
An extended abstract of this paper appears in Fast Software Encryption, Lecture Notes in Computer
Science Vol. ??, W. Meier and B. Roy eds., Springer-Verlag, 2004. This is the full version.

CWC: A high-performance conventional authenticated

encryption mode

Tadayoshi Kohno∗ John Viega† Doug Whiting‡

January 15, 2004

Abstract

We introduce CWC, a new block cipher mode of operation for protecting both the privacy
and the authenticity of encapsulated data. CWC is currently the only such mode having all five
of the following properties: provable security, parallelizability, high performance in hardware,
high performance in software, and no intellectual property concerns. We believe that having
all five of these properties makes CWC a powerful tool for use in many performance-critical
cryptographic applications. CWC is also the only appropriate solution for some applications;
e.g., standardization bodies like the IETF and NIST prefer patent-free modes, and CWC is the
only such mode capable of processing data at 10Gbps in hardware, which will be important
for future IPsec (and other) network devices. As part of our design, we also introduce a new
parallelizable universal hash function optimized for performance in both hardware and software.

Keywords: Authenticated encryption, modes of operation, parallelism, performance, security
proofs.

∗Dept. of Computer Science and Engineering, University of California at San Diego, 9500 Gilman Drive, La Jolla,
California 92093, USA. E-mail: tkohno@cs.ucsd.edu. URL: http://www-cse.ucsd.edu/users/tkohno Supported
by a National Defense Science and Engineering Graduate Fellowship.

†Virginia Tech, 6066 Leesburg Pike, Suite 500, Falls Church, VA 22041, USA. E-mail: viega@securesoftware.

com. URL: http://www.viega.org/.
‡Hifn, Inc., 5973 Avenida Encinas, Suite 110, Carlsbad, CA 92009, USA. E-mail: dwhiting@hifn.com.

1 Introduction

An authenticated encryption associated data (AEAD) scheme is a symmetric encryption scheme
designed to protect both the privacy and the authenticity of encapsulated data. There has recently
been a strong push toward producing block cipher-based AEAD schemes [13, 10, 12, 24, 29, 23, 5].
Despite this push, among the previous works there does not exist any AEAD scheme simultane-
ously having all of the following properties: provable security, parallelizability, high performance in
hardware, high performance in software, and free from intellectual property concerns. Even though
not all applications will require all five of the these properties, almost all applications will require
at least one of the them, and may very likely have to be able to interoperate with an application
requiring a different property. We thus view finding an appropriate scheme having all five of these
properties as a very important research goal.

Finding an appropriate balance between all five of the aforementioned properties is, however,
not easy because the most natural approaches to addressing some of the properties are actually
disadvantageous with respect to other properties. We believe we have overcome these challenges
and, in doing so, introduce a new mode of operation called CWC, or Carter-Wegman Counter mode.

Motivating example. One of the primary motivations for such a block cipher-based AEAD
scheme is IPsec. From a pragmatic perspective, we note that many vendors and standardization
bodies prefer patent-free modes over patented modes (the elegant OCB mode was apparently re-
jected from the IEEE 802.11 working group because of patent concerns). And, from a hardware
performance perspective, we note that because none of the existing patent-free AEAD schemes are
parallelizable, it to impossible to make existing patent-free AEAD schemes run faster than about
2Gbps using conventional ASIC technology and a single processing unit. Nevertheless, future net-
work devices will be expected to run at 10Gbps. CWC addresses these issues, being both patent-free
and capable of processing data at 10Gbps using conventional ASIC technology.

The CWC solution. Our new mode of operation, called CWC, has all five of the properties
mentioned above. It is provably secure. Moreover, our provable security-based analyses helped
guide our research and helped us reject other schemes with similar performance properties but with
slightly worse provable security bounds. CWC is also parallelizable, which means that we can make
CWC-AES run at 10Gbps using conventional ASIC technology. CWC is also fast in software. Our
current implementation of CWC-AES runs at about the same speed as the other patent-free modes
on 32-bit architectures (Table 1), and we anticipate significant performance gains on 32-bit CPUs
when using more sophisticated implementation techniques (Section 6), and we also see significantly
better performance on 64-bit architectures. Of course, we do remark that the patented modes like
OCB are capable of running even faster in software, which would make them very attractive were
they not also encumbered in intellectual property issues.

Like the other two unpatented block cipher-based AEAD modes, CCM [29] and EAX [5], CWC
avoids patents by using two inter-related but mostly independent modules: one module to “encrypt”
the data and one module to “authenticate” the data. Adopting the terminology used in [5], it is
because of the two-module structure that we call CWC a “conventional” block cipher-based AEAD
scheme. Although CWC uses two modules, it can be implemented efficiently in a single pass. By
using the conventional approach, CCM, EAX, and CWC are very much like composition-based
AEAD scheme [4, 15], or AEAD schemes composed from existing encryption schemes and MACs.
Unlike composition-based AEAD schemes, however, by designing CWC directly from a block cipher,
we eliminate redundant steps and fine-tune CWC for efficiency, again keeping in mind both our
hardware and software goals. For example, we use only one block cipher key, which saves expensive
memory access in hardware.

The encryption core of CWC is essentially counter (CTR) mode encryption, which is well-known

1

Linux/gcc-3.2.2 Windows 2000/Visual Studio 6.0
Payload message lengths (bytes) Payload message lengths (bytes)

Mode 128 256 512 2048 8192 128 256 512 2048 8192
CWC-AES 105.5 88.4 78.9 72.2 70.5 84.7 70.2 62.2 56.5 55.0
CCM-AES 97.9 87.1 82.0 78.0 77.1 64.8 56.7 52.5 49.5 48.7
EAX-AES 114.1 94.9 86.1 79.1 77.5 75.2 61.8 55.3 50.4 49.1

Table 1: Software performance (in clocks per byte) for the three patent-free block cipher-based
AEAD modes on a Pentium III. All implementations were in C and written by Brian Gladman [9]
and use 128-bit AES keys. Values are averaged over 50 000 samples. We do not include software
performance for the patented modes, like OCB, in this table; the performance for these modes in
software will be approximately twice as fast as the shown measurements. Please see the text for
additional information and discussion.

to be efficient and parallelizable. Finding an appropriate algorithm for the authentication core of
CWC proved to be more of a challenge. For authentication, we decided to base our design on
the Carter-Wegman [28] universal hash function approach for message authentication. Part of the
difficulty in the design came down to choosing the right type of universal hash function, with the
right parameters. Since polynomial evaluation can be parallelized (if the polynomial is in x, one can
split it into i polynomials in xi), we chose to use a universal hash function consisting of evaluating
a polynomial modulo the prime 2127 − 1. We note the our hash function is similar to Bernstein’s
hash127 [6] except that Bernstein’s hash function was optimized for software performance at the
expense of hardware performance. To address this issue, we use larger coefficients than Bernstein
uses. We believe our hardware- and software-optimized universal hash function to be of independent
interest.

Notation. As part of our research, we first created a general approach for combining CTR mode
encryption with a universal hash function in order to provide authenticated encryption. We shall
refer to this general approach as CWC (note no change in font), and shall use CWC-BC to refer to
a CWC instantiation with a 128-bit block cipher BC as the underlying block cipher and with the
universal hash function described briefly above. We shall use CWC as shorthand for CWC-BC and
use CWC-AES to mean CWC-BC with AES [8] as the underlying block cipher. Other instantiations
of the general CWC approach are possible, e.g., for legacy 64-bit block ciphers. Since we are
primarily targeting new applications, and since a mode using a 128-bit block cipher will never be
asked to interoperate with a mode using a 64-bit block cipher, we focus this paper only on our
128-bit CWC instantiation.

When we say that an AEAD scheme’s encryption algorithm takes a pair (A,M) as input and
produces a ciphertext as output, we mean that the AEAD scheme is designed to protect the privacy
of M and the authenticity of both A and M . This will be made more formal in the body.

Performance. Let (A, M) be some input to the CWC encryption algorithm. The CWC encryption
algorithm derives a universal hash subkey from the block cipher key. Assuming that the universal
hash subkey is maintained across invocations, encrypting (A,M) takes d|M |/128e+ 2 block cipher
invocations. The polynomial used in CWC’s universal hashing step will have degree d = d|A|/96e+
d|M |/96e. There are several ways to evaluate this polynomial (details in Section 6). As noted
above, we could evaluate it in parallel. Serially, assuming no precomputation, we could evaluate
this polynomial using d 127x127-bit multiplies. As another example, assuming n precomputed

2

powers of the hash subkey, which are cheap to maintain in software for reasonable n, we could
evaluate the polynomial using d − m 96x127-bit multiplies and m 127x127-bit multiplies, where
m = d(d + 1)/ne − 1.

In hardware using conventional ASIC technology at 0.13 micron, it takes approximately 300
Kgates to reach 10 Gbps throughput for CWC-AES. This is around twice as much as OCB, but
avoids IP negotiation overhead and royalty payments to three parties. Table 1 relates the software
performance, on a Pentium III, of CWC-AES to the two other patent-free AEAD modes CCM and
EAX; the patented modes such as OCB are not included in this table, but are about twice as
fast as the times given for the patent-free modes. The implementations used to compute Table 1
were written in C by Brian Gladman [9] and all use 128-bit AES keys; the current CWC-AES
implementation does not use the above-mentioned precomputation approach for evaluating the
polynomial. Table 1 shows that the current implementations of the three modes have comparable
performance in software, the relative “best” depending on the OS/compiler and the length of the
message. Using the above-mentioned precomputation approach and switching to assembly, we
anticipate reducing the cost of CWC’s universal hashing step to around 8 cpb, thereby significantly
improving the performance of CWC-AES in software compared to CCM-AES and EAX-AES (since
the authentication portions of CCM-AES and EAX-AES are limited by the speed of AES but the
authentication portion of CWC-AES is limited by the speed of the universal hash function). For
comparison, Bernstein’s related hash127, which also evaluates a polynomial modulo 2127 − 1 but
whose specific structure makes it less attractive in hardware, runs around 4 cpb on a Pentium
III when written in assembly and using the precomputation approach. On 64-bit G5s, our initial
implementation of the hash function runs at around 6 cpb, thus showing that CWC-AES is very
attractive on 64-bit architectures (when running the G5 in 32-bit mode, our implementation runs
at around 15 cpb).

We do not claim that CWC-AES will be particularly efficient on low-end CPUs such as 8-bit
smartcards. However, our goal was not to develop an AEAD scheme for such low-end processors.

The patent issue. The patent issue is a very peculiar one. While it may initially sound odd to
let patents influence research, we note that it is also not uncommon, especially in other sciences.
Indeed, we view this line of research as discovering the most appropriate solution given real-world
constraints. And, just like performance constraints, intellectual property constraints are very real.

Background and related work. The notion of an authenticated encryption (AE) scheme
was formalized by Katz and Yung [13] and by Bellare and Namprempre [4] and the notion of an
authenticated encryption with associated data (AEAD) scheme was formalized by Rogaway [23].
Bellare and Namprempre [4] and Krawczyk [15] explored ways to combine standard encryption
schemes with MACs to achieve authenticated encryption. A number of dedicated AE and AEAD
schemes also exist, including RPC [13], XECB [10], IAPM [12], OCB [24], CCM [29], and EAX [5].
CWC is similar to the combination of McGrew’s UST [20] and TMMH [19], where one of the
main advantages of CWC over UST+TMMH is CWC’s small key size, which, as the author of
UST and TMMH noted, can be a bottleneck for UST+TMMH in hardware at high speeds. The
integrity portion of CWC builds on top of the Carter-Wegman universal hashing approach to message
authentication [28]. The specific hash function CWC uses is similar to Bernstein’s hash127 [6], but
is better suited for hardware. Shoup [26] and Nevelsteen and Preneel [21] also worked on software
optimizations for universal hash functions. Rogaway and Wagner released a critique of CCM [25].
For each issue raised in [25], we find that we have addressed the issue (e.g., we designed CWC to be
on-line) or we disagree with the issue (e.g., we feel that it is sufficient for new modes of operation
to handle arbitrary octet-length, as opposed to arbitrary bit-length, messages; we stress, however,
that, if desired, it is easy to modify CWC to handle arbitrary bit-length messages, see Section 5).

3

2 Preliminaries

Notation. If x is a string then |x| denotes its length in bits. Let ε denote the empty string. If x
and y are two equal-length strings, then x⊕ y denotes the xor of x and y. If x and y are strings,
then x‖y denotes their concatenation. If N is a non-negative integer and l is an integer such that
0 ≤ N < 2l, then tostr(N, l) denotes the encoding of N as an l-bit string in big-endian format. If
x is a string, then toint(x) denotes the integer corresponding to string x in big-endian format (the
most significant bit is not interpreted as a sign bit). For example, toint(10000010) = 27 + 2 = 130.
If b is a bit and n a non-negative integer, then bn denote b concatenated with itself n times; e.g.,
107 is the string 10000000. Let x ← y denote the assignment of y to x. If X is a set, let x

$← X
denote the process of uniformly selecting at random an element from X and assigning it to x. If
f is a randomized algorithm, let x

$← f(y) denote the process of running f with input y and a
uniformly selected random tape. When we refer to the time of an algorithm or experiment, we
include the size of the code (in some fixed encoding). There is also an implicit big-O surrounding
all such time references.

Authenticated encryption schemes with associated data. We use Rogaway’s notion of
an authenticated encryption with associated data (AEAD) scheme or mode [23]. An AEAD scheme
SE = (Ke, E ,D) consists of three algorithms and is defined over some key space KeySpSE , some nonce
space NonceSpSE = {0, 1}n, n a positive integer, some associated data (header) space AdSpSE ⊆
{0, 1}∗, and some payload message space MsgSpSE ⊆ {0, 1}∗. We require that membership in
MsgSpSE and AdSpSE can be efficiently tested and that if M, M ′ are two strings such that M ∈
MsgSpSE and |M ′| = |M |, then M ′ ∈ MsgSpSE .

