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Abstract. This paper shows, assuming standard heuristics regarding
the number-field sieve, that a “batch NFS” circuit of area L181-+o(1)
factors LO°t°() geparate B-bit RSA keys in time L':??2+°() Here L =
exp((log 22)1/3(loglog 25)?/3). The circuit’s area-time product (price-
performance ratio) is just L1704 o) per key. For comparison, the best
area-time product known for a single key is L'-976--+o(1),

This paper also introduces new “early-abort” heuristics implying that
“early-abort ECM” improves the performance of batch NFS by a super-
polynomial factor, specifically exp((c 4+ o(1))(log22)'/¢(loglog 27)%/9)
where c is a positive constant.

Keywords: integer factorization, number-field sieve, price-performance
ratio, batching, smooth numbers, elliptic curves, early aborts

1 Introduction

The cryptographic community reached consensus a decade ago that a 1024-bit
RSA key can be broken in a year by an attack machine costing significantly less
than 10° dollars. See [51], [38], [24], and [23]. The attack machine is an opti-
mized version of the number-field sieve (NFS), a factorization algorithm that has
been intensively studied for twenty years, starting in [36]. The run-time analy-
sis of NFS relies on various heuristics, but these heuristics have been confirmed
in a broad range of factorization experiments using several independent NF'S
software implementations: see, e.g., [29], [30], [31], and [4].

Despite this threat, 1024-bit RSA remains the workhorse of the Internet’s
“DNS Security Extensions” (DNSSEC). For example, at the time of this writing
(November 2014), the IP address of the domain dnssec-deployment.org is

e signed by that domain’s 1024-bit “zone-signing key”, which in turn is
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signed by that domain’s 2048-bit “key-signing key”, which in turn is
signed by .org’s 1024-bit zone-signing key, which in turn is

signed by .org’s 2048-bit key-signing key, which in turn is

signed by the DNS root’s 1024-bit zone-signing key, which in turn is
signed by the DNS root’s 2048-bit key-signing key.

An attacker can forge this IP address by factoring any of the three 1024-bit RSA
keys in this chain.

A report [41] last year indicated that, out of the 112 top-level domains using
DNSSEC, 106 used the same key sizes as .org. We performed our own survey
of zone-signing keys in September 2014, after many new top-level domains were
added. We found 286 domains using 1024-bit keys; 4 domains using 1152-bit
keys; 192 domains using 1280-bit keys; and just 22 domains using larger keys.
Almost all of the 1280-bit keys are for obscure domains such as .boutique and
.rocks; high-volume domains practically always use 1024-bit keys.

Evidently DNSSEC users find the attacks against 1024-bit RSA less worrisome
than the obvious costs of moving to larger keys. There are, according to our

informal surveys of these users, three widespread beliefs supporting the use of
1024-bit RSA:

e A typical RSA key is believed to be worth less than the cost of the attack
machine.

e Building the attack machine means building a huge farm of application-
specific integrated circuits (ASICs). Standard computer clusters costing the
same amount of money are believed to take much longer to perform the same
calculations.

e It is believed that switching RSA signature keys after (e.g.) a month will
render the attack machine useless, since the attack machine requires a full
year to run.

Consider, for example, the following quote from the latest “DNSSEC operational
practices” recommendations [32, Section 3.4.2], published December 2012:

DNSSEC signing keys should be large enough to avoid all known crypto-
graphic attacks during the effectivity period of the key. To date, despite
huge efforts, no one has broken a regular 1024-bit key; in fact, the best
completed attack is estimated to be the equivalent of a 700-bit key. An
attacker breaking a 1024-bit signing key would need to expend phenom-
enal amounts of networked computing power in a way that would not be
detected in order to break a single key. Because of this, it is estimated
that most zones can safely use 1024-bit keys for at least the next ten
years.

This quote illustrates the first and third beliefs reported above: the attack cost
would be “phenomenal” and would break only “a single key”; furthermore, the
attack would have to be completed “during the effectivity period of the key”. A
typical DNSSEC key is valid for just one month and is then replaced by a new
key.
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1.1. Contents of this paper. This paper analyzes the asymptotic cost, specif-
ically the price-performance ratio, of breaking many RSA keys. We emphasize
several words here:

e “Many”: The attacker is faced not with a single target, but with many tar-
gets. The algorithmic task here is not merely to break, e.g., a single 1024-
bit RSA key; it is to break more than two hundred 1024-bit RSA keys for
DNSSEC top-level domains, many more 1024-bit RSA keys at lower levels
of DNSSEC, millions of 1024-bit RSA keys in SSL (as in [25] and [35]; note
that upgrading SSL to 2048-bit RSA does nothing to protect the confiden-
tiality of previously recorded SSL traffic), etc. This is important if there are
ways to share attack work across the keys.

e “Price-performance ratio”: As in [53], [18], [50], [15], [54], [7], [51], [56],
[23], [24], etc., our main interest is not in the number of “operations” carried
out by an algorithm, but in the actual price and performance of a machine
carrying out those operations. Parallelism increases price but often improves
performance; large storage arrays are a problem for both price and perfor-
mance. We use price-performance ratio as our primary cost metric, but we
also report time separately since signature-key rotation puts a limit upon
time.

e “Asymptotic”: The cost improvements that we present are superpolynomial
in the size of the numbers being factored. We thus systematically suppress
all polynomial factors in our cost analyses, simplifying the analyses.

This paper presents a new “batch NFS” circuit of area L181--+o(1) that,
assuming standard NFS heuristics, factors L0-°T°(1) separate B-bit RSA keys
in total time just L'022-+°() The area-time product is L'7%4+°(1) for each
key; i.e., the price-performance ratio is L'70%+°(1) Here (as usual for NFS) L
means exp((log N)'/3(loglog N)?/3) where N = 2B,

For comparison (see Table 1.4), the best area-time product known for factoring
a single key (without quantum computers) is L'976-+°(1) " even if non-uniform
precomputations such as Coppersmith’s “factorization factory” are allowed. The
literature is reviewed below.

This paper also looks more closely at the L°(Y). The main bottleneck in batch
NFS is not traditional sieving, but rather low-memory smoothness detection, mo-
tivating new attention to the complexity of low-memory smoothness detection.
Traditional ECM, the elliptic-curve method of recognizing y-smooth integers,
works in low memory and takes time exp(y/(2 + o(1))logyloglogy). One can
reasonably guess that, compared to traditional ECM, “early-abort ECM” saves
a subexponential factor here, but the complexity of early-abort ECM has never
been analyzed. Section 3 of this paper introduces new early-abort heuristics

implying that the cost of early-abort ECM is exp (\/ (2 +0(1)) logyloglog y).
Using early aborts increases somewhat the number of auxiliary integers that need
to be factored, producing a further increase in cost, but the cost is outweighed
by the faster factorization.

The ECM cost is obviously bounded by L°(): more precisely, the cost is
exp(O((log N)'/¢(loglog N)>/%)) in the context of batch NFS, since y € LOM),
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This cost is invisible at the level of detail of L'-704+°(1) The speedup from ECM
to early-abort ECM is nevertheless superpolynomial and directly translates into
the same speedup in batch NFS.

