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Abstract. This talk is a brief survey of recent results and ideas concern-
ing the problem of finding a small root of a univariate polynomial mod
N, and the companion problem of finding a small solution to a bivariate
equation over Z. We start with the lattice-based approach from [2J3], and
speculate on directions for improvement.
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1 Univariate Modular Polynomial

Our basic setup is a univariate polynomial p(x) of small degree d, and a modulus
N of unknown factorization. For a suitable bound B, we wish to find all integers
xo such that |xo| < B and p(z¢) = 0 mod N. (Call such integers “small roots”.)
Our efforts will be concentrated in increasing the bound B.

An early paper in this line of research was [2], but the author was work-
ing with an unnatural space. Here we follow the more natural presentation of
Howgrave-Graham [§g].

For simplicity we assume p is monic, although we really only need that the
ged of its coefficients be relatively prime to N; see Remark 1 below. We set

p(x) = x? +pd71$d71 + .- +p2$2 + p1x + po.

The first approach is essentially due to Hastad [[7]: Consider first the collection
C1 of polynomials:

Cy ={z',0 <i<d}U{p(x)/N}.

For each polynomial ¢ € C, for each small root xg, we see that g(xg) is an
integer. The same will be true of any integer linear combination of polynomials
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So it makes sense to consider the lattice of dimension d + 1 generated by the
columns of the matrix

100 --- 0 0 po/N
0BO--- 0 0 p1B/N

00B2--- 0 0  pB%N
I :

00 0 --- B2 0 pygoB¥"2/N
000 --- 0 B%lp; BN
100 0 0 0 1BY/N

Each column corresponds to a polynomial ¢(z) in C7, expressed in the basis
{z'/B"}. So row i corresponds to the coefficient of z' in ¢(z), multiplied by a
scaling factor B°.

Now apply lattice basis reduction [13]. Because L; has dimension d 4+ 1 and
determinant N~'B¥(4+1)/2 e will find a nonzero vector v of length

Iv| < e1(d) (det L)Y Y = ¢ () N~V @+ pd/2,

where ¢ (d) is a constant depending only on the dimension.

We interpret the vector v = [vg, v1 B, v2 B2, ..., v4B% as a polynomial v(r) =
> vzt again expressing v(x) in the basis {z¢/B'}.

Suppose we know that

1

e1(d) (det L)/ < ———,

or equivalently,
B < ¢ (d)N?/1a0+ ),

where ¢} (d) is another constant depending only on d. Then we also know that
|v] < 1/(d + 1), and each entry of v satisfies |v; BY| < 1/(d + 1). Evaluate the
polynomial v(z) at a small root zo. On one hand

[v(2o)| < Z lvizh| < Z lv; BY| < Z dL—i—l =1,

so that |v(zg)| < 1. On the other hand, v(x¢) is an integer. These two conditions
together imply that v(xzg) =0 € Q.

In summary: We have computed a polynomial v(x) in Q[z] whose roots in-
clude all “small roots” xg, that is, all those z¢ with |zo| < B = ¢} (d)N?/d(d+1)
and with p(z¢) = 0 mod N.

Incidentally, we have also bounded the number of small roots, by dim L;.
Remark 1: If p(z) is not monic, but its content is relatively prime to N, we
augment C; with x¢, that is, we replace C; by

Cp ={2",0<i<d}U{p(x)/N}.

One checks that the corresponding lattice L} still has dimension d + 1 and
determinant N1 BHd+1)/2 and the rest of the argument goes through.
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Remark 2: Using the Cauchy-Schwarz inequality, one can replace the condition

1

c1(d) (det Ly) Y @Y < 1

by the weaker condition
1
Vd+1

Remark 3: Sometimes we scale thing differently, using C} = {Nz%,0 < i <
d} U{p(z)} and using the fact that for each ¢ € C{ and small root z¢ we have
that g(zq) is a multiple of N. The two approaches are numerically equivalent,
the only difference being esthetics.

c1(d) (det Ly) Y @Y <

2 Improvements in the Exponent

The first improvement comes when we consider a larger collection of polynomials.
Define 4 4
Cy={2",0<i<d}U{(px)/N)z*,0<i<d}.

