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Abstract. In t#liis 1)apcr ncw families o f  stmngly universal hash func- 
t,ions, or equivalently, authentication codes, are proposed. Their param- 
eters are derived from bounds on exponential sums over finite fields and 
Galois rings. This is the first tirnr hash families based upon such ex- 
ponential sums have 1)een considered. Thi>ir performance improves the 
previously best known c.oiist,ructions and they rail be made general in 
their choice of parameters. Furthermore, the constructions are suitable 
both for hardware and software irri~~leniciitations. Tht. latter is an aspect 
that is significant. and has been considered iii several recent papers. 
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1 Introduction 

Universal hashing is a. concept, that was introduced hy WegInan and Carter [I91 
in 1979. Since then, many results in tlicoret,ic:al computer science use different, 
kinds of universal hashing. 

One of the more intcrcsting topics in universal hashing is named s t ~ o n g ~ y  
universal hashing. Ot,her iiariies used are two-point based sampling, or pairwise 
independent raridoni variables [ 181. There is a large amount of applications of 
this topic in coniputer scicncx!. In cryptography we find applications in for ex- 
ample interactive proof systems. H O W ~ ~ C T ,  t,he most widely known application in 
cryptography is the construction of rinc:oritlitioriaIly sccurc authentication codes. 
We will return to  the equivaleIice het,ween strongly universal hash funct,ions and 
authentication codes in Sectioii 2 .  

The applications of exponcntial sums in coding theory have proved to he 
many, including hounds on the riiiniiriurii distance and covering ra,dius [6] of 
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codes, as well as applic:at,ions to scc~~ic~iic:~ designs. Recently, a new direction in 
coding theory has been to apply the Gray map to codes t,hat are linear over Z,1 

to obtain binary nonlinear codes bett,er than comparable binary linear codes. 
The distance properties of these codes as well as the correlation propertirs of 
sequences obtained from Z4-linear codes depend on exponential sums over Galois 
rings. 

It is well known that, mding theory arid universal hashing are dosely related, 
and our aim is t,o explore how exponential slims over finitre fields and Galois rings 
can be used to  construct families of strongly uriiversal hash functions. The results 
are positive and we obt,ain constructions that improve the previously best lcriown 
constructions. Thesci a.re not the only positive aspccts. We also recognize that 
t,he construct>ions are sirriplc to implernont both in software and hardware. Such 
implementation aspccts have recently been considered important, arid there are 
several papers focusing on this t,opic [S], [9], and [14]. 

This paper is organized as follows. In Section 2 the basic: definitions in au- 
therit#ication theory and in universal hashing are given, a,s well as the coiiri 
between them. Section 3 introdiices cxpone1itia.l sums over finite fields, arid in 
Section 4 we construct hash families ovcr tinitc fields. In Section 5 we introdiicc 
exponential sunis over Galois rings, and in Section 6 we construct hash families 
over Galois rings. We end with sorrie concluding remarks. 

2 Authentication codes and universal hash functions 

Aut.heriticatiori theory as originally desrrit)cd by Sirnrnons [15], [16], see also [4], 
considers t>hc problem of two trusting parties, who want, to send information from 
the transniit,tjer to the receiver in the presence of a n  adversary. The adversary 
may introduce false messages to the r.cc:eiver oI rep1ac:e a legal message with a. 
false one. To protect against these threats: the sender arid the receiver share a 
secretp key. The key is then used in an authent,ication code (A-code). 