1.2. Security consequences. We again emphasize that our results are asymp-
totic. This prevents us from directly drawing any conclusions about 1024-bit
RSA, or 2048-bit RSA, or any other specific RSA key size. Our results are nev-
ertheless sufficient to undermine all three of the beliefs described above:

e Users comparing the value of an RSA key to the cost of an attack machine
need to know the per-key cost of batch NFS. This has not been seriously
studied. What the literature has actually studied in detail is the cost of NF'S
attacking one key at a time; this is not the same question. Our asymptotic
results do not rule out the possibility that these costs are the same for
1024-bit RSA, but there is also no reason to be confident about any such
possibility.

e Most of the literature on single-key NF'S relies heavily on operations that —
for large key sizes— are not handled efficiently by current CPUs and that
become much more efficient on ASICs: consider, for example, the routing
circuit in [51]. Batch NFS relies much more heavily on massively parallel
elliptic-curve scalar multiplication, exactly the operation that is shown in
[12], [11], and [17] to fit very well into off-the-shelf graphics cards. The
literature supports the view that off-the-shelf hardware is much less cost-
effective than ASICs for single-key NF'S, but there is no reason to think that
the same is true for batch NFS.

e The natural machine size for batch NFS (i.e., the circuit area if price-
performance ratio is optimized) is larger than the natural machine size for
single-key NFS, but the natural time is considerably smaller. As above, these
asymptotic results undermine any confidence that one can obtain from com-
paring the natural time for single-key NF'S to the rotation interval for sig-
nature keys: there is no reason to think that the latency of batch NFS will
be as large as the latency of single-key NF'S. Note that, even though this pa-
per emphasizes optimal price-performance ratio for simplicity, there are also
techniques to further reduce the time below the natural time, hitting much
lower latency targets without severely compromising price-performance ra-
tio: in particular, for the core sorting subroutines inside linear algebra, one
can replace time T with T/ f at the expense of replacing area A with Af2.

The standard measure of security is the total cost of attacking one key. For
example, this is what NIST is measuring in [6] when it reports “80-bit security”
for 1024-bit RSA, “112-bit security” for 2048-bit RSA, “128-bit security” for
3072-bit RSA, etc. What batch NFS illustrates is that, when there are many
user keys, the attacker’s cost per key can be smaller than the attacker’s total
cost for one key. It is much more informative to measure the attacker’s total
cost of attacking U user keys, as a function of U. It is even more informative
to measure the attacker’s chance of breaking exactly K out of U simultaneously
attacked keys in time 7" using a machine of cost A, as a function of (K,U, T, A).
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There are many other examples of cryptosystems where the attack cost does
not grow linearly with the number of targets. For example, it is well known
that exhaustive search finds preimages for U hash outputs in about the same
time as a preimage for a single hash output; furthermore, the first preimage that
it finds appears after only 1/U of the total time, reducing actual security by
lg U bits. However, most cryptosystems have moved up to at least a “128-bit”
security level, giving them a buffer against losing some bits of security. RSA
is an exception: its poor performance at high security levels has kept it at a
bleeding-edge “80-bit security” level. Even when users can be convinced to move
away from 1024-bit keys, they normally move to <2048-bit keys. We question
whether it is appropriate to view 1024-bit keys as “80-bit” security and 2048-bit
keys as “112-bit” security if the attacker’s costs per key are not so high.

1.3. Previous work. In the NFS literature, as in the algorithm literature in
general, there is a split between traditional analyses of “operations” (adding two
64-bit integers is one “operation”; looking up an element of a 264-byte array is one
“operation”) and modern analyses of more realistic models of computation. We
follow the terminology of our paper [14]: the “RAM metric” counts traditional
operations, while the “AT metric” multiplies the area of a circuit by the time
taken by the same circuit.

Buhler, H. Lenstra, and Pomerance showed in [19] (assuming standard NFS
heuristics, which we now stop mentioning) that NF'S factors a single key N with
RAM cost L'922+o(1) Ag above, L means exp((log 28)'/3(loglog 25)?/3) if N
has B bits. This exponent 1.922. .. is the most frequently quoted cost exponent
for NF'S.

Coppersmith in [20] introduced two improvements to NFS. The first, “mul-
tiple number fields”, reduces the exponent 1.922... 4 o(1) to 1.901... + o(1).
The second, the “factorization factory”, is a non-uniform algorithm that reduces
1.901...40(1) to just 1.638...+0(1). Recall that (size-)non-uniform algorithms
are free to perform arbitrary amounts of precomputation as functions of the size
of the input, i.e., the number of bits of N. A closer look shows that Coppersmith’s
precomputation costs L2096--+0(1) "o if it is applied to more than L9-368--+o(1)
inputs then the precomputation cost can quite reasonably be ignored.

Essentially all of the subsequent NFS literature has consisted of analysis and
optimization of algorithms that cost L922+°(1) such as the algorithm of [19].
The ideas of [20] have been dismissed for three important reasons:

e The bottleneck in [19] is sieving, while the bottleneck in [20] is ECM. Both
of these algorithms use L°(") operations in the RAM metric, but the o(1) is
considerably smaller for sieving than for ECM.

e Even if the o(1) in [20] were as small as the o(1) in [19], there would not be
much benefit in 1.901... 4 o(1) compared to 1.922... 4+ o(1). For example,
(250Y1:922 o, 996 while (250)1901 & 995,

e The change from 1.901...+ o(1) to 1.638... + o(1) is much larger, but it
comes at the cost of massive memory consumption. Specifically, [20] requires
space L1:038-+0(1) 'while [19] uses space just L0-261+°(1) This is not visible
in the RAM metric but is obviously a huge problem in reality, and it becomes
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metric exponent |precomp|batch|source

AT 1.976... |0 0 2001 Bernstein [7]

RAM (unrealistic)(1.922... |0 0 1993 Buhler-H. Lenstra—Pomerance [19]
RAM (unrealistic)|{1.901... |0 0 1993 Coppersmith [20]

AT 1.900... |0 0.1 |batch NF'S; this paper

AT 1.829... 10 0.2 |batch NFS; this paper

AT 1.763... |0 0.3 |batch NFS; this paper

AT 1.710... |0 0.4 |batch NF'S; this paper

AT 1.704... |0 0.5 |batch NF'S; this paper

RAM (unrealistic)|1.638 ... |2.006...|0 1993 Coppersmith [20]

Table 1.4. Asymptotic exponents for several variants of NFS, assuming standard
heuristics. “Exponent” e means asymptotic cost LET°1) per key factored. “Precomp”
260 means that there is a precomputation involving integer pairs (a, b) up to L0+°W for
total precomputation cost L27°W): algorithms without precomputation have 20 = 0.
“Batch” B means batch size L°to(); algorithms handling each key separately have

B = 0. See Section 2 for further details.

increasingly severe as computations grow larger. As a concrete illustration
of the real-world costs of storage and computation, paying for 27° bytes of
slow storage (about 30 - 10? USD in hard drives) is much more troublesome
than paying for 289 floating-point multiplications (about 0.02 - 10° USD in
GPUs plus 0.005 - 10% USD for a year of electricity).

We quote A. Lenstra, H. Lenstra, Manasse, and Pollard [37]: “There is no indi-
cation that the modification proposed by Coppersmith has any practical value.”

