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Abstract. Helix is a high-speed stream cipher with a built-in MAC function-
ality. On a Pentium II CPU it is about twice as fast as Rijndael or Twofish,
and comparable in speed to RC4. The overhead per encrypted/authenticated
message is low, making it suitable for small messages. It is efficient in both
hardware and software, and with some pre-computation can effectively switch
keys on a per-message basis without additional overhead.
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1 Introduction

Securing data in transmission is the most common real-life cryptographic prob-
lem. Basic security services require both encryption and authentication. This
is (almost) always done using a symmetric cipher—public-key systems are only
used to set up symmetric keys—and a Message Authentication Code (MAC).

The AES process provided a number of very good block cipher designs, as
well as a new block cipher standard. The cryptographic community learned a
lot during the selection process about the engineering criteria for a good cipher.
AES candidates were compared in performance and cost in many different
implementation settings. We learned more about the importance of fast re-
keying and tiny-memory implementations, the cost of S-boxes and circuit-
depth for hardware implementations, the slowness of multiplication on some
platforms, and other performance considerations.

The community also learned about the difference of cryptanalysis in theory
versus cryptanalysis in practice. Many block cipher modes restrict the types
of attack that can be performed on the underlying block cipher. Yet the gener-
ally accepted attack model for block ciphers is very liberal. Any method that
distinguishes the block cipher from a random permutation is considered an



attack. Each block cipher operation must protect against all types of attack.
The resulting over-engineering leads to inefficiencies.

Computer network properties like synchronization and error correction
have eliminated the traditional synchronization problems of stream-cipher
modes like OFB. Furthermore, stream ciphers have different implementation
properties that restrict the cryptanalyst. They only receive their inputs once
(a key and a nonce) and then produce a long stream of pseudo-random data. A
stream cipher can start with a strong cryptographic operation to thoroughly
mix the key and nonce into a state, and then use that state and a simpler
mixing operation to produce the key stream. If the attacker tries to manipu-
late the inputs to the cipher he encounters the strong cryptographic operation.
Alternatively he can analyse the key stream, but this is a static analysis only.
As far as we know, static attacks are much less powerful than dynamic attacks.
As there are fewer cryptographic requirements to fulfill, we believe that the
key stream generation function can be made significantly faster, per message
byte, than a block cipher can be. Given the suitability of steam ciphers for
many practical tasks and the potential for faster implementations, we believe
that stream ciphers are a fruitful area of research.

Additionally, a stream cipher is often implemented—and from a crypto-
graphic point of view, should always be implemented—together with a MAC.
Encryption and authentication go hand in hand, and significant vulnerabili-
ties can result if encryption is implemented without authentication. Outside
the cryptographic literature, not using a proper MAC is one of the commonly
encountered errors in stream cipher systems. A stream cipher with built-in
MAC is much more likely to be used correctly, because it provides a MAC
without the associated performance penalties.

Helix is an attempt to combine all these lessons.

2 An Overview of Helix

Helix is a combined stream cipher and MAC function, and directly provides the
authenticated encryption functionality. By incorporating the plaintext into the
stream cipher state Helix can provide the authentication functionality without
extra costs [Gol00].

Helix’s design strength is 128 bits, which means that we expect that no
attack on the cipher exists that requires fewer than 2'?® Helix block function
evaluations to be carried out. Helix can process data in less than 7 clock cycles
per byte on a Pentium II CPU, more than twice as fast as AES.

Helix uses a 256-bit key and a 128-bit nonce. The key is secret, and the
nonce is typically public knowledge. Helix is optimised for 32-bit platforms; all
operations are on 32-bit words. The only operations used are addition modulo
232 exclusive or, and rotation by fixed numbers of bits. The design philosophy
of Helix can be summarized as “many simple rounds.”
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Fig. 1. A single round of Helix

Helix has a state that consists of 5 words of 32 bits each. (This is the
maximum state that can fit in the registers of the current Intel CPUs.) A single
round of Helix consists of adding (or XORing) one state word into the next,
and rotating the first word. This is shown in Figure 1 where the state words
are shown as vertical lines. Multiple rounds are applied in a cyclical pattern
to the state. The horizontal lines of the rounds wind themselves in helical
fashion through the five state words. Twenty rounds make up one block (see
Figure 2). Helix actually uses two intertwined helices; a single block contains
two full turns of each of the helices.

