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Abstract. In this paper new families of strongly universal hash func-
tions, or equivalently, authentication codes, are proposed. Their param-
eters are derived from bounds on exponential sums over finite fields and
Galois rings. This is the first time hash families based upon such ex-
ponential sums have been considered. Their performance improves the
previously best known coustructions and they can be made general in
their choice of parameters. Furthermore, the constructions are suitable
both for hardware and software implementations. The latter is an aspect
that is significant, and has been considered in several recent papers.
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1 Introduction

Universal hashing is a concept that was introduced by Wegman and Carter [19]
in 1979. Since then, many results in theoretical computer science use different
kinds of universal hashing.

One of the more interesting topics in universal hashing is named strongly
universal hashing. Other names used are two-point based sampling, or pairwise
independent, random variables [18]. There is a large amount of applications of
this topic in computer science. In cryptography we find applications in for ex-
ample interactive proof systems. However, the most widely known application in
cryptography is the construction of unconditionally secure authentication codes.
We will return to the equivalence between strongly universal hash functions and
authentication codes in Section 2.

The applications of exponential sums in coding theory have proved to be
many, including bounds on the minimum distance and covering radius [6] of
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codes, as well as applications to sequence designs. Recently, a new direction in
coding theory has been to apply the Gray map to codes that are linear over Z4
to obtain binary nonlinear codes better than comparable binary linear codes.
The distance properties of these codes as well as the correlation properties of
sequernces obtained from Z 4-linear codes depend on exponential sums over Galois
rings.

It is well known that coding theory and universal hashing are closely related,
and our aim is to explore how expounential sums over finite fields and Galois rings
can be used to construct families of strongly universal hash functions. The results
are positive and we obtain constructions that improve the previously best known
constructions. These are not the only positive aspects. We also recognize that
the constructions are simple to implement both in software and hardware. Such
implementation aspects have recently been considered important, and there are
several papers focusing on this topic [8], [9], and [14].

This paper is organized as follows. In Section 2 the basic definitions in au-
thentication theory and in universal hashing are given, as well as the connection
between them. Section 3 introduces exponential sums over finite fields, and in
Section 4 we construct hash families over finite fields. In Section 5 we introduce
exponential sums over Galois rings, and in Section 6 we construct hash families
over Galois rings. We end with some concluding remarks.

2 Authentication codes and universal hash functions

Authentication theory as originally described by Simmons [15], [16], see also [4],
considers the problem of two trusting parties, who want to send information from
the transmitter to the receiver in the presence of an adversary. The adversary
may introduce false messages to the receiver or replace a legal message with a
false one. To protect against these threats, the sender and the receiver share a
secret key. The key is then used in an authentication code (A-code).

A systematic (or Cartesian) A-code is a code where the information to be
transmitted appears in plaintext in the transmitted message. Such a code is
a triple (S,&,Z) of finite sets and a map f : S x £ — Z. Here S is the
set of source states, i.e., the information that is to be transmitted, £ is the
set of keys, and Z is the tag alphabet. When the transmitter wants to send
the information s € & using his secret key e € &£, he transmits the mes-
sage m = (s,2), where z = f(s,e), and m € M = S x Z. When the re-
ceiver reccives a message ' = (s',z'), he checks the authenticity by calculating
whether 2/ = f(s',e) or not. If equality holds, thc message m is called valid.
The adversary has two different attacks to choose between. He might introduce
a false message m = (s, z), and hence impersonating the transmitter, called
the impersonation attack. He can also choose to observe a transmitted message
m = (s, z), and then replace this message with another message m' = (s, 2),
where s’ # s. This is called the substitution attack. The probability of success
for the adversary when trying either of the two attacks, denoted by FP; and
Ps respectively, are formally defined by P; = max, . P(mm = (s,z) valid) and
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Ps = max, ,maxy 4, » P(m' = (s',2') validlm = (s, z) observed). We assume
that the keys are uniformly distributed. Then these probabilitics can be written
as
feeliz= fls,0)
Py = max , (1)
e ey
. . e o ' — ',I >
Pg = max max fect:z=flse) 2 = fls ’P‘)}l.
5.2 s'#s,z! Hee€&:z=f(s,e)}

(2)

For a review of different bounds and constructions of A-codes, we refer to [7],
which gives a good account of the recent developments in the area.

In universal hashing, we consider a hash family G, which is a set G of |G|
functions such that g : X — Y for cach ¢ € G. Interesting parameters for a hash
family are |G|, |X'|, and |Y|. Two relevant definitions are the following.