At the time there was already more than a decade of literature showing how to
analyze algorithm asymptotics in more realistic models of computation that ac-
count for memory consumption, communication, etc.; see, e.g., [18]. Bernstein in
[7] analyzed the circuit performance of NFS, concluding that an optimized circuit
of area L9799--+0(1) would factor N in time L'18-+°()  for price-performance
ratio L1:976--+o(1), [7] did not analyze the factorization factory but did analyze
multiple number fields, concluding that they did not reduce AT cost. The gap
between the RAM exponent 1.901... 4 o(1) from [20] and the AT exponent
1.976... 4+ o(1) from [7] is explained primarily by communication overhead in-
side linear algebra, somewhat moderated by parameter choices that reduce the
cost of linear algebra at the expense of relation collection.

We pointed out in [14] that the factorization factory does not reduce AT
cost. In Section 2 we review the reason for this and explain how batch NFS
works around it. We also presented in [14] a superpolynomial improvement to
the factorization factory in the RAM metric, by eliminating ECM in favor of
batch trial division, but this is not useful in the AT metric.
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2 Exponents

This section reviews NFS and then explains how to drastically reduce the AT
cost of NF'S through batching. The resulting cost exponent, 1.704 . .. in Table 1.4,
is new. All costs in this section are expressed as L¢°(1) for various exponents e.
Section 3 looks more closely at the L°() factor.

2.1. QS: the quadratic sieve (1982). As a warmup for NFS we briefly review
the general idea of combining congruences, using QS as an example.

QS writes down a large collection of congruences modulo the target integer
N and tries to find a nontrivial subcollection whose product is a congruence of
squares. One can then reasonably hope that the difference of square roots has a
nontrivial factor in common with N.

Specifically, QS computes s ~ v/N and writes down the congruences s?> =
52— N, (s+1)2 = (s+1)2— N, etc. The left side of each congruence is already a
square. The main problem is to find a nontrivial set of integers a such that the
product of (s + a)? — N is a square.

If (s + a)? — N is divisible by a very large prime then it is highly unlikely
to participate in a square: the prime would have to appear a second time. QS
therefore focuses on smooth congruences: congruences where (s+a)?— N factors
completely into small primes. Applying linear algebra modulo 2 to the matrix
of exponents in these factorizations is guaranteed to find nonempty subsets of
the congruences with square product once the number of smooth congruences
exceeds the number of small primes.

The integers a such that (s + a)? — N is divisible by a prime p form a small
number of arithmetic progressions modulo p. “Sieving” means jumping through
these arithmetic progressions to mark divisibility, the same way that the sieve
of Eratosthenes jumps through arithmetic progressions to mark non-primality.

2.2. NFS: the number-field sieve (1993). NFS applies the same idea, but
instead of congruences modulo N it uses congruences modulo a related algebraic
number m — «. This algebraic number is chosen to have norm N (divided by
a certain denominator shown below), and one can reasonably hope to obtain a
factorization of N by obtaining a random factorization of this algebraic number.

Specifically, NF'S chooses a positive integer m, and writes /N as a polynomial
in radix m, namely N = f(m) where f is a degree-d polynomial with coefficients
fa, fa—1,---, fo €{0,1,...,m — 1}. It is not difficult to see that optimizing NF'S
requires d to grow slowly with N, so m is asymptotically on a much smaller scale
than N, although not as small as L. More precisely, NFS takes

m € exp((u + o(1))(log N)2/3(log log N)1/3)

where p is a positive real constant, optimized below. Note that the inequalities
mé < N < ma*! imply

de (1/p+ o(1))(log N)Y/3(loglog N)~1/3.

If f is reducible then its factorization is easy to compute and (for IV reasonably
large compared to d) reveals a nontrivial factorization of N (see [36]), so assume
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from now on that f is irreducible. Define « as a root of f. The norm of a — ba is
then fyga? + fs_1a%"'b+ -+ fob? (divided by f4), and in particular the norm
of m — a is N (again divided by fq).

NFS uses the congruences a — bm = a — ba modulo m — a. There are now
two numbers, a — bm and a — ba, that both need to be smooth. Smoothness
of the algebraic number a — ba is defined as smoothness of the (scaled) norm
faa®+ fa_1a%"tb+ - - + fob?, and smoothness of an integer is defined as having
no prime divisors larger than y. Here y € LYT°() is another parameter chosen
by NFS; v > 1/(6u) is another real constant, optimized below.

The range of pairs (a, b) searched for smooth congruences is the set of coprime
integer pairs in the rectangle [—H, H| x [1, H]. Here H is chosen so that there will
be enough smooth congruences to produce squares at the end of the algorithm.
Standard heuristics state that a —bm has smoothness probability L—#/(37)+e(1) if
a and b are on much smaller scales than m; in particular, if H € L+ for some
positive real number 6 then the number of congruences with a — bm smooth is
L#T°() with ¢ = 20 — u/(3). Standard heuristics also provide the simultaneous
smoothness probability of a — bm and a — ba, implying that to obtain enough
smooth congruences one can take H € LVt°(1) with 0 = (3uy? +2u2)/(6py — 1)
and ¢ = (18u~> +6u2y+ 1) /(182 — 37). See, e.g., [19]. We henceforth assume
these formulas for # and ¢ in terms of p and ~.

2.3. RAM cost analysis (1993). Sieving for y-smoothness of H>t°(1) poly-
nomial values uses H2T°(1) operations, provided that y is bounded by H2Te(M),
The point here is that the pairs (a,b) with congruences divisible by p form a
small number of shifted lattices of determinant p, usually with basis vectors of
length O(,/p), making it easy to find all the lattice points inside the rectangle
[—H, H] x [1, H]. The number of operations is thus essentially the number of
points marked, and each point is marked just Zpgy 1/p ~ loglogy times.

Sparse techniques for linear algebra involve y't°(1) matrix-vector multiplica-
tions, each involving y'T°(1) operations, for a total of y?T°(1) operations. Other
subroutines in NFS take negligible time, so the overall RAM cost of NFS is
Lmax{29,2’y}+0(1).

It is not difficult to see that the exponent max{26,2v} achieves its mini-
mum value (64/9)'/3 = 1.922... with u = (1/3)}/3 = 0.693... and = v =
(8/9)1/3 = 0.961 . ... This exponent 1.922. .. is the NFS exponent from [19], and
as mentioned earlier is the most frequently quoted NFS exponent. We do not
review the multiple-number-fields improvement to 1.901 ... from [20]; as far as
we know, multiple number fields do not improve any of the exponents analyzed
below.

2.4. AT cost analysis (2001). In the AT metric there is an important ob-
stacle to cost H2To() for sieving: namely, communicating across area H 2+o(1)
takes time at least H'1°(1), One can efficiently split the sieving problem into
H?+o) jyl+o(l) tasks, running one task after another on a smaller array of size

y' W but communicating across this array still takes time at least y%>+o(),
so AT is at least H2+o(1)y0-5+0(1)



Batch NFS 9

Fortunately, there is a much more efficient alternative to sieving: ECM, ex-
plained in Appendix A. What matters in this section is that ECM tests y-
smoothness in time y°!) on a circuit of area y°). A parallel array of ECM
units, each handling a separate number, tests y-smoothness of H2T°(1) poly-
nomial values in time HZto() /yl+o(D) on a circuit of area y'*t°() achieving
AT = H*o),

Unfortunately, the same obstacle shows up again for linear algebra, and this
time there is no efficient alternative. Multiplying a sparse matrix by a vector
requires time y%°+t°(1) on a circuit of area y' (1), and must be repeated y!toM)
times. The overall AT cost of NFS ig [max{20,2.5v}+o(1),

The exponent max{26,2.5v} achieves its minimum value 1.976... with u =
0.702..., v = 0.790..., and # = 0.988.... This exponent 1.976... is the NF'S
exponent from [7]. Notice that 7 is much smaller here than it was in the RAM
optimization: y has been reduced to keep the cost of linear algebra under control,
but this also forced # to increase.