The randomized key generation algorithm Ke returns a key K ∈ KeySpSE ; we denote this
process as K

$← Ke. The deterministic encryption algorithm E takes as input a key K ∈ KeySpSE ,
a nonce N ∈ NonceSpSE , a header (or associated data) A ∈ AdSpSE , and a payload message
M ∈ MsgSpSE , and returns a ciphertext C ∈ {0, 1}∗; we denote this process as C ← EN,A

K (M) or
C ← EK(N, A,M). The deterministic decryption algorithm D takes as input a key K ∈ KeySpSE ,
a nonce N ∈ NonceSpSE , a header A ∈ AdSpSE , and a string C ∈ {0, 1}∗ and outputs a message
M ∈ MsgSpSE or the special symbol INVALID on error; we denote this process as M ← DN,A

K (C).
We require that DN,A

K (EN,A
K (M)) = M for all K ∈ KeySpSE , N ∈ NonceSpSE , A ∈ AdSpSE , and

M ∈ MsgSpSE . Let l(·) denote the length function of SE ; i.e., for all keys K, nonces N , headers A,
and messages M , |EN,A

K (M)| = l(|M |).
Under the correct usage of an AEAD scheme, after a random key is selected, the application

should never invoke the encryption algorithm twice with the same nonce value until a new key is
randomly selected. In order to ensure that a nonce does not repeat, implementations typically use
nonces that contain counters. We use the notion of a nonce, rather than simply a counter, because
the notion of a nonce is more general and allows the developer the freedom to structure the nonce
as he or she desires.

Block ciphers. A block cipher E : {0, 1}k × {0, 1}L → {0, 1}L is a function from k-bit keys and
L-bit blocks to L-bit blocks. We use EK(·), K ∈ {0, 1}k, to denote the function E(K, ·) and we
use f

$← E as short hand for K
$← {0, 1}k ; f ← EK . Block ciphers are families of permutations;

namely, for each key K ∈ {0, 1}k, EK is a permutation on {0, 1}L. We call k the key length of E
and we call L the block length.

We adopt the notion of security for block ciphers introduced in [17] and adopted for the concrete
setting in [2]. Let E : {0, 1}k×{0, 1}L → {0, 1}L be a block cipher and let Perm(L) denote the set
of all permutations on {0, 1}L. Let A be an adversary with access to an oracle and that returns a

4

bit. Then

Advprp
F (A) = Pr

[
f

$← E : Af(·) = 1
]
− Pr

[
g

$← Perm(L) : Ag(·) = 1
]

denotes the prp-advantage of A in distinguishing a random instance of E from a random permu-
tation. Intuitively, we say that E is a secure prp, or a secure block cipher, if the prp-advantages
of all adversaries using reasonable resources is small. Modern block ciphers, such as AES [8], are
believed to be secure prps.

3 The CWC mode of operation

We now describe our new AEAD scheme. Let BC : {0, 1}kl × {0, 1}128 → {0, 1}128 be a 128-bit
block cipher. Let tl ≤ 128 is the desired tag length in bits. Then the CWC mode of operation using
BC with tag length tl, CWC-BC-tl = (K, CWC-ENC, CWC-DEC), is defined as follows. The message
spaces are:

MsgSpCWC-BC-tl = { x ∈ ({0, 1}8)∗ : |x| ≤ MaxMsgLen }
AdSpCWC-BC-tl = { x ∈ ({0, 1}8)∗ : |x| ≤ MaxAdLen }

KeySpCWC-BC-tl = {0, 1}kl

NonceSpCWC-BC-tl = {0, 1}88

where MaxMsgLen and MaxAdLen are both 128 · (232−1). That is, the payload and associated data
spaces for CWC-BC-tl consist of all strings of octets that are at most 232 − 1 blocks long.

The CWC-BC-tl key generation, encryption, and decryption algorithms are defined as follows:

Algorithm K
K

$← {0, 1}kl

Return K

Algorithm CWC-ENCK(N, A,M)
σ ← CWC-CTRK(N, M)
τ ← CWC-MACK(N, A, σ)
Return σ‖τ

Algorithm CWC-DECK(N, A,C)
If |C| < tl then return INVALID
Parse C as σ‖τ where |τ | = tl
If A 6∈ AdSpCWC-BC-tl or σ 6∈ MsgSpCWC-BC-tl then

return INVALID
If τ 6= CWC-MACK(N, A, σ) then return INVALID
M ← CWC-CTRK(N, σ)
Return M

The remaining algorithms (CWC-CTR, CWC-MAC, CWC-HASH) are defined below. The CWC-CTR
algorithm handles generating the encryption and decryption keystreams, CWC-MAC handles the
generation of an authentication tag, and uses CWC-HASH as the underlying universal hash function.

Algorithm CWC-CTRK(N, M)
α ← d|M |/128e
For i = 1 to α do

si ← BCK(107‖N‖tostr(i, 32))
x ← first |M | bits of s1‖s2‖ · · · ‖sα

σ ← x⊕M
Return σ

Algorithm CWC-MACK(N,A, σ)
R ← BCK(CWC-HASHK(A, σ))
τ ← BCK(107‖N‖032)⊕R
Return first tl bits of τ

Algorithm CWC-HASHK(A, σ)
Z ← last 127 bits of BCK(110126)
Kh ← toint(Z)
l ← min integer such that 96 divides |A‖0l|
l′ ← min integer such that 96 divides |σ‖0l′ |
X ← A‖0l‖σ‖0l′ ; β ← |X|/96
Break X into chunks X1, X2, . . . , Xβ

For i = 1 to β do
Yi ← toint(Xi)

lσ ← |σ|/8 ; lA ← |A|/8
Yβ+1 ← 264 · lA + lσ
R ← Y1K

β
h + · · ·+ YβKh + Yβ+1 mod 2127 − 1

Return tostr(R, 128)

5

4 Theorem statements

The CWC scheme is a provably secure AEAD scheme assuming that the underlying block cipher,
e.g., AES, is a secure pseudorandom permutation. This is a quite reasonable assumption since most
modern block ciphers, including AES, are believed to be pseudorandom. Furthermore, all provably-
secure block cipher modes of operation that we are aware of make at least the same assumptions we
make, and some modes, such as OCB [24], require the stronger, albeit still reasonable, assumption
of super-pseudorandomness.

The specific results for CWC appear as Theorem 4.1 and Theorem 4.2 below, and are proven in
Appendix C. In Appendix C we also present results for the general CWC construction, from which
Theorems 4.1 and 4.2 follow.

4.1 Privacy

We first show that if BC is a secure block cipher, then CWC-BC-tl will preserve privacy under
chosen-plaintext attacks. For our notion of privacy for AEAD schemes, we use the strong definition
of indistinguishability from [23]. Let SE = (Ke, E ,D) be an AEAD scheme with length function
l(·). Let $(·, ·, ·) be an oracle that, on input (N, A, M) ∈ NonceSpSE × AdSpSE ×MsgSpSE , returns
a random string of length l(|M |). Let B be an adversary with access to an oracle and that returns
a bit. Then

Advpriv
SE (B) = Pr

[
K

$← Ke : BEK(·,·,·) = 1
]
− Pr

[
B$(·,·,·) = 1

]

is the ind$-cpa-advantage of B in breaking the privacy of SE under chosen-plaintext attacks; i.e.,
Advpriv

SE (B) is the advantage of B in distinguishing between ciphertexts from EK(·, ·, ·) and random
strings. An adversary B is nonce-respecting if it never queries its oracle with the same nonce twice.
Intuitively, a scheme SE preserves privacy under chosen plaintext attacks if the ind$-cpa-advantage
of all nonce-respecting adversaries using reasonable resources is small.

Theorem 4.1 [Privacy of CWC.] Let CWC-BC-tl be as in Section 3. Then given a nonce-
respecting ind$-cpa adversary A against CWC-BC-tl one can construct a prp adversary CA against
BC such that if A makes at most q oracle queries totaling at most µ bits of payload message data,
then

Advpriv
CWC-BC-tl(A) ≤ Advprp

BC (CA) +
(µ/128 + 3q + 1)2

2129
. (1)

Furthermore, the experiment for CA takes the same time as the experiment for A and CA makes
at most µ/128 + 3q + 1 oracle queries.

Let us elaborate on why Theorem 4.1 implies that CWC-BC will preserve privacy under chosen-
plaintext attacks. Assume BC is a secure block cipher. This means that Advprp

BC (C) must be
small for all adversaries C using reasonable resources and, in particular, this means that, for CA as
described in the theorem statement, Advprp

BC (CA) must be small assuming that A uses reasonable
resources. And if Advprp

BC (CA) is small and µ, q are small, then, because of the above equations,
Advpriv

CWC-BC-tl(A) must also be small as well. I.e., any adversary A using reasonable resources will
only be able to break the privacy of CWC-BC-tl with some small probability.

As a concrete example, let us consider limiting the number of applications of CWC-BC-tl between
rekeyings to some reasonable value such as q = 232, and let us limit the total number of payload
bits between rekeyings to µ = 250. Then Equation 1 becomes

Advpriv
CWC-BC-tl(A) ≤ Advprp

BC (CA) +
1

242

6

which means that, assuming that the underlying block cipher is a secure prp, an attacker will not
be able to break the privacy of CWC-BC-tl with advantage much greater than 2−42.

4.2 Integrity/authenticity

We now present our results showing that if BC is a secure block cipher, then CWC-BC-tl will protect
the authenticity of encapsulated data. We use the strong notion of authenticity for AEAD schemes
from [23]. Let SE = (Ke, E ,D) be an AEAD scheme. Let F be a forging adversary and consider
an experiment in which we first pick a random key K

$← Ke and then run F with oracle access to
EK(·, ·, ·). We say that F forges if F returns a pair (N, A,C) such that DN,A

K (C) 6= INVALID but F
did not make a query (N, A, M) to EK(·, ·, ·) that resulted in a response C. Then

Advauth
SE (F) = Pr

[
K

$← Ke : F EK(·,·,·) forges
]

is the auth-advantage of F in breaking the integrity/authenticity of SE . Intuitively, the scheme
SE preserves integrity/authenticity if the auth-advantage of all nonce-respecting adversaries using
reasonable resources is small.

Theorem 4.2 [Integrity/authenticity of CWC.] Let CWC-BC-tl be as specified in Section 3.
(Recall that BC is a 128-bit block cipher and that the tag length tl is ≤ 128.) Consider a nonce-
respecting auth adversary A against CWC-BC-tl. Assume the execution environment allows A to
query its oracle with associated data that are at most n ≤ MaxAdLen bits long and with messages
that are at most m ≤ MaxMsgLen bits long. Assume A makes at most q− 1 oracle queries and the
total length of all the payload data (both in these q − 1 oracle queries and the forgery attempt) is
at most µ. Then given A we can construct a prp adversary CA against BC such that

Advauth
CWC-BC-tl(A) ≤ Advprp

BC (CA) +
(µ/128 + 3q + 1)2

2129
+

n + m

2133
+

1
2125

+
1
2tl

. (2)

Furthermore, the experiment for CA takes the same time as the experiment for A and CA makes
at most µ/128 + 3q + 1 oracle queries.

Let us elaborate on why Theorem 4.2 implies that CWC-BC will preserve authenticity. Assume BC
is a secure block cipher. This means that Advprp

BC (C) must be small for all adversaries C using
reasonable resources and, in particular, this means that, for CA as described in the theorem state-
ment, Advprp

BC (CA) must be small assuming that A uses reasonable resources. And if Advprp
BC (CA)

is small and µ, q,m and n are small, then, because of the above equations, Advauth
CWC-BC-tl(A) must

also be small as well. I.e., any adversary A using reasonable resources will only be able to break
the authenticity of CWC-BC-tl with some small probability.

Let us consider some concrete examples. Let n = MaxAdLen and m = MaxMsgLen, which is the
maximum possible allowed by the CWC-BC construction. Then Equation 2 becomes

Advauth
CWC-BC-tl(A) ≤ Advprp

BC (CA) +
(µ/128 + 3q + 1)2

2129
+

1
293

+
1
2tl

.

If we set q = 232 and µ = 250 as before, and if we take tl ≥ 43, then the above equation becomes

Advauth
CWC-BC-tl(A) ≤ Advprp

BC (CA) +
1

241

which means that, assuming that the underlying block cipher is a secure prp, an attacker will not
be able to break the unforgeability of CWC-BC-tl with probability much greater than 2−41.

Remark 4.3 [Chosen-ciphertext privacy.] Since CWC-BC-tl preserves privacy under chosen-
plaintext attacks (Theorem 4.1) and provides integrity (Theorem 4.2) assuming that BC is a secure

7

pseudorandom permutation, it also provides privacy under chosen-ciphertext attacks under the
same assumption about BC. See [4, 23] for a discussion of the relationship between chosen-plaintext
privacy, integrity, and chosen-ciphertext privacy; this relationship was also used, for example, by
the designers of OCB [24].

5 Design decisions

Finding an appropriate balance between provable security, hardware efficiency, and software effi-
ciency, while simultaneously avoiding existing intellectual property issues, proved to be one the the
biggest challenges of this research project. In this section we discuss how our diverse set of goals
affected our design decisions.