Definition 1. A hash family G is called c-almost universaly if for any two dis-
tinct elements z,z, € X, therc are at most €G] functions g € ¢ such that
g(z1) = g(z2). We use the abbreviation e-AU, for the family.

Definition 2. A hash family G is called e-almost strongly universal, if

i) for any z € X and any y € YV, there are exactly |G|/|Y| functions g € G such
that g(z) = y.

i) for any two distinct elements 27,2, € X, and for any two elements y(, y» €
Y, there are at most €|G|/|Y| functions g € G such that g(z1) = %, and
g{x2) = 2.

We here use the abbreviation ¢-ASU>.

For a more thorough treatment of universal hashing, we refer to [17], where these
concepts arc derived further. We will instead consider the known equivalences
between strongly universal hashing and authentication codes.

Lemma 3 [1],{19],[17].

i) If there exists a q-ary code with codeword length n, cardinality M, and min-
imum Hamming distance d, then there exists an e-AU, family of hash func-
tions where ¢ = 1 —d/n, |G| = n, |X| = M, and |Y| = q. Conversely, if
there exists an e-AUs family of hash functions, then there erists a code with
parameters us above.

it) If there exists an A-code with parameters |S|, |£], Pr = 1/|Z|, and Ps, then
there exwists an e-ASUy family of hash functions where ¢ = Ps, |G| = |&],
(X[ =S, and |Y| = |Z|. Conversely, if there exists an e-ASU, family of
hash functions, then there exists an A-code with parameters as above.

We review the equivalence ii) above. Each key e € £ in the A-code corresponds

to a unique function g. in G, and & = X. The tag z in the authentication code
is then obtained as

z = g.(s).
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The significance of e-AU, families in strongly universal hashing lies in the
fact that they are very useful when constructing strongly universal hash familics.
This is due to the following result by Stinson.

Lemmad4 [17]. Let G, be ¢,-AUs from X, to Y, and let Go be e2-ASUs from
Y1 toYs. Then G = {ga2(g1(z)) 0 € G190 € Go} is e-ASUy with e = €1 + 2.

Virtually all constructions of e-ASU, families of hash functions for large |X|
use this composition construction. The constructions giving best performance
[1] uses Reed-Solomon codes as the e-AU, family in the above composition con-
struction. Our aim in this paper is to derive even better e-ASU, families of hash
functions in a direct way, without using this composition construction. The idea
of using exponential sums allows this to be done in a neat way.

3 Exponential sums over finite fields

Exponential sums have been an important tool in number theory for solving
problems involving integers. Such sums can be considered in the framework of
finite fields and turn out to be useful in various applications. For more details,
see [11].

Let Trym/q(a) be the trace function from Fgm to F, defined by

=]

Trymjgla) =a+a’ + - +af

Furthermore, let ¢ = p*, where p is the characteristic of F, and let T'ry/, (o) be
the trace function {rom Iy to I,. Note that Trym () = Trg s, (T'rgm 1q(cx)). Let
w be a complex primitive p-th root of unity. We will consider exponential sums

of the form
Z W'l'rqm/,,(f(ry))7
(]E]Fq'ln
where f(x) € Fg[z]. An important result on exponential sums of the above

kind is the Weil-Carlitz-Uchiyama bound [3]. This is also the result that is the
basis for our constructions.

Theorem 5 Weil-Carlitz-Uchiyama bound. Let f(x) = ZF:I fizt € Fym (2],
g = p°, be a polynomial of degree D that is not expressible in the form f(z) =
g(x)? — g(x) + 0 for any g(x) € Fym [2], 0 € Fym . Then

|

|
Z w']"‘vf”/p(/(ﬂ))‘ < (D — 1)\@3’

aeT-?q m ‘

where w is a complex primitive p-th root of unity.
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4 Universal hash functions from exponential sums over
finite fields

We start by considering a straightforward construction of strongly universal hash
functions from exponential sums. We first necd to prove a lemma.

Lemma®. Let f(x) = Zil fizt € Fym[z] be a polynomial of degree D that
is not expressible in the form f(x) = g(x)? — g(z) + 6 for any g(x) € Fym [z],
0 € Fym. Let
No(f) = {z € Fgm : Trymy, (f(@)) = a}l.
Then
[Na(f) = "7 < (D = 1)Vg™.

