
Sequences of Games:

A Tool for Taming Complexity in Security Proofs

Victor Shoup∗

November 30, 2004

Abstract

This paper is brief tutorial on a technique for structuring security proofs as sequences
games.

1 Introduction

Over the past few years, some researchers in cryptography have been organizing some of
their security proofs as sequences of games. In certain circumstances, this has proved to be
a very useful tool in taming the complexity of security proofs that might otherwise become
so messy, complicated, and subtle as to be nearly impossible to verify. This paper is meant
to serve as a brief tutorial on this technique.

At the outset, it should be noted that this technique is certainly not applicable to
all security proofs. Moreover, even when this technique is applicable, it is only a tool for
organizing a proof — the actual ideas for a cryptographic construction and security analysis
must come from elsewhere.

1.1 The Basic Idea

Security for cryptograptic primitives is typically defined as an attack game played between
an adversary and some benign entity, which we call the challenger. Both adversary and
challenger are probabilstic processes that communicate with each other, and so we can
model the game as a probability space. Typically, the definition of security is tied to some
particular event S. Security means that for every “efficient” adversary, the probability that
event S occurs is “very close to” some specified “target probabilty”: typically, either 0,
1/2, or the probability of some event T in some other game in which the same adversary is
interacting with a different challenger.

In the formal definitions, there is a security parameter: an integer tending to infinity, and
in the previous paragraph, “efficient” means time bounded by a polynomial in the security
parameter, and “very close to” means the difference is smaller than the inverse of any
polynomial in the security parameter, for sufficiently large values of the security parameter.
The term of art is negligibly close to, and a quantity that is negliglibly close to zero is just

∗Computer Science Dept. NYU. shoup@cs.nyu.edu

1

called negligible. For simplicity, we shall for the most part avoid any further discussion of
the security parameter, and it shall be assumed that all algorithms, adversaries, etc., take
this value as an implicit input.

Now, to prove security using the sequence-of-games approach, one prodceeds as follows.
One constructs a sequence of games, Game 0, Game 1, . . . , Game n, where Game 0 is the
original attack game with respect to a given adversary and cryptographic primitive. Let S0

be the event S, and for i = 1, . . . , n, the construction defines an event Si in Game i, usually
in a way naturally related to the definition of S. The proof shows that Pr[Si] is negligibly
close to Pr[Si+1] for i = 0, . . . , n − 1, and that Pr[Sn] is equal (or negligibly close) to the
“target probability.” From this, and the fact that n is a constant, it follows that Pr[S] is
negligibly close to the “target probability,” and security is proved.

That is the general framework of such a proof. However, in constructing such proofs,
it is desirable that the changes between succesive games are very small, so that analyzing
the change is as simple as possible. From experience, it seems that transitions between
successive games can be restricted to one of three types:

Transitions based on indistinguishability. In such a transition, a small change is made
that, if detected by the adversary, would imply an efficient method of distinguishing be-
tween two distributions that are indistinguishable (either statistically or computationally).
For example, suppose P1 and P2 are assumed to be computationally indistinguishable dis-
tributions. To prove that |Pr[Si] − Pr[Si+1]| is negligible, one argues that there exists a
distinguishing algorithmD that “interpolates” between Game i and Game i+1, so that when
given an element drawn from distribution P1 as input, D outputs 1 with probability Pr[Si],
and when given an element drawn from distribution P2 as input, D outputs 1 with prob-
abilty Pr[Si+1]. The indistinguishability assumption then implies that |Pr[Si] − Pr[Si+1]|
is negligible. Usually, the construction of D is obvious, provided the changes made in the
transition are minimal. Typically, one designs the two games so that they could easily be
rewritten as a single “hybrid” game that takes an auxilliary input — if the auxiallary input
is drawn from P1, you get Game i, and if drawn from P2, you get Game i+ 1. The distin-
guisher then simply runs this single hybrid game with its input, and outputs 1 if appropriate
event occurs.

Transitions based on failure events. In such a transition, one argues that Games i
and i + 1 proceed identically unless a certain “failure event” F occurs. To make this type
of argument as cleanly as possible, it is best if the two games are defined on the same
underlying probability space — the only differences between the two games are the rules
for computing certain random variables. When done this way, saying that the two games
proceed identically unless F occurs is equivalent to saying that

Si ∧ ¬F ⇐⇒ Si+1 ∧ ¬F.

If this is true, then we can use the following fact, which is completely trivial, yet is so often
used in these types of proofs that it deserves a name:

Lemma 1 (Difference Lemma). Let A,B, F be events defined in some probability dis-
tribution, and suppose that A ∧ ¬F ⇐⇒ B ∧ ¬F . Then |Pr[A]− Pr[B]| ≤ Pr[F].

2

Proof. This is a simple calculation. We have

|Pr[A]− Pr[B]| = |Pr[A ∧ F] + Pr[A ∧ ¬F]− Pr[B ∧ F]− Pr[B ∧ ¬F]|
= |Pr[A ∧ F]− Pr[B ∧ F]|
≤ Pr[F].

The second equality follows from the assumption that A ∧ ¬F ⇐⇒ B ∧ ¬F , and so in
particular, Pr[A ∧ ¬F] = Pr[B ∧ ¬F]. The final inequality follows from the fact that both
Pr[A ∧ F] and Pr[B ∧ F] are numbers between 0 and Pr[F]. 2

So to prove that Pr[Si] is negligibly close to Pr[Si+1], it suffices to prove that Pr[F] is
negligible. Sometimes, this is done using a security assumption (i.e., when F occurs, the
adversary has found a collision in a hash function, or forged a MAC), while at other times,
it can be done using a purely information-theoretic argument.

Usually, the event F is defined and analyzed in terms of the random variables of one
of the two adjacent games. The choice is arbitrary, but typically, one of the games will be
more suitable than the other in terms of allowing a clear proof.

In some particularly challenging circumstances, it may be difficult to analyze the event
F in either game. In fact, the analysis of F may require its own sequence of games sprouting
off in a different direction, or the sequence of games for F may coincide with the sequence of
games for S, so that Pr[F] finally gets pinned down in Game j for j > i+1. This technique
is sometimes crucial in side-stepping potential circularities.

Bridging steps. The third type of transition introduces a bridging step, which is typically
a way of restating how certain quantities can be computed in a completely equivalent way.
The change is purely conceptual, and Pr[Si] = Pr[Si+1]. The reason for doing this is to
prepare the ground for a transition of one of the above two types. While in principle, such a
bridging step may seem unnecessary, without it, the proof would be much harder to follow.

As mentioned above, in a transition based on a failure event, it is best if the two
successive games are understood to be defined on the same underlying probability space.
Actually, it is common good practice to simply have all the games in the sequence defined
on the same underlying probability space.

1.2 Sequences of Games in Use

The author has used proofs organized as sequences of games extensively in his own work
[Sho00, SS00, Sho01, Sho02, CS02, CS03b, CS03a, GS04] and has found them to be an
indispensable tool — while some of the proofs in these papers could be structured differently,
it is hard to imagine how most of them could be done in a more clear and convincing way
without sequences of games. Other authors have also been using this technique recently
[AFP04, BK04, BCP02a, BCP02b, BCP03, CPP04, DF03, DFKY03, DFJW04, Den03,
FOPS04, GaPMV03, KD04, PP03, SWP04].

Mathematically speaking, there is nothing really new in the sequence-of-games tech-
nique, and variations on it have been used in earlier papers — a very nice example of this
is the analysis of DESX by Kilian and Rogaway [KR96]. However, what does seem to be

3

a more recent trend is the growing use of the sequence-of-games technique in a highly dis-
ciplined and intensive fashion, following the same general pattern of style, notation, and
philosophy exhibited in the papers cited in the previous paragraph; some of these sequences
of games are quite lengthy (e.g., 9 games in [FOPS04] and [CS03a]), but the basic principles
outlined in §1.1 still apply — although each game might be rather complicated, and the
sequence of games rather long, the differences between games are very small and easily
analyzed.

The author has also been using the sequence-of-games technique extensively in teaching
courses in cryptography. Many “classical” results in cryptography can be fruitfully analyzed
using this technique. Generally speaking, it seems that the students enjoy this approach,
and easily learn to use and apply it themselves. Also, by using a consistent framework for
analysis, as an instructor, one can more easily focus on the ideas that are unique to any
specific application.