2.5. The factorization factory (1993). Coppersmith in [20] precomputes
“tables which will be useful for factoring any integers in a large range ... after
the precomputation, an individual integer can be factored in time L[1/3,1.639]”,
ie., L%1,639+o(1)'

Coppersmith’s table is simply the set of (a, b) such that a —bm is smooth. One
reuses m, and thus this table, for any integer N between (e.g.) m? and m9+1.

Coppersmith’s method to factor “an individual integer” is to test smoothness
of a — ba for each (a,b) in the table. At this point Coppersmith has found the
same smooth congruences as conventional NFS, and continues with linear algebra
in the usual way.

Coppersmith uses ECM to test smoothness. The problem with sieving here
is not efficiency, as in the (subsequent) paper [7], but functionality: sieving can
handle polynomial values only at regularly spaced inputs, and the pairs (a, b) in
this table are not regularly spaced.

Recall that the size of this table is L?+t°(1) with ¢ = 20 — 1/(37). ECM uses
L°() gperations per number, for a total smoothness cost of L¢+°()  asymptoti-
cally a clear improvement over the L2?+°(1) for conventional NFS.

The overall RAM cost of the factorization factory is L™ax{®:27}+o(1)  The
exponent achieves its minimum value 1.638... with 4 =0.905..., v =0.819...,
6 =1.003..., and ¢ = 1.638.... This is the exponent from [20].

The AT metric tells a completely different story, as we pointed out in [14].
The area required for the table is L#t°(1). This area is easy to reuse for very
fast parallel smoothness detection, finishing in time L°). Unfortunately, col-
lecting the smooth results then takes time L0-°?*+°(1) for an AT cost of at least
Lmax{1.5¢,2.59}+0(1) ' pever mind the problem of matching the table area with the
linear-algebra area. The minimum exponent here is above 2.4.

2.6. Batch NFS (new). We drastically reduce AT cost by sharing work across
many N’s in a different way: we process a batch of N’s in parallel, rather than
performing precomputation to be used for one N at a time. We dynamically
enumerate the pairs (a,b) with a — bm smooth, distribute each pair across all
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Generate (a,b). Generate (a,b). Generate (a,b). | Generate (a.b). |

Is a — bm /B—e—%q sa—bm Is a — bm ?
smooth? smooth? smooth? smooth? SmOOth .
If so, storg, If so, store. s0, store. If so, store.
Repea/ Repeat. \epeat‘ Repeat. If SOJ StOI‘e.
Generat¢/ (a, b). Generate (a,b). Generjte (a,b). Generate (a,b).
Is fbm Is a — bm Is a \- bm Is a — bm ° Repeat °

Haduoe. | T | U oo | e diore (a,b). Generate (a, b). Gener
Geni’ I:Za(téz,b). Geni:ﬁza(t&,b). Geni’e;::e (téz,b). Geni:ﬁza(t&,b). bm Is a —bm Is a
0 N e O R B 28 smooth? smoo
T | M | g | g | store. If 5o, store. If s0, s
e N S A o a0 fpeat, Repeat. Repe
Fastore, | 1o | Iesoe | e store te (a,b). Generate (a, b).
Repeat. Repeat. Repeat. Repeat. — bm Is a — bm
th? smooth?
re. If so, store.
Repeat.

\ Generate (a, b).
~~Isa-btm —~

Fig. 2.7. Relation-search mesh finding pairs (a,b) where a — bm is smooth. The
following exponents are optimized for factoring a batch of L°5T°() B.bit inte-
gers: The mesh has height L%2°7°M)  width L%2°T°M  and area L°°t°(M) . The
mesh consists of L%5T°() gmall parallel processors (illustration contains 16). Each
processor has area L°Y. Each processor knows the same m € exp((0.92115 +
0(1))(log 22)?/3(loglog 25)'/3). Each processor generates its own L°-200484+°(1) paipg
(a,b), where a and b are bounded by L':077242+°() Each processor tests each of its
own a — bm for smoothness using ECM, using smoothness bound L°681600+e(1) g
gether the processors generate L°700484+o(1) geparate pairs (a,b), of which L0-2°+o()
have a — bm smooth.

the N’s in the batch, and remove each pair as soon as possible, rather than
storing a complete table of the pairs. To avoid excessive communication costs we
completely reorganize data in the middle of the computation: at the beginning
each N is repeated many times to bring N close to the pairs (a, b), while at the
end the pairs (a,b) relevant to each N are moved much closer together. The rest
of this subsection presents the details of the algorithm.

Consider as input a batch of L#+°(1) simultaneous targets N within the large
range described above. We require 8 < min{2¢ — 27,460 — 2¢}; if there are more
targets available at once then we actually process those targets in batches of size
Lrin{2¢—27,40-2¢}+0(1) gtoring no data between runs.

Consider a square mesh of L) small parallel processors. This mesh is
large enough to store all of the targets IN. Use each processor in parallel to test
smoothness of a — bm for L?0=#=0-58+2(1) pairs (a,b) using ECM; by hypothesis
20 — ¢ — 0.58 > 0. The total number of pairs here is L20—¢+0-58+0(1)  Fach
smoothness test takes time L°(Y). Overall the mesh takes time L2¢—¢—0-56+0(1)
and produces a total of L0-5#+°(1) pairs (a, b) with a—bm smooth, i.e., only L)
pairs for each column of the mesh. See Figure 2.7.

Move these pairs to the top row of the mesh (spreading them evenly across
that row) by a standard sorting algorithm, say the Schnorr—Shamir algorithm
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Is a — bay Is a — bay Is a — bas | Isa—bay |

A N A I If so, store.
e T e el /K Send (a, b) right. k\
[ oot Sy oot - Repeat.
Sond forty wp. | Sond (o 0y el | Send (o gyt | Send (o8 . Qs Is a — bas Is a
Rdpeat. e S e th? smooth? Smo
If so store oy If s e, store. If so, store. If so,
e sl it o) up. | Send (a,0) left. | Send (a,
moot? nsimoot? A macth? | smoot? Repeat. Repe
Sond () wp. | Sond (o Dkt | Send (e, 6y . | Senc (a8 . Is a — baao Is a —
Repeat. Repeat. Repeat. Repeat. smooth? smo
If so, store. If so,
Send (a, b) right. | Send
Repeat.
Is a — baia

“——smooth?

Fig. 2.8. Relation-search mesh from Figure 2.7, now finding pairs (a,b) where both
a — bm and a — ba; are smooth. For a batch of L0585+ B it integers: The mesh
knows L%-2°7°() pairs (a,b) with a — bm smooth from Figure 2.7. Each (a, b) is copied
L2570 times (2 times in the illustration) so that it appears in the first two rows, the
next two rows, etc. Each (a, b) visits each mesh position within L%-2°+°() steps (8 steps
in the illustration). Each processor knows its own target N; and the corresponding a;,
and in each step tests each a — ba; for smoothness using ECM. Together Figure 2.7
and Figure 2.8 take time L*2°T°() to search LO-79044+°() pairs (a, b).

from [50], taking time L%°+°(1), Then broadcast each pair to its entire column,
taking time L0-%8+0(1)  Actually, it will suffice for each pair to appear once
somewhere in the first two rows, once somewhere in the next two rows, etc.