Proof. We will calculate N, (f) from an exponential sum. We have
qN.(f) = Z Z WTrare u(rgm g (fz))~a))
zCFgm yeFy

This follows since the inner sum is ¢ when Trm /. (f(2)) = o and 0 otherwise.
Changing the order of summation and observing that in the case y = 0 the right
hand side contributes ¢™, leads to

qNa(f) — qm = Z w"ylv‘rq/p(yo‘) Z wrrr(ﬂn/p(yf(z))'
y€EF,\{0} TEFm

From the Weil-Carlitz-Uchiyama bound, Theorem 5, it follows that

|
SO W)

yEFN\{0} | EF n
<(D=1Vg™
Consider the set Fpp of polynomials of degree D < /g™, defined by
Fp={l(z): f(e) = fiz + foz” + -+ [z € Byne], fi = O whenever pli}.

The condition f; = 0 if p|i for all f € ¥ guarantees that f is not expressible
in the form f(z) = g(x)? — g(x) + ¢ for any g(x) € ym [z], 8 € Fy , and hence
Lemma 6 can be applied. Since f(z) can contain all terms f;z* where f; € Fym ,
1 <4¢ <D and p)i, it follows that {Fp| = g™ LP/P]) The construction of
€-ASU, hash families is described by the following theorem.

lN(x(f) - qull <

= =

Theorem 7. Let the functions in G map from X = Fp toY =F,, let f € Fp =

X and define
9o,8(f) = B+ Trem o (f(a)).
Then the family
G = {gos(f) 00 € By, B € )
is an e-ASUy famaly of hash functions where
D-—1

Vo

|g| — qm+1> i‘Y

— qm(D‘IVD/PI)’ lY} =q, €= l +
i q
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Proof. We verify property i) of Definition 2. For any z € X and y € Y we have
Hee G y=gl@)}| = [{{e,3) 1y =8+ Trpm;(fla)),a € Bm, 3 € Fy}| = q™,

since for cach o € Fym there is exactly one 4 € F, such that y = S4+Tr g/, (f(r)).
Secondly, we calculate € as

HoeG:y=glx),y = glz")}|

£ = max e 3
‘ !E#:t',;y’ |gt/ Y ( )
= max e B) y =5+ Trq"'/q(f((jy))’yl =3+ Trym sy (S (@)} (4)
f?ff’,y,y’ (11”
vy = 1'rm
o Hesy =T (@)} .
F#0.y qm
N
= max o)
f#£0y g™
m-—1 -1 oy S
qm q \/—(]_m

where the inequality follows from Lemma 6, since it is valid for any nonzero
f € Fpand y € F,. Furthermore | X| = |Fp| = ¢™P~1P/pD) and |V] = q.

This family of strongly umiversal hash functions results in the following A-
codes.

Corollary 8. Let S = Fp. & = {(a, 1) : a € Fym, B € F, }, and let the tag z be
generated as

c= B+ Tryn sy f(0)):

Then the parameters for the A-code are
(8] = gD g = gt 2] = g,

and .
Pr=-, Ps= ! + D*;l
q 4 "

We can verify the good performance of this construction by comparing with the
parameters of the previously best known constructions [1]. For example, consider
the parameters ¢ = 220, Ps = 2719 and m = 3. By choosing ¢ to be a large prime
around 2%° we get log |S| = 20-3 /220 = 60- 219 In the construction in [1], we
would for the same parameters get a number of source state bits which is 30-21°.
Or the other way around, that construction requires 82 key bits to authenticate
log |S| = 60 - 2'° source bits, while our new construction only requires 80 key
bits.

One might argue that the above construction gives only A-codes for a few
values of the key size, namely ¢* ¢°,¢% ..., etc.. We will now show that by
combining several strongly universal hash families for a smaller alphabet (g), we
can consider any value of the number of key bits. This generalizes the previous
considerations. First we prove a result analogue to Lemma, 6.
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Lemma9. Let fi, fo € Fp such that fi(z) # af2(z), for all a € F,. Let

Nﬂlyaz(flva) = l{.I' € Fq”‘ :TT([’”/{](fl ([‘)) = QL,TTqm/q(f'g(-T)) = aZ}l'
Then
IIV(Yl,O:z(flan) - q"“u' < (1) - 1)\/;]7E

Proof. We calculate Ny, o, (f1, f2) from an exponential sum. Similar to the proof
of Lemma 6, we obtain