The corresponding lattice Ly has dimension 2d and determinant N —¢B24(
The enabling condition becomes

2d-1)/2

1/(2d) 1
es(d) (N—dB2d(2d—1)/2) < =
or equivalently

B < ¢y(d)NY/ (241,

The exponent of N has improved from 2/d(d + 1) to 1/(2d — 1). The improve-
ment came about because the dimension of L increased, while its determinant
decreased.

We obtain a second improvement by considering higher powers of the mod-
ulus N, along with a still larger collection of polynomials. Fix a positive integer
h. Define

C3 = {(p(z)/N)72",0 <i<d,0<j<h}.

For each polynomial g(x) € Cs, for each small root zg, we see that g(zg) is an
integer. Again the same holds for any integer linear combination of polynomials
in C3.

The corresponding lattice Ls has dimension dh and determinant

N—dh(h=1)/2 g(dh)(dh—1)/2

(The powers of N on the diagonal consist of d each of N, N=1 . . N—(h=1)
while the powers of B are B?, B!, ... B¥~1)
Our enabling equation is now:

[Nfdh(hf1)/ZB(dh)(dh71)/2 1/(dh) < ¢s(d, h),
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which will be satisfied if
B < ¢y(d, h)N(h=1/(dh=1)

The exponent of N, namely %, differs from % by % < ﬁ; this
difference can be made arbitrarily small by choosing h larger, at the expense of

computational complexity. Put another way, we achieve a bound
B = cj(d,e)N/ D~

by choosing h = O (i) The running time is polynomial in (d, 1/¢,log N).

We can extend the bound to N'/¢ by breaking the interval of size 2N'/¢ into
N¢ intervals of size 2N(/4)=¢ This is still polynomial time, but in practice it
gets much more expensive as the exponent gets closer to 1/d.

As before, we have bounded the number of small roots, as well as showing
how to compute them all in polynomial time. The existential results match those
of Konyagin and Steger [12], who bound the number of small roots by

0 1+ log B
log(1+ B-1N1/d) )~
For B = N(/4=¢ their bound is essentially O (dle), while for B = N(/d+e their
bound becomes O (W)

3 Minor Improvements

We can improve the lower order factor—the ¢(d) factor in the estimate of the
bound B—by more careful consideration of the process.

One idea, due independently to Hendrik Lenstra [15] and to Nick Howgrave-
Graham [0], is to recognize that, for each positive integer k, the rational poly-
nomial by (z) = z(x — 1) --- (x — k + 1)/k! takes on integer values for all integer
arguments z. So we augment (say) the collection of polynomials

Cs = {(p(x)/N)2",0 <i<d,0<j<h},
with the polynomials bi(z),0 < k < dh, that is
Ch = {(p(x)/N)z",0<i<d0<j<h}U{by(x),0<k<dh}.

(Assume here that N is free of small factors, that is, N is relatively prime to
(dh—1)!.) Whereas L3 could be represented by an upper triangular matrix whose
kth diagonal element is B¥N~%/4} one finds that LY can be represented by an
upper triangular matrix whose kth diagonal element is (1/k!)B* N—*/2] This
decreases det(L3) by a factor

I *-

0<k<dh
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This allows us to increase B in compensation, by a factor

e

0<k<dh

~

2/[(An)@h=D] g dh
et
Phong Nguyen [17] reports that in practice this does speed up computations, by
perhaps a factor of 5. Nguyen also remarks that one could further augment C4
with the polynomials {b;(p(z)/N)b;(x)}, but that one does not thereby change
the lattice Lf.

Another idea, developed here in its explicit form but related to earlier work by
Boneh [1], is probably less profitable. We have used the fact that the monomials
(z/B)* are bounded by 1 when |z| < B. The Chebyshev polynomials [I8] share
that property, but more efficiently. These polynomials are defined by:

Ti(cos0) = cos(kb),

Ti(x) = 28712% 4+ smaller terms(k > 1).

Where we currently use the monomial basis—row i corresponds to (x/B)*—to
express g(x) € C as a column of L, we can instead use the Chebyshev basis—row
i corresponds to T;(z/B). This will decrease det(L) by a factor

90+0+142+4+(dh—2) _ 9(dh—1)(dh—2)/2

leading to an increase in B by a factor of

o(dh=2)/(dh) - o

The two ideas can be applied simultaneously, and the improvements accu-
mulate. But they increase B by only a polynomial factor, and therefore improve
running time only by that factor. The same effect could be achieved by solving
several polynomials p(z — 2iB), |i| < k/2 over the range |z| < B and using the
result to solve the single polynomial p(z) over the larger range |z| < kB.