A systematic  (or Cartesian) A-cock is a code where the information to be 
transmitted appears in plaintext in the t,ransmitted message. Such a code is 
a triple (S ,&,Z)  of finite sets and a map f : S x E + 2. Here S is the 
set of source states, i.e., the information t,hat. is to be transmitted, t‘ is the 
set of keys, and 2 is tJhe tag alphabet,. When the transmi 
the information s E S using his sccret, key c E E ,  he transmits the mes- 
sage m = ( s , z ) ,  where z = f ( s , ~ ) ,  and m E M = S x 2. When the re- 
ceiver receives a mossage v!.’ = (s’, z ‘ ) ,  he checks the authenticity by calculating 
whether z’ = fis’,.) or not. If equality liolds) thc message m is called valid. 
The a.dversary has two different attacks to choose between. He might introduce 
a false message 7ri = (s, z ) ,  arid hciice irripersonating the transmitter, called 
the impersoriation attack. He can also choose to ohscrve a tr-arismitted message 
m = (s, z ) ,  and then replace t,his message with another message m,’ = (s’, z‘) ,  
where s’ # s. This is c:allcd the ,sirhstiti~tiori cittuck. The probability of success 
for the adversary when trying either of the two attacks, denoted by Pi arid 
P.9 respectively, art: formally tlefincd by PI = rIiaxs,r P(7n = (s, z )  valid) and 
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Ps = max.s,z max,,#s,z, P(m' = (s', z ' )  validlm = i s ,  z )  observed). We assume 
that the keys are uniformly distributed. Then thesct probabilities (:an be written 
as 

For a review of different bounds and const,ructions of A-codes, we rcfcr to  [7], 
which givcs a good account of the recent, developments in the area. 

In universal hashing, we comider a hash family G ,  which is a set G of 14) 
functions such that, g : X + I' for cach g E G .  Interesting parameters for a hash 
family arc IGI, (XI, and \I7(. Two relevant definitions are the following. 

Definition 1. A hash family S is called f - a h o s t  .imi.uersalz if for any two dis- 
tinct elemcnts x2 E A', therc? art: at. Imst t/41 fiinc:t,ions y E 4 such that, 
.q(xl) = g(z2). We us(: the abbreviation c-AU2 for the family. 

Definition 2. A hash family Ij is called 6-almost strongly uniuersa l~  if 

i) for any z E X and any y E P, there are exact,ly l~l/lI'l functions y E G suc:h 
that g(z) = ?-/. 

ii) for any two distinct elenicnts x1 , x2  E 2Y, arid for any two elements y ~ ,  y~ E 
Y ,  there are at. most ~ \ ~ l / l Y  functions (1 E G such that 9(x:1) = y1,  arid 
9 ( m )  = Y2. 

We here use thc ahhreviat,iori t-ASU2 

For iz more thorough trcat#ment, of universal hashing, we refer to [17], where these 
concepts arc derived further. We will instead consider the known equivalences 
between strorigly universal hashing arid aut,lientication (:odes. 

Lemma 3 [ 11, [ 191, [ 171. 

i )  If there exists a q-ary code ~iiith r:oderuiorrl lenqth, n ,  cardinality M ,  arid 7 r i . i ~  

iinum H a m m i n g  distance d ,  then  there exists a n  E-AUZ family  of hash f m c -  
ti0n.s where t = 1 - d/n,, 141 = r ) ,  ( X /  = M ,  and \Ir/ = (1. Conversely, if 
l l iei-e exists a n  c-A (/, farrcily v j  hash fiimctionsi then  there exists a code iiiith 
parameters us oboue. 

ii) I f  there exists a n  A-code u perurnetcrs IS/, ILI, PI == 1/12\, and P.7, then  
there exists nn, F - A S U ~  fu ?/ Of hash, f U 7 1 C t i 0 7 l S  'Where  t = Ps, IGI = ltrl, 

hash funct ions,  then, there exists a n  A-cod? '11 

1x1 = s, UTLd ( I / (  = (21. COn'Ilt?rSP/!?J, if the cxasts a n  r-ASU2 fami ly  of 
parurneters as above. 

We review the equivalence ii) abovc. Each key e E E in the A-code corresponds 
t o  a unique function ge in G I  and S = S. The tag z in the authentication code 
is then obtained as 

z = g<. (s ) .  
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The significancc of t-AU2 families in  st,rongly universal hashing lies in the 
fact that  they are very iisefiil when c:onst,riic:t,ing strongly universal hash families. 
This is due to t,he following result by Stinson. 