Now consider a pair at the top-left corner. Send this pair to its right until it
reaches the rightmost column, then down one row, then repeatedly to its left,
then back up. In parallel move all the other elements in the first two rows on
the same path. In parallel do the same for the third and fourth rows, the fifth
and sixth rows, etc. Overall this takes time L0-38+0(1),

Observe that each pair has now visited each position in the mesh. When a
pair (a, b) visits a mesh position holding a target N, use ECM to check whether
a — ba is smooth, taking time L°(Y). The total time to check all L9-58+°(1) pajrg
against all LAt targets is just LO®#+o(1) plus the time L20—¢—0-58+0(1) ¢4
generate the pairs in the first place. See Figure 2.8.

Repeat this entire procedure L®~7~0-58+0(1) times: by hypothesis ¢ — v —
0.58 > 0. This covers a total of L20=77°() pairs (a,b), of which L#~7+°(1) have
a — bm smooth, so for each N there are L°(Y) pairs (a,b) for which a — bm and
a—ba are both smooth. The total number of smooth congruences found this way
across all N is LA1t°(M) Store each smooth congruence as (N,a,b); all of these
together fit into a mesh of area L#1°(1) The time spent is L™ax{¢—7,20=y—=F}+o(1)

Build L"t°(M) copies of the same mesh, all operating in parallel, for a total
circuit area of L#t7t°(1) Each copy of the mesh has its own copy of the entire



12 Daniel J. Bernstein and Tanja Lange

50, store. If so0, 3
Lo REE=Cs e el Send (a, b) left. Send (a, b) left:
P et Repeat. Repeat.
Is a — bay Is a — bas Is a — bay Is a — ba
smooth? smooth? smooth? smooth?

If so, store. If so, store. If so, store. If so, store.
Send (a,b) right. | Send (a,b) right. | Send (a,b) right. | Send (a,b) down.
Repeat. Repeat. Repeat. Repeat.

Is a — bas Is a — bag Is a — bar Is a — bas
smooth? smooth? smooth? smooth?

If so, store. If so, store. If so, store. If so, store.
Send (a, b) up. Send (a, b) left. Send (a, b) left. Send (a, b) left.
Repeat. Repeat. Repeat. Repeat.

Is a — bag Is a — baio Is a — baiy Is a — ba2
smooth? smooth? smooth? smooth?

If so, store. If so, store. If so, store. If so, store.
Send (a,b) right. | Send (a,b) right. | Send (a,b) right. | Send (a,b) down.
Repeat. Repeat. Repeat. Repeat.

Is a — bas Is a — bayy Is a — bays Is a — bais
smooth? smooth? smooth? smooth?

If so, store. If so, store. If so, store. If so, store,
ad (a, b) up. Send (a, b) left. Send (a, b) left. Send (a, b),
opeat. Repeat. Repeat. Rep

Fig. 2.9. For a batch of L%°°() B-bit integers: L2-681600+o(1) copies (25 copies in
the illustration) of the mesh from Figure 2.7 and Figure 2.8. Each copy has the same
L0-5+e) target integers to factor. The total area of this circuit is L1181600+0(1) 1y
time L%25T°() this circuit searches L'-382084+0(1) pairg (a,b). In time [1:022400+0(1)
this circuit searches all L21%4484+o(1) airg (a,b) and finds, for each target N; and the
corresponding a;, all L°-681600+°() hairs (4, b) for which a — bm and a — bay are both
smooth.

list of N’s; distributing the N’s from an input port through the total circuit area
takes time L0-58+0-57+0(1) ' The total circuit covers all L2?+°(1) pairs (a,b) and
obtains, for each N, all of the LYT°() smooth congruences required to factor
that N. See Figure 2.9.

We are not done yet: we still need to perform linear algebra for each N.
To keep the communication costs of linear algebra under control we pack the
linear algebra for each N into the smallest possible area. Allocate a separate
square of area LY1t°(1) to each N, and route each smooth congruence (N,a,b)
in parallel to the corresponding square; this is another standard sorting step,
taking total time LO-5#+0:5v+0(1) for all LA+7+o(1) smooth congruences. Finally,
perform linear algebra separately in each square, and complete the factorization
of each N as usual. This takes time L5711 See Figure 2.10.

The overall time exponent is max{¢ — v,20 — v — 3,0.58 + 0.5, 1.5v}, and
the area exponent is 8 + «. The final price-performance ratio, AT per integer
factored, has exponent max{¢,26 — 3,0.55 + 1.5v,2.5v}.

2.11. Comparison and numerical parameter optimization. Bernstein’s
AT exponent from [7] was max{26,2.5v}. Batch NFS replaces 20 with 26 — 3,
allowing ~ to be correspondingly reduced, at least until 5 becomes large enough
for 2.5 to cross below ¢. In principle one should also watch for 2.5 to cross
below 0.58 4 1.5, but Table 2.12 shows that ¢ is more important.
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Linear algebra for Ny | Linear algebra for N> | Linear algebra for N3 | Linear algebra for Ny

using congruences using congruences using T congruences
(a,0) (a,b) (a,b) ) (a.b) (@ (a,b) (a,b) (a,b) (a,) (a,b) (a,b)
(a,b) (a,b) (a,b) (a,b) (a,b) (a,b) (a,b) (a,b) (a,b) (a.b) (a,b) (a,b) (a’ b) (a’ b) (a, b)
(a,0) (a,0) (a,} (a,b) (a,b) (a,b) 0,b) (a,b) (a,b) (a,) (a,b) (a,b)
Linear algebra ffr Ny | Lincar algebra for N | Linedy algebra for Ny | Linear algebra for N
(a,b) (a,b) (a,b)

(a,b) (a,b) (a,b) (a,b) (a,b) (a,b) (a,b) (a,b) (a,b) (a,b) (a,b) .
(a,b) (a,b) (a, (a,b) (ab) (a,b) (a,b) (a,b) (a,) (a,b) (a,b) Linear algebra fOI“ N6
(a,b) (a,b) (a,b) (a,b) (a,b) ,b) (a,b) (a,b) (a,b) (a,b) (a,b)
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(a,b) (a,b) (a,b) (a,b) (a,b) (a,b) (a,b) (a,b) (a,b) (a,b) (a,b) (a,b)
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(a,b) (a,b) (a,b)
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or Ng | Linear algebra for Nig

using congruences using congruences using congruences using congruences
(a,0) (a,b) (a,b) (a,b) (a,b) (a,b) (a,b) (a,b) (a,b) (a,b) (a,b)
(a,b) (a,b) (a,b) (a,b) (a,b) (a,b) (a,b) {4y (a,b) (a.b) (a,b) (a,b)
(a,b) (a,b) (a,b) (a,b) (a,b) (a,b) (a,b) (a,b) (@ (a,b) (a,b) (a,b)

€s using congruences u
(a,b) (a,b) (a,b)
a,b) (a,b) (a,b

Fig. 2.10. For a batch of L%*+°() B-bit integers: L°°T°W) copies (16 copies in the illus-
tration) of a linear-algebra circuit. Each circuit has area L0-081600+0(1) The total area is
L1181600+0(1) ‘Each circuit has its own integer N; to factor and L°-681600+0() paipg (a,b)
for which a — bm and a — ba; are smooth. Routing all pairs (a, b) from Figure 2.9 to an
adjacent (or overlapping and reconfigured) Figure 2.10 takes time L°-°°0800+°(1) Each
circuit uses L°681600+°() matrix-vector multiplications, and takes time L°-340800+0(1)
for each matrix-vector multiplication. The total time is L102240040(1)

Of course, even if we ignore the cost of finding the smooth a — bm (the term
20 — ), our AT exponent is not as small as Coppersmith’s RAM exponent
max{¢, 27} from [20]. We have an extra 0.55 + 1.5 term, reflecting the cost of
communicating smooth congruences across a batch, and, more importantly, 2.5+
instead of 2+, reflecting the communication cost of linear algebra.