1.3 Outline of the Rest of the Paper

After recalling some fairly standard notation in the next section, the following sections
illustrate the use of the sequence-of-games technique in the analysis of a number of classical
cryptographic constructions. Compared to many of the more technically involved examples
in the literature of this technique (mentioned above), the applications below are really just
“toy” examples. Nevertheless, they serve to illustrate the technique in a concrete way, and
moreover, we believe that the proofs of these results are at least as easy to follow as any
other proof, if not more so. All of the examples, except the last (in §7), are presented at an
extreme level of detail; indeed, for these examples, we give complete, detailed descriptions
of each and every game. More typically, to produce a more compact proof, one might simply
describe the differences between games, rather than describing each game in its entirety.
These examples are based mainly on lectures in courses on cryptography taught by the
author.

2 Notation

We make use of fairly standard notation in what follows.
In describing probabilistic processes, we write

x c|← X

to denote the action of assigning to the variable x a value sampled according to the dis-
tribution X. If S is a finite set, we simply write s c|← S to denote assignment to s of an
element sampled from the uniform distribution on S. If A is a probabilistic algorithm and
x an input, then A(x) denotes the output distribution of A on input x. Thus, we write
y c|← A(x) to denote the action of running algorithm A on input x and assigning the output
to the variable y.

We shall write

Pr[x1
c|← X1, x2

c|← X2(x1), . . . , xn
c|← Xn(x1, . . . , xn−1) : φ(x1, . . . , xn)]

4

to denote the probability that when x1 is drawn from a certain distribution X1, and x2 is
drawn from a certain distribution X2(x1), possibly depending on the particular choice of
x1, and so on, all the way to xn, the predicate φ(x1, . . . , xn) is true. We allow the predicate
φ to involve the execution of probabilistic algorithms.

If X is a probability distribution on a sample space X , then [X] denotes the subset of
elements of X that occur with non-zero probability.

3 ElGamal Encryption

3.1 Basic Definitions

We first recall the basic definition of a public-key encryption scheme, and the notion of
semantic security.

A public-key encryption scheme is a triple of probabilistic algorithms (KeyGen, E,D).
The key generation algorithm KeyGen takes no input (other than an implied security pa-
rameter, and perhaps other system parameters), and outputs a public-key/secret-key pair
(pk , sk). The encryption algorithm E takes as input a public key pk and a message m,
selected from a message space M , and outputs a ciphertext ψ. The decryption algorithm
takes as input a secret key sk and ciphertext ψ, and outputs a message m.

The basic correctness requirement is that decryption “undoes” encryption. That is, for
all m ∈ M , all (pk , sk) ∈ [KeyGen()], all ψ ∈ [E(pk ,m)], and all m′ ∈ [D(sk , ψ)], we have
m = m′. This definition can be relaxed in a number of ways; for example, we may only
insist that it is computationally infeasible to find a message for which decryption does not
“undo” its encryption.

The notion of semantic security intuitively says that an adversary cannot effectively dis-
tinguish between the encryption of two messages of his choosing (this definition comes from
[GM84], where is called polynomial indistinguishability, and semantic security is actually
the name of a syntactically different, but equivalent, characterization). This is formally
defined via a game between an adversary and a challenger.

• The challenger computes (pk , sk) c|← KeyGen(), and gives pk to the adversary.

• The adversary chooses two messages m0,m1 ∈M , and gives these to the challenger.

• The challenger computes

b c|← {0, 1}, ψ c|← E(pk ,mb)

and gives the “target ciphertext” ψ to the adversary.

• The adversary outputs b̂ ∈ {0, 1}.

We define the SS-advantage of the adversary to be |Pr[b = b̂] − 1/2|. Semantic security
means that any efficient adversary’s SS-advantage is negligible.

5

3.2 The ElGamal Encryption Scheme

We next recall ElGamal encryption. Let G be a group of prime order q, and let γ ∈ G be
a generator (we view the descriptions of G and γ, including the value q, to be part of a set
of implied system parameters).

The key generation algorithm computes (pk , sk) as follows:

x c|← Zq, α← γx, pk ← α, sk ← x.

The message space for the algorithm is G. To encrypt a message m ∈ G, the encryption
algorithm computes a ciphertext ψ as follows:

y c|← Zq, β ← γy, δ ← αy, ζ ← δ ·m, ψ ← (β, ζ).

The decryption algorithm takes as input a ciphertext (β, ζ), and computes m as follows:

m← ζ/βx.

It is clear that decryption “undoes” encryption. Indeed, if β = γy and ζ = αy ·m, then

ζ/βx = αym/βx = (γx)ym/(γy)x = γxym/γxy = m.

3.3 Security Analysis

ElGamal encryption is semantically secure under the Decisional Diffie-Hellman (DDH)
assumption. This is the assumption that it is hard to distinguish triples of the form
(γx, γy, γxy) from triples of the form (γx, γy, γz), where x, y, and z are random elements of
Zq.

The DDH assumption is more precisely formulated as follows. Let D be an algorithm
that takes as input triples of group elements, and outputs a bit. We define the DDH-
advantage of D to be

|Pr[x, y c|← Zq : D(γx, γy, γxy) = 1]− Pr[x, y, z c|← Zq : D(γx, γy, γz) = 1]|.

The DDH assumption (for G) is the assumption that any efficient algorithm’s DH-advantage
is negligible.

We now give a proof of the semantic security of ElGamal encryption under the DDH
assumption, using a sequence of games.

Game 0. Fix an efficient adversary A. Let us define Game 0 to be the attack game against
A in the definition of semantic security. To make things more precise and more concrete,
we may describe the attack game algorithmically as follows:

x c|← Zq, α← γx

r c|← R, (m0,m1)← A(r, α)
b c|← {0, 1}, y c|← Zq, β ← γy, δ ← αy, ζ ← δ ·mb

b̂← A(r, α, β, ζ)

In the above, we have modeled the adversary A is a deterministic algorithm that takes
as input “random coins” r sampled uniformly from some set R. It should be evident that
this algorithm faithfully represents the attack game. If we define S0 to be the event that
b = b̂, then the adversary’s SS-advantage is |Pr[S0]− 1/2|.

6

Game 1. [This is a transition based on indistinguishability.] We now make one small
change to the above game. Namely, instead of computing δ as αy, we compute it as γz for
randomly chosen z ∈ Zq. We can describe the resulting game algorithmically as follows:

x c|← Zq, α← γx

r c|← R, (m0,m1)← A(r, α)

b c|← {0, 1}, y c|← Zq, β ← γy, z c|← Zq, δ ← γz, ζ ← δ ·mb

b̂← A(r, α, β, ζ)

Let S1 be the event that b = b̂ in Game 1.

Claim 1. Pr[S1] = 1/2. This follows from the fact that in Game 2, δ is effectively a
one-time pad, and as such, the adversary’s output b̂ is independent of the hidden bit b. To
prove this more rigorously, it will suffice to show that b, r, α, β, ζ are mutually independent,
since from this, it follows that b and b̂ = A(r, α, β, ζ) are independent. First observe that by
construction, b, r, α, β, δ are mutually independent. It will suffice to show that conditioned
on any fixed values of b, r, α, β, the conditional distribution of ζ is the uniform distribution
over G. Now, if b, r, α, β are fixed, then so are m0,m1, since they are determined by r, α;
moreover, by independence, the conditional distribution of δ is the uniform distribution
on G, and hence from this, one sees that the conditional distribution of ζ = δ ·mb is the
uniform distribution on G.

Claim 2. |Pr[S0] − Pr[S1]| = εddh, where εddh is the DDH-advantage of some efficient
algorithm (and hence negligible under the DDH assumption).

The proof of this is essentially the observation that in Game 0, the triple (α, β, δ) is of
the form (γx, γy, γxy), while in Game 1, it is of the form (γx, γy, γz), and so the adversary
should not notice the difference, under the DDH assumption. To be more precise, our
distinguishing algorithm D works as follows:

Algorithm D(α, β, δ)

r c|← R, (m0,m1)← A(r, α)
b c|← {0, 1}, ζ ← δ ·mb

b̂← A(r, α, β, ζ)

if b = b̂
then output 1
else output 0

Algorithm D effectively “interpolates” between Games 0 and 1. If the input to D is of
the form (γx, γy, γxy), then computation proceeds just as in Game 0, and therefore

Pr[x, y c|← Zq : D(γx, γy, γxy) = 1] = Pr[S0].