During each block several other activities occur. During block ¢ one word
of key stream is generated (.5;), two words of key material are added (X, o and
Xi.1), and one word of plaintext is added (F;). The output state of one block
is used as input to the next, so the computations shown in figure 2 are all that
is required to process 4 bytes of the message. As with any stream cipher, the
ciphertext is created by XORing the plaintext with the key stream (not shown
in the figure).

At the start of an encryption a starting state is derived from the key and
nonce. The key words X; ; depend on the key, the length of the input key, the
nonce, and the block number i. State guessing attacks are made more difficult
by adding key material at double the rate at which key stream material is
extracted. At the end of the message some extra processing is done, after
which a 128-bit MAC tag is produced to authenticate the message.

3 Definition of Helix

The Helix encryption function takes as input a variable length key U of up
to 32 bytes, a 16-byte nonce N, and a plaintext P. It produces a ciphertext
message and a tag that provides authentication. The decryption function takes
the key, nonce, ciphertext, and tag, and produces either the plaintext message
or an error if the authentication failed.

3.1 Preliminaries

Helix operates on 32-bit words while the inputs and outputs are a sequences of
bytes. In all situations Helix uses the least-significant-byte first convention. A
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sequence of bytes x; is identified with a sequence of words X; by the relations
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These two equations are complimentary and show the conversion both ways.

Let ¢(x) denote the length of a string of bytes x. The input key U consists
of a sequence of bytes wug,u1,. .., uypy—1 with 0 < £(U) < 32. The key is
processed through the key mixing function, defined in section 3.7, to produce
the working key which consists of 8 words Ky, ..., K7.

The nonce N consists of 16 bytes, interpreted as 4 words Ny, ..., N3.

The plaintext P and ciphertext C' are both sequences of bytes of the same
length, with the restriction that 0 < ¢(P) < 264 Both are manipulated as
a sequence of words, P; and C; respectively. The last word of the plaintext
and ciphertext might be only partially used. The ‘extra’ plaintext bytes in the
last word are taken to be zero. The ‘extra’ ciphertext bytes are irrelevant and
never used. Note that the cipher is specified for zero-length plaintexts; in this
case, only a MAC is generated.

3.2 A Block

Helix consists of a sequence of blocks. The blocks are numbered sequentially
which assigns each block a unique number i. At the start of block i the state
consists of 5 words: Z(i)7 ceey ZAEi); at the end of the block the state consists of
Zé”l) A fﬂ) which form the input to the next block with number ¢ + 1.
Block 7 also uses as input two key words X; g and X; 1, and the plaintext word
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P;. It produces one word of key stream S; := Zéz); the ciphertext words are
defined by C; := P; & 5;.

Instead of repeating the block definition in formulas, we define the block
function using figure 2. All values are 32-bit words, exclusive or is denoted by
@, addition modulo 23? is denoted by H, and rotation by <.

In the remainder of this paper, the terms “block,” and “block function”
are used interchangeably.

3.3 Key Words for Each Block

The expanded key words are derived from the working key Kj,..., K7, the
nonce Ny, ..., N3, the input key length ¢(U), and the block number i. We first
extend the nonce to 8 words by defining Ny, := (k mod 4) — Np_4 (mod 232)



for k =4,...,7. The key words for block ¢ are then defined by

Xi0 = Kimods
Xin = K(i14) mod 8 + Nimod s + X!/ +i+8
|(i+8)/23!] ifimod4 =3
X[ :=144-4U) if i mod 4 = 1

0 otherwise

where all additions are taken modulo 232. Note that XZ{ encodes bits 31 to 62
of the value 7 + 8; this is not the same as the upper 32 bits of 7 + 8.

3.4 Initialisation

A Helix encryption is started by setting
Zi(_s): i+3@®N; fori=0,...,3
72578 = Ky

Eight blocks are then applied, using block number -8 to -1. For these block the

plaintext word P; is defined to be zero, and the generated key stream words
are discarded.

3.5 Encryption

After the initialisation the plaintext is encrypted. Let k := [({(P) + 3)/4]
be the number of words in the plaintext. The encryption consists of k£ blocks
numbered 0 to k£ — 1. Each block generates one word of key stream, which is
used to encrypt one word of the plaintext. Depending on ¢(P) mod 4, between
1 and 4 of the bytes of the last key stream word are used.