CNayar(fr )= S 3 WTrenuTren (@) =) Trars (ua(Trem ol fal2)-02))

z€Fym y1,y2€F,

— E w Traplyraatyzaz) § wT"qm/p(ylf1($)+92f2(x)).

y1,y26F, rEFym
Isolating the case y; = y2 = 0, which contributes ¢™ to the sum in the right hand

side, and using the Weil-Carlitz-Uchiyama bound, Theorem 5, it then follows
that

|N(11>O'2(f13 fZ) - (]”LAZI S (D — l)\/ﬁ

Theorem 10. Let v € Fym be a primitive elemnent, and let the functions in G
map from X = Fp toY =F7. Let f € Fjy = X and define

o 8182 (f) = (B + Trym o (f(@)), B2 + Trym 1, (f (y)))-
Then the famaly
G = {gap,0.(f) : @ € Fgm , By, 2 € Fy }
s an -ASUy family of hash functions where

|g| - qm+2‘ IXI — qm(Df—ﬁD/p]\i* !Y! _ qz € = 1 D-1

L e= o ==
¢ Ve

Proof. Property i) in Definition 2 is casily verified. With the same steps as in
(3)-(3) we get

Nyl f@),£(m) _q" 2+ (D -1)yg" _ 1 D=1
- qm q2 qm

€ = max
f#0,y qm

where the inequality follows from Lemma 9, since f(z) and f(vz) both belong

to Fp and f(r) # af(yz), for all & € F,, for any choice of f(z) # 0. Also,
|X| = g™ LP/P)) and Y| = ¢2.

It is clear that the above results can be further generalized. We give the
results and omit the proofs.
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Lemmall. Let fi, fo,..., fn € Fp ben (< m) linearly independent polynomi-
als over F,. Let

Nay.an(frros fn) = {2 € Fym - Trym o (f1(2)) = a1, ..., Trgm o (fnl(2)) = an}l.

IN(n ,,,,, oy (fla-“afn) - q‘m—nl S (D - ])qu'

Theorem 12. Let the functions in G map from X = Fp toY =F. Let v €
Fgm be a primitive element, and let f € Fp = X. Define

gaﬂ(f) (ﬁl +T7q /q(f(a) ﬁQ +T7'q’"/t1(f('ya))s B ’ﬁn "LTTqm/q(f("/n_la)))-

Then the famuly

g:{ga,ﬁ(f @ € Fym Bi, . Bn €Fy }

ts an e-ASUy family of hash functions where

|g| — qm+n’ |X| — qm(l)le/pJ)’ %

:qn’f:—-.-

Corollary 13. Let S = Fp, &€ = {(«,Fi, ..., 3n) t @ € Fym , B1,..., 00 € F },
and let the tag z be generated as

2= (ﬁl + Tqu"‘/q(f<a‘))*/32 + T"“qm/q(f(“/“)) ﬂn + T7 m/ ( (,_yn—-la))).
Then the parameters for the A-code are
ISI — (],7L(D7U)/I)J), ICC] — (1m+n’ |Z| — q‘n’

and

1 1 D—-1
Pr=—, Pg= —

q" N

If the last construction is used with ¢ = 2, we can compare the parameters with
[1] and find that they will be ezactly the same. However, the proposed construc-
tions have two advantages. Firstly, one may get a construction for any number
of key bits in the authentication case, which is not possible in [1]. Secondly, by
using Corollary 8 with ¢ = p, where p is a large prime, one gets improvements
compared with [1] which roughly is a doubling of the number of source bits that
can be authenticated, or for a fixed number of source bits, a reduction of the
number of key bits by roughly 2.

We will next show that using the theory of exponential sums over Galois
g y p
rings we can also construct universal hash families,
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5 Exponential sums over Galois rings

Some preliminaries on Galois rings are given below. For more details on Galois
rings, the reader is referred to [12, 13, 2] and [5]. Let p be a fixed prime. For
applications, the case p = 2 is most relevant. Let e > 1 be an integer and sct
g = p®. Let Z4 denote the integers mod-¢, and F, the finite field with g elements.

Let pp: Zg — Z, = F, be the mod-p reduction map. We extend g to a map
Z4(x] = Z (] in the natural way. A monic polynomial g(z) € Z[z] is said to be
a monic basic irreducible if p(g(x)) = g(z) is a monic irreducible polynomial in
Zplz]. A Galois ring GR(q,m),m > 1 of ¢ elements is simply a Galois extension
of Z,. We will write R;m = G R(q,m) for short. Every such ring is isomorphic to
the ring Z,[z]/(g(x)), where g(z) is monic basic irreducible of degree m. Ry is
a local ring having a unique maximal ideal Mym = pR,m . Clearly p has a natural
extension to Ry and therefore to Rym[z)], and p(Rym) = Rygm [Mgm = Fym.