If the input to D is of the form (γx, γy, γz), then computation proceeds just as in Game 1,
and therefore

Pr[x, y, z c|← Zq : D(γx, γy, γz) = 1] = Pr[S1].

7

From this, it follows that the DDH-advantage of D is equal to |Pr[S0] − Pr[S1]|. That
completes the proof of Claim 2.

Combining Claim 1 and Claim 2, we see that

|Pr[S0]− 1/2| = εddh,

and this is negligible. That completes the proof of security of ElGamal encryption.

3.4 Hashed ElGamal

For a number of reasons, it is convenient to work with messages that are bit strings, say, of
length `, rather than group elements. Because of this, one may choose to use a “hashed”
version of the ElGamal encryption scheme.

This scheme makes use of a family of keyed “hash” functions H := {Hk}k∈K , where
each Hk is a function mapping G to {0, 1}`.

The key generation algorithm computes (pk , sk) as follows:

x c|← Zq, k
c|← K, α← γx, pk ← (α, k), sk ← (x, k).

To encrypt a message m ∈ {0, 1}`, the encryption algorithm computes a ciphertext ψ
as follows:

y c|← Zq, β ← γy, δ ← αy, h← Hk(δ), v ← h⊕m, ψ ← (β, v).

The decryption algorithm takes as input a ciphertext (β, v), and computes m as follows:

m← Hk(βx)⊕ v.

The reader may easily verify that decryption “undoes” encryption.
As for semantic security, this can be proven under the DDH assumption and the as-

sumption that the family of hash functions H is “entropy smoothing.” Loosely speaking,
this means that it is hard to distinguish (k,Hk(δ)) from (k, h), where k is a random element
of K, δ is a random element of G, and h is a random element of {0, 1}`. More formally,
let D be an algorithm that takes as input an element of K and an element of {0, 1}`, and
outputs a bit. We define the ES-advantage of D to be

|Pr[k c|← K, δ c|← G : D(k,Hk(δ)) = 1]− Pr[k c|← K, h c|← {0, 1}` : D(k, h) = 1]|.

We say H is entropy smoothing if every efficient algorithm’s ES-advantage is negligible.
It is in fact possible to construct entropy smoothing hash function families without ad-

ditional hypothesis (the Leftover Hash Lemma may be used for this [IZ89]). However, these
may be somewhat less practical than ad hoc hash function families for which the entropy
smoothing property is only a (perfectly reasonable) conjecture; moreover, our definition also
allows entropy smoothers that use pseudo-random bit generation techniques as well.

We now sketch the proof of semantic security of hashed ElGamal encryption, under the
DDH assumption and the assumption that H is entropy smoothing.

8

Game 0. This is the original attack game, which we can state algorithmically as follows:

x c|← Zq, k
c|← K, α← γx

r c|← R, (m0,m1)← A(r, α, k)
b c|← {0, 1}, y c|← Zq, β ← γy, δ ← αy, h← Hk(δ), v ← h⊕mb

b̂← A(r, α, k, β, v)

We define S0 to be the event that b = b̂ in Game 0.

Game 1. [This is a transition based on indistinguishability.] Now we transform Game 0
into Game 1, computing δ as γz for random z ∈ Zq. We can state Game 1 algorithmically
as follows:

x c|← Zq, k
c|← K, α← γx

r c|← R, (m0,m1)← A(r, α, k)

b c|← {0, 1}, y c|← Zq, β ← γy, z c|← Zq, δ ← γz, h← Hk(δ), v ← h⊕mb

b̂← A(r, α, k, β, v)

Let S1 be the event that b = b̂ in Game 1. We claim that

|Pr[S0]− Pr[S1]| = εddh, (1)

where εddh is the DDH-advantage of some efficient algorithm (which is negligible under the
DDH assumption).

The proof of this is almost identical to the proof of the corresponding claim for “plain”
ElGamal. Indeed, the following algorithm D “interpolates” between Game 0 and Game 1,
and so has DDH-advantage equal to |Pr[S0]− Pr[S1]|:

Algorithm D(α, β, δ)

k c|← K

r c|← R, (m0,m1)← A(r, α, k)
b c|← {0, 1}, h← Hk(δ), v ← h⊕mb

b̂← A(r, α, k, β, v)

if b = b̂
then output 1
else output 0

Game 2. [This is also a transition based on indistinguishability.] We now transform
Game 1 into Game 2, computing h by simply choosing it at random, rather than as a hash.
Algorithmically, Game 2 looks like this:

x c|← Zq, k
c|← K, α← γx

r c|← R, (m0,m1)← A(r, α, k)

b c|← {0, 1}, y c|← Zq, β ← γy, z c|← Zq, δ ← γz, h c|← {0, 1}`, v ← h⊕mb

b̂← A(r, α, k, β, v)

9

Observe that δ plays no role in Game 2.
Let S2 be the event that b = b̂ in Game 2. We claim that

|Pr[S1]− Pr[S2]| = εes, (2)

where εes the ES-advantage of some efficient algorithm (which is negligible assuming H is
entropy smoothing).

This is proved using the same idea as before: any difference between Pr[S1] and Pr[S2]
can be parlayed into a corresponding ES-advantage. Indeed, it is easy to see that the fol-
lowing algorithm D′ “interpolates” between Game 1 and Game 2, and so has ES-advantage
equal to |Pr[S1]− Pr[S2]|:

Algorithm D′(k, h)

x c|← Zq, α← γx

r c|← R, (m0,m1)← A(r, α, k)
b c|← {0, 1}, y c|← Zq, β ← γy, v ← h⊕mb

b̂← A(r, α, k, β, v)

if b = b̂
then output 1
else output 0

Finally, as h acts like a one-time pad in Game 2, it is evident that

Pr[S2] = 1/2. (3)

Combining (1), (2), and (3), we obtain

|Pr[S0]− 1/2| ≤ εddh + εes,

which is negligible, since both εddh and εes are negligible.

This proof illustrates how one can utilize more than one intractability assumption in a
proof of security in a clean and simple way.

4 Pseudo-Random Functions

4.1 Basic Definitions

Let `1 and `2 be positive integers (which are actually polynomially bounded functions in a
security parameter). Let F := {Fs}s∈S be a family of keyed functions, where each function
Fs maps {0, 1}`1 to {0, 1}`2 . Let Γ`1,`2 denote the set of all functions from {0, 1}`1 to {0, 1}`2 .
Informally, we say that F is pseudo-random if it is hard to distinguish a random function
drawn from F from a random function drawn from Γ`1,`2 , given black box access to such a
function (this notion was introduced in [GGM86]).

More formally, consider an adversary A that has oracle access to a function in Γ`1,`2 ,
and suppose that A always outputs a bit. Define the PRF-advantage of A to be

|Pr[s c|← S : AFs() = 1]− Pr[f c|← Γ`1,`2 : Af ()] = 1|.

We say that F is pseudo-random if any efficient adversary’s PRF-advantage is negligible.

10

4.2 Extending the Input Length with a Universal Hash Function

We now present one construction that allows one to stretch the input length of a pseudo-
random family of functions. Let ` be a positive integer with ` > `1. Let H := {Hk}k∈K be
a family of keyed hash functions, where each Hk maps {0, 1}` to {0, 1}`1 . Let us assume
that H is an εuh-universal family of hash functions, where εuh is negligible. This means that
for all w,w′ ∈ {0, 1}` with w 6= w′, we have

Pr[k c|← K : Hk(w) = Hk(w′)] ≤ εuh.

There are many ways to construct such families of hash functions.
Now define the family of functions

F ′ := {F ′
k,s}(k,s)∈K×S ,

where each F ′
k,s is the function from {0, 1}` into {0, 1}`2 that sends w ∈ {0, 1}` to Fs(Hk(w)).

We shall now prove that if F is pseudo-random, then F ′ is pseudo-random.