Virtually all c:orist,riictions of c-ASUz families of hash fiinctions for large IS I 
use this c,omposition construction. Thc const,ructions giving best performanu: 
[1] uses Recd-Solomon codes as t,hc t-AU2 family in the above composition con- 
struction. Our aim in this paper is to  derive even better F - A S U ~  families of hash 
functions in a direct way, without using this composition construction. The idea 
of using exponential sums allows this to  be don(. in a. neat way. 

3 Exponential sums over finite fields 

Exponential sums has7ct bccn a n  importarit, tool in number theory for solving 
problems involving integers. Such s u m  can he consitfered in the framework of 
finite fields and turn out to  be useful in various applications. For more details, 
see [Ill. 

Let Trq- /q(a)  he the trace function from IFqm to IFq defined by 

Furthermore, lrt, q = p ' ,  whcrc p is t,hc characteristic of F q ,  and let, Tr,,,(tu) be 
the trace function from Fq to IFp. Note t,hat, Trq7rL/ , (n)  = Y'rq /p (Tr , rn /q (a ) ) .  Let 
w be a complex primitivc p-th root of unity. We will consider exponential sums 
of the form 

LLi ' l ' f .gnl ; I f ( f i r r j J  

nEF,,,n 

where f(x) E F p  [XI. ,411 iiiiport,ant, result UII exponential suriis of the above 
kind is the Weil-Cr~rlitz-UchiyamrL bound [ 3 ] .  This is also the result that is the 
basis for our constructions. 

Theorem 5 Weil-Carlitz-Uchiyama bound. Let f(x) = fixi E IFq- [XI,  
q = p e ,  be a polynomial  of degree D that i s  not expressible in the f o r m  f ( 2 )  = 
y(z)i' - g(z) + 8 f o r  any g(x) E Fqm [ X I ,  H E I F q 7 - .  Then, 
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4 
finite fields 

Universal hash functions from exponential sums over 

We start by considering a straightforward coristruction of strongly universal hash 
functions from exponential sums. We first nccd to  prove a lernma. 

Lemma6. Le t  f(x) = C7,=1 f i x c  E IFqTrt [x ]  be rz p o h ~ n o r n i d  of degree D that  
i s  n o t  expressible in the  form f(x) = g(x) "  - g(z)  + 8 for a n y  9 ( 2 )  E F p  [XI, 
0 E IF9=. Let  

T h e n  

D 

NCl(f) 1 I{. E lFqm : T T ' ~ ~ / , , ( ~ ( z ) )  = .}I. 

p,(f) - q y  5 ( U  - 1 ) O T .  

Proof. We will calculate No (f) from a11 cxporiential sum. Wc have 

X E V p  YtF,, 

This follows since the inner sum is p when Trq, , , , ,q ( f (x) )  = cr and 0 otherwise. 
Changing the order of siimmation arid observing that in the case y = 0 the right 
hand side contributes qm,  leads to 

qN,(f) - (f'' = c u - ~ ' ~ ' ~ q / i ~ k J ~ l  1 w ' ~ ~ q ~ ~ ~ / F ( Y f ( ~ l ) ,  

YEF,\{O) rEl"',m 

From thc Wcil-Carljt~-Ut:hiyarr~a hound, Throrem 5, it, follows that 

I ( D  - 1)@. 

Consider the set, FD of polynomials of degree D 5 fl, defined by 

.FD = ( f ( x )  : f(x) = f ix  + f2zz + . . , + fnz" E F,,rr8 [ X I ,  fL = 0 whenever p1.i). 

The condition fi = 0 if p / i  for all f E Y-fj guarantees that f is not expressibk 
in the form f(z) = g(z)J' - y(x) + 8 [or any y(z) E IFqTrL [z], 8 E and hence 
Lemma 6 can he applied. Sincc f(x) can contain all terms fixi where fi E IF9m,  
1 5 i 5 D and p y i, it, follows that IFD~ = q na(L)  L L ' / p J ) .  The c:onstruction of 
E - A S U ~  hash families is described by thc following t,heorem. 