As a multiplicative group, the units Rym in Itgm contain a cyclic group of
order p™ — 1. Let 8 € I, be a generator of this cyclic group. Let T =
{0,1,3,--- , 7" =21 Tt can be shown that every element z € R~ has the p-adic
expansion

z=zo+pn+pizmt o+ P T ey, 2 € T
The ring Ry~ is an extension ring of Z, = R, having a cyclic Galois group of
order m generated by the Frobenius automorphism a given by

a(z) = z5 + pzl' + pzz:’; R +p"*12£7] ,

where 2z = zg + pz1 +pPza + -+ p 2oy, 2 € T, Given z € Ry, we define
the trace Tym ;- Rgm — R, via

i1

Lam gl 2(7
10

We next present some recent results on exponential sums aver Galois rings.

Let f be a polynomial f(z) = Z?:o fix' in Rym(z] of degree d. Let
fla) = Folz) +pFi(x) + - +p 11 (2), Fi(z) € Tlz], 0<j<e—1

be the p-adic expansion of f(z). Such an expansion can be derived from a p-
adic expansion of the cocflicients of f(x). Let d; be the degree of F;{z). We will
assume that it is not possible to express f(z) in the form

flx) = olg(x)) — gle) + 0 (mod q)

for any g(z) € Rym[z], # € Ryn. Here o is the Frobenius automorphism and
(3 9ix') = 3, 0(g:)x". We will say that [ is non-degenerate when f satisfies
this condition. We define

Dy = max{dep” ' dip TF L des ),

and will refer to Dy as the weighted degree of f(i).
The following generalization of the Weil-Carlitz-Uchiyama bound was proved
by Kumar, Helleseth and Calderbank.
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Theorem 14 [10]. Let f(x) € R,m{z], ¢ = p°, be non-degenerate and let Dy be
the weighted degree of f(x). Then

|
zwlv"’/x(ﬂr 1 Df—l)\/ﬁ

2€Tm !

where w is a complex primitive q-th root of unity.

6 Universal hash functions from exponential sums over
Galois rings

We can construct strongly universal hash functions from exponential sums over

Galois rings in a manncer similar to what we did in Section 4.

Lemmalb. Let f(x Zl L fix' € Ryw[z), q = p°, be a non-degenerate poly-
nomial of weighted degree Dy such that f{x) #0 (mod p). Let

A’Ta(f) = |{7 € ’Tm F "/ f(*L)) = (Y'}I‘
Then
INa(f) =™ I < (Dy ~ DVp™.

Proof. We calculate Ny from an exponentia] sum over a Galois ring. We have
g
(]Na == E E WP Tam gz

2E€ETm YyEZ,

since the inner sum is ¢ when Tym /o (f(z)) = a and 0 otherwise. Observing that
in the case y = 0 the right hand side contributes p™, leads to

gNo(f) —p™ = D wvr Y Wi,
yeZN\{0} z€T,,

From Theorem 14, it follows that
INo(f) =" 7L < (Dy = 1)y/p™.

We next introduce a generalization of the Gray-map. The Gray-map is used
in coding theoretic applications for constructing binary codes and sequences.
The main property for these maps is explained in the following lemma.

Lemma16. For i € Z,, © € Z,», let © = 21p + 20,70, 21 € Z, and define
Gy e = Ly by
di{x) = o) + txg.

Then for any x.y € Z,2 and 2 € Z,,

Hi€Zy:dilz) —dily) = 2} = {1 € Zyp: ¢s(x — y) = 2}].
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Proof. Let & = z1p+ zo and y = y1p + yo, where x1,2q, y1,y0 € Zp. Now ¢;(z)
is defined by ¢;(x) = x; + izs. Then ¢;(x) — ¢;(y) = (xy — y1) + i(wa — yo)-
Now it is easy to see that if x4 # yy each value of Z, will appear once both for
¢i(x) — ¢iy) and for ¢;(« — y), when ¢ runs through Z,. Furthermore, if zq = o

then (/)z( ) ¢( ) ¢1(m7y):m1_yl'

Consider the set Rp of polynomials of weighted degree at most D < /p™,
defined by

Rp = {f(z): f(z) = fiz+fox®+-- 4+ fsz? € Rym [z}, Dy < D, f; = 0 whenever p|i}.