The CWC-HASH universal hash function. We found that the best way to simultaneously
achieve our parallelizability, hardware, and software goals was to base the authentication portion of
CWC on the Carter-Wegman [28] universal hash function approach to message authentication. This
is because universal hash functions, and especially the one we created for CWC, can be implemented
in a multitude of ways, thus allowing different platforms and applications to implement CWC-HASH
in the way most appropriate for them. For example, hardware implementations will like parallelize
the computation of CWC-HASH by splitting it into multiple polynomials in Ki

h for some i. In more
detail, if the polynomial is

Y1K
β
h + Y2K

β−1
h + Y3K

β−2
h + Y4K

β−3
h + · · ·+ YβKh + Yβ+1 mod 2127 − 1 .

then, setting i = 2, and y = K2
h mod 2127 − 1, and assuming β is odd for illustration purposes, we

can rewrite the above polynomial as(
Y1y

m + Y3y
m−1 + · · ·+ Yβ

)
x +

(
Y2y

m + Y4y
m−1 + · · ·+ Yβ+1

)
mod 2127 − 1 ,

After splitting the polynomial, hardware implementations will then likely compute each polynomial
using Horner’s rule (e.g., the polynomial aK2i

h +bKi
h+c would be evaluated as (((a)Ki

h+b)Ki
h)+c).

Software implementations on modern CPUs, for which memory is cheap, will likely precompute a
number of powers of Kh and evaluate the CWC-HASH polynomial directly, or almost directly, using
a hybrid between a precomputation approach and Horner’s rule. We consider a number of possible
implementation strategies in more detail in Section 6.

CWC-HASH is an instantiation of the classic polynomial universal hash approach to message
authentication [28], and is closely related to Bernstein’s hash127 [6], which also evaluates a poly-
nomial modulo 2127 − 1. Although hash127 is very fast in software, its structure makes it less
suitable for use on high-speed hardware. In particular, Bernstein’s choice of 32-bit coefficients,
while great for software implementations with precomputed powers of Kh, means that hardware
implementations using Horner’s rule will be “wasting work.” Specifically, even with 32-bit coeffi-
cients, incorporating each new coefficient using Horner’s rule will require a 127x127-bit multiply
because the accumulated value will be 127 bits long. By defining the CWC-HASH coefficients to
be 96-bits long, we increase the performance of Horner’s rule implementations by a factor of three.
(Of course, we could have gone even further and made the coefficients 126 bits long, but doing so
would have required considerable additional complexity to perform bit and byte shifting within the
coefficients.) An alternative approach for increasing the performance of a serial implementation of
Horner’s rule would be to reduce the size of the CWC-HASH subkey Kh to 96 bits. We discuss why
we rejected this option in more detail later, but remark here that there are already more efficient
strategies than Horner’s rule for implementing CWC-HASH in software, and that in a parallelized
approach the values Ki

h, i ≥ 2, will most often be full 127-bit values even if Kh is only 96-bits long.

On using a single key. From a security perspective, it would have been perfectly acceptable,

8

and in fact more traditional, to make the CWC-CTR block cipher key and the two CWC-MAC
block cipher keys independent. Like others [29, 5], however, we acknowledge that there are several
important reasons for sharing keys between the encryption and authentication portions of modes
such as CWC. One of the most important reasons is simplicity of key management. Indeed, fetching
key material can be a major bottleneck in high-speed hardware, and minimizing key material is thus
important. This fact is also why we derive the hash subkey from the block cipher key rather than
use an independent hash subkey. We could, of course, have defined a mode that derived a number
of essentially independent block cipher and hash keys from a single block cipher key, but doing so
would either have required more memory or more computation and, because we have proofs that
our construction works, would have been unnecessary.

Sharing the block cipher key in the way described above and deriving the hash subkey from
the block cipher key did, however, mean that we had to be very careful with our proofs of security.
To facilitate our proofs, we took extra care in our design to ensure that there would never be a
collision in the plaintext inputs to the block cipher between the different usages of the block cipher.
For example, by defining CWC-HASH to produce a 127-bit value as output, we know that the first
application of BC to CWC-HASHK(A, σ) in CWC-MAC will always have its first bit set to 0. To
avoid a collision with the input to the keystream generator, the block cipher inputs in CWC-CTR
always have the first two bits set to 10. When using the block cipher to create the hash subkey
Kh, the first two bits of the input are set to 11.

On the choice of parameters. Part of this effort involved specifying the appropriate parame-
ters for the CWC encryption mode. Example parameters include the nonce length and the way the
nonce is encoded in the input to the block cipher. We chose to fix these parameters for interoperabil-
ity purposes, but note that our general approach in Appendix C does not have theses parameters
fixed. We chose to set the nonce length to 88 bits in order to handle future IPsec sequence numbers.
And we chose to set the block counter length to 32 bits in order to allow CWC to be used with IPsec
jumbograms and other large packets. We also chose to use big-endian byte ordering for consistency
purposes and to maintain compatibility with McGrew’s ICM Internet-Draft [18] and the IETF,
which strongly favors big-endian byte-ordering.

Handling arbitrary bit-length messages. Since we do not believe that many applications
will actually require the ability to encrypt arbitrary bit-length messages, we do not define CWC
to take arbitrary bit-length messages as input. That said, we did design CWC in such a way that
it will be easy to modify the specification to take arbitrary bit-length messages without affecting
interoperability with existing implementations when octet-strings are communicated. For example,
one could augment the computation of Yβ+1 in CWC-HASH as follows:

rA ← |A| mod 8 ; rσ ← |σ| mod 8 ; Yβ+1 ← 2120 · rA + 2112 · rσ + 264 · lA + lσ .

Of course, a cleaner approach for handling arbitrary bit-length messages would be to compute
lA ← |A| and lσ ← |σ| in CWC-HASH. We do not define CWC this way because we do not consider
it a good trade-off to define a mode for arbitrary bit-length messages at the expense of octet-oriented
systems.

64-bit block ciphers. We did not define CWC for use with 64-bit block ciphers because we are
targeting future high-speed cryptographic applications. Nevertheless, the general CWC approach
in Appendix Ccan be instantiated with 64-bit block ciphers. A 64-bit instantiation may, however,
require several uncomfortable tradeoffs; e.g., in the length of the nonce.

On the length of the hash subkey. As noted earlier, it is possible to use smaller subkeys Kh

in CWC-HASH (simply truncate BCK(110126) appropriately). Recall that we have fixed the block
length of BC to 128 bits. Let hkl denote the length of the hash subkey in an altered construction.

9

If hkl < 127, then the upper-bound in Equation 2 becomes

Advprp
BC (CA) +

(µ/128 + 3q + 1)2

2129
+

(n + m)/96 + 2
2hkl

+
1
2tl

.

Consider an application that sets hkl to 96. If we replace m and n by their maximum possible
values, the upper-bound becomes

Advprp
BC (CA) +

(µ/128 + 3q + 1)2

2129
+

1
262

+
1
2tl

.

Since 2−62 is already very small (and, in fact, dominated by the (µ/128 + 3q + 1)2 · 2−129 term
for some reasonable values of q and µ), from a provable-security perspective, developers would be
justified in using 96-bit hash subkeys.

Rather than use shorter hash subkeys, however, our current CWC instantiation in Section 3 uses
127-bit hash subkeys. We do so for several reasons. First, in hardware, to obtain maximum speed,
one would parallelize the CWC hash function by evaluating, for example, two polynomials in K2

h

in parallel. As noted before, since K2
h would generally not be 96-bits long, there is no performance

advantage with using 96-bit subkeys Kh in this situation. In software, the use of 96-bit hash subkeys
could lead to improved performance when evaluating the polynomial using Horner’s rule. However,
the performance of such a construction is essentially equivalent to the performance of the current
construct when not using Horner’s rule but using pre-computed powers of Kh. Since we believe
that high-performance implementations will not benefit from the use of 96-bit hash subkeys (i.e.,
the additional 31 key bits come with no or negligible additional cost), we have chosen to fix the
length of our hash subkeys to 127 bits.

There may occasionally be reasons to use a CWC variant with hash subkeys even shorter than
96 bits. When these situations arise, caution must be exercised since the use of the shorter hash
subkeys could significantly impact security. For example, using a 64-bit hash subkey would increase
the upper-bound on the probability of an adversary forging to around 2−30, which may be too large
for some applications.

On computing the tag. In CWC the MAC consisted of hashing (A, σ), enciphering the hash
with the block cipher, and then xoring the result with some keystream (i.e., in the current proposal
the tag is BCK(107‖N‖032)⊕ BCK(CWC-HASHK(A, σ))).

Instead of the two block cipher applications, one could use BCK(h′K(N, A, σ)) as the tag, where
h′ is a modified version of CWC-HASH designed to hash 3-tuples instead of pairs of strings (this is
important because the nonce must also be authenticated). The main disadvantage of this approach
is that it would change the upper-bound in Equation 2 to

Advprp
BC (CA) +

(µ/128 + 3q + 1)2

2129
+ q2 ·

(
n + m

2133
+

1
2125

)
+

1
2tl

(note the new q2 term). If we set n = MaxAdLen, m = MaxMsgLen, q = 232, and µ = 250, then
for any tl ≥ 29, we get that the advantage of an adversary in breaking the unforgeability of this
modified CWC variant is upper-bounded by 2−27, which, although not extremely large, is worse
than the upper-bound of 2−41 we get using Equation 2. Even if n and m are at most one million
blocks long, we see that the integrity upper-bound for the altered CWC construction is worse
than the upper-bound for the CWC construction we present in Section 3. More generally, this
means that for reasonable values of n,m, q, µ, the insecurity upper-bounds of this alternative will
be worse than the insecurity upper-bounds of the CWC mode described in Section 3. Furthermore,
the upper-bound would be even worse if one keys the hash function with shorter keys, which may
happen in some situations.

Another possible way to reduce the number of block cipher invocations necessary to compute
the MAC would be to take the output of the current hash function and run it through another hash

10

function that is almost-xor-universal (see Appendix C for a description of this property). However,
this approach is not attractive because it requires additional key material. In particular, while this
approach may save one block cipher operation, in hardware the block cipher operation is actually
smaller and simpler than managing the extra key material, given that the hardware already has
a block cipher encryptor running at high speed. We could, of course, take another block cipher
operation to generate the extra key material, but doing so would defeat the purpose.

Another possibility would be to use something like BCK(N) + Y1K
β+2
h + · · ·+ YβK3

h + lAK2
h +

lσKh mod 2127 − 1, encoded as a 127-bit string and truncated to tl bits, as the MAC (here BCK(N)
is interpreted as an integer). Doing so would, however, result in a new integrity upper-bound

Advprp
BC (CA) +

(µ/128 + 2q + 1)2 + 4q + 4
2129

+
(n + m)/96 + 5

2tl
.

If we take n and m to be MaxAdLen and MaxMsgLen, respectively, then the upper-bound becomes

Advprp
BC (CA) +

(µ/128 + 2q + 1)2 + 4q + 4
2129

+
234

2tl
.

Compared to Equation 2, we see the presence of a 234−tl term. This means that, in some situations,
when using the above upper-bound as a guide for parameter selection, tag lengths must be longer
than one might expect. For example, if tl = 32, then the above equation would upper-bound the
advantage of an adversary against this modified construction as 1. This means that 32-bit tags
should not be used with this modified construction when authenticating long messages. While one
might consider this more of a “certificational” problem than a real problem, we view this property
as undesirable.

EAX2. Motivated by EAX2 [5], one possible alternative to CWC might be to use BCK(11105‖N)
both as the value to encrypt R in CWC-MAC and as the initial counter to CTR mode-encrypt M
(with the first two bits of the counter always set to 10). Other EAX2-motivated constructions also
exist. For example, the tag might be set to BCK(h(X0‖N)) ⊕ BCK(h(X1‖A)) ⊕ BCK(h(X2‖σ)),
where X0, X1, X2 are strings, none of which is a prefix of the other, and h is a parallelizable
universal hash function, like CWC-HASH but hashing only single strings (as opposed to pairs of
strings). Compared to CWC, these alternatives have the ability to take longer nonces as input, and,
from a functional perspective, can be applied to strings up to 2126 blocks long. But we do not view
this as a reason to prefer these alternatives over CWC. From a practical perspective, we do not
foresee applications needing nonces longer than 11 octets, or needing to encrypt messages longer
than 232 − 1 blocks. Moreover, from a security perspective, applications should not encrypt too
many packets between rekeyings, implying that even 11 octet nonces are more than sufficient. We
do comment, however, that we believe the alternatives discussed in this paragraph are still more
attractive than EAX because, like CWC but unlike EAX, these alternatives are parallelizable.

Using existing MACs. We chose not to base the authentication portion of our new mode on
XOR-MAC [3] or PMAC [7] because of patent concerns and our software performance requirements
and we chose not to base the authentication portion on software-efficient MACs such as HMAC [1]
because of our hardware parallelizability requirement.

6 Performance

6.1 Hardware

Since one of our main goals was to achieve high performance in hardware and, in particular, to
provide a solution for future 10 Gbps IPsec (and other) network devices, let us focus first on
hardware costs. As noted in the introduction, using 0.13 micron CMOS ASIC technology, it should

11

take approximately 300 Kgates to achieve 10 Gbps throughput for CWC-AES. This estimate, which
is applicable to AES with all key lengths, includes four AES counter-mode encryption engines,
each running at 200 MHz and requiring about 25Kgates each. In addition, there are two 32x128-bit
multiply/accumulate engines, each running at 200 MHz with a latency of four clocks, one each for
the even and odd polynomial coefficients. Of course, simply keeping these engines “fed” may be
quite a feat in itself, but that is generally true of any 10 Gbps path. Also, there may well be better
methods to structure an implementation, depending on the particular ASIC vendor library and
technology, but, regardless of the implementation strategy, 10 Gbps is quite achievable because of
the inherent parallelism of CWC.

Since OCB is CWC’s main competitor for high-speed environments, it is worth comparing CWC
with OCB instantiated with AES (we do not compare CWC with CCM and EAX here since the
latter two are not parallelizable). We first note that CWC-AES saves some gates because we only
have to implement AES encryption in hardware. However, at 10 Gbps, OCB still probably requires
only about half the silicon area of CWC-AES. The main question for many hardware designers is
thus whether the extra silicon area for CWC-AES costs more than three royalty payments, as well as
negotiation costs and overhead. With respect to negotiation costs and royalty payments, we note
that despite significant demands, to date the relevant parties have not all offered publicly available
IP fee schedules. Given this fact, and given today’s silicon costs, we believe that the extra silicon
for CWC-AES is probably cheaper overall than the negotiation costs and IP fees required for OCB.