Theorem 7. Le t  the f u n c t i o n s  in G map from X = Fn t o  Y = Fq, let f E FTD = 
X a n d  define 

Then t h e  fmnily 

i s  a n  t-ASU2 fumaly of hash functions whcrc 

y n , R ( f )  = B + T 7 . q " ' / q ( f ( 4 ) .  

5' = { y a , u ( j )  : f l  € IF*... , N E F,!} 
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Proof. We vcrify property i )  of Definition 2.  For any z F X and y E Y we have 

l {g E C; : y = n(.z)}l = l{(n,jj ') : g = /J'+ T'r,f/zn/f,(f(u)),u E IFqm2 , p  E IFq}\ = f L ,  

simp for cach cy E IFqrn thew is exactly one ,!) E Fq such that, y = ,9+T~-,.../,(f(cu)). 
Secondly, we c,alculate F as 

q"l--1 + ( D  - l)&E 1 D - 1 

(I @ '  
~~ .______ .- - -+-.-= 5 

Y"' 

where the irieqiiality follows frorri Lc:nirria 6, siricc it is valid for any nonzero 
f E F[,I and y E IFq.  Furtherniorc. IXi = iFnl = q 7 7 x ( D - ! D / r j l )  w.nd /YI = q.  

This family of st2rongly universal hash functions results in the following A- 
codes. 

Corollary 8. Let S = FD. t' = { (ck, ;j) : ( I  E FqrTb , f l  E IFf, } ,  and let the tug  2 be 
generated (LY 

Then the pm-am.etm~ for the A-code  (in: 

z = p + T 7 . y " L j f J ( f ( N ) ) .  

We can verify thc good performarm of this construction by comparing- wit,h the 
parameters of t,lie previously best known c:onst,rric:t,ions [I]. For example, consider 
the parameters q = 2", P_s = 2-", and ~n = 3. By choosing q t,o br a large prime 
around 2" we get, log IS/ = 20.  3 .  = 60.  2". In the constriict,ion in [l], we 
would for the same pararri rs gct a nuniber of source statc bits which is 30.2". 
Or the other way a.roiinc1, that r:nrist,ructiori requires 82 key bits t,o authent,ic:ate 
log IS = 60 . 2'' soiirw bits, while our ~ i e w  construction orily requires 80 key 
bits. 

One might, argiie that the above c:onst,riictiori gives orily A-codes for a few 
values of the key size, narncly q4,  q 5 ,  y', . . ., etc:.. Wc will now show that by 
combining several st,ronglp uriivrrsal hash families for a sninllcr alphabet ( 4 )  , wo 
can considcr any value of thc number of  key bits. This generalizes the pI-evioiis 
considerations. First, we prove a result, analogue t,o Lemma 6. 
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Lemmag. Let f l ,  f2 E FD siich that f l ( - r )  # cyf2(z), for all N E IFq. Let 

Proof. We calculate N a i  , 0 1 2  ( f l  , f2) from an cxponrntial sum. Similar to the proof 
of Lemma 6, WE obtain 

= c u - T f , , / p ( Y l m l  tYLC1.2) c , r l , ~ , ~ , , ( Y l f l ( z ) + y z f z ( ~ ) ) ,  

Y1 . Y 2 t F y  I CF,m 

Isolating the casc y1 = 22 = 0, which contributes qnL to thc slim in the right hand 
side, and using the ~%il-Carlitz-TJchiyania hourid, Theorem 5, it then follows 
that 

Proof. Property i) in Definition 2 is casily wrified. With thc same steps as in 
( 3 ) - ( 5 )  we get 

where the inequality follows from Lemma 9, sirice f (x) and f(ys) both belong 
to  .FD and f (z )  # a f ( r x ) ,  for all cy t F(/, for any choice of f(s) # 0. Also, 
1x1 1 qm(upLD/pl) and I Y I  = q 2 ,  