3.6 Computing the MAC

Just after the block that encrypted the last plaintext byte, one of the state
words is modified. The state word Z(()k) is XORed with the value 0x912d94f1.!
Using this modified state, eight blocks, numbered k, ...,k + 7 are applied for
post-mixing. For these blocks the generated key stream is discarded and the
plaintext word P; is defined as ¢(P) mod 4. After the post-mixing, four more
blocks, numbered k£ + 8, ...,k + 11, are applied. The key stream generated by
these four blocks form the tag. The plaintext input remains the same as in the
previous eight blocks.

! This constant is constructed by taking the 6 least significant bits of each of the ASCII
characters of the string “Helix”, and putting a single one bit both before and after it.



3.7 Key mixing

The key mixing converts a variable-length input key U to the fixed-length
working key, K.

First, the Helix block function is used to create a round function F' that
maps 128 bits to 128 bits. The four input words to F' are extended with a
single word with value ¢(U) + 64 to form a 5-word state. The block function
is then applied with zero key inputs and zero plaintext input. The first four
state words of the resulting state form the result of F.

The input key U is first extended with 32 — ¢(U) zero bytes. The 32 key
bytes are converted to 8 words K3so, ..., K39. Further key words are defined
by the equation

(Kaiy- -, Kaip3) = F(Kaigar - - Kaigr)) © (Kaizs, - - Kair11)

for : = 7,...,0. The words Kjy,..., K7 form the working key of the cipher.
(This recursion defines a Feistel-type cipher on 256-bit blocks.)

3.8 Decryption
Decryption is almost identical to encryption. The only differences are:

— The key stream generated at the start of each block is used to decrypt the
ciphertext and produce the plaintext word that is required half a block
later. Care has to be taken with the last plaintext word to ensure that
unused plaintext bytes are taken to be zero and not filled with the extra
key stream bytes.

— Once the tag has been generated it is compared to the tag provided. If
the two values are not identical, all generated data (i.e. the key stream,
plaintext, and tag) is destroyed.

4 Implementation

Compared to other ciphers Helix is relatively easy to implement in software.
If 32-bit addition, exclusive or, and rotation functions are available, all the
functions are easily implemented. Helix is also fast. A single round takes only
a single clock cycle to compute on a Pentium II CPU, because the super-scalar
architecture can perform an addition or XOR simultaneously with a 32-bit ro-
tation. A block of Helix takes 20 cycles plus some overhead for the handling of
the plaintext, key stream, and ciphertext. Our un-optimised assembly imple-
mentation requires less than 7 clock cycles per byte. This compares to about 16
clock cycles per byte for the best AES implementation on the same platform.?

2 This is a somewhat unfair comparison. The AES implementation does not actually read
the data from memory, encrypt it, and write it back, which would slow it down further.
What is more, most block cipher modes only provide encryption or authentication so two
passes over the message are required. The alternative is to use one of the new authenticated
encryption modes, such as [Jut01], but they are all patented and require a license.



Most implementation flexibility is in the way the key schedule is computed.
The key mixing only needs to be done once for each key value. The recurrence
relation used in the key mixing implements a Feistel cipher, so the key mixing
can be done in-place. The X; 1 key words can mostly pre-computed with only
the block number being added every block. Implementations that limit the
plaintext size to 232 bytes can ignore the upper bits of the block number in
the definition of X/ because these bits will always be zero.

Helix is also fast in hardware. The rotations cost no time, although they
do consume routing resources in chip layouts. The critical path through the
block function consists of 6 additions and 5 XORs. As the critical path contains
no rotations, a certain amount of ripple of the adders can be overlapped, with
the lower bits being produced and used before the upper bits are available.
A more detailed analysis of this overlapping is required for any high-speed
implementation. A conservative estimate for a relatively low-cost ASIC layout
is 2.5 ns per 32-bit adder and 0.5 ns per XOR , which adds up to 17.5 ns/block.
This translates to more than 200 MByte per second, or just under 2 Gbit per
second.

5 Use

One of the dangers of a steam cipher is that the key-stream will be re-used. To
avoid this problem Helix imposes a few restrictions on the sender and receiver:

— The sender must ensure that each (K,N) pair is used at most once to
encrypt a message. A single sender must use a new, unique, nonce for each
message. Multiple senders that want to use the same key have to ensure
that they never choose the same nonce, for example by dividing the nonce
space between them. If two different messages are ever encrypted with the
same (K,N) pair, Helix loses its security properties.