Game 0. This game represents the computation of an adversary given oracle access to a
function drawn at random from F ′. Without loss of generality, we may assume that the
adversary makes exactly q queries to its oracle, and never repeats any queries (regardless
of the oracle responses). We may present this computation algorithmically as follows:

k c|← K, s c|← S

r c|← R
for i← 1 . . . q do

wi ← A(r, y1, . . . , yi−1) ∈ {0, 1}`
xi ← Hk(wi) ∈ {0, 1}`1
yi ← Fs(xi) ∈ {0, 1}`2

b← A(r, y1, . . . , yq) ∈ {0, 1}
output b

The idea behind our notation is that the adversary is modeled as a deterministic al-
gorithm A, and we supply its random coins r ∈ R as input, and in loop iteration i, the
adversary computes its next query wi as a function of its coins and the results y1, . . . , yi−1

of its previous queries w1, . . . , wi−1. We are assuming that A operates in such a way that
the values w1, . . . , wq are always distinct.

Let S0 be the event that the output b = 1 in Game 0.
Our goal to transform this game into a game that is equivalent to the computation of

the adversary given oracle access to a random element of Γ`,`2 , so that the probability that
b = 1 in the latter game is negligibly close to Pr[S0].

Game 1. [This is a transition based on indistinguishability.] We now modify Game 0 so
that we use a truly random function from `1 bits to `2 bits, in place of Fs. Intuitively,
the pseudo-randomness property of F should guarantee that this modification has only a
negligible effect on the behavior of the adversary. Algorithmically, Game 1 looks like this:

11

k c|← K, f c|← Γ`1,`2

r c|← R
for i← 1 . . . q do

wi ← A(r, y1, . . . , yi−1) ∈ {0, 1}`
xi ← Hk(wi) ∈ {0, 1}`1

yi ← f(xi) ∈ {0, 1}`2
b← A(r, y1, . . . , yq) ∈ {0, 1}
output b

We claim that
|Pr[S0]− Pr[S1]| = εprf, (4)

where εprf is the PDF-advantage, relative to F , of some efficient adversary (which is neg-
ligible assuming F is pseudo-random). Indeed, the following adversary essentially “inter-
polates” between Games 0 and 1, and so has PRF-advantage, with respect to F , exactly
equal to |Pr[S0]− Pr[S1]|:

Oracle machine DO

k c|← K, r c|← R
for i← 1 . . . q do

wi ← A(r, y1, . . . , yi−1) ∈ {0, 1}`
xi ← Hk(wi) ∈ {0, 1}`1
yi ← O(xi) ∈ {0, 1}`2

b← A(r, y1, . . . , yq) ∈ {0, 1}
output b

Game 2. [This transition is a bridging step.] We now make a purely conceptual change to
Game 1. Intuitively, one can think of a black box containing the random function f as a
box with a little “gnome” inside: the gnome keeps a table of previous input/output pairs,
and if a query is made that matches one of the previous inputs, the corresponding output
is returned, and otherwise, an output value is chosen at random, and a new input/output
pair is added to the table (see Figure 1). Based on this, we get the following equivalent
formulation of Game 1:

k c|← K, Y1, . . . , Yq
c|← {0, 1}`2

r c|← R
for i← 1 . . . q do

wi ← A(r, y1, . . . , yi−1) ∈ {0, 1}`
xi ← Hk(wi) ∈ {0, 1}`1
if xi = xj for some j < i then yi ← yj else yi ← Yi

b← A(r, y1, . . . , yq) ∈ {0, 1}
output b

Let S2 be the event that b = 1 in Game 2. Since the change in going from Game 1 to
Game 2 was purely conceptual, we clearly have

Pr[S2] = Pr[S1]. (5)

12

x f(x)
00101 10101
11111 01110
10111 01011
00011 10001

x

f(x)

Figure 1: A gnome implementation of a random function

Game 3. [This is a transition based on a failure event.] We now modify Game 2 so that
our gnome is “forgetful,” and does not perform any consistency checks in calculating the yi

values:

k c|← K, Y1, . . . , Yq
c|← {0, 1}`2

r c|← R
for i← 1 . . . q do

wi ← A(r, y1, . . . , yi−1) ∈ {0, 1}`
xi ← Hk(wi) ∈ {0, 1}`1
yi ← Yi

b← A(r, y1, . . . , yq) ∈ {0, 1}
output b

Define S3 to be the event that b = 1 in Game 3. Define F to be the event that in
Game 3, xi = xj for some i, j with i 6= j.

Observe that k and x1, . . . , xq play no role in Game 3, other than to define the event F .
In particular, the random variables k, r, y1, . . . , yq are mutually independent.

Let us view Games 2 and 3 as operating on the same underlying probability space; that
is, the values of k, r, Y1, . . . , Yq are identical in both games. It is not hard to see that Games
2 and 3 proceed identically, unless event F occurs. In particular, if F does not occur, then
the output in both games is identical. This is fairly obvious, but since this our first example
of this technique, let us make a more formal argument (in later examples, we will not do
this). Select any fixed values k, r, Y1, . . . , Yq such that F does not occur. We prove by
induction that for i = 0, . . . , q, the values w1, x1, y1, . . . , wi, xi, yi are computed identically
in both games. The case i = 0 is trivially true. Now we let i > 0, assume the claim for i−1,
and prove it for i. As the claim holds for i− 1, the value wi is computed in the same way
as A(r, y1, . . . , yi−1) in both games, and hence xi is computed in the same way as Hk(wi)
in both games. When it comes to computing yi, we see that since F does not hold, the
values x1, . . . , xi are distinct (and are computed in the same way in both games); therefore,

13

in both games yi is assigned the value Yi. That completes the induction proof. It follows
that when F does not occur, both games compute y1, . . . , yq in the same way, and hence
both compute b = A(r, y1, . . . , yq) in the same way.

In the previous paragraph, we argued that if F does not occur, then both games output
the same value. This is the same as saying that S2 ∧ ¬F ⇐⇒ S3 ∧ ¬F . Therefore, by the
Difference Lemma, we have

|Pr[S2]− Pr[S3]| ≤ Pr[F]. (6)

We can show that

Pr[F] ≤ εuh ·
q2

2
. (7)

The analysis is all done with respect to Game 3. To prove this inequality, it suffices to
prove it conditioned on any fixed values of r, y1, . . . , yq. In this conditional probability
distribution, the values w1, . . . , wq are fixed (as they are determined by r, y1, . . . , yq), while
k is uniformly distributed over K (by independence). For any fixed pair of indices i, j, with
i 6= j, by the universal hash property of H, and by our assumption that wi 6= wj , we have

Pr[Hk(wi) = Hk(wj)] ≤ εuh.

Since there are q(q − 1)/2 such pairs of indices, the inequality (7) follows from the union
bound.

Note that while one could have carried out the above analysis with respect to Game 2, it
is conceptually much easier to carry it out in Game 3. In general, in applying the Difference
Lemma, one can choose to analyze the probability of the “failure event” in either of the two
adjacent games, but one will usually be easier to work with than the other.

Since the values of k and x1, . . . , xq play no role in Game 3, it is not hard to see
that in fact, Game 3 is equivalent to the computation of the adversary given oracle access
to a function drawn at random from Γ`,`2 : each successive (and by assumption, distinct)
query yields a random result. Thus, |Pr[S0] − Pr[S3]| is equal to the PRF-advantage of
the adversary. It then follows from (4), (5), (6), and (7) that the PRF-advantage of the
adversary is bounded by

εprf + εuh ·
q2

2
,

which is negligible.

5 Pseudo-Random Permutations

Let ` be a positive integer. Let P := {Ps}s∈S be a family of keyed functions, where each Ps

is a permutation on {0, 1}`. Let Π` denote the set of all permutations on {0, 1}`. Informally,
we say that P is pseudo-random if it is hard to distinguish a random permutation drawn
from P from a random permutation drawn from Π`, given black box access to such a
permutation.

More formally, consider an adversary A that has oracle access to a function in Γ`,`, and
suppose that A always outputs a single bit. Define the PRP-advantage of A to be

|Pr[s c|← S : APs() = 1]− Pr[π c|← Γ` : Aπ() = 1]|.

14

We say that P is pseudo-random if any efficient oracle machine’s PRP-advantage is negli-
gible.