It is clear that t,hc above results can bc further generalized. We give the 
results and omit the proofs. 
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Lemmall. Let  fl, f L . .  . . , f l L  E 3 ~ )  be n (5 711) linearly independent  polynomi- 
als over Fq . Let 

Theorem12. Let the fun,ction,.f in 5' m a p  from X = Sn t o  Y = Fqn. Let y t 
Fqm be a primatiae elerrient, and let f E .FD = X .  Define 

Then the furnily 

is a72 E - A S U ~  family of hash furictions where 

T h e n  the  yarunieters for the A-code w e  

If the last constructiori is used with q = 2, we can compare the parameters with 
[l] and find tha.t t,hey will be exactly the same. However, the proposed construc- 
tions have two advantages. Firstly, one may get a construction for any number 
of key bits in the autherit,icatiori case, which is not, possible in 111. Secondly, by 
using Corollary 8 with q = p ,  wherc p is a large prime, one gets improvements 
compared with [l] which roughly is a doubling of the number of source bits that  
can be authenticated, or for a fixed niimher of source bits, a reduction of the 
number of key bits by roughly 2. 

We will next show that using the theory of exponential sums over Galois 
rings we can also construct universal hash families. 
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5 

Some preliminaries on Galois rings are giveri below. For more details on Galois 
rings, t,he reader is referred to [12, 13, 21 and [5]. Let p be a fixed prime. For 
applications, the case p = 2 is most, relevant,. Let P 2 1 be an integer and set 
y = p'. Let Z, denote the integers mod-y, and F<, the fiIiit,e field with y elements. 

Let / I ,  : 23, -+ Z, = IFp be the mod-p reduction map. We extend p to  n map 
Zq[x]  4 Z,[z] in the natural way. A manic polynornial g(x) E Z,[z] is said to  be 
a nionic basic irreducible if p ( g ( 5 ) )  = g(x) is a monic irrediicible polynomial in 
Zp[x]. A Galois ring GH(q, m),  711 2 1 of q7n elerrient,s is simply a Galois extcnsioii 
of Z,. We will write R,.,, = GR(q, 7 n )  for short. Every such ring is isomorphic to  
the ring Z,[z]/(g(z)), where y(z) is monk basic: irreducible of degree rn. R,.- is 
a local ring having a unique maximal ideal Mqm = pRqTn.  Clearly p has a natural 
extension to Rqm and therefore to  RqTrL [z], and p(Jz9,.7.) = Rqm2 /MqTn F Fprrz . 

contain a cyclic group of 
order pm - 1. Let, j" E R;,,, bc! a generator of this cyclic group. Let 7, = 
(0, 1, /?, . . . , pp'"-2) .  It can be shown that every elcment z E RQ.n has the padic  
expansion 

The ring R,- is an extension ring of Z, = R ,  having a cyclic Galois group of 
order m generated by the Frobenius aut,omorphism a given hy 

Exponential sums over Galois rings 

As a Inultiplicative group, the unit,s RZm in 

Z = Zo + pZ] + p2.Zz + ' . ' + ] J ' - 'Z f , - i  2, E ZTL. 

c(.) = .o" + p g  + p%; + ' ' .  + p&, , 

where z = ZO + pz l  + p 2 z 2  + . . . + p ' - ~  ' z , - - ,  , 2, E z,,. Given x E 
the trace Tqn,,, : Rqnr --t R, via 

wc definc 

7-0 

We next present some recent results on exponerit,ial sums over Galois rings. 
d Let f be a polynomial f ( z )  = Ci=n fix' i r i  [x] of degree d.  Let 

f(z) = F ~ ( Z )  + p ~ l ( z )  + ' . .  + p ' - - ' F c . - l ( ~ ) ,  F,(rc) E 7; , [2] ,  O i: j 5 e - 1 

be the padic  expansion of f(2). Such an t:xpansion can be derived from a p- 
adic expansion of the coefficients of f(z). Let, d, he the degree of Fi(x). We will 
assume that it, is not, possible to express f(z) iri the form 

f(x) = a(y(xj) - y(z) + H (mod y) 

for any g(z) E R,-. [XI, H E R497z. Hcre a is the Frobenilis automorphism and c(ci sixz)  = xi a ( y L ) P .  We will say that. f is rron-degenerate when f satisfies 
this condition. WP define 