— The receiver may not release the plaintext P, or the key stream, until it has
verified the tag successfully. In most situations this requires the receiver
to buffer the entire plaintext before it is released.

These requirements seem restrictive, but they are in fact implicitly required
by all stream ciphers (e.g. RC4) and many block cipher modes (e.g. OCB
[RBBKO01b,RBBKO01la] and CCM [WHF])

Although Helix allows the use of short keys, we strongly recommend the
use of keys of at least 128 bits, preferably 256 bits.

6 Other modes of use

So far we have described Helix as providing both encryption and authentica-
tion. Helix can be used in other modes as well. For any particular key Helix
should be used in only one of these modes. Using several modes with a single
key can lead to a loss of security.



6.1 Unencrypted Headers

In packet environments it is often desirable to authenticate the packet header
without encrypting it. From the encryption/authentication layer this looks like
an additional string of data that is to be authenticated but not encrypted. We
define a standard method of handling such additional data without modifying
the basic Helix computations.

First a length field is formed which is eight bytes long and encodes the
length of the additional data in least-significant-byte first format. The addi-
tional data is padded with 0-3 zero bytes until the length is a multiple of
four. The concatenation of the length field, the padded additional data, and
the message data are then processed as a normal message through Helix. The
ciphertext bytes corresponding to the length field and the padded additional
data are discarded, leaving only the ciphertext of the message data and the
tag.

6.2 Pure stream cipher & PRNG

Helix can be use as a pure stream cipher by ignoring the MAC computations
at the end. And like any stream cipher, Helix is a cryptographically strong
pseudo-random number generator. For every (key,nonce) input it produces a
stream of pseudo-random data. This makes Helix suitable for use as a PRNG.

6.3 MAC with Nonce

Helix can also be used a pure MAC function. The data to be authenticated is
encrypted, but the ciphertext is discarded. The receiver similarly discards the
key stream and just feeds the plaintext to the Helix rounds. In this mode Helix
is significantly faster than, for example, HMAC-SHA1, but it does require a
unique nonce for each message. Unfortunately, it is insecure to use Helix with
a fixed nonce value, due to collisions on the 160-bit state.

7 Design rationale

Although the design strength of Helix is 128 bits, we use 256-bit keys. This
avoids a very general class of attacks that exploits collisions on the key value.
For flexibility Helix also allows shorter keys to be used, as there are many
practical situations in which fewer than 256 bits of key material are available.

The small set of elementary operations that Helix uses makes it efficient
on a large number of platforms. The absence of tables makes Helix efficient in
hardware as well.

Most ciphers use lookup tables to provide the necessary nonlinearity. In
Helix the nonlinearity comes from the mixing of XORs with additions. Neither
of these operations can be approximated well within the group of the other.



There are some good approximations, but on average the approximations are
quite bad [LMO1].

The diffusion in Helix is not terribly fast, but it is unstoppable. As the
attacker has very little control over the state, it is not possible to limit the
diffusion of differences. In those areas where dynamic attacks are possible we
use a sequence of 8 blocks to ensure thorough mixing of the state words.

The key mixing is an un-keyed bijective function. The purpose is to spread
the available entropy over all key words. If, for example, the key is provided
by a SHA-1 computation then only 5 words of key material are provided. The
key mixing ensures that all 8 key words depend on the key material. Using a
bijective mixing function ensures that no two 256-bit input keys lead to the
same working key values. The use of the input key length in X’ guarantees
that even keys that lead to the same working key (each short key leads to a
working key that is also produced by a 256-bit key) do not lead to equivalent
Helix encryptions.

7.1 Key schedule

The X; o values simply cycle through the key words. The X; ; values depend on
the same key words in anti-phase, the extended nonce words, the block number,
and the input key length. This key schedule has a number of properties. All 8
key words and and all 4 nonce words affect the state every 4 blocks.

The key schedule also ensures that different (K, N) pairs produce different
block key sequences. Even stronger: no sequence of 17 key words ever occurs
twice across all keys, all nonce values, and all positions in the encryption
computation.

To demonstrate this we look at the sequence Y := X|;/2| j mod 2- This is
the sequence of key words in the order they are used. Given just part of the
sequence Y}, without the proper index values j, we can recover the key, nonce,
and block number. (When the plaintext word is zero the first half of the block
function is identical to the second half of the block function, so it makes sense
to look at the sequence Y; and allow half-block offsets.)