5.1 Random Functions vs. Random Permutations

One of the things we want to do is to present a proof that every pseudo-random permutation
family is also a pseudo-random function family. But first, we consider the slightly simpler
problem of distinguishing random functions from random permutations. Suppose you are
given a black box that contains either a random function on ` bits or a random permutation
on ` bits, and your task is to determine which is the case. If you make around 2`/2 queries,
then by the birthday paradox, you would expect to see some outputs that are equal, if the
box contains a function rather than a permutation. This would allow you to determine,
with reasonably high probability, the contents of the box. We want to rigorously prove that
there is really no better way to determine what is inside the box.

Again, let A be an adversary given oracle access to a function in Γ`,`. We define its
RF/RP-advantage to be

|Pr[f c|← Γ`,` : Af () = 1]− Pr[π c|← Π` : Aπ() = 1]|.

We shall now show that for any oracle machine that makes at most q queries to its
oracle, its RF/RP-advantage is at most

q2

2
· 2−`.

As usual, we make this argument by considering a sequence of games.

Game 0. This game represents the computation of an adversary A given oracle access to
a random permutation. Let us assume that A makes precisely q queries, and that each of
these queries is distinct. We may write this game algorithmically as follows:

π c|← Π`

r c|← R
for i← 1 . . . q do

xi ← A(r, y1, . . . , yi−1) ∈ {0, 1}`
yi ← π(xi)

b← A(r, y1, . . . , yq) ∈ {0, 1}
output b

We are assuming that the queries x1, . . . , xq are always distinct. Define S0 to be the
event that b = 1 in Game 0.

Game 1. [This transition is a bridging step.] We now transform Game 1 into a new game
involving “gnomes,” as in §4.2. Our strategy is to first build a game that uses a “faithful
gnome” that makes all the appropriate consistency checks. In the next game, we will use a
“forgetful gnome” that does not make any consistency checks, but that is otherwise identical.
The idea is that we can model oracle access to a random permutation as little “gnome”
who keeps track input/output pairs, but now, the gnome has to make sure outputs as well
as inputs are consistent:

15

Y1, . . . , Yq
c|← {0, 1}`

r c|← R
for i← 1 . . . q do

xi ← A(r, y1, . . . , yi−1) ∈ {0, 1}`

if Yi ∈ {y1, . . . , yi−1} then yi
c|← {0, 1}` \ {y1, . . . , yi−1} else yi ← Yi

b← A(r, y1, . . . , yq) ∈ {0, 1}
output b

Recall that we are assuming that the inputs x1, . . . , xq are always distinct, so our
“gnome” does not have to watch for duplicate inputs. Our “gnome” uses the random
value Yi as the “default value” for π(xi), unless that value has already been used as a
previous output, in which case the “gnome” chooses the value of π(xi) at random from all
unused output values.

Let S1 be the event that b = 1 in Game 1. It is evident that Game 1 is equivalent to
Game 0 from the point of view of the adversary, and therefore:

Pr[S1] = Pr[S0]. (8)

Game 2. [This is a transition based on a failure event.] As promised, we now make our
gnome “forgetful,” by simply dropping the output consistency checks:

Y1, . . . , Yq
c|← {0, 1}`

r c|← R
for i← 1 . . . q do

xi ← A(r, y1, . . . , yi−1) ∈ {0, 1}`
yi ← Yi

b← A(r, y1, . . . , yq) ∈ {0, 1}
output b

Let S2 be the event that b = 1 in Game 2. Let F be the event that Yi = Yj for some
i 6= j. Let us view Games 1 and 2 as operating on the same underlying probability space,
so the values of r, Y1, . . . , Yq are identical in both games. It is evident that these two games
proceed identically unless the event F occurs; that is, S1 ∧ ¬F ⇐⇒ S2 ∧ ¬F . Therefore,
by the Difference Lemma, we have

|Pr[S1]− Pr[S2]| ≤ Pr[F]. (9)

Furthermore, F is the union of
(
q
2

)
events, each of which occurs with probability 2−`, and

so by the union bound, we have

Pr[F] ≤ q2

2
· 2−`. (10)

Finally, note that Game 2 is fully equivalent to the computation of the adversary given
oracle access to a random function. Thus, its RF/RP-advantage is equal to

|Pr[S0]− Pr[S2]|,

and by (8), (9), and (10), this is at most

q2

2
· 2−`.

16

5.2 Pseudo-Random Functions vs. Pseudo-Random Permutations

We now show that if ` is suitably large, so that 2−` is negligible, then any pseudo-random
permutation family P := {Ps}s∈S is also a pseudo-random function family. This follows
quite easily from the definitions and the fact proved in §5.1 bounding the RF/RP-advantage
of any adversary.

Let us fix an efficient adversary A, and show that its PRF-advantage, with respect to
P, is negligible. Assume that the oracle machine always makes at most q queries (since the
adversary is efficient, this means that q is bounded by a polynomial in a security parameter).

Let
εprf := |Pr[s c|← S : APs() = 1]− Pr[f c|← Γ`,` : Af () = 1]|

be the PRF-advantage of A. We want to show that εprf is negligible. Let

εprp := |Pr[s c|← S : APs() = 1]− Pr[π c|← Π` : Aπ() = 1]|

be the PRP-advantage of A. By assumption, εprp is negligible. Let

εrf/rp := |Pr[f c|← Γ`,` : Af () = 1]− Pr[π c|← Π` : Aπ() = 1]|

be the RF/RP-advantage of A. From the analysis in §5.1, we know that

εrf/rp ≤
q2

2
· 2−`,

which is negligible, assuming 2−` is negligible. Finally, it is easy to see that by the triangle
inequality, we have

εprf = |Pr[s c|← S : APs() = 1]− Pr[f c|← Γ`,ell : Af () = 1]|

≤ |Pr[s c|← S : APs() = 1]− Pr[π c|← Π` : Aπ() = 1]|+

|Pr[π c|← Π` : Aπ() = 1]− Pr[f c|← Γ`,` : Af () = 1]|
= εprp + εrf/rp,

which is negligible.

6 The Luby-Rackoff Construction

We now give an analysis of the Luby-Rackoff construction for building a pseudo-random
permutation family out of a pseudo-random function family [LR88]. Since it is really no
harder to do, we analyze the variation of Naor and Reingold [NR99], which uses a pairwise
independent family of hash functions (or something slightly weaker) at one of the stages of
the construction.

Let F := {Fs}s∈S be a pseudo-random family of functions, where each Fs maps `-bit
strings to `-bit strings.

Let H := {Hk}k∈K an εaxu-almost-XOR-universal family of hash functions on `-bits,
meaning that each Hk maps `-bit strings to `-bit strings, and for all x, x′, y ∈ {0, 1}`, with
x 6= x′, we have

Pr[k c|← K : Hk(x)⊕Hk(x′) = y] ≤ εaxu.

17

We assume that εaxu is negligible.
The Luby-Rackoff construction builds a pseudo-random permutation family that acts on

2`-bit strings as follows. A Luby-Rackoff key consists of a triple (k, s1, s2), with k ∈ K and
s1, s2 ∈ S. Let us interpret inputs and outputs as pairs of `-bit strings. Given u, v ∈ {0, 1}`
as input, the Luby-Rackoff algorithm runs as follows:

w ← u⊕Hk(v)
x← v ⊕ Fs1(w)
y ← w ⊕ Fs2(x)

The output is x, y.
It is easy to verify that the function computed by this algorithm is a permutation, and

indeed, it is easy to invert the permutation given the key. We want to show that this
construction is a pseudo-random permutation family, under the assumptions above, and
the assumption that 2−` is negligible. To this end, by the result in §5.1, it will suffice to
show that this construction is a pseudo-random function family.

Game 0. This game represents the computation of an adversary given oracle access to
the Luby-Rackoff construction, for random keys k, s1, s2. We assume that the adversary
makes exactly q oracle queries, and that all of these are distinct. We can present this game
algorithmically as follows:

k c|← K, s1
c|← S, s2

c|← S

r c|← R
for i← 1 . . . q do

(ui, vi)← A(r, x1, y1, . . . , xi−1, yi−1)
wi ← ui ⊕Hk(vi)
xi ← vi ⊕ Fs1(wi)
yi ← wi ⊕ Fs2(xi)

b← A(r, x1, y1, . . . , xq, yq)
output b

We are assuming that for all i 6= j, we may have ui = uj or vi = vj , but not both. Let
S0 be the event that b = 1 in Game 0.