D ,  = ~ ~ ~ ~ ( d , p e  1 dLllr--%, . . . , d,- 1 },  

and will refer to  f?, as the weighted degrcc of f(z). 

by Kumar, Helleseth and Calderbank. 
The following generalization of the ~;F.il-C:arlit,z-Uchiya.rrl~ bound was provcd 
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Theorem 14 [lo]. Let f (x) t f<,,T,l [ x ] ,  (1 = p ' ,  be non.-degenerate and  let D f  be 
the weighted degree of f(x). T h e n  

I iLg,z u'l'v / ' l [ f ( : r ) )  1 < i0.f - 1 ) P  
! -  

where w is  n complex primitioe q-th root. of 217L%h~. 

6 
Galois rings 

Universal hash functions from exponential sums over 

Wc can coristruct strongly universal hash filmtioris G-om expurieritial surlls ovw 
Galois rings in a Irianner similar to what, we did in Section 4. 

Lemma15. Let f ( z )  = 
nomial uf iuaighted degree DJ such, that f (x) # 0 

d fZx7 E RcI,.~ 1x1, q = p E ,  be (I rio7i-Cleye7ierute poly- 
(mod p ) .  Let 

'V,(f) = I{. E T,, : T(,m/,/( f(X)) = f Y } l .  

IlV,(f) - JPL 1 5 (11, 1)J;rl'". 
Then 

Proof. Wc calculat,r N(y(f) from an expo~irmtial sum over a Galois ring. We have 

siricc, the inner sum is q when Tq7rl ,q(f(:c))  = (Y and 0 otl-ierwise. Observing t,hat 
in the case y = 0 t.he right, hand side contributes p"' ,  leads to 

q l ? J , ( f )  - p"' = c d-w c W 7 P / , ( Y f ( z ) ) ,  

1/ € 7. ,4\, 10 I .,r t T,, 

From Theorem 14, it follows t,ha.t 

lNm(f) - p"'-'I I ( D /  - I,@. 

We next irit,roduce a generaliza.tion of the Gray-map. The Gray-map is used 
in coding theoretic: applications for constructing binary codes and sequcnccs. 
The main property for. thew ma.ps is explained in the following lexnrna. 

Lemma16. For i E Z,, z E Z1;d, let .I: z l p  + x0,q,,:c1 E Z,, and define 
4i : Z,z + Z,, b y  

$b1(2) = :c1 t 2x0. 

I{; E z,: & ( 2 )  - &(y) = .)I = i{i E z,: $hL(II: - y) = z} l .  

Then for any x .  !j E Z,,2 und ,T E Z ,  
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Proof. Let z = z l p  + 20 and y 1 y lp  + yo, where xi, zo, y1; yo E Z,. Now di(z) 
is defined by 4i(z) = z1 + izo. Then q$i(x) - q$&(:y) = ( X I  - yl) + i(xo - yo). 
Now it is easy to  see that if xo # yl) each value of Z, will appear once both for 
4i (z)  - dZ(y) and for d>i(:c -~ g), whcn i runs t!hrough Z,. Furthermore, if z o  = yo 
the11 4i(~) - 4i (y)  = (bz(r - W )  = 21 - ~ 1 .  

Cons i th  t,lie set, 7211 of polynomials of  wt?iglitrti degree a t  most, D 5 fl, 
defined by 

RD = {f(z)  : f(z) = flz+f2z2+-..+fdzd E Rgm[z], DJ 5 D.  fi = 0 whenever p i i } .  