If Y; = Y16 then j is even, otherwise j is odd. This allows us to split the
Y values back into an X; o and X; 1 sequence.

Now consider

R = X1 — X0+ Xiya1 — Xiyapo
= imod8+N(i+4)mod8+XZ{+XZ{+4+22'+20
= (imod 4)+2i +20+ X + X/ 4

all modulo 232, We first look at R; mod 4. The X’ terms can only have a
nonzero contribution if ¢ mod 4 = 3, so 3 out of 4 consecutive times we get
just ((¢ mod 4) 4+ 2¢) mod 4 = 3i mod 4, which gives us i mod 4. Looking at
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the full R; for an ¢ with i mod 4 = 0 gives us i mod 23'. The sum X/ + X/ ,
from the case i mod 4 = 3 gives us the upper bits of i. This recovers® the block
number, 1.

Given 7 mod 8 we can recover the working key from the X; o’s. Knowledge
of 7 and the key words allows us to compute the key length and the nonce from
the X; 1’s, as well as check the redundancy introduced by the nonce expansion
to 8 words.

We have not investigated whether it is possible to recover the key, nonce,
and block number from fewer than 17 consecutive key words. A simple counting
argument shows that at least 14 are required. This remains an open problem.

7.2 Choice of Rotation Counts

The strength of Helix is depends on the rotation counts chosen for the Helix
block function. The rotations provide the diffusion between the various bit
positions in the state words. During the design process we examined the impact
of various choices of rotation counts both in terms of attempts to cryptanalyze
the cipher, and also in terms of their impact on statistical tests of the block
function.

To analyse the diffusion properties of a set of rotation counts, consider a
variant of the block function with all the additions are changed to XORs. (This
is equivalent to ignoring the carries in the additions.) In this variant we can
track which output bits are affected by which input bits. For this analysis we
consider an output bit affected if its computational path has a dependency
on the input bit at any one point, even if the output bit in our linearised
block function is not changed due to several dependencies canceling out. This
seems to be the most suitable way to analyse diffusion and is related to the
independence assumption in differential and linear cryptanalysis.

A set of rotation counts can, at best, ensure that changing a single state
input bit affects at least 21 bits of the output. There are a large number (over
6 000) of such rotation count sets.

We discarded all rotation count sets that contained a rotation count of
0, 1, 8, 16, 24, or 31. Rotation by a multiple of 8 has a relatively low order,
and rotation by 1 or 31 bit positions provides diffusion between adjacent bits,
something the carry bits already do. This reduced the set of candidate rotation
counts to 86.

Using the full block function we ran statistical tests on many candidate
rotation count sets to see how these values would affect the ability of the block
function to diffuse changes and mix together separate information within the
160-bit internal state. Among our tests, we considered:

3 This isn’t absolutely perfect. We don’t recover the 62'nd bit of i + 8, but this bit will only

be set during the very last few blocks of a message very close to 254 bytes long. This does
not lead to a weakness.

11



1. The number of rounds required before all output bits passed binomial tests
given a fixed input difference in the state.

2. The number of rounds required before the output states’ Hamming weight
distribution passed a x? test given low- and high-Hamming weight input
states.

3. The number of round required before the output states’ differences Ham-
ming weight distribution passed a x? test given low- and high-Hamming
weight differences in the input state [KRRR9S].

4. Low- and high-Hamming weight higher-order differences, and the num-
ber of rounds required before the resulting output differences’ Hamming
weights passed a x? test.

The surprising result was that most rotation counts did pretty well. Our
carefully-selected rotation count sets were slightly better than random ones,
but only by a small margin. Degenerate rotation counts (all rotation counts
equal, or most rotation counts zero) led to much worse test results.

At the end of our analysis, we selected more or less at random from the
remaining candidates. Based on our limited analysis, the specific choice of
rotation counts does not have a strong impact on the security of Helix, with
only the caveat that we had to avoid some obvious degenerate cases.

8 Conclusions and intellectual property statement

Most applications that require symmetric cryptography actually require both
encryption and authentication. We believe that the most efficient way to
achieve this combined goal is to design cryptographic primitives specifically
for the task. Towards this end, we present such a new cryptographic primitive,
called Helix. We hope that Helix and this paper will spur additional research
in authenticated encryption stream ciphers. As with any experimental design,
we remark that Helix should not be used until it has received additional crypt-
analysis.