6.2 Software

CWC-AES can also be implemented efficiently in software. Table 1 shows timing information for
CWC-AES, as well as CCM-AES and EAX-AES, on a 1.133GHz mobile Pentium III dual-booting
RedHat Linux 9 (kernel 2.4.20-8) and Windows 2000 SP2. The numbers in the table are the clocks
per byte for different message lengths averaged over 50 000 runs and include the entire time for
setting up (e.g., expanding the AES key-schedule) and encrypting. All implementations were in C
and written by Brian Gladman [9] and use 128-bit AES keys. The Linux compiler was gcc version
3.2.2; the Windows compiler was Visual Studio 6.0. To be fair, we note that OCB does run at
about twice the speeds given in Table 1.

From Table 1 we conclude that the three patent-free modes, as currently implemented by Glad-
man, share similar software performances. The “best” performing one appears to depend on
OS/compiler and the length of the message being processed. On Linux, it appears that CWC-AES
performs slightly better than EAX-AES for all message lengths that we tested, and better than
CCM-AES for the longer messages, whereas Gladman’s CCM-AES and EAX-AES implementations
slightly outperform his CWC-AES implementation on Windows for all the message lengths that we
tested.

Note, however, that all the implementations used to compute Table 1 were written in C. Fur-
thermore, the current CWC-AES code does not make use of all of the optimization techniques (and
in particular precomputation) that we describe below. By switching to assembly and using the
additional optimization techniques, we anticipate the speed for CWC-HASH to drop to better than
8 clocks per byte, whereas the speed for the CBC-MAC portion of CCM-AES and EAX-AES will
be limited by the speed of AES (the best reported speed for AES on a Pentium III is 14.1 cpb,
due to a proprietary library by Helger Lipmaa; Gladman’s free hand-optimized Windows assembly
implementation runs at 17.5 cpb [16]). Returning to the speed of CWC-HASH, for reference we
note that Bernstein’s related hash127 [6] runs around 4 cpb on a Pentium III when written in
assembly and using the precomputation approach. Bernstein’s hash127 also works by evaluating
a polynomial modulo 2127 − 1; the main difference is that the coefficients for hash127 are 32 bits

12

long, whereas the coefficients for CWC-HASH are 96 bits long (recall Section 5, which discusses
why we use 96-bit coefficients). We also note that the performance of CWC-HASH will increase
dramatically on 64-bit architectures with larger multiplies; an initial implementation on a G5 using
64-bit integer operations runs at around 6 cpb (when running the G5 in 32-bit mode, the hash
function runs at around 15 cpb).

6.2.1 Implementing CWC-HASH in software

Since the implementation of CWC-HASH is more complicated than the implementation of the
CWC-CTR portion of CWC, we devote the rest of this section to discussing CWC-HASH.

Precomputation. As noted in Section 5, there are two general approaches to implementing
CWC-HASH in software. The first is to use Horner’s rule. The second is to evaluate the polynomial
directly, which can be faster if one precomputes powers of the hash key Kh at setup time (here the
powers of Kh can be viewed as an expanded key-schedule). In particular, as noted in Section 5,
evaluating the polynomial using Horner’s rule requires a 127x127-bit multiply for each coefficient,
whereas evaluating the polynomial directly using precomputed powers of Kh requires a 96x127-
bit multiply for each coefficient. (We discuss elsewhere why we did not make the hash subkey
96-bits, which could have sped up a serial Horner’s rule implementation.) The advantage with
precomputation was first observed by Bernstein in the context of hash127 [6].

The above description of the precomputation approach assumed that if the polynomial is
Y1K

γ−1
h + · · · + Yγ−1Kh + Yγ (i.e., the polynomial has γ coefficients), then we had precomputed

the powers of Ki
h for all i ∈ {1, . . . , γ − 1}. The precomputation approach extends naturally to the

case where we have precomputed the powers Kj
h, j ∈ {1, . . . , n}, for some n ≤ γ−1. For simplicity,

first assume that we know the polynomial has a multiple of n coefficients. For such a polynomial,
one processes the first n coefficients (to get Y1K

n−1
h + . . . + Yn−1Kh + Yn), then multiplies the in-

termediate result by Kn
h (to get Y1K

2n−1
h + . . . + Yn−1K

n+1
h + YnKn

h). After that, one can continue
processing data with the same precomputed values (to get Y1K

2n−1
h + . . .+Y2n−1Kh +Y2n), and so

on. Note that each chunk of n coefficients takes (n− 1) 96x127-bit multiplies, and all but the last
chunk takes an additional 127x127-bit multiply. Now assume that the number of coefficients m in
the polynomial is not necessarily a multiple of n. If m is known in advance, one could first process
m mod n coefficients, multiply by Kn

h , then process in n-coefficient chunks as before. Alternately,
as long as the end of the message is known n coefficients in advance, one could process n-coefficients
chunks, and then finish off the final m mod n coefficients using Horner’s rule. Or, if the number of
coefficients in the polynomial is not known until the final coefficient is reached, one could process
the message in n-coefficient chunks and then multiply by a precomputed power of K−1

h once the
end of the message hash been reached.

Naturally, precomputation requires extra memory, but that is usually cheap and plentiful in
a software-based environment. Using 32-bit multiplies, the precomputation approach requires 12
32-bit multiplies per 96-bit coefficient, as well as 17 adds, all of which may carry. In assembly, most
of these carry operations can be implemented for free, or close to it by using a special variant of
the add instruction that adds in the operand as well as the value of the carry from the previous
add operation. But when implemented in C, they will generally compile to code that requires
a conditional branch and an extra addition. An implementation using Horner’s rule requires an
additional four multiplies and three additions with carry per coefficient, adding about 33% overhead,
since the multiplies dominate the additions. A 64-bit platform only requires four multiplies and
four adds (which may all carry), no matter the implementation strategy taken, which explains why
implementations of CWC-HASH for 64-bit architectures are much faster.

Exploiting the parallelism of some instruction sets. On most 32-bit platforms, it turns

13

out that the integer execution unit is not the fastest way to implement CWC-HASH. Many plat-
forms have multimedia instructions that can be used to speed up the implementation. As another
alternative, Bernstein demonstrated that, on most platforms, the floating point unit can be used
to implement this class of universal hash functions far more efficiently than can be done in the
integer unit. This is particularly true on the x86 platform where, in contrast to using the stan-
dard registers, two floating point multiples can be started in close proximity without introducing a
pipeline stall. That is, the x86 can effectively perform two floating-point operations in parallel. The
disadvantage of using floating-point registers is that the operands for the individual multiplies need
to be small, so that the operations can be done without loss of precision. On the x86, Bernstein
multiplies 24-bit values, allowing the sums of product terms to fit into double precision values with
53 bits of precision without loss of information. Bernstein details many ways to optimize this sort
of calculation in [6].

As noted before, there are only two main differences between the structure of the polynomials of
Bernstein’s hash127 and CWC-HASH. The first is that Bernstein uses signed coefficients, whereas
CWC-HASH uses unsigned coefficients; this should not have an impact on efficiency. The other dif-
ference is that Bernstein uses 32-bit coefficients, whereas CWC-HASH uses 96-bit coefficients. While
both solutions average one multiplication per byte when using integer math, Bernstein’s solution
requires only .75 additions per byte, whereas CWC-HASH requires 1.42 additions per byte, nearly
twice as many. Using 32-bit multiplies to build a 96x127 multiplier (assuming precomputation),
CWC-HASH should therefore perform no worse than at half the speed of hash127. When using 24-
bit floating point coefficients to build a multiply (without applying any non-obvious optimizations),
hash127 requires 12 multiplies and 16 adds per 32-bit word. CWC can get by with 8 multiples per
word and 12.67 additions per word. This is because a 96-bit coefficient fits exactly into four 24-bit
values, meaning we can use a 6x4 multiply for every three words. With 32-bit coefficients, we need
to use two 24-bit values to represent each coefficient, resulting in a single 6x2 multiply that needs
to be performed for each word.

Gladman’s C implementation of CWC-HASH uses floating point arithmetic, but uses Horner’s
rule instead of performing precomputation to achieve extra speed. Nothing about the CWC hash
indicates that it should run any worse than half the speed of hash127, if implemented in a similar
manner, in assembly, and using the floating point registers and precomputation. This upper-bound
paints an encouraging picture for CWC performance, because hash127 on a Pentium III runs around
4 cpb when implemented in assembly and using the floating point registers and precomputation.
This indicates that a well-optimized software version of CWC-HASH should run no slower than 8
cycles per byte on the same machine.

Finally, it may be possible to further improve the performance of CWC-HASH. For example,
literature from the gaming community [11] indicates that one can use both integer and floating
point registers in parallel. Although we have not tested this approach, it seems reasonable to
conclude that one might be able to interleave integer operations, and thereby obtain additional
speedups.

7 Conclusions

In this work we present CWC, the first AEAD mode that is simultaneously provably secure, paral-
lelizable, efficient in hardware and software, and free from intellectual property concerns. Because
of its inherent parallelism, CWC-AES is capable of processing data at 10 Gbps in hardware, making
it ideal for use with coming 10 Gbps IPsec network devices. CWC-AES is also efficient in software,
with the current implementation on 32-bit CPUs comparable to current implementations of the
other patent-free (albeit not parallelizable) modes of operations CCM-AES and EAX-AES. In soft-

14

ware, we anticipate significant speedups after switching to assembly and using the precomputation
approach for CWC-HASH discussed in Section 6, and we have observed significant performance
gains on 64-bit CPUs.

Acknowledgments

We thank Peter Gutmann, David McGrew, Fabian Monrose, Avi Rubin, Adam Stubblefield, and
David Wagner for their comments. Additionally, we thank Brian Gladman for helping to validate
our test vectors and for working with us to obtain timing information.

References

[1] M. Bellare, R. Canetti, and H. Krawczyk. Keying hash functions for message authentication.
In N. Koblitz, editor, CRYPTO ’96, volume 1109 of LNCS, pages 1–15. Springer-Verlag, Aug.
1996.

[2] M. Bellare, A. Desai, E. Jokipii, and P. Rogaway. A concrete security treatment of symmetric
encryption. In Proc. of the 38th FOCS, pages 394–403. IEEE Computer Society Press, 1997.

[3] M. Bellare, R. Guérin, and P. Rogaway. XOR MACs: New methods for message authentication
using finite pseudorandom functions. In D. Coppersmith, editor, CRYPTO ’95, volume 963 of
LNCS, pages 15–28. Springer-Verlag, Aug. 1995.

[4] M. Bellare and C. Namprempre. Authenticated encryption: Relations among notions and
analysis of the generic composition paradigm. In T. Okamoto, editor, ASIACRYPT 2000,
volume 1976 of LNCS, pages 531–545. Springer-Verlag, Dec. 2000.

[5] M. Bellare, P. Rogaway, and D. Wagner. The EAX mode of operation. In W. Meier and
B. Roy, editors, FSE 2004, LNCS. Springer-Verlag, 2004.

[6] D. Bernstein. Floating-point arithmetic and message authentication, 2000. Available at http:
//cr.yp.to/papers.html#hash127.

[7] J. Black and P. Rogaway. A block-cipher mode of operation for parallelizable message authen-
tication. In L. Knudsen, editor, EUROCRYPT 2002, volume 2332 of LNCS. Springer-Verlag,
2002.

[8] J. Daemen and V. Rijmen. The Design of Rijndael. Springer-Verlag, 2002.

[9] B. Gladman. AES and combined encryption/authentication modes, 2003. Available at http:
//fp.gladman.plus.com/AES/index.htm.

[10] V. Gligor and P. Donescu. Fast encryption and authentication: XCBC encryption and XECB
authentication modes. In M. Matsui, editor, FSE 2001, LNCS. Springer-Verlag, 2001.

[11] C. Hecker. Perspective texture mapping, part V: It’s about time. Game Developer, Apr. 1996.
Available at http://www.d6.com/users/checker/pdfs/gdmtex5.pdf.

[12] C. Jutla. Encryption modes with almost free message integrity. In B. Pfitzmann, editor,
EUROCRYPT 2001, volume 2045 of LNCS, pages 529–544. Springer-Verlag, May 2001.

15

[13] J. Katz and M. Yung. Unforgeable encryption and chosen ciphertext secure modes of operation.
In B. Schneier, editor, FSE 2000, volume 1978 of LNCS, pages 284–299. Springer-Verlag, Apr.
2000.

[14] H. Krawczyk. LFSR-based hashing and authentication. In Y. Desmedt, editor, CRYPTO ’94,
LNCS. Springer-Verlag, Aug. 1994.

[15] H. Krawczyk. The order of encryption and authentication for protecting communications
(or: How secure is SSL?). In J. Kilian, editor, CRYPTO 2001, volume 2139 of LNCS, pages
310–331. Springer-Verlag, Aug. 2001.

[16] H. Lipmaa. AES/Rijndael: speed, 2003. Available at http://www.tcs.hut.fi/~helger/
aes/rijndael.html.

[17] M. Luby and C. Rackoff. How to construct pseudorandom permutations from pseudorandom
functions. SIAM J. Computation, 17(2), Apr. 1988.

[18] D. McGrew. Integer counter mode, Oct. 2002. Available at http://www.ietf.org/
internet-drafts/draft-irtf-cfrg-icm-01.txt.

[19] D. McGrew. The truncated multi-modular hash function (TMMH), version two, Oct. 2002.
Available at http://www.ietf.org/internet-drafts/draft-irtf-cfrg-tmmh-00.txt.

