k + 32)(n — 1) + 2.5k* + 21k — 5) Ilgprod T

by induction since 2% > Ig prod Q. Similarly, step 10 uses M-time at most u(lg z%y)
times

3k + 3+ (6k + 6)(#(S — T) — 1) + (4.5k* + 21.5k + 15) Igy
+ ((9%? + 44k + 32)(n — 1) + 2.5k? + 21k — 5) Ig prod(S — 7).

Add. O

Notes. Algorithm G is faster than the algorithm of [2, Theorem 7).
In step 6 of Algorithm G one could proclaim failure if (p,c¢) € D for some

¢ ¢ {1,p}.

REFERENCES

[1] —, International symposium on symbolic and algebraic computation ’90, Association for
Computing Machinery, New York, 1990.

[2] Eric Bach, James Driscoll, Jeffrey Shallit, Factor refinement, Journal of Algorithms 15 (1993),
199-222.

[3] Eric Bach, Gary Miller, Jeffrey Shallit, Sums of divisors, perfect numbers, and factoring,
SIAM Journal on Computing 15 (1986), 1143-1154.

[4] Daniel J. Bernstein, Detecting perfect powers in essentially linear time, to appear, Mathe-
matics of Computation.

[5] Daniel J. Bernstein, Fast ideal arithmetic via lazy localization, in [10], 27-34.

[6] Jonathan M. Borwein, Peter B. Borwein, Pi and the AGM, Wiley, New York, 1987.

[7] Richard P. Brent, Fred G. Gustavson, David Y. Y. Yun, Fast solution of Topelitz systems of
equations and computation of Padé approzimants, Journal of Algorithms 1 (1980), 259-295.

FACTORING INTO COPRIMES IN ESSENTIALLY LINEAR TIME 23

Jacques Calmet (editor), Algebraic algorithms and error-correcting codes 3, Lecture Notes in
Computer Science 229, Springer-Verlag, Berlin, 1986.

Bob F. Caviness (editor), Proceedings of EUROCAL ’85, volume 2, Lecture Notes in Com-
puter Science 204, Springer-Verlag, Berlin, 1985.

Henri Cohen (editor), Proceedings of the algorithmic number theory symposium 2, Lecture
Notes in Computer Science 1122, Springer-Verlag, Berlin, 1996.

[11] George E. Collins, Quantifier elimination for real closed fields by cylindrical algebraic de-

composition: preliminary report, SIGSAM Bulletin 8 (1974), 80-90.

[12] Jean Della Dora, Claire DiCrescenzo, Dominique Duval, About a new method for computing

in algebraic number fields, in [9], 289-290.

[13] Joachim von zur Gathen, Representations and parallel computations for rational functions,

SIAM Journal of Computing 15 (1986), 432-452.

[14] Guogqiang Ge, Recognizing units in number fields, Mathematics of Computation 63 (1994),

377-387.

[15] Erich Kaltofen, Sparse Hensel lifting, in [9], 4-17.
[16] Erich Kaltofen, Victor Shoup, Subgquadratic-time factoring of polynomials over finite fields,

preprint.

ona . Knuth, e art of computer programming, volume 2: seminumerical algorithms,
17] Donald E. Knuth, The art t i l 2 i ical algorith

2nd edition, Addison-Wesley, Reading, Massachusetts, 1981.

[18] Heinz Liineburg, On a little but useful algorithm, in (8], 296-301.
[19] Michael Pohst, Hans Zassenhaus, Algorithmic algebraic number theory, Cambridge University

Press, Cambridge, 1989.

[20] Arnold Schonhage, Schnelle Berechnung von Kettenbruchentwicklugen, Acta Informatica 1

(1971), 139-144.

[21] Trevor J. Smedley, Detecting algebraic dependencies between unnested radicals: extended

abstract, in [1], 292-293.

[22] Thomas Jan Stieltjes, Sur la théorie des nombres, Ann. Fac. Sci. Toulouse 4 (1890), 1-103.
[23] Jeremy T. Teitelbaum, On the computational complezity of the resolution of plane curve

singularities, Mathematics of Computation 54 (1990), 797-837.

DEPARTMENT OF MATHEMATICS, STATISTICS, AND COMPUTER SCIENCE (M/C 249), THE UNI-

VERSITY OF ILLINOIS AT CHICAGO, CHICAGO, IL 60607-7045

E-mail address: djb@pobox.com