Finally, we hereby explicitly release any intellectual property rights to Helix
into the public domain. Furthermore, we are not aware of any patent or patent
application anywhere in the world that cover Helix.
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A Test vectors

The authors will maintain a web site at http://www.macfergus.com/helix
with news, example code, and test vectors. We give some simple test vec-
tors here. (The 8-word working key is given as a sequence of 32 bytes, least
significant byte first.)

Initial Key: <empty string>

Nonce:

00 00 00 00 00 00 00 00 00 00 00O 00 00 00 00 00

Working Key: a9 3b 6e 32 bc 23 4f 6¢ 32 6¢c Of 82 74 ff a2 41

e3 da 57 7d ef 7c 1b 64 af 78 7c 38 dc ef e3 de

Plaintext: 00 00 00 00 00 00 00 00 00 00
Ciphertext: 70 44 c9 be 48 ae 89 22 66 e4
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MAC: 65 be 7a 60 fd 3b 8a 5e 31 61 80 80 56 32 d8 10

Initial Key: 00 00 00 00 01 00 00 00 02 00 00 00 03 00 00 0O
04 00 00 00 05 00 00 00 06 00 00 00 07 00 0O 0O
Nonce: 00 00 00 00 01 00 00 00 02 00 00 00 03 00 00 00
Working Key: 6e e9 a7 6¢ bd Ob f6 20 a6 d9 b7 59 49 d3 39 95
04 £8 4a d6 83 12 f9 06 ed dl1 a6 98 9e c8 9d 45
Plaintext: 00 00 00 00 01 00 00 00 02 00 OO0 00 03 00 00 00
04 00 00 00 05 00 00 00 06 00 00 00 07 00 0O 0O
Ciphertext: 7a 72 a7 5b 62 50 38 Ob 69 75 1c d1 28 30 8d 9a
Oc 74 46 a3 bf 3f 99 e6 65 56 b9 cl1 18 ca 7d 87
MAC: e4 e5 49 01 c5 Ob 34 e7 80 cO 9¢c 39 bl 09 al 17

Initial Key: 48 65 6¢c 69 78

Nonce: 30 31 32 33 34 35 36 37 38 39 61 62 63 64 65 66

Working Key: 6¢c le d7 7a cb a3 al d2 8f 1c d6 20 6d f1 15 da
f4 03 28 4a 73 9b b6 9f 35 7a 85 f5 51 32 11 39

Plaintext: 48 65 6¢ 6¢c 6f 2c 20 77 6f 72 6¢c 64 21

Ciphertext: 6c 4c 27 b9 7a 82 a0 cb5 80 2c 23 £f2 0d

MAC: 6c 82 dl aa 3b 90 5f 12 f1 44 3f a7 f6 al 01 d2

B Cryptanalysis

Helix is intended to provide everything needed for an encrypted and authenti-
cated communications session. A successful attack on Helix will have occurred
when an attacker can either predict a keysteam bit he hasn’t seen with a prob-
ability slightly higher than 50%, or when he can create a forged or altered mes-
sage that is accepted by the recipient with a probability substantially higher
than 27128, To be meaningful given the 128-bit security bound of Helix, any
such attack must require fewer than 2'2® block function evaluations for all
participants combined. Also, any such attack must obey the security require-
ments placed on Helix’ operations, e.g., no reuse of nonces, MACs checked
before decrypted messages released, etc.

In this section, we consider a number of possible ways to attack Helix.
Although our time and resources have been limited, we have not yet discovered
any workable method of attacking Helix.

B.1 Static analysis

A static analysis just takes the key stream and tries to reconstruct the state
and key. Several properties make this type of attack difficult. Even if the
whole state is known, any four consecutive key stream words are fully ran-
dom. This is because each X; 1 key value affects S; 11 in a bijective manner, so
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for any given state and any sequence of X; o words there is a bijective map-
ping from K(;44) mod 8- - s K(i+7) moa 8 10 Sit1,. .., Sita. A similar argument
applies when the block function is computed backwards. Any attempt to re-
cover the key, even if the state is known at a single point, must therefore span
at least 4 blocks and 5 key stream words. Of course, there is no reasonable
way of finding the state. At the beginning of each block there is 128 bits of un-
known state. (The 32 bits of the key stream word are known to the attacker.)
As the design strength is 128 bits, an attacker cannot afford to guess the entire
state. A partially guessed state does not help much as key material is added
at twice the rate that key stream is produced.