Game 1. [This is a transition based on indistinguishability, plus a bridging step.] We now
modify Game 0, replacing Fs1 be a truly random function. To save steps, let us implement
our random function directly as a “faithful gnome”:

k c|← K, X1, . . . , Xq ← {0, 1}`, s2 c|← S

r c|← R
for i← 1 . . . q do

(ui, vi)← A(r, x1, y1, . . . , xi−1, yi−1)
wi ← ui ⊕Hk(vi)
{ if wi = wj for some j < i then x′i ← x′j else x′i ← Xi }, xi ← vi ⊕ x′i
yi ← wi ⊕ Fs2(xi)

b← A(r, x1, y1, . . . , xq, yq)
output b

18

The intuition is that x′i represents the output of a random function on input wi. The
default value for x′i is Xi, but this default value is overridden if wi is equal to some previous
input wj .

Let S1 be the event that b = 1 in Game 1. By a (by now) very familiar argument, we
have

|Pr[S0]− Pr[S1]| = εprf, (11)

where εprf is the PRF-advantage of some efficient adversary, and therefore negligible. Indeed,
it is evident that the following adversary D does the job:

Oracle machine DO

k c|← K, s2
c|← S

r c|← R
for i← 1 . . . q do

(ui, vi)← A(r, x1, y1, . . . , xi−1, yi−1)
wi ← ui ⊕Hk(vi)
xi ← vi ⊕O(wi)
yi ← wi ⊕ Fs2(xi)

b← A(r, x1, y1, . . . , xq, yq)
output b

Game 2. [This is also a transition based on indistinguishability, plus a bridging step.]
Next, we naturally replace Fs2 by a truly random function. Again, let us implement our
random function directly as a “faithful gnome”:

k c|← K, X1, . . . , Xq ← {0, 1}`, Y1, . . . , Yq
c|← {0, 1}`

r c|← R
for i← 1 . . . q do

(ui, vi)← A(r, x1, y1, . . . , xi−1, yi−1)
wi ← ui ⊕Hk(vi)
{ if wi = wj for some j < i then x′i ← x′j else x′i ← Xi }, xi ← vi ⊕ x′i
{ if xi = xj for some j < i then y′i ← y′j else y′i ← Yi }, yi ← wi ⊕ y′i

b← A(r, x1, y1, . . . , xq, yq)
output b

Let S2 be the event that b = 1 in Game 2. Again, we have

|Pr[S1]− Pr[S2]| = ε′prf, (12)

where ε′prf is the PRF-advantage of some efficient adversary, and therefore negligible. Indeed,
it is evident that the following adversary D′ does the job:

19

Oracle machine (D′)O

k c|← K, X1, . . . , Xq ← {0, 1}`

r c|← R
for i← 1 . . . q do

(ui, vi)← A(r, x1, y1, . . . , xi−1, yi−1)
wi ← ui ⊕Hk(vi)
{ if wi = wj for some j < i then x′i ← x′j else x′i ← Xi }, xi ← vi ⊕ x′i
yi ← wi ⊕O(xi)

b← A(r, x1, y1, . . . , xq, yq)
output b

Although it is not critical for this proof, we remark that one could jump directly from
Game 0 to Game 2. The following adversary D̃ has PRF-advantage equal to |Pr[S0] −
Pr[S2]|/2:

Oracle machine D̃O

c c|← {0, 1}
if c = 0 then output DO else output (D′)O

We leave this for the reader to verify. This is a special case of what is more generally
called a “hybrid argument,” which allows one to replace any number (even a non-constant
number) of pseudo-random objects by random objects in a single step. Exactly how and
when such hybrid arguments are applicable depends on circumstances; however, one re-
quirement is that all the objects are of the same basic type. (See §3.2.3 of [Gol01] for more
on hybrid arguments.)

Game 3. [This is a transition based on a failure event.] Now we make both of our gnomes
“forgetful,” and we eliminate all the input-consistency checks. When we do this, we get the
following:

k c|← K, X1, . . . , Xq ← {0, 1}`, Y1, . . . , Yq
c|← {0, 1}`

r c|← R
for i← 1 . . . q do

(ui, vi)← A(r, x1, y1, . . . , xi−1, yi−1)
wi ← ui ⊕Hk(vi)
xi ← vi ⊕Xi

yi ← wi ⊕ Yi

b← A(r, x1, y1, . . . , xq, yq)
output b

Let S3 be the event that b = 1 in Game 3.
Claim. In Game 3, the random variables k, r, x1, y1, . . . , xq, yq are mutually independent.

Observe that k and r are independent by construction. Now condition on any fixed values
of k and r. The first query (u1, v1) is now fixed, and hence so is w1; however, X1 and Y1

are both easily seen to still be uniformly and independently distributed in this conditional

20

probability distribution, and so x1 and y1 are also uniformly and independently distributed.
One continues the argument, conditioning on fixed values of x1, y1, observing that now u2, v2,
and w2 are also fixed, and that x2 and y2 are uniformly and independently distributed. The
claim should now be clear.

Let F1 be the event that wi = wj for some i 6= j in Game 3. Let F2 be the event that
xi = xj for some i 6= j in Game 3. Let F := F1 ∨ F2. Games 2 and 3 proceed identically so
long as F does not occur, and so by the Difference Lemma (and the union bound), we have

|Pr[S2]− Pr[S3]| ≤ Pr[F] ≤ Pr[F1] + Pr[F2]. (13)

By the fact that x1, . . . , xq are mutually independent (see claim), it is obvious that

Pr[F2] ≤
q2

2
· 2−`. (14)

Let us now analyze the event F1. We claim that

Pr[F1] ≤
q2

2
· εaxu. (15)

To prove this, it suffices to prove it conditioned on any fixed values of r, x1, y1, . . . , xq, yq. If
these values are fixed, then so are u1, v1, . . . , uq, vq. However, by independence (see claim),
the variable k is still uniformly distributed over K. Now consider any fixed pair if indices
i, j, with i 6= j. Suppose first that vi = vj . Then by assumption, we must have ui 6= uj ,
and it is easy to see that wi 6= wj for all k. Next suppose that vi 6= vj . Then by the
almost-XOR-universal property for H, we have

Pr[Hk(vi)⊕Hk(vj) = ui ⊕ uj] ≤ εaxu.

Thus, we have shown that for all pairs i, j with i 6= j,

Pr[wi = wj] ≤ εaxu.

The inequality (15) follows from the union bound.

As another consequence of the claim, we observe that Game 3 represents the computation
of the adversary given oracle access to a random function. Thus, the adversary’s PRF-
advantage is equal to |Pr[S0]− Pr[S3]|. From this, and (11), (12), (13), (14), and (15), we
conclude that the PRF-advantage of our adversary is at most

εprf + ε′prf + +
q2

2
(εaxu + 2−`),

which is negligible.

That concludes the proof, but we make one remark about the proof “strategy.” One
might have been tempted to take smaller steps: making the first gnome forgetful in one
step, and making the second gnome forgetful in the second step. However, this would not
be convenient. If we make only the first gnome forgetful, the resulting game is not “nice
enough” to allow one to easily establish a bound on the “failure probability.” It is better
to make both gnomes forgetful at once, thus getting a very nice game in which it is easy to
analyze both “failure probabilities.” In general, finding a good strategy for how to modify
games, and the order in which to modify them, etc., is a bit of a “black art.”

21

7 Chosen Ciphertext Secure Symmetric Encryption

We close with a more elaborate example.

7.1 Basic Definitions

A symmetric-key encryption scheme is a triple of probabilistic algorithms (KeyGen, E,D).
The key generation algorithm KeyGen takes no input (other than an implied security pa-
rameter, and perhaps other system parameters), and outputs a key k. The encryption
algorithm E takes as input a key k and a message m, selected from a message space M , and
outputs a ciphertext ψ. The decryption algorithm takes as input a key k and ciphertext ψ,
and outputs a message m.

As for any encryption scheme, the basic correctness requirement is that decryption
“undoes” encryption. That is, for all m ∈M , all k ∈ [KeyGen()], all ψ ∈ [E(k,m)], and all
m′ ∈ [D(k, ψ)], we have m = m′.