[20] D. McGrew. The universal security transform, Oct. 2002. Available at http://www.ietf.
org/internet-drafts/draft-irtf-cfrg-ust-01.txt.

[21] W. Nevelsteen and B. Preneel. In J. Stern, editor, EUROCRYPT ’99, volume 1592 of LNCS,
pages 24–41. Springer-Verlag, 1999.

[22] P. Rogaway. Bucket hashing and its applications to fast message authentication. J. Cryptology,
12:91–115, 1999.

[23] P. Rogaway. Authenticated encryption with associated data. In Proc. of the 9th CCS, Nov.
2002.

[24] P. Rogaway, M. Bellare, J. Black, and T. Krovetz. OCB: A block-cipher mode of operation for
efficient authenticated encryption. In Proc. of the 8th CCS, pages 196–205. ACM Press, 2001.

[25] P. Rogaway and D. Wagner. A critique of CCM, Apr. 2003. Available at http://eprint.
iacr.org/2003/070/.

[26] V. Shoup. On fast and provably secure message authentication based on universal hashing.
In N. Koblitz, editor, CRYPTO ’96, volume 1109 of LNCS, pages 313–328. Springer-Verlag,
Aug. 1996.

[27] D. Stinson. Universal hashing and authentication codes. Designs, Codes and Cryptography,
4:369–380, 1994.

[28] M. Wegman and L. Carter. New hash functions and their use in authentication and set equality.
Journal of Computer and System Sciences, 22:265–279, 1981.

[29] D. Whiting, N. Ferguson, and R. Housley. Counter with CBC-MAC (CCM). Submission to
NIST. Available at http://csrc.nist.gov/CryptoToolkit/modes/proposedmodes/, 2002.

16

A Intellectual property statement

The authors hereby explicitly release any intellectual property rights to the CWC mode into the
public domain. The authors are not aware of any patent or patent application anywhere in the
world that cover this mode.

B Summary of properties

In this appendix we summarize some of the properties of CWC. We include all of the properties
listed in the submission guidelines on the NIST Modes of Operation website. We also discuss some
additional properties that we feel are important.

Security function. CWC is a provably secure authenticated encryption with associated data
(AEAD) mode. Informally, this means that the encapsulation algorithm, on input a pair of messages
(A,M) and some nonce N , encapsulates (A,M) in a way that protects the privacy of M and the
integrity of both A and M . Our formal security statements appear in Section 4 and the proofs
appear in Appendix C.

Error propagation. Assuming that the underlying block cipher is a secure pseudorandom
function or permutation, any attempt, by an adversary using reasonable resources, to forge a new
ciphertext will, with very high probably, be detected. This follows from the fact that CWC is a
provably-secure AEAD mode.

Synchronization. Synchronization is based on the nonce. As with other nonce-based AEAD
modes, the nonce must either be sent with the ciphertext or the receiver must know how to derive
the nonce on its own.

Parallelizability. CWC is parallelizable. The amount of parallelism for the hashing portion can
be determined by the implementor without affecting interoperability.

Keying material required. CWC is defined to be a single-key AEAD mode. However, CWC
does internally use two keys (the main block cipher key and a hash key which is derived using the
block cipher key). Implementors can decide whether to store the derived hash key in memory or
whether to re-derive it as needed.

Counter/IV/nonce requirements. CWC uses a 11-octet nonce. CWC is provably secure as
long as one does not query the encryption algorithm twice with the same nonce. Although it is
possible to instantiate the generic CWC construction with other nonce lengths, for CWC the nonce
size is fixed at 11-octets in order to minimize interoperability issues.

Memory requirements. The software memory requirements are basically those of the underlying
block cipher. For example, fast AES in software requires 4K bytes of table, and about 200 bytes of
expanded key material. In some situations, software implementations may precompute powers of
the hash subkey.

Pre-processing capability. The underlying CTR mode keystream can be precomputed. The
only block cipher input that cannot be precomputed is the output of CWC-HASH.

CWC can preprocess its associated data, thereby reducing computation time if the associated
data remains static or changes only infrequently.

Message length requirements. The associated data and message can both be any string of
octets with length at most 128 ·(232−1) bits. Because there does not appear to be a need to handle
strings of arbitrary bit-length, CWC as currently specified cannot encapsulate arbitrary bit-length
messages. (As discussed in Section 3, it is easy to modify CWC to handle arbitrary bit-length

17

messages, if desired.)

Ciphertext expansion. The ciphertext expansion is the minimum possible while still providing a
tl-bit tag. That is, on input a pair (A,M), a nonce N , and a key K, CWC-ENCK(N,A, M) outputs
a ciphertext C with length |C| = |M |+ tl.

Block cipher invocations. If the hash subkey Kh is computed as part of the key generation
process and not during each invocation of the CWC encapsulation routine, then CWC makes one
block cipher invocation during key setup and d|M |/128e+2 block cipher invocations during encap-
sulation and decapsulation. If the hash subkey Kh is not computed as part of the key generation
process, then CWC makes no block cipher invocations during key setup and d|M |/128e + 3 block
cipher invocations during encapsulation and decapsulation.

Provable security. CWC is a provably-secure AEAD mode assuming that the underlying block
cipher (e.g., AES) is a secure pseudorandom function or permutation. The proofs of security do
not require the block cipher to satisfy the strong notion of super-pseudorandomness required by
some other block cipher modes of operation.

Number of options and interoperability. CWC uses a minimal number of options. The only
options are the choice of the underlying block cipher (and key length) and the tag length. Having
fewer options makes interoperability easier.

On-line. The CWC encryption algorithm is on-line. This means that CWC can process data as it
arrives, rather than waiting for the entire message to be buffered before beginning the encryption
processes. This may be advantageous when encrypting streaming data sources. (Note, however,
that, like any other AEAD mode, the decryptor should still buffer the entire message and check
the tag τ before revealing the plaintext and associated data.)

Patent status. To the best of our knowledge CWC is not covered by any patents.

Performance. CWC is efficient in both hardware and software. In hardware, CWC can process
data at 10 Gbps.

Simplicity. Although simplicity is a matter of perspective, we believe that CWC is a very simple
construction. It combines standard CTR mode encryption with the evaluation of a polynomial
modulo 2127−1. Because of its simplicity, we believe that CWC is easy to implement and understand.

C Proofs of Theorem 4.1 and Theorem 4.2

Before proving Theorem 4.1 and Theorem 4.2, we first state results about the general CWC con-
struction (see Lemma C.2 and Lemma C.3 below). We then show how Theorems 4.1 and 4.2 follow
from Lemmas C.2 and C.3. We then prove these two lemmas.

C.1 More definitions

We begin with a few additional definitions.

Universal hash functions. A hash function HF = (Kh,H) consists of two algorithms and
is defined over some key space KeySpHF , some message space MsgSpHF , and some hash space
HashSpHF . The randomized key generation algorithm returns a random key K ∈ KeySpHF ; we
denote this as K

$← Kh. The deterministic hash algorithm takes a key K ∈ KeySpHF and a
message M ∈ MsgSpHF and returns a hash value h ∈ HashSpHF ; we denote this as h ← HK(M).
Let H

$← HF be shorthand for K
$← Kh ; H ← HK .

18

The hash functionHF is said to be ε-almost universal (ε-au) if for all distinct m,m′ ∈ MsgSpHF ,

Pr
[

H
$← HF : H(m) = H(m′)

]
≤ ε .

The hash function HF is said to be ε-almost xor universal (ε-axu) if HashSpHF = {0, 1}n for
some positive integer n and for all distinct m,m′ ∈ MsgSpHF and c ∈ {0, 1}n,

Pr
[

H
$← HF : H(m)⊕H(m′) = c

]
≤ ε .

Pseudorandom functions. If X and Y are sets, then Func(X,Y) denotes the set of all functions
from X to Y . If l and L are positive integers, then Func(l, L) denotes the set of all functions from
{0, 1}l to {0, 1}L.

Let F be a family of functions from D to R. Let A be an adversary with access to an oracle
and that returns a bit. Then

Advprf
F (A) = Pr

[
f

$← F : Af(·) = 1
]
− Pr

[
g

$← Func(D, R) : Ag(·) = 1
]

denotes the prf-advantage of A in distinguishing a random instance of F from a random function.
Intuitively, we say that F is a secure prf if the prf-advantages of all adversaries using reasonable
resources is small.

Message authentication. A nonced message authentication scheme MA = (Km, T ,V) consists
of three algorithms and is defined over some key space KeySpMA, some nonce space NonceSpMA,
some message space MsgSpMA, and some tag space TagSpMA. The randomized key generation
algorithm returns a key K ∈ KeySpMA; we denote this as K

$← Km. The deterministic tagging
algorithm T takes a key K ∈ KeySpMA, a nonce N ∈ NonceSpMA, and a message M ∈ MsgSpMA
and returns a tag τ ∈ TagSpMA; we denote this process as τ ← T N

K (M) or τ ← TK(N,M).
The deterministic verification algorithm V takes as input a key K ∈ KeySpMA, a nonce N ∈
NonceSpMA, a message M ∈ MsgSpMA, and a candidate tag τ ∈ {0, 1}∗, computes τ ′ = T N

K (M),
and returns accept if τ ′ = τ and returns reject otherwise.

Let F be a forging adversary and consider an experiment in which we first pick a random key
K

$← Km and then run F with oracle access to TK(·, ·). We say that F forges if F returns a triple
(N, M, τ) such that VN

K (M, τ) = accept but F did not make a query (N, M) to TK(·, ·) that resulted
in a response τ . Then

Advuf
MA(F) = Pr

[
K

$← Km : F TK(·,·) forges
]

denotes the uf-advantage of F in breaking the unforgeability of MA. An adversary is nonce-
respecting if it never queries its tagging oracle with the same nonce twice. Intuitively, MA is
unforgeable if the uf-advantage of all nonce-respecting adversaries with reasonable resources is
small.

C.2 The general CWC construction

We now describe our generalization of the CWC construction.

Construction C.1 [General CWC.] Let l, L, n, o, t, k be positive integers such that t ≤ L. (Fur-
ther restrictions will be placed shortly.) Essentially, l is the length of the input to a prf (e.g., 128),
L is the length of the output from the prf (e.g., 128), n is the length of the nonce (e.g., 88), o is
the length of the offset (e.g., 32), t is the length of the desired tag (e.g., 64 or 128), k is the length
of the hash function’s keysize (e.g., 127).

Let F be a family of functions from {0, 1}l to {0, 1}L. Let HF = (Kh,H) be a family of hash
functions with HashSpHF = {0, 1}l and KeySpHF = {0, 1}k (and Kh works by randomly selecting

19

and returning an element from {0, 1}k with uniform probability). Let ctr0 : Zdk/Le → {0, 1}l,
ctr1 : {0, 1}n×(Z2o−{0}) → {0, 1}l and ctr2 : {0, 1}n → {0, 1}l be efficiently-computable injective
functions. If W = { ctr0(O) : O ∈ Zdk/Le }, X = { ctr1(N,O) : N ∈ {0, 1}n, O ∈ (Z2o − {0}) },
Y = { ctr2(N) : N ∈ {0, 1}n }, and Z = { HK(M) : K ∈ KeySpHF ,M ∈ MsgSpHF }, we require
that W , X, Y , and Z be pairwise mutually exclusive.

Let extract : {0, 1}dk/Le·L → {0, 1}k be a function that takes as input a dk/Le ·L-bit string and
that outputs a k-bit string. We require that extract always pick the same k bits from the input
string and always outputs those bits in the exact same order (e.g., extract returns the first k bits
of its input).

Let SE [F,HF] = (Ke, E ,D) be an AEAD scheme built from function family F and hash func-
tion HF and using the above functions extract, ctr0, ctr1, ctr2. We assume that AdSpSE[F,HF] ×
MsgSpSE[F,HF] ⊆ MsgSpHF and that all messages in MsgSpSE[F,HF] have length at most L · (2o−1).
Note that the former means that the message space of HF actually consists of pairs of strings. Let
NonceSpSE[F,HF] = {0, 1}n. Let SE [F,HF]’s component algorithms be defined as follows:

Algorithm Ke

f
$← F

Kh ← extract(f(ctr0(0))‖f(ctr0(1))‖ · · · ‖f(ctr0(dk/Le − 1))) ; H ← HKh

Return 〈f,H〉

Algorithm EN,A
〈f,H〉(M)

σ ← CTR-MODEN
f (M)

τ ← first t bits of (f(ctr2(N))⊕ f(H(A, σ)))
Return σ‖τ

Algorithm DN,A
〈f,H〉(C)

If |C| < t then return INVALID
Parse C as σ‖τ // |τ | = t

If A 6∈ AdSpSE[F,HF] or σ 6∈ MsgSpSE[F,HF] then return INVALID

τ ′ ← first t bits of (f(ctr2(N))⊕ f(H(A, σ)))
If τ 6= τ ′ return INVALID

M ← CTR-MODEN
f (σ)

Return M

Algorithm CTR-MODEN
f (X)

α ← d|X|/Le
For i = 1 to α do

Zi ← f(ctr1(N, i))
Y ← (first |X| bits of Z1‖Z2‖ · · · ‖Zα)⊕X
Return Y

Before proceeding we make several observations. Recall that one requirement on the message space
for any AEAD scheme is that if it contains any string M , then it contains all strings of length |M |.
This means that the membership test σ 6∈ MsgSpSE[F,HF] and the application of H to (A, σ) makes
sense.

As specified in the definition, AdSpSE[F,HF] ×MsgSpSE[F,HF] ⊆ MsgSpHF . This means that we
HF is used to hash pairs of strings, not just string. This is not a serious restriction since given

20

any hash function that hashes strings, it is trivial to construct a hash function that hashes pairs of
strings (by encoding the pair of strings as a single string in some appropriate manner).