B.2 Period length

Helix’ internal state is updated continuously by the plaintext it is encrypt-
ing. So long as the plaintext is not repeating, the keystream should have an
arbitrarily long period.

With a fixed or repeating plaintext, the Helix state does not cycle either.
In section 7.1 we showed that any 17 consecutive key words used as inputs to
the block function are unique. The nonrepeating key word values prevent the
state from ever falling into a cycle.

B.3 State collisions

The 160-bit state of Helix can be expected to collide for some (key,nonce)
pairs. However, this doesn’t lead to a weakness, because the state collision is
guaranteed not to survive long enough to yield an attack, or even allow reliable
detection by the attacker.

To detect a collision on 160 bit values requires 160-bits of information
about each state. But in the four block computations required to generate 160
bits of key stream the whole key, nonce, and block number get added to the
state. Starting at the same state these inputs will introduce a difference in the

key stream, and make it impossible to detect the state collision®.

B.4 Weak keys

Helix makes constant use of the words of the working key. An all-zero working
key intuitively seems like a bad thing (it effectively omits a few operations from
the block function), but we have not discovered any possible attack based on
it. The all-zero working key is only generated by a single key of 32 bytes
length. Shorter key length cannot generate the all-zero working key. The all-
zero working key does not seem to have any practical security relevance, and
there is no reason to treat this key differently from any other key.

* State collisions where the key and nonce are the same and the block number differs only
in the upper 30 bits also do not lead to an attack.
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B.5 Adaptive chosen plaintext attacks

Because the plaintext affects the state, Helix allows an attack model that
traditional stream ciphers prevent: An attacker can request the encryption of
a plaintext block under an already established (key,nonce) pair, and can use
the resulting ciphertext to determine what plaintext to request next.

We have found no way to use such an attack against Helix. As with the
discussion of static analysis, above, the large unknown and untouchable state,
and the continual mixing of key material into that state, appear to defeat
attempts to use control over one input of the block function to control other
parts of its state. Additionally, the usage restrictions on Helix do not allow
reuse of nonces, which ensures that the state is always a “moving target.”

B.6 Chosen input differential attacks

One powerful mode of attack is for the attacker to make small changes in the
input values and look at how the changes propagate through the cipher.

In Helix, this can be done only with the key or the nonce. In each case, the
block function is applied multiple times to the input. In Helix all the places
where such attacks are possible we have eight consecutive blocks without any
output. A change to the nonce, such as is considered in [DGV93], will be
thoroughly mixed into the state by the time the first key stream word is
generated. Similarly, a change to the last plaintext byte is thoroughly mixed
into the state before the first MAC tag word is generated. A differential attack
would have to use a differential through 8 blocks, or 160 rounds of Helix. A
search found no useful differentials for 8 blocks of Helix, nor useful higher-order
differentials.

B.7 Algebraic attacks over GF(2)

The only reasonable line of attack we have found so far is to apply equation-
solving techniques. In 2002, XSL was used to analyse block ciphers [CP02].
An attack on Serpent seems to be marginally better than brute force, another
attack on the AES is slower than brute force. Similar techniques have been
used to successfully analyse stream ciphers [Cou02,Arm02].

We have tried to analyse Helix by algebraic techniques. Under an opti-
mistic assumption (from the attacker’s point of view) on the number of linear-
independent equations, the best attack we could think of requires solving an
(overdefined) system of ~ 2497 linear equations in N = 249! binary vari-
ables. Gaussian elimination needs N3 ~ 21473 steps, and falls well outside our
security bound.

[CP02] suggest to use another algorithm, which takes O(N?%37) steps, but
with an apparently huge proportional constant. In our case N2376 ~ 21167 5o
even a relatively small proportional constant pushes this beyond our security
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bound.? Our analysis has not resulted in an attack that requires less work
than 2'28 block function evaluations, and we conjecture that no such attack
exists.

C Single Helix

Most ciphers are analysed by first creating simplified versions and attacking
those. Apart from the obvious methods of simplifying Helix we present Single
Helix as an object for study. Single Helix uses only one helix instead of two
interleaved ones, and has significantly slower diffusion in the backwards direc-
tion. A block of single Helix is shown in Figure 3. This uses an alternative
configuration where the key and plaintext inputs are added directly to the
state words.

5 Due to space constraints, we left out a more detailed description of the attack.
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Fig. 3. A round of Single-Helix
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