The condition f; = 0 if pli for all f € Ry guarantees that f is non-degenerate.
From the definitions of Rp and Dj it follows that |Rp| = p™P~LP/P°D_ The
corresponding construction is the following,.

Theorem 17. Let the functions in G map from X = Rp toY =7, Let f €
Rp =X, g =% and define

Yo5,i(f) = 3+ ¢ilTym o (f())).
Then the family
g = {g(}?[jvi(f) YOS 7;1L,ﬂsi S Zp}

is an e-ASUy family of hash functions where

LI—)/sz) - 1 D'—l . J D—l

1G] = p’”“, |X| :pm(D* LY =p, e =~ + + min{ —, ——
| P (P2 VP

).

p'"l

Proof. Property i) in Definition 2 is easily verified. We calculate € by
o, 8,0) 0 8+ (T (f(a) =y, 8+ 6:(T(f' () = y'H

€= max

FES AR TY pmtl
ey d) (T (f(a) = it
= s g ©

where (6) follows from Lemma 16. We consider two cases.
Casel. f =0 (mod p). Then f = pf; for some polynomial f; #0 (mod p)
and ¢, (T'(f(«))) will take the same value for all ¢, so

(e, i) : p:(T(f(a))) =y}

€ = max

f#0,y pm,—i—l
=y LT @A) = yi

f#0y pm

—1 gur oy
LA (D - DY
pT’l
1 D1

P + /p™m ’

i.e., as in the finite field case.
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Case IL. f # 0 (mod p). Now ¢;(T(f())) will be uniformly distributed
with ¢ when T(f(a)) # 0 (mod p), and take the same value for all i when
T(f(a)) =0 (mod p).

Hence
) e = )
f#0y pm,+l
— Inax Ha :T(f(a)) #0 (mod p)}| +pl{a: T(f(x)) = py}
f#0y pm,+1
- Ha: T{f(a)) =0 (mod p)}| +pl{a:T(f(a)) = py}]
o pm+l .

We use Lemma 15 and get

< PP+ (D - 1)VpT)

< ot
1 1 D -1
oot VP
We note that when p™ =% > (D — 1)/p", we get a better estimate of € by
€< l + 2D—;1
=3 T

since |[{a: T(f(a)) =0 (mod p)}| > p(p™ 2 — (D = 1)yp™).

A closer study reveals that this e-ASU, hash family has weaker performance
than the hash families constructed in Section 4. However, for p = 2 it is possible
to use sharper bounds than described here to get improvements on € in The-
orem 17. For authentication codes, p should typically be large and hence such
improvements are of interest only for other applications.

7 Conclusions

Construction Key size (bits)

70 | 72 | 74 | 76 | 78 80 90 100
1] 25-27(26 - 25|27 - 27128 28|29 - 27|30 - 277(35 - 27°[40 - 2"

Cor. 8, g prime|| - - - - - |so-2 - i8p-2%

Cor. 13, g =2 (|25 - 25]26 - 2%|27 - 27|28 - 2%(29 - 29(30 - 21°{35 . 2'%40 . 2%°

Table 1. Table of the number of source bits in A-codes for different key sizes in
some different constructions, for Py = 2729, and Pg < 2719,

In Table 1 we present parameters of the derived constructions when used as au-
thentication codes. We conclude by a short discussion around the implementa-
tion. Implementation aspects have recently gained attention, and several papers
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focus on this topic [8], [9], and [14]. The time consuming part in the proposed
constructions is the evaluation of a polynomial of large degree over a finite field
(or Galois ring). We need to do additions and multiplications. In hardware, mul-
tiplications in a finite ficld of characteristic 2 has a simple implementation. In
software, we can choose a large prime p close to 2%, e.g., p = 2¥ — 1, and a mul-
tiplication mod-p can be done by one multiplication mod-2% together with one
addition. Using more sophisticated methods for the evaluation of a high degree
polynomial will improve the performance.

Finally, we remark that the trace codes obtained in a natural way from the
family Fp correspond to the dual of the extended BCH-codes. The families of
polynomials Fp and more recently Rp [10] have been used as a basis for con-
structing families of sequences with very good correlation properties for CDMA
applications. An interesting problem for future research would be to investigate
whether other families of sequences or codes combined with the methods in this
paper will lead to further improvements in the design of universal hash functions
and authentication codes.
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