It is also worth commenting on the purpose of ctr0, ctr1, and ctr2. As shown in Construction C.1,
these functions are used to derive the inputs to the construction’s underlying function f . By
requiring that none of the outputs collide (i.e., that the sets W,X, Y, Z in the definition are pairwise
mutually exclusive), we ensure that the inputs to f for different purposes never collide. For example,
the inputs to f used for counter mode encryption will always be different than the inputs to f when
enciphering the output of H.

C.3 The security of the general CWC construction

We now state the following results for all Construction C.1-style AEAD schemes. We shall prove
Lemmas C.2 and C.3 in Appendices C.5 and C.6, respectively.

Lemma C.2 [Integrity of Construction C.1.] Let SE [F,HF] be as in Construction C.1 and
let HF be an ε-au hash function. Then given any nonce-respecting auth adversary A against
SE [F,HF], we can construct a prf adversary BA against F such that

Advauth
SE[F,HF](A) ≤ Advprf

F (BA) + ε + 2−t .

Furthermore, the experiment for BA takes the same time as the experiment for A and, if A makes
at most q−1 oracle queries and a total of at most µ bits of payload data (for both these q−1 oracle
queries and the forgery attempt), then BA makes at most µ/L + 3q + dk/Le oracle queries.

Lemma C.3 [Privacy of Construction C.1.] Let SE [F,HF] be as in Construction C.1. Then
given a nonce-respecting ind$-cpa adversary A against SE [F,HF] one can construct a prf adver-
sary BA against F such that

Advpriv
SE[F,HF](A) ≤ Advprf

F (BA) .

Furthermore, the experiment for BA takes the same time as the experiment for A and, if A makes
at most q oracle queries totaling at most µ bits of payload data, then BA makes at most µ/L +
3q + dk/Le oracle queries.

We interpret these lemmas as follows. Intuitively, the first lemma states that if F is a secure prf,
if HF is ε-au where ε is not too large, and if t is not too small, then SE [F,HF] preserves integrity.
We comment that most modern block ciphers (e.g., AES) are considered to be secure prps (and
therefore also secure prfs up to a birthday term). We also comment that we can construct hash
functions HF with provably small ε.

Intuitively, the second lemma states that if F is a secure prf, then SE [F,HF] will preserve
privacy. We discuss the meaning of these types of proofs in more detail in Section 4.

C.4 Proof of Theorem 4.2 and Theorem 4.1

The security of the CWC construction from Section 3 follows from Lemmas C.2 and C.3 assuming
that (1) CWC as described in Section 3 is really an instantiation of Construction C.1 and (2) that
the hash function used in Section 3 is ε-au for some small ε. We begin by justifying the second
bullet.

Lemma C.4 [CWC-HASH (Section 3) is ε-almost universal.] Consider the CWC-BC-tl con-
struction from Section 3. Let HF = (Kh,H) be the hash function function whose key generation

21

algorithm selects a random key K from {0, 1}127 and let HK be the CWC-HASH function except
that we replace

Z ← last 127 bits of BCK(110126)

with

Z ← K .

Note that AdSpCWC-BC-tl × MsgSpCWC-BC-tl ⊆ MsgSpHF ; that is, HK takes two strings as input.
Assume HF hashes pairs of strings where the first string is always at most n ≤ MaxAdLen bits long
and the second string is always at most m ≤ MaxMsgLen bits long. Then HF is ε-almost universal
where

ε ≤ n + m

2133
+

1
2125

.

Proof of Lemma C.4: Let (A, σ) and (A′, σ′) be two distinct inputs to HK and let X =
(B1, . . . , Bβ+1) and Y = (C1, . . . , Cγ+1) respectively denote their encodings as vectors of 96-bit
integers (with Bβ+1 and Cγ+1 possibly longer than 96-bits long). Without loss of generality, assume
β ≤ γ and let X ′ = (B′

1, . . . , B
′
γ+1) where B′

j = 0 for j ∈ {1, . . . , γ − β} and B′
j = Bj−γ+β for

j ∈ {γ − β + 1, . . . , γ + 1} (i.e., prepend γ − β zero elements to the X vector).

If (A, σ) 6= (A′, σ′) then X ′ 6= Y . This follows from the fact that B′
γ+1 and Cγ+1 respectively

encode the lengths of A and σ and of A′ and σ′ and that if X ′ = Y , then the B′
γ+1 = Cγ+1 and

(A, σ) = (A′, σ′).

Note that HK(A, σ) = HK(A′, σ′) when(
B′

1 ·Kγ
h + · · ·+ B′

γ ·Kh + B′
γ+1

)
−

(
C1 ·Kγ

h + · · ·+ Cγ ·Kh + Cγ+1

)
= 0 mod 2127 − 1 (3)

where Kh is the hash key derived from K as specified in CWC-HASH. Since the vectors X ′ and Y

are not equal,
(
B′

1 ·Kγ
h + · · ·+ B′

γ ·Kh + B′
γ+1

)
−

(
C1 ·Kγ

h + · · ·+ Cγ ·Kh + Cγ+1

)
is a non-zero

polynomial of degree at most γ. Therefore, by the Fundamental Theorem of Algebra, Equation 3
has at most γ solution modulo 2127 − 1.

Since we are interested in the probability, over the 127-bit keys K, that Equation 3 is true, we note
that all keys Kh modulo 2127 − 1 (except 0) have exactly one ways of occurring and that the 0 key
can occur in one additional way (i.e., the all 0 string and the all 1 string). This means that of the
2127 possible keys K, at most γ + 1 can lead to keys Kh such that Equation 3 is true.

Finally, note that γ is at most 2 + (n + m)/96 (the +2 comes from the fact that we append 0 bits
to A and σ). Consequently

ε ≤
n+m
96 + 3
2127

≤ n + m

2133
+

1
2125

as desired.

We now prove Theorem 4.2 and Theorem 4.1, which are corollaries of Lemmas C.2, C.3, and C.4.

Proof of Theorem 4.2 and Theorem 4.1: To prove these theorems we must show that the
CWC-BC-tl constructions from Section 3 are instantiations of Construction C.1. We begin by noting
that the block cipher BC in CWC-BC-tl plays the role of F in Construction C.1 and that the hash
function CWC-HASH (with the simplified key generation algorithm from Lemma C.4) plays the role
of HF in Construction C.1.

22

Since BC plays the role of F , we have that l = L = 128. Furthermore, as described in Section 3,
n = 88, o = 32, t = tl, and k = 127. We note that the output the hash function is a 128-bit
string whose first bit is always 0. This property, as well as the encodings for the nonce/offsets when
encrypting the message and the Carter-Wegman MAC and when generating the hash key, ensure
that requisite properties for the interactions between the hash function, ctr0, ctr1, and ctr2.

A direct comparison of the Construction C.1 algorithms and the algorithms from Section 3 shows
that they are equivalent. CWC-BC-tl is therefore an instantiation of Construction C.1 and the
provable security of CWC-BC-tl follows.

Finally, we apply the standard prf-prp switching technique in order to model the underlying block
cipher as a prp rather than a prf in Theorem 4.2 and Theorem 4.1.

C.5 Proof of Lemma C.2

We being by sketching the proof of Lemma C.2. We first show that applying a random function
to the output of an ε-au hash function yields an ε′-axu hash function (Proposition C.6). We then
recall the result of Krawczyk [14] that xoring the output of an axu hash function with a one-time
pad yields a secure MAC (Proposition C.8). Such a MAC essentially corresponds to the second
and third boxed steps in Construction C.1. (We do not need this final block cipher application if
the input to the hash includes the nonce and if we accept a birthday term of the form q2ε.)

We then observe that if we consider a construction like Construction C.1 but with the latter
two boxed steps replaced with calls to a secure MAC that tags pairs of strings (A, σ) with nonces
N , then that construction would be unforgeable (Proposition C.10). In Proposition C.13 we use
the above results to show that SE [Func(l, L),HF] preserves integrity (where SE [Func(l, L),HF] is
as in Construction C.1). Lemma C.2 follows.

From AU to AXU. Let us begin with the following construction.

Construction C.5 [Building AXU hash functions from AU hash functions.] Let HF =
(Kh,H) be a hash function and let HF [t] = (Kh,H), t a positive integer, be the hash function
defined as follows:

Kh

H
$← HF

e
$← Func(HashSpHF , {0, 1}t)

Return 〈H, e〉

H〈H,e〉(M)
Return e(H(M))

Note that MsgSpHF [t]
= MsgSpHF and HashSpHF [t]

= {0, 1}t.

Proposition C.6 Let HF , t, and HF [t] be as in Construction C.5. If HF is ε-au, then HF [t] is
(ε + 2−t)-axu.

This result follows from a result in [27, 22] which states that the composition of an ε′-axu hash
function, with domain B and range C, with an ε-au hash function, with domain A and range B, is
an (ε+ε′)-axu hash function with domain A and range C, and the fact that the hash function whose
key generation algorithm returns a random function from Func(HashSpHF , {0, 1}t) is 2−t-axu.

Carter-Wegman MACs. Consider now the following construction.

Construction C.7 [Building MACs from AXU hash functions.] Let HF = (Kh,H) be a
hash function with hash space {0, 1}t, t a positive integer. We can construct a nonced message
authentication scheme MA = (Km, T ,V) as follows:

23

Km

H
$← HF

g
$← Func(NonceSpMA, {0, 1}t)

Return 〈H, g〉

T〈H,g〉(N, M)
Return g(N)⊕H(M)

V〈H,g〉(N,M, τ)
If g(N)⊕H(M) = τ then

return accept
Else return reject

Note that MsgSpMA = MsgSpHF , TagSpMA = {0, 1}t, and that NonceSpMA is arbitrary.

We now state the following result, due to Krawczyk [14].

Proposition C.8 Let HF and MA be as in Construction C.7. If HF is ε-axu, then for all
nonce-respecting uf adversaries F attacking MA, Advuf

MA(F) ≤ ε.

As noted in [14], this proposition follows from the facts that xoring the output of the hash function
with g(N) prevents any loss of information (assuming that the adversary is nonce-respecting), that
a forgery attempt with a previous nonce is upper-bounded by ε, and that a forgery attempt with
a new nonce is upper-bounded by 2−t ≤ ε.

Encrypt-then-Authenticate. Consider the following Encrypt-then-Authenticate [4, 15] con-
struction.

Construction C.9 [Encrypt-then-Authenticate.] Let l, L, n, o, t be positive integers. (Further
restrictions will be placed shortly.) Essentially, l is the length of the input to a prf (e.g., 128), L
is the length of the output from the prf (e.g., 128), n is the length of the nonce (e.g., 88), o is the
length of the offset (e.g., 32).

Let F be a family of functions from {0, 1}l to {0, 1}L. Let MA = (Km, T ,V) be a message
authentication scheme with NonceSpMA = {0, 1}n and TagSpMA = {0, 1}t. Let ctr1 : {0, 1}n ×
(Z2o − {0}) → {0, 1}l be an efficiently-computable injective function.

Let SE [F,MA] = (Ke, E ,D) be an AEAD scheme built from function family F and message
authentication scheme MA and using the above function ctr1. We assume that AdSpSE[F,MA] ×
MsgSpSE[F,MA] ⊆ MsgSpMA and that all messages in MsgSpSE[F,MA] have length at most L·(2o−1).
Note that the former means that the message space of MA actually consists of pairs of strings. Let
NonceSpSE[F,MA] = NonceSpMA. Let SE [F,MA]’s component algorithms be defined as follows:

Algorithm Ke

f
$← F

K
$← Km

Return 〈f,K〉
Algorithm EN,A

〈f,K〉(M)
σ ← CTR-MODEN

f (M)

τ ← T N
K (A, σ)

Return σ‖τ
Algorithm DN,A

〈f,K〉(C)
If |C| < t then return INVALID
Parse C as σ‖τ // |τ | = t

If A 6∈ AdSpSE[F,MA] or σ 6∈ MsgSpSE[F,MA] then return INVALID

τ ′ ← T N
K (A, σ)

If τ 6= τ ′ return INVALID

M ← CTR-MODEN
f (σ)

Return M

24

Algorithm CTR-MODEN
f (X)

α ← d|X|/Le
For i = 1 to α do

Zi ← f(ctr1(N, i))
Y ← (first |X| bits of Z1‖Z2‖ · · · ‖Zα)⊕X
Return Y

Proposition C.10 Let SE [F,MA] be as in Construction C.9. Then given a nonce-respecting
auth adversary B against SE [F,MA], we can construct a nonce-respecting forgery adversary DB

against MA such that
Advauth

SE[F,MA](B) ≤ Advuf
MA(DB) .

Furthermore the experiment for DB uses the same time as the experiment for B and if B makes q
encryption oracle queries, then DB makes q tagging oracle queries.

To prove Proposition C.10, we use the approach in [4] for analyzing Encrypt-then-Authenticate
constructions. The only difference is that we consider MACs that also take nonces as input.

Combining these constructions. Let us now combine these constructions.

Construction C.11 [Combined CWC.] Let l, L, n, o, t, k be positive integers such that t ≤ L.
(Further restrictions will be placed shortly.) Essentially, l is the length of the input to a prf (e.g.,
128), L is the length of the output from the prf (e.g., 128), n is the length of the nonce (e.g., 88),
o is the length of the offset (e.g., 32), t is the length of the desired tag (e.g., 64 or 128), k is the
length of the hash function’s keysize (e.g., 128).

Let F be a family of functions from {0, 1}l to {0, 1}L. Let HF = (Kh,H) be a family of hash
functions with HashSpHF = {0, 1}l and KeySpHF = {0, 1}k (and Kh works by randomly selecting
and returning an element from {0, 1}k with uniform probability). Let ctr1 : {0, 1}n×(Z2o−{0}) →
{0, 1}l be an efficiently-computable injective function. Let extract : {0, 1}dk/Le·L → {0, 1}k be a
function that takes as input a dk/Le ·L-bit string and that outputs a k-bit string. We require that
extract always pick the same k bits from the input string and always outputs those bits in the exact
same order (e.g., extract returns the first k bits of its input).