4 Speculative Improvement of Exponent

Can we improve the asymptotic bound B = N'/4? The bound is a natural-
looking bound, and it matches the existential results of Konyagin and Steger [12].
Indeed, even in the simple case p(z) = z° — A (mod N), we don’t know an
efficient way of finding roots z larger than B = N'/3, while those smaller than
B = N'/3 are trivially found by solving 2> — A = 0 over the integers.

The following example gives cause for pessimism. Set N = ¢3 with ¢ prime,
and set p(z) = 2® + Dqga? + Eq?z with D, E € Z. Clearly if x¢ is any multiple of
q then p(z¢) = 0 (mod N). So if we select a bound B = N(1/3)+¢ the number
of “small roots” xg with |zo| < B and p(zp) = 0 (mod N) is about 2N¢, i.e.
exponentially many. (Again this essentially matches the bound of Konyagin and
Steger [12].) Our lattice techniques cannot hope to find them, since in our setup
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all the small roots are roots of v(x), so that the number of small roots needs to
be bounded by dim(L).

More generally, we can expect trouble whenever ¢?| N and p(z) has a repeated
root modulo ¢q. (We don’t know whether this family contains all the polynomials
with an exponentially large number of roots smaller than N(/9+¢) When this
happens, we know that N shares a common factor with the discriminant of p(z),

Discr(p) = Res(p,p’),

ged(N, Discr(p)) > 1.

So any improvement of the exponent past 1/d must somehow rule out this case.
With this in mind, we hypothesize a “Discriminant Attack”:
Suppose we can guarantee that we are never in the unfavorable situation. We
can demand that ged(N, Discr(p)) = 1. Equivalently, we can demand existence
of D(x), E(z) € Z[z] and F € Z satisfying

D(z)p(z) + E(x)p'(z) + FN = 1;

if ged(N, Discr(p)) = 1, then D(z), E(z), F exist and are easily computed. Per-
haps D, E, F' can be incorporated into the construction of the lattice L, in such
a way that the bound B can be improved to N/t But I don’t see how to
do it.

A related effort is the “Divided Difference Attack”:

Suppose we know that there are two small roots z,y, which differ modulo
each prime factor of N; that is, ged(INV,z — y) = 1. Then besides the modular
equations of degree d,

p(z) =0 (mod N),
=0

p(y) (mod N),

we get a third equation of total degree d — 1:

p(x) —p(y)

= N).
Ty 0 (mod N)

r(z,y) =
(Despite its appearance, r(x,y) is actually an integer polynomial.)

We are now dealing with bivariate modular polynomials. As mentioned in [2]
and in Section [l below, our techniques can sometimes handle this, but there are
no guarantees. Let’s try an example and see.

Select a positive integer h. Let the family of polynomials be

C = {(p(x)/N)*(r(z,y)/N)z'y™ k+ L <h,0<i<d0<m<d—1}.

(We are not using p(y) because it is already generated by p(y) = p(z) + (y —
z)r(z,y).) The polynomials of C' are related to their monomial basis, which is
nearly

b
{x“yb; a,b>0; %+—d—1 Sh—l—l}-
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where B, B, are the bounds on |z| and |y|. The number of such monomials is
roughly the area of a triangle, namely A = [d(h + 1)][(d — 1)(h +1)]/2. (We are
ignoring inaccuracies due to edge effects near the hypotenuse of the triangle.)
Associate with each polynomial ¢ € C' the monomial corresponding to its leading
term (in reverse lexicographical order). Estimate that the average exponent x
(in the monomial basis) is about d(h + 1)/3, so that the average exponent of
p(z) (among ¢ € C) is about h/3. Similarly the average exponent of r(z,y) is
about h/3, and the average exponent of N is about —2h/3. Build the lattice L
as before, incorporating the scaling factors By, B, (the bounds on |z¢| and |yol).
We estimate the determinant of L as

Ad(h+1)/3 RA(d—1)(h+1)/3 n\T—2AhR/3
BAU()/3 pAG-1(h+1)/3 N —24R/3,

The “enabling condition” then becomes

de(h+1)/3B;4(d71)(h+1)/3N72Ah/3 <e,
d(h+1) p(d—1)(h+1 I n72h
B pld=D () o N2
and in the limit of large h with d held fixed,
dpd—1 /1 NT2
B;B,” <c¢ N~