The condition f i  = 0 if pli for all f E Ru guarant,ees that 1 is non-degenerate. 
From the definitions of 'R.u and L l f  it, follows that lRul = p"("-LD/P'l). The 
corresponding construction is the following. 

Theorem 17. Let th,e f i m c t i m s  *in G r n q i  fropm X = Rr, t o  Y = Z,. Let f E 
RD = X ,  q = p 2 >  and define 

Y d , Z ( f )  = iy + ( l j 7 ! 7 b l l l l . s ( f ( ( Y ) ) ) .  

Then the  family 

is an 6-ASUZ fomily of hush funct ions whrlr  

G = { g e , / j , i ( f )  : 0 t TrL? r?,  i E Z p }  

Proof. Property i)  in DrfiriitioIi 2 is easily verified. We ralciilate E by 

where (6) follows from Lernma 16. Wv consider t,wo cases. 

and $,(T(f(cr)))  will take the same valuc for a11 i ,  so 
Case I. f = 0 (mod p ) .  Then f = p f l  for some polynomial f l  # 0 (mod p )  

i.e., as in the finite field case. 
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Coiistriiction 

[I1 
Cur. 8, q prime 
Cor. 13, q : 2 

Case 11. f # O 
with 2 when T ( f ( a ) )  # 0 
T ( f ( a ) )  = O (mod p ) .  

(mod p ) .  Now &(T(J . (a ) ) )  will be uniformly distributcd 
(mod p ) .  and takc the same value for all i when 

~ c y  sizc (\>its)-- 
70 7 2  74 76 78 80 90 100 

25 . 2s 2 6 .  2" 2 7 . 2 '  28 . 2' 29 . 2" 3 0 .  2l" 3 5 .  Zi5  40 .  2" 

2 5 .  2' 2 6 .  26 2 7 .  27 2 8 .  25 2 9 .  2' 3 0 .  21° 35.  215 40 220 
. 60.  2 ' O  - 8 0 .  220 - 

- 

We use Lemma 15 and get 

We note that when pfnP' > (0 ~ 1 ) p .  wc' gct, a better cstirnat,e o€ e by 

1 u - 1  
F < - + 2 -  

a, P '  
since I { Q  : T ( f ( a ) )  = O (mod p)}1  2 p ( p J 7 L - 2  - (U - 1 ) f l ) .  

A closer st,iidg reveals tha.t, this c-ASU2 I-lash family has weaker performance 
than the hash families constructed in Section 4. However, for p = 2 it is possiblc 
to USE sharper bounds than described here to get improvements on t in The- 
orem 17. For aut,hentica.t,ion (:odes, p should typically be large and hcnce such 
improvements are of interest only for other applications. 

7 Conclusions 

111 Table 1 we present, paraarictcrs of thc  derived constructions when used as au- 
thentication codes. We conclude by a short, discussion aroiincl the implemcnta- 
tiori. Implemontation aspects have recrntly gained attention, and several papers 
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focus on this topic [8] ,  [9], a.nd [14]. The time corisuining part in the proposed 
constmictions is the evaluation of a polynomial of large degree over a finite field 
(or Galois ring). We need to do additions and multiplications. In hardware, rnul- 
tiplications in a finite field of characterist,ic 2 has a simple implementation. Tn 
software, we can choose a large prime p close to 2", e.g., p = 2'" - 1, and a mul- 
tiplication mod-p can be done by one multiplication mod-2w together with one 
addition. Using more sophisticated Irietliods for thc cvaluation of a high degree 
polynomial will improve the performance. 

Finally, we remark that the trace codes obt,ainecl in a natural way from the 
family 3,g correspond to the dual of the exknded BCH-codcs. The families of 
polynomials F,g and more recently R n  [lo] h;tve been used as a basis for con- 
structing families of sequences with very good correlation properties for CDMA 
applications. An interesting problem for future research would be to  investigate 
whether other families of sequences or codes combined with the methods in this 
paper will lead to  further improvements in the design of universal hash functions 
and authentication codes. 
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