Let SE [F,HF] = (Ke, E ,D) be an AEAD scheme built from function family F and hash
function HF and using the above functions extract and ctr1. We assume that AdSpSE[F,HF] ×
MsgSpSE[F,HF] ⊆ MsgSpHF and that all messages in MsgSpSE[F,HF] have length at most L · (2o−1).
Note that the former means that the message space of HF actually consists of pairs of strings. Let
NonceSpSE[F,HF] = {0, 1}n. Let SE [F,HF]’s component algorithms be defined as follows:

Algorithm Ke

f
$← F

d
$← Func(Zdk/Le, {0, 1}L) ; e

$← Func(HashSpHF , {0, 1}t) ; g
$← Func(NonceSpSE[F,HF], {0, 1}t)

Kh ← extract(d(0)‖d(1)‖ · · · ‖d(dk/Le − 1)) ; H ← HKh

Return 〈f,H, e, g〉

Algorithm EN,A
〈f,H,e,g〉(M)

σ ← CTR-MODEN
f (M)

τ ← g(N)⊕ e(H(A, σ))
Return σ‖τ

25

Algorithm DN,A
〈f,H,e,g〉(C)

If |C| < t then return INVALID
Parse C as σ‖τ // |τ | = t

If A 6∈ AdSpSE[F,HF] or σ 6∈ MsgSpSE[F,HF] then return INVALID

τ ′ ← g(N)⊕ e(H(A, σ))
If τ 6= τ ′ return INVALID

M ← CTR-MODEN
f (σ)

Return M

Algorithm CTR-MODEN
f (X)

α ← d|X|/Le
For i = 1 to α do

Zi ← f(ctr1(N, i))
Y ← (first |X| bits of Z1‖Z2‖ · · · ‖Zα)⊕X
Return Y

Proposition C.12 Let SE [F,HF] be as in Construction C.11 and let HF be an ε-au hash func-
tion. Then the advantage of any nonce-respecting auth adversary A in breaking the authenticity
of SE [F,HF] is upper bounded by

Advauth
SE[F,HF](A) ≤ ε + 2−t .

Proof of Proposition C.12: We first note that the steps d
$← Func(Zdk/Le, {0, 1}L) ; Kh ←

extract(d(0)‖d(1)‖ · · · ‖d(dk/Le − 1)) ; H ← HKh
is equivalent to the step H

$← HF .

Note that e(H(A, σ)) can be rewritten as H〈H,e〉(A, σ) where HF [t] = (Kh,H) is composed from
HF per Construction C.5.

Also note that g(N)⊕H〈H,e〉(A, σ) can be replaced with T N
〈H〈H,e〉,g〉(A, σ) where MA = (Km, T ,V)

is composed from HF [t] as per Construction C.7.

By Proposition C.10, given A we can construct an adversary BA against MA such that

Advauth
SE[F,HF](A) ≤ Advuf

MA(BA) .

By Proposition C.8 we know that

Advuf
MA(BA) ≤ ε′

where ε′ is ε + 2−t (the latter by Proposition C.6).

Integrity of SE [Func(l, L),HF]. We now consider the integrity of SE [Func(l, L),HF].

Proposition C.13 Let SE [Func(l, L),HF] be a AEAD scheme as in Construction C.1. Then for
any nonce-respecting auth adversary A against SE [Func(l, L),HF], we have that

Advauth
SE[Func(l,L),HF](A) ≤ ε + 2−t .

Proof of Proposition C.13: Let SE ′[Func(l, L),HF] be as in Construction C.11. Note that
SE [Func(l, L),HF] and SE ′[Func(l, L),HF] are identical except that the former uses only one ran-
dom function f and SE ′[Func(l, L),HF] uses four random functions (one to generate the hash
key, one to CTR-mode encrypt the message, one to encipher the output of the hash function,
and one to CTR-mode encrypt the output of the hash function). Furthermore, recall that, for

26

SE [Func(l, L),HF], there is never a collision in the input to f between the four different uses
of f (this was a requirement imposed on HF , ctr0, ctr1, and ctr2). Consequently, the fact that
SE ′[Func(l, L),HF] uses four random functions and SE [Func(l, L),HF] uses one is immaterial.
Hence the probability that A forges against SE [Func(l, L),HF] is the same as the probability that
it forges against SE ′[Func(l, L),HF]. I.e.,

Advauth
SE[Func(l,L),HF](A) = Advauth

SE ′[Func(l,L),HF](A) .

By Proposition C.12, we know the latter probability is upper bounded by ε + 2−t.

Proof of Lemma C.2. We now prove Lemma C.2.

Proof of Lemma C.2: Adversary BA runs A and replies to A’s oracle queries using its oracle f .
If A returns a valid forgery, BA returns 1, otherwise BA returns 0. This implies that

Advauth
SE[F,HF](A) = Pr

[
f

$← F : B
f(·)
A = 1

]

and

Advauth
SE[Func(l,L),HF](A) = Pr

[
f

$← Func(l, L) : B
f(·)
A = 1

]
.

Since

Advauth
SE[Func(l,L),HF](A) ≤ ε + 2−t

by Proposition C.13, we have

Advauth
SE[F,HF](A) = Advauth

SE[F,HF](A)−Advauth
SE[Func(l,L),HF](A) + Advauth

SE[Func(l,L),HF](A)

≤ Pr
[

f
$← F : B

f(·)
A = 1

]
− Pr

[
f

$← Func(l, L) : B
f(·)
A = 1

]

+ ε + 2−t

= Advprf
F (BA) + ε + 2−t

as desired.

C.6 Proof of Lemma C.3

Proof of Lemma C.3: Let BA be a prf adversary against F that uses adversary A and that has
oracle access to a function g : {0, 1}l → {0, 1}L. Adversary BA runs A and replies to A’s encryption
oracle queries using its own oracle g(·) for the function f in Construction C.1. Adversary BA returns
the same bit that A returns. Then

Pr
[
〈f, H〉 $← Ke : AE〈f,h〉(·,·,·) = 1

]
= Pr

[
g

$← F : B
g(·)
A = 1

]

since when BA is given a random instance of F it runs A exactly as if A was given the real encryption
oracle. Furthermore

Pr
[

A$(·,·,·) = 1
]

= Pr
[

g
$← Func(l, L) : B

g(·)
A = 1

]

since BA replies to all of A’s oracle queries with independently selected random strings. Conse-
quently

Advpriv
SE[F,HF](A) ≤ Advprf

F (BA)

as desired.

27

D Test vectors

Vector #1: CWC-AES-128
AES KEY: 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F
PLAINTEXT: 00 01 02 03 04 05 06 07
ASSOC DATA: <None>
NONCE: FF EE DD CC BB AA 99 88 77 66 55
--
HASH KEY: 34 AE 6A 6F E9 51 78 94 AC CC BB 9E BA E7 20 8C
HASH VALUE: 2B 9E AE BE 67 3F AE 03 6B 16 EA 31 DC A7 AE 6B
AES(HVAL): FC DC 06 4C CD CA FE E3 DE 7A A3 CF 5C 5D B9 7B
MAC CTR PT: 80 FF EE DD CC BB AA 99 88 77 66 55 00 00 00 00
AES(MCPT): AB 89 DD E9 C4 55 C1 FE BE 7E E7 58 82 D4 8A D2
CIPHERTEXT: 88 B8 DF 06 28 FD 51 CC 57 55 DB A5 09 9F 3F 1D

60 04 44 97 DE 89 33 A9

Vector #2: CWC-AES-192
AES KEY: 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

F0 E0 D0 C0 B0 A0 90 80
PLAINTEXT: 00 01 02 03 04 05 06 07
ASSOC DATA: <None>
NONCE: FF EE DD CC BB AA 99 88 77 66 55
--
HASH KEY: 4F A8 88 AF 06 83 60 0C AB 35 75 EF 0A E6 01 A5
HASH VALUE: 40 E6 24 83 4B 27 9A 7B 15 42 C7 FE 29 EB 29 A3
AES(HVAL): 69 CC 0E 3D 96 98 EB 75 1F 06 A5 90 9B C2 4F 5A
MAC CTR PT: 80 FF EE DD CC BB AA 99 88 77 66 55 00 00 00 00
AES(MCPT): C6 B6 F4 33 F9 12 39 4F 6A 8C B9 D3 F2 7B 0C 72
CIPHERTEXT: F0 DB A9 74 12 30 01 B0 AF 7A FA 0E 6F 8A D2 3A

75 8A 1C 43 69 B9 43 28

Vector #3: CWC-AES-256
AES KEY: 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

F0 E0 D0 C0 B0 A0 90 80 70 60 50 40 30 20 10 00
PLAINTEXT: 00 01 02 03 04 05 06 07
ASSOC DATA: <None>
NONCE: FF EE DD CC BB AA 99 88 77 66 55
--
HASH KEY: 35 8F 2B 0C FF E9 84 BE F9 EE EE 55 85 36 BC E5
HASH VALUE: 18 99 E1 A6 1E 6E 37 65 C6 3A 41 99 56 8C D1 BF
AES(HVAL): 1C 56 65 0A 22 BC B5 94 AC F3 CA 24 46 03 B8 5E
MAC CTR PT: 80 FF EE DD CC BB AA 99 88 77 66 55 00 00 00 00
AES(MCPT): 92 0A 3B 46 82 25 16 F1 5A A3 1B AE 8D EB 72 A0
CIPHERTEXT: 7B CF 73 BE 46 9C 46 0B 8E 5C 5E 4C A0 99 A3 65

F6 50 D1 8A CB E8 CA FE

Vector #4: CWC-AES-128
AES KEY: 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

28

PLAINTEXT: 00 01 02 03 04 05 06 07
ASSOC DATA: 54 68 69 73 20 69 73 20 61 20 70 6C 61 69 6E 74

65 78 74 20 68 65 61 64 65 72 2E 00
NONCE: FF EE DD CC BB AA 99 88 77 66 55
--
HASH KEY: 34 AE 6A 6F E9 51 78 94 AC CC BB 9E BA E7 20 8C
HASH VALUE: 2E A9 2A A5 28 B1 1C 08 1C C8 2F 24 9B E4 19 8D
AES(HVAL): EA 54 F8 3D 56 7F 53 05 88 B1 EA 96 36 79 CD AC
MAC CTR PT: 80 FF EE DD CC BB AA 99 88 77 66 55 00 00 00 00
AES(MCPT): AB 89 DD E9 C4 55 C1 FE BE 7E E7 58 82 D4 8A D2
CIPHERTEXT: 88 B8 DF 06 28 FD 51 CC 41 DD 25 D4 92 2A 92 FB

36 CF 0D CE B4 AD 47 7E

Vector #5: CWC-AES-192
AES KEY: 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

F0 E0 D0 C0 B0 A0 90 80
PLAINTEXT: 00 01 02 03 04 05 06 07
ASSOC DATA: 54 68 69 73 20 69 73 20 61 20 70 6C 61 69 6E 74

65 78 74 20 68 65 61 64 65 72 2E 00
NONCE: FF EE DD CC BB AA 99 88 77 66 55
--
HASH KEY: 4F A8 88 AF 06 83 60 0C AB 35 75 EF 0A E6 01 A5
HASH VALUE: 60 3F FC 24 71 64 2E D9 57 E1 B1 EA F2 F8 B0 34
AES(HVAL): D8 39 86 2A 33 5A 54 68 C8 16 DA 47 69 A2 10 EB
MAC CTR PT: 80 FF EE DD CC BB AA 99 88 77 66 55 00 00 00 00
AES(MCPT): C6 B6 F4 33 F9 12 39 4F 6A 8C B9 D3 F2 7B 0C 72
CIPHERTEXT: F0 DB A9 74 12 30 01 B0 1E 8F 72 19 CA 48 6D 27

A2 9A 63 94 9B D9 1C 99

Vector #6: CWC-AES-256
AES KEY: 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

F0 E0 D0 C0 B0 A0 90 80 70 60 50 40 30 20 10 00
PLAINTEXT: 00 01 02 03 04 05 06 07
ASSOC DATA: 54 68 69 73 20 69 73 20 61 20 70 6C 61 69 6E 74

65 78 74 20 68 65 61 64 65 72 2E 00
NONCE: FF EE DD CC BB AA 99 88 77 66 55
--
HASH KEY: 35 8F 2B 0C FF E9 84 BE F9 EE EE 55 85 36 BC E5
HASH VALUE: 0A C6 B1 39 57 7F 26 DA 94 16 42 E1 6D 73 EC B5
AES(HVAL): 4B A5 AD 1E 74 A2 C5 BE AB D0 DA 4D F4 29 83 0C
MAC CTR PT: 80 FF EE DD CC BB AA 99 88 77 66 55 00 00 00 00
AES(MCPT): 92 0A 3B 46 82 25 16 F1 5A A3 1B AE 8D EB 72 A0
CIPHERTEXT: 7B CF 73 BE 46 9C 46 0B D9 AF 96 58 F6 87 D3 4F

F1 73 C1 E3 79 C2 F1 AC

Vector #7: CWC-AES-128
AES KEY: 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F
PLAINTEXT: 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E

29

ASSOC DATA: <None>
NONCE: FF EE DD CC BB AA 99 88 77 66 55
--
HASH KEY: 34 AE 6A 6F E9 51 78 94 AC CC BB 9E BA E7 20 8C
HASH VALUE: 79 00 74 72 E1 C8 36 96 ED 7A B1 F9 03 6E 94 8B
AES(HVAL): 2B 0F 24 69 B1 2B BE 39 C9 40 67 BA F1 25 E2 5B
MAC CTR PT: 80 FF EE DD CC BB AA 99 88 77 66 55 00 00 00 00
AES(MCPT): AB 89 DD E9 C4 55 C1 FE BE 7E E7 58 82 D4 8A D2
CIPHERTEXT: 88 B8 DF 06 28 FD 51 CC 31 E6 6E 57 0B 0F 77 80