If the enabling condition is satisfied, we will obtain an equation v;(z,y) in
Z[z, y] relating z and yo for all small pairs (xo, yo) satisfying our original modu-
lar equations p and r. But a single equation is not enough to solve for zy and .
We have to hope that two independent equations are generated. Indeed, some
work by Charanjit Jutla [11] indicates that under certain conditions we can guar-
antee that at least two equations v1(z,y),v2(z,y) will be generated, both with
coeflicients small enough that they hold in Z. If vy, vy are algebraically indepen-
dent, then we can solve them by using the resultant: u(y) = Res(vl,v2;z) € Z[y]
is a univariate equation in Z whose roots contain all yo that participate in any
small pair (xg,yo) of interest. For each yo we can then easily find all the corre-
sponding xg.

But we cannot always guarantee that the two equations will be algebraically
independent. One can be a multiple of the other, in which case the resultant will
be 0 and we will learn nothing.

Let’s examine the limit of the enabling equation:

BIBJ' < 'N?.
If either root were below N'/?. the standard methods would find it. But the
present method may work when both roots are in the narrow range:

Nl/d < ‘LEQ‘, ‘y0| < Nl/(dil)v

so that we obtain a slight advantage.
We have tried to abuse this method to obtain information that should oth-
erwise be hard to get, and we always fail. Here are some examples.
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Suppose we know a root z¢ with |zg| < N4 and we want to find a second
small root yo with ged(N, 2o — yo) = 1. The straightforward approach would be
to divide p(y) by y — 2o (mod N) to obtain a polynomial of degree d — 1. Our
usual method will solve this as long as |yo| < N1/(d=1) But using the bivariate
method, we might expect to be able to find yg as long as

zdyd | < N2

Since |zo| < NY?, it seems superficially that we can allow |yo| > N'/(@=1) and
still satisfy our condition. But when we try it, the equations v;(x,y) = 0 that we
recover always involve multiples of  — zg = 0, giving no information about y.

As a second example, suppose p(z) is of degree 2, and we are told there are
two independent small roots z¢ and 3o, both of size about N2/3. So

p(x) =2*+ Ar+B=0 (mod N).

Since the roots satisfy
d—
gyt = lagys| = N2,
the present method should apply. But again the equations it gives are useless:
multiples of

xo+yo+A=0,

which we could have gotten from the original equation by inspection. Since both
roots are small, A is also bounded by about N2/3, and the equation zo+yo = —A
can be taken to hold in Z.

But there may exist situations where this bivariate approach gives answers
that we could not otherwise obtain.
Remark 3: One relation between the “discriminant attack” and the “divided
difference attack” is the usage of p’(z) in the former case and %:Z(y) in the
latter case. Where the divided difference attack treats the circumstance that
there exist two (small) roots that differ modulo each prime factor of N, the
discriminant attack demands that there mot exist repeated roots, or in some
sense that all roots are different mod q.

5 Bivariate Integer Polynomials

The present author [3] applied techniques similar to those of his other paper [2],
to the problem of finding a small solution to a bivariate integer polynomial

p(z,y) =0 € Z.

The primary application was to integer factorization when half the bits of one
of the factors are known.

The presentation in [3] is difficult to understand. Once again Howgrave-
Graham’s presentation makes it more accessible, but this simplification seems
to only apply to the specific equation describing integer factorization (and some
related equations), and not to the general bivariate integer polynomial.
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For integer factorization, suppose we have an integer N of unknown factor-
ization N = P(), where we have some approximation to the factors P and Q.
We can write

N = (P" 4 20)(Q" + vo)

where g, yo are small. If P = N? and Q = N'=#, we will be able to solve this
as long as

2 2
|zo] < B. = N |yo| < B, = N2,

Notice that in this setup, we know the 5(1— 3) log N high order bits of P, which
is equivalent to knowing the 5(1 — ) log N high order bits of Q.
Select positive integers h, k with h < k. Define the family of polynomials

C={N""(P +2)"0<i<hiu{z" P +2)" h<i<k}.

These polynomials, when evaluated at © = ¢, are all multiples of the (unknown)
integer P".

The corresponding lattice L has dimension k£ and determinant
Nh(thl)/zBf(k_l)m. The enabling equation is then

(Nh(h+1)/2B.’;(k71)/2>1/k < cP" — cNBh,

B, < ¢ Nh(2kB=h=1)/[k(k=1)]
For large h, k, we optimize this by selecting h = k{3, obtaining
B, ~ N%".