The notion of chosen ciphertext security is defined via a game between an adversary
and a challenger:

• The challenger computes k c|← KeyGen(), and b c|← {0, 1}.

• The adversary makes a sequence of queries to the challenger. Each query is of one of
two types:

encryption query: The adversary submits two messages m0,m1 ∈ M to the chal-
lenger. The challenger sends back ψ c|← E(k,mb) to the adversary.

decryption query: The adversary submits ψ′ to the challenger, subject to the re-
striction that ψ′ is not equal to the ciphertext output by any previous encryption
query. The challenger sends back m′ c|← D(k, ψ′) to the adversary.

• The adversary outputs b̂ ∈ {0, 1}.

We define the CCA-advantage of the adversary to be |Pr[b = b̂]− 1/2|. Chosen ciphertext
security means that any efficient adversary’s CCA-advantage is negligible.

7.2 A Simple Construction

We can easily build a chosen-ciphertext secure symmetric encryption scheme out of two
components.

The first component is a pseudo-random family of functions F := {Fs}s∈S , where each
Fs maps n-bit strings to `-bit strings. It is assumed that 2−n is negligible. Also, the message
space for the encryption scheme will be {0, 1}`.

The second component is a “message authentication code,” which we shall define as
an unpredictable function family H := {Hk}k∈K , where each Hk is a function mapping
(n+ `)-bit strings to w-bit strings. The property for H we are assuming is defined in terms
of a game between an adversary and a challenger:

• The challenger selects k c|← K.

22

• The adversary makes a sequence of queries to the challenger. Each query is a string
y ∈ {0, 1}n+`. The challenger gives the adversary t← Hk(y).

• The adversary outputs a pair (y∗, t∗).

The adversary wins the above game if Hk(y∗) = t∗ and y∗ is not equal to any y-value
submitted to the challenger during the game. The adversary’s UF-advantage is defined
to be the probability that the adversary wins the above game. The assumption that H
is an unpredictable function family is the assumption that every efficient adversary’s UF-
advantage is negligible.

The encryption scheme works as follows. A key for the scheme is a pair (s, k), with
s ∈ S and k ∈ K, each chosen at random.

To encrypt a message m ∈ {0, 1}`, the encryption algorithm computes the ciphertext ψ
as follows:

x c|← {0, 1}n, c← Fs(x)⊕m, t← Hk(x || c), ψ ← (x, c, t).

To decrypt a ciphertext ψ, which we may assume to be of the form (x, c, t), with x ∈
{0, 1}n, c ∈ {0, 1}`, t ∈ {0, 1}w, the decryption algorithm computes m as follows:

if Hk(x || c) = t then m← Fs(x)⊕ c else m← “reject”

Here, we may assume that “reject” is a default message encoded as an `-bit string, or we
may assume that we allow the decryption algorithm to return a special value that is not in
the message space (for our purposes, it does not matter).

The reader may easily verify that decryption “undoes” encryption.

7.3 Security Analysis

We now give a security proof as a sequence of games. Because it would be rather unwieldy,
we do not give an explicit algorithmic description of these games, but it should by now be
clear that this could be done in principle.

Game 0. This is the original attack game with respect to a given efficient adversary A. At
the beginning of the game, the challenger computes

s c|← S, k c|← K, b c|← {0, 1}.

We assume that A makes exactly q encryption queries, where for i = 1, . . . , q, the ith query
is (mi0,mi1), and the corresponding ciphertext is ψi = (xi, ci, ti), which is computed by the
challenger by encryptingmib under the key (s, k) . Also, we assume that the adversary makes
exactly q′ decryption queries, where for j = 1, . . . , q′, the jth such query is ψ′j = (x′j , c

′
j , t

′
j),

which the challenger decrypts under the key (s, k). For j = 1, . . . , q′, let us define Qj to
be the number of encryption queries made prior to the jth decryption query. We assume
all queries are syntactically well formed, and that A never submits ψ′j for decryption with
ψ′j = ψi for i ≤ Qj . At the end of the game, the adversary outputs b̂ ∈ {0, 1}. Let S0 be
the event that b = b̂ in this game.

23

Game 1. This is the same as Game 0, except that we modify the way the challenger
responds to decryption queries. Namely, we have the challenger respond with “reject” to
all submitted ciphertexts, without performing any of the steps of the decryption algorithm.

Let S1 be the event that b = b̂ in Game 1. Let F be the event in Game 1 that for some
j = 1, . . . , q′, we have Hk(x′j || c′j) = t′j . It is clear that Games 0 and 1 proceed identically
unless F occurs (as usual, both games are understood to be defined on the same underlying
probability space); therefore, by the Difference Lemma, we have

|Pr[S0]− Pr[S1]| ≤ Pr[F]. (16)

It remains to bound Pr[F]. We claim that

Pr[F] ≤ q′ · εuf, (17)

where εuf is the UF-advantage of some efficient adversary B, which by assumption is negli-
gible.

To prove this, we first make the following observations. Consider the jth decryption
query ψ′j = (x′j , c

′
j , t

′
j). There are two cases:

• (x′j , c
′
j) = (xi, ci) for some i = 1, . . . , Qj . In this case, as ψ′j 6= ψi, we must have

t′j 6= ti, and since ti = Hk(xi || ci), we must have t′j 6= Hk(x′j || c′j).

• (x′j , c
′
j) 6= (xi, ci) for all i = 1, . . . , Qj . In this case, if t′j = Hk(x′j || c′j), the adversary

has effectively predicted the value of Hk at a new point, and we can use him to build
an adversary with a corresponding UF-advantage.

Based on the above discussion, we can easily construct an efficient adversary B with
UF-advantage at least Pr[F]/q′, which proves (17). We describe B as an oracle machine
that makes use of A:

Oracle machine BO

s c|← S, b c|← {0, 1}
j∗ c|← {1, . . . , q′}
Run adversary A:

Upon the ith encryption query (mi0,mi1) do:
xi

c|← {0, 1}n, ci ← Fs(xi)⊕mib, ti ← O(xi || ci)
give ψi = (xi, ci, ti) to A

Upon the jth decryption query ψ′j = (x′j , c
′
j , t

′
j) do:

if j < j∗ then
give “reject” to A

else — when j = j∗

output y∗ = x′j || c′j and t∗ = t′j
halt

Let us analyze B when given oracle access to Hk, for randomly chosen k ∈ K. Let
ψ′1, . . . , ψ

′
q′ denote the decryption queries that would be processed by B if we let it run

24

without halting it at the j∗th such query. The value of (ψ′1, . . . , ψ
′
q′) is completely determined

by the coins of A, along with the values s, b, and k, and as such, is independent of j∗. Let
F̃ be the event that Hk(x′j || c′j) = t′j for some j = 1, . . . , q′. Then by construction, we have
Pr[F̃] = Pr[F]. If F̃ occurs, we can define j0 to be the least j such that Hk(x′j || c′j) = t′j .
We know that x′j0 || c

′
j0

is not among the queries made to the oracle for Hk in processing
the encryption queries made prior to processing decryption query j0. Therefore, the UF-
advantage of B is at least Pr[F̃ ∧ j∗ = j0], and by independence , the latter probability is
equal to Pr[F]/q′.