Table 2.12 shows the smallest exponents that we obtained for various [, in
each case from a brief search through 2500000000 pairs (u,7y). The exponent
of the price-performance ratio for batch NFS drops below Bernstein’s 1.976. ..
as soon as [ increases past 0, and reaches a minimum of 1.704... as the batch
size increases. (The minimum is actually very slightly below 1.704, but our table
does not include enough precision to show this.) Finding all (a,b) with a — bm
smooth is still a slight bottleneck for g = 0.4 but disappears for § = 0.5. When
there are more inputs we partition them into batches of size L%*+t°(1)  preserving
exponent 1.704 ... for the price-performance ratio.

Our optimal v = 0.681 ... is much smaller than Coppersmith’s v = 0.819.. .,
for the same reasons that Bernstein’s v = 0.790... is smaller than the con-
ventional v = 0.961.... The natural time exponent for batch NFS—as above,
this means the time exponent when price-performance ratio is optimized —is
just 1.022..., considerably smaller than the natural time exponent 1.185... for
single-key NFS. This means that collecting targets into batches produces not
merely a drastic improvement in price-performance ratio, but also a side effect
of considerably reducing latency.
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batch|AT m size |primes |(a,b) a—ba |a—bm |route linear

B8 e 7 ~ 0 10) 20 — 5 |0.58 + 1.5v|2.5v

0.0 [1.976052|0.702860(0.790420|0.988026{1.679645|1.976052|1.185630 [1.976050
0.1 ]1.900575|0.705460(0.760230|1.000287|1.691256|1.900575|1.190345 [1.900575
0.2 ]1.829615|0.712320|0.731840|1.014808|1.705173|1.829615|1.197760  |1.829600
0.3 |1.763034|0.718160(0.705210(1.031517(1.723580(1.763034|1.207815 |1.763025
0.4 |1.710375|0.820920(0.684150(1.055172(1.710374|1.710345|1.226225 |1.710375
0.5 [1.704000{0.921150|0.681600|1.077242|1.704000|1.654484|1.272400 |1.704000

Table 2.12. Cost exponents for batch NFS in the AT metric. The batch size
is LPT°M . The AT cost is L°T°M). The parameter m is chosen as exp((p +
o(1))(log N)?/3(loglog N)'/3). The prime bound y is chosen as LYt The (a,b)
bound H is chosen as L%T°Y. The number of a — bor smoothness tests is L#+o()
per target. The number of a — bm smoothness tests is L2?7#T°W) per target. The AT
cost of routing is L0157+ per target. The AT cost of linear algebra is L2>7°(1)
per target. All operations take place on a circuit of size LAFyHem),

3 Early-abort ECM

Section 2 used ECM as a low-area smoothness test for auxiliary integers ¢ =
faa® + -+ + fob%. Each curve in ECM catches a fraction of the primes p < y
dividing ¢, and many curves in sequence catch essentially all of the primes p < y.

This section analyzes a much faster smoothness-detection method, “early-
abort ECM”. Not all smooth numbers are detected by early-abort ECM, but
new heuristics introduced in this section imply that this loss is much smaller
than the speedup factor. The overall improvement grows as a superpolynomial
function of log y, and therefore grows as a superpolynomial function of the NF'S
input size.

Specifically, it is well known (see, e.g. [21, page 302]) that (assuming standard
conjectures) ECM uses exp(+/(2 + o(1))log y log log y) multiplications modulo ¢
to find essentially all primes p < y dividing c. Here o(1) is some function of y
that converges to 0 as y — oo. Consequently, if a fraction 1/S of the ECM inputs
are smooth, then ECM uses

S - exp(v/(2 + o(1))log y log log y)

modular multiplications for each smooth integer that it finds. This section’s
heuristics imply that early-abort ECM uses only

S - exp <\/(§ + 0(1)) 10gy10g10gy)

modular multiplications for each smooth integer that it finds. Notice the change
from 2 + o(1) to 8/9 + o(1) in the exponent.

We emphasize again that this paper’s analyses are asymptotic. We do not
claim that early-abort ECM is better than ECM for any particular value of y.
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The rest of this section uses the word “time” to count simple arithmetic
operations, such as multiplication and division, on integers with O(lgc) bits.
Each of these operations actually takes time (Ig¢)'+t°(M) | but this extra factor is
absorbed into other o(1) terms when ¢ is bounded by the usual functions of y.

3.1. Early-abort trial division. Early aborts predate ECM. They became
popular in the 1970s as a component of CFRAC [43], a subexponential-time
factorization method that, like batch NFS, generates many “random” numbers
that need to be tested for smoothness.

The simplest form of early aborts is single-early-abort trial division. Trial
division simply checks divisibility of ¢ by each prime p < y, taking time y!t°().
Single-early-abort trial division first checks divisibility of ¢ by each prime p <
y'/2; then throws ¢ away (this is the early abort) if the unfactored part of ¢ is
too large; and then, if ¢ has survived the early abort, checks divisibility of ¢ by
each prime p < y. (Of course, when checking each prime p < y, one can skip the
redundant checks of primes p < y'/2.)

The definition of “too large” is chosen so that 1/y'/2+°() of all inputs survive
the abort, balancing the cost of the stages before and after the abort. In other
words, single-early-abort trial division checks divisibility of each input by each
prime p < ,/y; keeps the smallest 1/y1/2+°(1) of all inputs; and, for each of those
inputs, checks divisibility by each prime p < y.

More generally, (k — 1)-early-abort trial division removes each prime p < yt/k
from each input (by dividing by factors found); reduces the number of inputs by
a factor of y'/¥, keeping the smallest inputs; removes each prime p < y?/* from
each remaining input; reduces the number of inputs by another factor of y'/*,
keeping the smallest inputs; and so on through y*/* = y.

The time per input for (k — 1)-early-abort trial division is only y!/*+o(t)
saving a factor y'~1/#+°(1) if k is limited to a slowly growing function of y. The
method does not detect all smooth numbers, but Pomerance’s analysis in [45,
Section 4] shows that the loss factor is only y(1=1/k)/2+0(1) 'j e that the method
detects 1 out of every y(1=1/%)/2+0(1) gmooth numbers. The overall improvement
factor in price-performance ratio is y(! =1/#)/2+0(). if L is chosen so that k — oo
as y — oo then the improvement factor is y'/2To(1),

3.2. Early aborts in more generality. One can replace trial division with
any method, or combination of methods, of checking for primes < y'/*, primes
< y2/ k etc.

In particular, Pomerance considered an early-abort version of Pollard’s rho
method. The original method takes time y/27°() to find all primes p < y. Early-
abort rho takes time only y'/(2%)+o(1) and Pomerance’s analysis shows that it
has a loss factor of only y(1=1/k)/4+oe(1),

Pomerance actually considered a different method by Pollard and Strassen.
The Pollard—Strassen method takes essentially the same amount of time as Pol-
lard’s rho method, and has the advantage of a proof of speed without any con-
jectures, but has the disadvantage of using much more memory.