The rest of the development is similar to the univariate modular case. We
find an equation in Z[z], whose roots include the root x¢ of interest.

Howgrave-Graham [10] develops these techniques even further, applied to
the problem of an “approximate ged”, finding a ged when the inputs are only
approximately known.

The same technique can be applied, almost without change, to the problem
of divisors in residue classes. Hendrik Lenstra [14] showed that if 0 <7 < s < N
are given positive integers, pairwise relatively prime, with s > N and a > 1/4,
the number of divisors of N equivalent to r mod s is bounded by a function of «,
independent of r, s, N. Applying the present techniques we not only recover that
existential bound but actually construct those divisors in polynomial time. [5]

For more general bivariate integer equations, the reader is referred to the
author’s earlier work [3], [4], where the development is less intuitive but handles
a more general situation.

The reader may also enjoy the more recent work of Elkies [6], the techniques
being closely related. Elkies treats a more general setting, where instead of lattice
points on a curve, he is looking for lattice points near a curve. He finds much
wider applicability, including non-algebraic curves.
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6 Possible (and Impossible) Extensions

We can sometimes extend these techniques, to bivariate modular equations or to
multivariate integer equations. But the extensions are not guaranteed to work,
and in fact there are impossibility results that argue against their application to
the general case.

Consider the bivariate modular case. As in the example above, we can easily
build a lattice consisting of multiples of N and of p(z,y) (or of their powers),
and we can find a short vector in that lattice, corresponding to a polynomial in
Z satisfied by all small roots. But this polynomial will, in general, be difficult to
solve.

As in the example, we can hope to find two short vectors, corresponding to
two polynomials, and we can hope that they are algebraically independent, so
that taking their resultant we can recover a single polynomial in a single variable,
whose roots include all those yo belonging to a short pair of roots (zg,yo). The
trouble is that although we can arrange things so that two short vectors will be
found, we cannot in general guarantee that the corresponding polynomials will
be algebraically independent.

We start with the following theorem of Manders and Adleman [16]:

Theorem 1. (Manders and Adleman) The (problem of accepting the) set of
Diophantine equations (in a standard binary encoding) of the form

oza:% 4+ Bre —vy=0
which have natural-number solutions x1,xs is NP-complete.

Manders and Adleman go on to remark that the problem remains NP-complete
even when (3 is given in fully factored form.

We need to make minor adjustments to use this theorem. Let us first center
the range of x5. Let § approximate half of its range:

_ !
—{Wﬂ’

r =2,

and define

Yy=1=xy — 67
T = — [
Then we are asking for existence of solutions (z, yo) to
ar’ + py —1 =0,

with |zo| < By = y/v/a and |yo| < By = ¢. (Clearly if we can compute all small
solutions (zg, yo) within these bounds, we can decide whether exact solutions to
the original problem exist.)



30 Don Coppersmith

Now select N arbitrarily large, as long as N exceeds |aB2| + |3By| + |7].
Given the bivariate modular equation

ar? + By —7=0 (mod N),

and bounds B, By as before, it will be hard to decide whether there are small
solutions (zo, yo); the reduction mod N is meaningless. Now, the bounds B,, B,
stay fixed as IV grows arbitrarily large.

Recall that in the univariate modular case, the allowable bound B, grew
with the 1/d power of N. In the bivariate modular case we cannot hope to find
a similar theorem. The achievable bounds cannot grow as N grows.

Our method will derive, from the bivariate modular equation

ar? +PBy—7=0 (mod N),
a bivariate integer equation, namely
az? + By —1=0.

But it cannot enable us to solve either one.
Exactly the same example shows that trivariate integer equation

az?+ By —1—2N =0,

is difficult to solve with bounds B, B, as before, and B, = 2. In the work on
bivariate integer equations [3], the bounds grew with the coefficients of p(z,y)
(in a complicated way that depended on the degree of p), and because we have
an arbitrarily large coefficient NV here, again we cannot hope to achieve a similar
theorem in the trivariate integer case.

But these negative results should not dissuade us. As Jutla and others have
shown, many times one can use the multivariate versions of the present tech-
niques. A tool that has been shown to be ineffective in one percent of the cases,
can still be quite useful in the other 99 percent.
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