Game 2. In this game, we replace Fs by a truly random function f . To save a step,
let us implement f by using a “faithful gnome.” To do this, the challenger makes the
following computations on the ith encryption query (mi0,mi1) to obtain the ciphertext
ψi = (xi, ci, ti):

xi
c|← {0, 1}n, Pi

c|← {0, 1}`
if xi = xj for some j < i then pi ← pj else pi ← Pi

ci ← pi ⊕mib, ti ← Hk(xi || ci)

Let S2 be the event that b = b̂ in Game 2. By a familiar argument, we have

|Pr[S1]− Pr[S2]| = εprf, (18)

where εprf is the PRF-advantage of some efficient adversary, and hence by assumption,
negligible. Indeed, the following adversary D does the job:

Oracle machine DO

k c|← S, b c|← {0, 1}
Run adversary A:

Upon the ith encryption query (mi0,mi1) do:
xi

c|← {0, 1}n, ci ← O(xi)⊕mib, ti ← Hk(xi || ci)
give ψi = (xi, ci, ti) to A

Upon the jth decryption query ψ′j = (x′j , c
′
j , t

′
j) do:

give “reject” to A

When A outputs b̂ do:
if b = b̂ then output 1 else output 0
halt

Game 3. Now, as usual, we make our gnome “forgetful,” and modify the way the challenger
responds to encryption queries, so that it does not check for collisions among the xi-values:

xi
c|← {0, 1}n, Pi

c|← {0, 1}`
pi ← Pi

ci ← pi ⊕mib, ti ← Hk(xi || ci)

25

Let S3 be the event that b = b̂ in Game 3. Let F ′ be the event in Game 3 that xi = xj

for some i 6= j. It is clear that Games 2 and 3 proceed identically unless F ′ occurs, and so
by the Difference Lemma, we have

|Pr[S2]− Pr[S3]| ≤ Pr[F ′]. (19)

Moreover, since the xi-values are independent, it is clear that

Pr[F ′] ≤ q2

2
2−n, (20)

which is negligible.
Finally, since in Game 3, each pi is essentially a one-time pad, it is clear that b and b̂

are independent, and so
Pr[S3] = 1/2. (21)

Combining (16), (17), (18), (19), (20), and (21), we see that the CCA-advantage of A is

|Pr[S0]− 1/2| ≤ q′εuf + εprf +
q2

2
2−n,

which is negligible.

Acknowledgments

Thanks to Alex Dent for his comments on a preliminary draft.

References

[AFP04] M. Abdalla, P.-A. Fouque, and D. Pointcheval. Password-based authenticated
key exchange in the three party setting. Available at http://eprint.iacr.
org/2004/233, 2004. To appear, PKC 2005.

[BCP02a] E. Bresson, O. Chevassut, and D. Pointcheval. Dynamic group Diffie-Hellman
key exchange under standard assumptions. In Advances in Cryptology–
Eurocrypt 2002, pages 321–336, 2002. Full version avalable at http://www.
di.ens.fr/~pointche.

[BCP02b] E. Bresson, O. Chevassut, and D. Pointcheval. Group Diffie-Hellman key ex-
change secure against dictionary attack. In Advances in Cryptology–Asiacrypt
2002, pages 497–514, 2002. Full version avalable at http://www.di.ens.fr/
~pointche.

[BCP03] E. Bresson, O. Chevassut, and D. Pointcheval. Security proofs for an efficient
password-based key exchange. In Proc. 10th ACM Conference on Computer
and Communications Security, pages 241–250, 2003. Full version avalable at
http://www.di.ens.fr/~pointche.

26

[BK04] D. Boneh and J. Katz. Improved efficiency for CCA-secure cryptosystems
built using identity-based encryption. Available at http://eprint.iacr.org/
2004/261, 2004. To appear, CT-RSA 2005.

[CPP04] D. Catalano, D. Pointcheval, and T. Pornin. IPAKE: Isomorphisms for
password-based authenticated key exchange. In Advances in Cryptology–
Crypto 2004, pages 477–493, 2004. Full version at www.di.ens.fr/~pointche.

[CS02] R. Cramer and V. Shoup. Universal hash proofs and a paradigm for adaptive
chosen ciphertext secure public key encryption. In Advances in Cryptology–
Eurocrypt 2002, pages 45–64, 2002. Full version at http://eprint.iacr.org/
2001/085.

[CS03a] J. Camenisch and V. Shoup. Practical verifiable encryption and decryption of
discrete logarithms. In Advances in Cryptology–Crypto 2003, pages 126–144,
2003. Full version at http://eprint.iacr.org/2002/161.

[CS03b] R. Cramer and V. Shoup. Design and analysis of practical public-key en-
cryption schemes secure against adaptive chosen ciphertext attack. SIAM
Journal on Computing, 33:167–226, 2003. Preliminary version at http:
//eprint.iacr.org/2001/108.

[Den03] A. Dent. A designer’s guide to KEMs. In Proc. 9th IMA Conf. on Coding and
Cryptography (LNCS 2898), 2003. Full version at http://eprint.iacr.org/
2002/174.

[DF03] Y. Dodis and N. Fazio. Public key trace and revoke scheme secure against
adaptive chosen ciphertext attack. In Proc. 2003 International Workshop on
Practice and Theory in Public Key Cryptography (PKC 2003), 2003. Full
version at http://eprint.iacr.org/2003/095.

[DFJW04] Y. Dodis, M. J. Freedman, S. Jarecki, and S. Walfish. Versatile padding
schemes for joint signature and encryption. In Proc. 11th ACM Confer-
ence on Computer and Communications Security, 2004. Full verssion at
http://eprint.iacr.org/2004/020.

[DFKY03] Y. Dodis, N. Fazio, A. Kiayias, and M. Yung. Scalable public-key tracing
and revoking. In Proc. 22nd ACM Symposium on Principles of Distributed
Computing, 2003. Full version at http://eprint.iacr.org/2004/160.

[FOPS04] E. Fujisaki, T. Okamoto, D. Pointcheval, and J. Stern. RSA-OAEP is secure
under the RSA assumption. Journal of Cryptology, 17(2):81–104, 2004.

[GaPMV03] D. Galindo, S. Mart́ın abd P. Morillo, and J. L. Villar. Fujisaki-Okamoto
IND-CCA hybrid encryption revisted, 2003. Available at http://eprint.
iacr.org/2003/107; to appear, Int. J. Inf. Secur.

[GGM86] O. Goldreich, S. Goldwasser, and S. Micali. How to construct random func-
tions. Journal of the ACM, 33:210–217, 1986.

27

[GM84] S. Goldwasser and S. Micali. Probabilistic encryption. Journal of Computer
and System Sciences, 28:270–299, 1984.

[Gol01] O. Goldreich. Foundations of Cryptography: Basic Tools. Cambridge Univer-
sity Press, 2001.

[GS04] R. Gennaro and V. Shoup. A note on an encryption scheme of Kurosawa and
Desmedt. Available at http://eprint.iacr.org/2004/194, 2004.

[IZ89] R. Impagliazzo and D. Zuckermann. How to recycle random bits. In 30th
Annual Symposium on Foundations of Computer Science, pages 248–253, 1989.

[KD04] K. Kurosawa and Y. Desmedt. A new paradigm of hybrid encryption scheme.
In Advances in Cryptology–Crypto 2004, pages 426–442, 2004. Full version at
http://kuro.cis.ibaraki.ac.jp/~kurosawa.

[KR96] J. Kilian and P. Rogaway. How to protect DES against exhaustive key search.
In Advances in Cryptology–Crypto ’96, pages 252–267, 1996.

[LR88] M. Luby and C. Rackoff. How to construct pseudorandom permutaations from
pseudorandom functions. SIAM Journal on Computing, 17(2):373–386, 1988.

[NR99] M. Naor and O. Reingold. On the construction of pseudo-random permuta-
tions: Luby-Rackoff revisited. Journal of Cryptology, 12(1):29–66, 1999.

[PP03] D. H. Phan and D. Pointcheval. Chosen ciphertext security without redun-
dancy. In Advances in Cryptology–Asiacrypt 2003, pages 1–18, 2003. Full
version avalable at http://www.di.ens.fr/~pointche.

[Sho00] V. Shoup. Using hash functions as a hedge against chosen ciphertext attack.
In Advances in Cryptology–Eurocrypt 2000, pages 275–288, 2000.

[Sho01] V. Shoup. A proposal for an ISO standard for public key encryption. Available
at http://eprint.iacr.org/2001/112, 2001.

[Sho02] V. Shoup. OAEP reconsidered. Journal of Cryptology, 15(4):223–249, 2002.
Extended abstract in Crypto 2001. Available online at http://eprint.iacr.
org/2000/060.

[SS00] T. Schweinberger and V. Shoup. ACE: The Advanced Cryptographic Engine.
Available at http://eprint.iacr.org/2000/022, 2000.

[SWP04] R. Steinfeld, H. Wang, and J. Pieprzyk. Efficient extension of standard
Schnorr/RSA signatures into universal designated-verifier signatures. In Proc.
2004 International Workshop on Practice and Theory in Public Key Cryptog-
raphy (PKC 2004), pages 86–100, 2004. Full version at http://eprint.iacr.
org/2003/193.

28