Pomerance’s paper was published in 1982, so of course it did not analyze
the elliptic-curve method. After seeing early aborts improve trial division from
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y to y'/2, and improve Pollard’s rho method from y'/? to y'/*, one might
guess that early aborts improve ECM from exp(y/(2 + o(1))logyloglogy) to
exp((1/2)1/(2 + o(1))log y log log y), but our heuristics do not agree with this
guess.

3.3. Performance of early aborts. Recall that ECM takes time T'(y)' o)
to find primes p < y, where T'(y) = exp(v/21og yloglogy). We actually consider,
in much more generality, any factorization method M taking time T’ (y)1+0(1) to
find primes p < y, where T' is any sufficiently smooth function.

Our early-abort heuristics state that the price-performance ratio of (k — 1)-
early-abort M is the geometric average

T(yl/k)1/kT(y2/k)1/kT(y3/k)1/k . _T(y)l/k:

to the power 1 + o(1). More generally, cutoffs y1,y2,ys, ... produce a geomet-
ric average of T'(y1),T(y2),T(ys), . .. with weights logy1,logys — logy1,logys —
logya, .. ..

In particular, for any purely exponential T(y) = y, the price-performance
ratio is (aside from the 1+ o(1) power)

1/k 1/k
(T(yl/k)T(y2/k) . _T(y(k—l)/k)T(y)) _ <yC/ky2C/k . y(k:—l)C/k:yC)

_ <y0 L i/k) 1k

which converges to y©/? = T(y)'/* as k increases, matching Pomerance’s anal-
yses of early-abort trial division and early-abort rho. More generally, if T'(y) =

exp(C(logy)'/7) then T(y*/*) = T(y)(i/k)”f SO

_ O/ (2h)

1/2

_ 1/k ko 1/f
(T(yl/k)T(y2/k)...T(y<k 1)/k>T(y)> = T(y) i G/ Dk () /(4D

To prove that (Zle(i/k)l/f)/k — f/(f+1) as k — oo, observe that Zle it/ f
is within k'/f of fok Mdz = (f/(f +1)kU+D/f ECM is essentially the case
f = 2: the geometric average is T'(y)?/3+°(1),

3.4. Understanding the heuristics. Let y and u be real numbers larger than
1, define = y", and define Sy = {1,2,..., |z|}. Define ¥(x, y) as the number of
y-smooth integers in Sy. Then ¥(z,y) is approximately z/u". See [45, Theorem
2.1] for a precise statement. The same approximation is still valid for ¥(z, y, z),
the number of y-smooth integers in Sy having no prime factor < z, assuming
that z < y'~1/1°8%; see [45, Theorem 2.2].

Let k£ be a positive integer. Let yo,y1,92,...,yr be real numbers with 1 =
Yo <y < Yo < -+ <y =y. Let x1,29,...,x1 be positive real numbers with
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T = x1%2 - T. Define

S1 = {c € Sy :¢/(y1-smooth part of ¢) < x/x1};
Sy ={c €57 : ¢/(y2-smooth part of ¢) < z/(z122)};

Sk = {c € Sk_1: ¢/(yx-smooth part of ¢) < z/(z122---x1)}.

Note that each element ¢ € Si is y-smooth, since ¢ divided by its y-smooth part
is bounded by z/(z12z2 -+ xk) = 1.

Consider any vector (s1, sa, ..., Sk) such that each s; is a y;-smooth positive
integer <x; having no prime factors <y, ;. For any such (sq,s2,...,s), the
product ¢ = s1s9---8k is a positive integer bounded by xixo---xp = x, S0
¢ € Sy. Dividing ¢ by its yi-smooth part produces sy --- s, < z/x1, so ¢ € 5.
Similarly ¢ € So and so on through ¢ € Si.

The map from (s1,S2,...,8k) to s182--- 5 € S is injective: the y;-smooth
part of s1so--- s is exactly s1, the ys-smooth part is exactly s1s2, etc. Hence
#5S) is at least the number of such vectors (si,s2,...,Sk), which is exactly
W (21, Y1, Y0)¥ (2, Y2, y1)¥ (23, Y3, Y2) - - - ¥ (T, Yk, Yr—1). Pomerance’s early-abort
analysis in [45] says, in some cases, that #S) is not much larger than this. We
heuristically assume that this is true in more generality.

The approximation ¥ (z;, v, ¥i—1) ~ x;/u;", where u; = (logz;)/logy;, now
implies that #S}, is approximately z/(uj" ---u.*). More generally, #5S; is ap-
proximately x/(uj? - - uj").

Write T; for the cost of finding the y;-smooth part of an integer. The early-
abort factorization method, applied to a uniform random element of Sy, always
takes time T} to find primes <yj; with probability #S51/#So ~ 1/u]" takes addi-
tional time 75 to find primes <yo; with probability #S3/#S0 ~ 1/(u]*u5?) takes
additional time T35 to find primes <ys; and so on. With probability #Sj/#So ~
1/(uy* -+ - up*) an integer is y-smooth and survives all aborts.

Balancing the time for the early-abort stages, i.e., ensuring that each stage
takes time approximately T3, requires choosing x; (depending on y;) so that
uyt =~ Ty/Ty, choosing x5 (depending on y3) so that uy? ~ T5/T5, and so on
through choosing zr_; (depending on yi_1) so that uZ’i’ll ~ T)/Tk—1. Then
xy is determined as x/(x1 - - xk—1), and uy is determined as (logxy)/logyr =
u— (logxy -+ xk_1)/logy = u — (B1uy + Oous + -+ + Ox_jur_1) where 6; =
(log yi)/ log y.

As a special case (including the cases considered by Pomerance), if all u; are
in ul*t°® then Tjy1/T; ~ uf is a 1 + o(1) power of u, so uf'---u}* is a
1+ o(1) power of w1t +ur = gutvi(1=01)+Fur1(1=0x-1) "which is a 1 4 o(1)
power of

u'(Ty/Ty) =0 (T T ) 0
_ uuT191T292—01 T393—92 .. .T:ifll_ekszk%—@kfl/Tl.

In other words, compared to the original smoothness probability 1/u* of integers
in Sy, the found-by-early-abort-factorization probability is smaller by a factor
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Th i ---T,fﬁ’ll_e’“’QT;_e’“’l/Tl. The time for all stages of early-abort fac-

torization is essentially T). For example, for 8; = i/k, the product of the time
and the loss factor is (T17T% - - ~Tk)1/k.

We see two obstacles to proving the formula (7775 - - -Tk)l/ k for early-abort
ECM. First, the assumption u; € u't°(") is correct for exponential-time smooth-
ness tests for standard ranges of & and y; but u; € u®-5+°(M) for ECM, except for
i = k. Second, the error factor u°(* in the standard u* approximation is larger
than the entire ECM running time. Despite these caveats we conjecture that the
heuristics apply beyond the case of exponential-time smoothness tests, and in
particular apply to early-abort ECM.