86 F9 80 75 7E 7F C7 77 3E 80 E2 73 F1 68 89

Vector #8: CWC-AES-192
AES KEY: 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

F0 E0 D0 C0 B0 A0 90 80
PLAINTEXT: 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E
ASSOC DATA: <None>
NONCE: FF EE DD CC BB AA 99 88 77 66 55
--
HASH KEY: 4F A8 88 AF 06 83 60 0C AB 35 75 EF 0A E6 01 A5
HASH VALUE: 2C 5E 3A A4 37 1C 27 D6 E8 6B 76 DC 3D 93 BC 87
AES(HVAL): 48 6E 9C E5 C3 16 3E A6 9C D4 D7 E2 7C 9D 92 D2
MAC CTR PT: 80 FF EE DD CC BB AA 99 88 77 66 55 00 00 00 00
AES(MCPT): C6 B6 F4 33 F9 12 39 4F 6A 8C B9 D3 F2 7B 0C 72
CIPHERTEXT: F0 DB A9 74 12 30 01 B0 E1 42 B7 58 87 C9 00 8E

D8 68 D6 3A 04 07 E9 F6 58 6E 31 8E E6 9E A0

Vector #9: CWC-AES-256
AES KEY: 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

F0 E0 D0 C0 B0 A0 90 80 70 60 50 40 30 20 10 00
PLAINTEXT: 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E
ASSOC DATA: <None>
NONCE: FF EE DD CC BB AA 99 88 77 66 55
--
HASH KEY: 35 8F 2B 0C FF E9 84 BE F9 EE EE 55 85 36 BC E5
HASH VALUE: 4A 70 29 CC 58 25 52 CB 75 AD C9 60 FF B3 F7 55
AES(HVAL): 2B 64 0E 02 CE 51 DE 22 B2 0F 2A 8D C4 23 CD C0
MAC CTR PT: 80 FF EE DD CC BB AA 99 88 77 66 55 00 00 00 00
AES(MCPT): 92 0A 3B 46 82 25 16 F1 5A A3 1B AE 8D EB 72 A0
CIPHERTEXT: 7B CF 73 BE 46 9C 46 0B 9B C6 2D DE 26 DD 47 B9

6E 35 44 4C 74 C8 D3 E8 AC 31 23 49 C8 BF 60

Vector #10: CWC-AES-128
AES KEY: 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F
PLAINTEXT: 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E
ASSOC DATA: 54 68 69 73 20 69 73 20 61 20 70 6C 61 69 6E 74

65 78 74 20 68 65 61 64 65 72 2E 00
NONCE: FF EE DD CC BB AA 99 88 77 66 55
--

30

HASH KEY: 34 AE 6A 6F E9 51 78 94 AC CC BB 9E BA E7 20 8C
HASH VALUE: 51 AE 9D 7E 86 BD E0 B2 AA 18 2C 91 87 0A 9C A5
AES(HVAL): DF 48 30 BD 1D DC E0 59 B1 C2 0B 29 01 4F 80 10
MAC CTR PT: 80 FF EE DD CC BB AA 99 88 77 66 55 00 00 00 00
AES(MCPT): AB 89 DD E9 C4 55 C1 FE BE 7E E7 58 82 D4 8A D2
CIPHERTEXT: 88 B8 DF 06 28 FD 51 CC 31 E6 6E 57 0B 0F 77 74

C1 ED 54 D9 89 21 A7 0F BC EC 71 83 9B 0A C2

Vector #11: CWC-AES-192
AES KEY: 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

F0 E0 D0 C0 B0 A0 90 80
PLAINTEXT: 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E
ASSOC DATA: 54 68 69 73 20 69 73 20 61 20 70 6C 61 69 6E 74

65 78 74 20 68 65 61 64 65 72 2E 00
NONCE: FF EE DD CC BB AA 99 88 77 66 55
--
HASH KEY: 4F A8 88 AF 06 83 60 0C AB 35 75 EF 0A E6 01 A5
HASH VALUE: 51 60 E7 81 DC 64 F9 CD 54 BA 02 40 A2 E8 EE 99
AES(HVAL): A0 30 58 13 22 B6 80 53 64 B0 3E 52 41 D2 2D 0A
MAC CTR PT: 80 FF EE DD CC BB AA 99 88 77 66 55 00 00 00 00
AES(MCPT): C6 B6 F4 33 F9 12 39 4F 6A 8C B9 D3 F2 7B 0C 72
CIPHERTEXT: F0 DB A9 74 12 30 01 B0 E1 42 B7 58 87 C9 00 66

86 AC 20 DB A4 B9 1C 0E 3C 87 81 B3 A9 21 78

Vector #12: CWC-AES-256
AES KEY: 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

F0 E0 D0 C0 B0 A0 90 80 70 60 50 40 30 20 10 00
PLAINTEXT: 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E
ASSOC DATA: 54 68 69 73 20 69 73 20 61 20 70 6C 61 69 6E 74

65 78 74 20 68 65 61 64 65 72 2E 00
NONCE: FF EE DD CC BB AA 99 88 77 66 55
--
HASH KEY: 35 8F 2B 0C FF E9 84 BE F9 EE EE 55 85 36 BC E5
HASH VALUE: 3F F5 0C 60 E6 01 7A 3C A1 BB B3 54 65 02 85 7C
AES(HVAL): 3E EF A2 E4 97 91 82 86 73 0C F6 E9 46 2C CA 15
MAC CTR PT: 80 FF EE DD CC BB AA 99 88 77 66 55 00 00 00 00
AES(MCPT): 92 0A 3B 46 82 25 16 F1 5A A3 1B AE 8D EB 72 A0
CIPHERTEXT: 7B CF 73 BE 46 9C 46 0B 9B C6 2D DE 26 DD 47 AC

E5 99 A2 15 B4 94 77 29 AF ED 47 CB C7 B8 B5

Vector #13: CWC-AES-128
AES KEY: 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F
PLAINTEXT: 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

80 81 82 83 84 85 86 87 88 89 8A 8B 8C 8D 8E 8F
ASSOC DATA: <None>
NONCE: FF EE DD CC BB AA 99 88 77 66 55
--
HASH KEY: 34 AE 6A 6F E9 51 78 94 AC CC BB 9E BA E7 20 8C

31

HASH VALUE: 58 D5 28 89 4F 1F 6A 52 A6 44 FA 69 65 C0 73 A6
AES(HVAL): A3 9E F3 6F 67 1F FA F8 71 0C 83 BB 49 A6 6E BC
MAC CTR PT: 80 FF EE DD CC BB AA 99 88 77 66 55 00 00 00 00
AES(MCPT): AB 89 DD E9 C4 55 C1 FE BE 7E E7 58 82 D4 8A D2
CIPHERTEXT: 88 B8 DF 06 28 FD 51 CC 31 E6 6E 57 0B 0F 77 0F

48 5B 82 64 6E CF B9 F9 A0 B0 75 4F D5 94 36 5A
08 17 2E 86 A3 4A 3B 06 CF 72 64 E3 CB 72 E4 6E

Vector #14: CWC-AES-192
AES KEY: 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

F0 E0 D0 C0 B0 A0 90 80
PLAINTEXT: 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

80 81 82 83 84 85 86 87 88 89 8A 8B 8C 8D 8E 8F
ASSOC DATA: <None>
NONCE: FF EE DD CC BB AA 99 88 77 66 55
--
HASH KEY: 4F A8 88 AF 06 83 60 0C AB 35 75 EF 0A E6 01 A5
HASH VALUE: 0D 0A D2 78 1E 8F E8 47 00 85 31 28 B1 E3 49 3A
AES(HVAL): 5A 05 AA 45 88 06 A9 C1 DC 5A F6 AF 6F 8F EC F6
MAC CTR PT: 80 FF EE DD CC BB AA 99 88 77 66 55 00 00 00 00
AES(MCPT): C6 B6 F4 33 F9 12 39 4F 6A 8C B9 D3 F2 7B 0C 72
CIPHERTEXT: F0 DB A9 74 12 30 01 B0 E1 42 B7 58 87 C9 00 A3

A4 C4 70 6D 40 41 F4 F9 58 E1 3F D0 D7 60 4D 1E
9C B3 5E 76 71 14 90 8E B6 D6 4F 7C 9D F4 E0 84

Vector #15: CWC-AES-256
AES KEY: 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

F0 E0 D0 C0 B0 A0 90 80 70 60 50 40 30 20 10 00
PLAINTEXT: 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

80 81 82 83 84 85 86 87 88 89 8A 8B 8C 8D 8E 8F
ASSOC DATA: <None>
NONCE: FF EE DD CC BB AA 99 88 77 66 55
--
HASH KEY: 35 8F 2B 0C FF E9 84 BE F9 EE EE 55 85 36 BC E5
HASH VALUE: 02 F2 DA E9 83 72 0E BC DC 77 89 3B 67 CB 3D B7
AES(HVAL): B7 F6 AE DE A3 95 35 FE 03 93 08 DF E0 C7 F1 78
MAC CTR PT: 80 FF EE DD CC BB AA 99 88 77 66 55 00 00 00 00
AES(MCPT): 92 0A 3B 46 82 25 16 F1 5A A3 1B AE 8D EB 72 A0
CIPHERTEXT: 7B CF 73 BE 46 9C 46 0B 9B C6 2D DE 26 DD 47 B5

D2 41 06 CA 5D EB 80 A7 B5 71 0A 38 A4 39 8D BA
25 FC 95 98 21 B0 23 0F 59 30 13 71 6D 2C 83 D8

Vector #16: CWC-AES-128
AES KEY: 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F
PLAINTEXT: 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

80 81 82 83 84 85 86 87 88 89 8A 8B 8C 8D 8E 8F
ASSOC DATA: 54 68 69 73 20 69 73 20 61 20 70 6C 61 69 6E 74

65 78 74 20 68 65 61 64 65 72 2E 00

32

NONCE: FF EE DD CC BB AA 99 88 77 66 55
--
HASH KEY: 34 AE 6A 6F E9 51 78 94 AC CC BB 9E BA E7 20 8C
HASH VALUE: 05 EE B6 CB DF A6 E5 B8 4C 65 DD F4 8C C8 25 23
AES(HVAL): 62 E5 23 FE 48 8F BC 14 E3 77 15 6C 4D 0F D0 8B
MAC CTR PT: 80 FF EE DD CC BB AA 99 88 77 66 55 00 00 00 00
AES(MCPT): AB 89 DD E9 C4 55 C1 FE BE 7E E7 58 82 D4 8A D2
CIPHERTEXT: 88 B8 DF 06 28 FD 51 CC 31 E6 6E 57 0B 0F 77 0F

48 5B 82 64 6E CF B9 F9 A0 B0 75 4F D5 94 36 5A
C9 6C FE 17 8C DA 7D EA 5D 09 F2 34 CF DB 5A 59

Vector #17: CWC-AES-192
AES KEY: 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

F0 E0 D0 C0 B0 A0 90 80
PLAINTEXT: 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

80 81 82 83 84 85 86 87 88 89 8A 8B 8C 8D 8E 8F
ASSOC DATA: 54 68 69 73 20 69 73 20 61 20 70 6C 61 69 6E 74

65 78 74 20 68 65 61 64 65 72 2E 00
NONCE: FF EE DD CC BB AA 99 88 77 66 55
--
HASH KEY: 4F A8 88 AF 06 83 60 0C AB 35 75 EF 0A E6 01 A5
HASH VALUE: 10 E1 48 E2 D0 68 39 EC C4 0A 6C A3 D6 8B 47 54
AES(HVAL): 23 0A 37 C3 48 7C 9F 76 05 B9 5D 1A 21 D5 D5 FD
MAC CTR PT: 80 FF EE DD CC BB AA 99 88 77 66 55 00 00 00 00
AES(MCPT): C6 B6 F4 33 F9 12 39 4F 6A 8C B9 D3 F2 7B 0C 72
CIPHERTEXT: F0 DB A9 74 12 30 01 B0 E1 42 B7 58 87 C9 00 A3

A4 C4 70 6D 40 41 F4 F9 58 E1 3F D0 D7 60 4D 1E
E5 BC C3 F0 B1 6E A6 39 6F 35 E4 C9 D3 AE D9 8F

Vector #18: CWC-AES-256
AES KEY: 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

F0 E0 D0 C0 B0 A0 90 80 70 60 50 40 30 20 10 00
PLAINTEXT: 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

80 81 82 83 84 85 86 87 88 89 8A 8B 8C 8D 8E 8F
ASSOC DATA: 54 68 69 73 20 69 73 20 61 20 70 6C 61 69 6E 74

65 78 74 20 68 65 61 64 65 72 2E 00
NONCE: FF EE DD CC BB AA 99 88 77 66 55
--
HASH KEY: 35 8F 2B 0C FF E9 84 BE F9 EE EE 55 85 36 BC E5
HASH VALUE: 09 4D C5 21 94 79 E0 58 4E E9 C1 2C 29 6A E3 A4
AES(HVAL): E9 69 49 47 09 07 62 3B A9 8D AD 51 9F D5 D1 F7
MAC CTR PT: 80 FF EE DD CC BB AA 99 88 77 66 55 00 00 00 00
AES(MCPT): 92 0A 3B 46 82 25 16 F1 5A A3 1B AE 8D EB 72 A0
CIPHERTEXT: 7B CF 73 BE 46 9C 46 0B 9B C6 2D DE 26 DD 47 B5

D2 41 06 CA 5D EB 80 A7 B5 71 0A 38 A4 39 8D BA
7B 63 72 01 8B 22 74 CA F3 2E B6 FF 12 3E A3 57

33