Even when smoothness theorems are available, one should not overstate the
extent to which they constitute rigorous analyses of NFS. There is no proof
that NF'S congruences have similar smoothness probability to uniform random
integers; this is one of the NFS heuristics. There is no proof that ECM finds
all small primes at similar speed; this is another heuristic. As mentioned ear-
lier, Pomerance’s analysis in [45] actually uses the provable Pollard—Strassen
smoothness-detection method, and Bernstein’s batch trial-division method [8] is
proven to run in polynomial time per input; but both of these methods perform
poorly in the AT metric. Similarly, Pomerance proved in [45] that Dixon’s ran-
dom squares have similar smoothness probability to uniform random integers;
but Dixon’s method is much slower than NFS, and proving something similar
about NF'S is an open problem.

3.5. Impact of early aborts on smoothness probabilities. Because early-
abort ECM does not find all smooth values, it forces batch NFS to consider
more pairs (a,b), and therefore slightly larger pairs (a,b). This increase means
that the auxiliary integers c are larger and less likely to be smooth. We conclude
by showing that this effect does not eliminate the (heuristic) asymptotic gain
produced by early aborts.

Recall that the smoothness probability of ¢ is heuristically 1/v, where v is
the ratio of the number of bits in (|f4] + -+ + |fo|)H? and the number of bits
in y. The derivative of v with respect to log H is d/logy, so the derivative of
log(v¥) with respect to log H is d(1 + logv)/logy € 1/(3yu) + o(1); here we
have used the asymptotics d € (1/u + o(1))(log N)'/3(loglog N)~/3, logy €
(v + o(1))(log N)*/3(loglog N)?/3, and logv € (1/3 + o(1)) loglog N.

Write 6 = (2/3)/(2 — 1/(3yp)). Multiplying H by a factor T97°(1) means
multiplying the number of pairs (a,b) by a factor 72°+t°(1) and thus multiplying
the number of smoothness tests by a factor 720+°(1) Meanwhile it multiplies
v¥ by a factor T9/Gy)+e(1) and thus multiplies the final number of smooth
congruences by a factor T(2~1/Bvr)d+e(1) — 72/3+0(1) Qur heuristics state that
switching from ECM to early-abort ECM reduces the number of smooth congru-
ences found by a factor T2/3+°(1) producing just enough smooth congruences
for a successful factorization, while decreasing the cost of each smoothness test
by a factor T7t°() . The overall speedup factor is 71 —20+0(1),
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For example, [7] took v =~ 0.790420 and p ~ 0.702860, so the speedup factor
is 70-047---+0(1) " Ag another example, batch NFS with 8 = 0.5 takes v ~ 0.681600
and g~ 0.921150, so the speedup factor is 770-092--+o(1),
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A ECM

The elliptic-curve method of factorization (ECM) was introduced by H. Lenstra
in 1987 [39]; [57] gives a good overview of ECM and a description of the most
popular ECM software, GMP-ECM. The use of Edwards curves in ECM was
suggested by Bernstein, Birkner, Lange, and Peters in [10] and implemented for
amd64 architectures; see http://eecm.cr.yp.to/mpfq.html. A fast implemen-
tation on GPUs of the particularly efficient curves of [9] was presented at Asi-
acrypt 2012 by Bos and Kleinjung in [17]. This appendix gives a brief overview
of Edwards curves and ECM.

A.1. Edwards curves. An Edwards curve [22] over a field with 2 # 0 is given
by an equation of the form 22 +y? = 1+dx?y?, for some d ¢ {0, 1}. The addition
law on an Edwards curve is given by

T1Y2 + Y122 Y1Y2 — T1T2 )

Iy, D (x ’ = ’
( 1 yl) ( 2 y2) <1_|_dx15(;2y1y2 1—d$15(32y1y2

The neutral element is (0, 1); (0,—1) has order 2; (+1,0) have order 4.

We presented projective addition formulas for Edwards curves in [13]. Sub-
sequently several papers generalized the curve shape to twisted Edwards curves
and improved the addition laws; the most efficient arithmetic is due to Hisil,
Wong, Carter, and Dawson in [27]. For an overview of the costs of elliptic-curve
arithmetic in various representations see http://hyperelliptic.org/EFD/.

A.2. The elliptic-curve method of factorization. ECM is a variant of the
p— 1 method: it uses elliptic curves modulo ¢ instead of the multiplicative group
modulo ¢, where ¢ is the number to be factored.

The p — 1 method picks a random positive integer a < ¢ and a number s and
computes gcd{a® — 1, c}. In the p — 1 method a factor p of ¢ is found, meaning
that p divides the gcd, if the order of a modulo p is a divisor of s. To make
this very likely for many factors of ¢, one chooses s as a very smooth number:
typically s =1lem{1,2,3,..., By} for some smoothness bound Bj.

ECM replaces a with a point P on an elliptic curve modulo ¢, and replaces ex-
ponentiation with scalar multiplication by s: it computes R = [s]P. We describe
ECM with the elliptic curve instantiated as an Edwards curve. The computations
on the curve modulo ¢ use the same addition law as over the rational numbers
Q where we reduce all results modulo c.

Let again p be a factor of ¢ and assume that the discriminant of the curve
and all of the denominators in the coefficients of £ and P are coprime with
¢ (otherwise factors of ¢ would already be found). Define P, and R, as the
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reductions of the points P and R respectively modulo p. If the order of P, is a
divisor of s then R, = (0,1), so gcd{z(R), ¢} is divisible by p, where z(R) denotes
the xz-coordinate of R. This part of the computation is usually called stage 1 of
ECM. Stage 2 pushes the limit of the largest prime in ord(P,) that can be
found with the method; a simple form of stage 2 computes Ry = [pr+1]|R, R2 =
[pki2]R, ..., Re = [pr+e]R, where pgi1,prio,.--,Pkre are the primes between
B and another bound Bs, followed by computing ged{z(R;1)x(Rz2) - - - x(Ry), c}.

Efficient implementations use windowing methods with precomputations to
compute [s] P and compute the R; in succession by first computing the differences
between successive values [p;+1 — pi|R for i € {k+1,...,k+ ¢ — 1}, namely
2]R, [4]R,...

The main advantage of ECM over the p — 1 method is that the curve can be
varied; per number ¢ many curves can be tried; this increases the probability
that the order of one of the points P is smooth modulo one of the factors p. The
p — 1 method is limited to the one group of order p — 1; if p — 1 is not smooth
for any factor of ¢ this method will not succeed while it is impossible to have
primes p so that the order of any elliptic curve modulo p has only large factors.

A.3. Choice of elliptic curve. The choice of elliptic curve is influenced by
the efficiency of scalar multiplication but also by the likelihood of leading to a
factorization. The factor p is found if ord(P,) is a factor of s or of s - p; for some
i € {k+1,k+2,...,k+(}. The order of P, divides the order of E which is
in the Hasse interval around p, namely [p +1 —2,/p,p + 1 + 2,/p]. McKee [42]
showed that orders of elliptic curves are more likely to be smooth than general
numbers of this size. Orders of Edwards curves have even larger smoothness
probability because they have a guaranteed cofactor of 4 in the group order. For
more details on smoothness chances see [10], [9], and [5].

It is possible to further increase the smoothness chances by choosing curves
that have a large Q-rational torsion subgroup, i.e., for which the curve over
Q has many points of finite order. Mazur’s theorem (see, e.g., [52]) limits the
maximal number of points of finite order to 16. Atkin and Morain [3] gave a
construction of curves attaining this maximum number of points of finite order
which was translated to the setting of Edwards curves in [10]. This construction
provides a family of curves F and points P, where it is ensured that P is none of
the points of finite order (otherwise ged{z(R), c} would be divisible by c itself).



