Fast Construction of Irreducible Polynomials over Finite Fields*

Victor Shoup
Universitat des Saarlandes, Saarbriicken, Germany

Abstract

The main result of this paper is a new algorithm for constructing an irreducible polynomial
of specified degree n over a finite field F,. The algorithm is probabilistic, and is asymptotically
faster than previously known algorithms for this problem. It uses an expected number of O™(n?+
nlogq) operations in F,, where the “soft-O” O~ indicates an implicit factor of (log 7)) In
addition, two new polynomial irreducibility tests are described.

1 Introduction

1.1 Statement of main result

Let F, be a finite field with ¢ elements, where ¢ is a prime-power. A theorem due to Moore (1893)
states that for every positive integer n, there exists a field extension F», unique up to isomorphism,
with ¢" elements. Such extensions play an important role in coding theory (implementing error
correcting codes), cryptography (implementing cryptosystems), and complexity theory (amplifying
randomness).

In this paper, we consider the algorithmic version of Moore’s theorem: how to efficiently con-
struct this field extension. To implement arithmetic in F,», it suffices to have an irreducible poly-
nomial f in F,[X] of degree n, since F,[X]/(f)—the ring of polynomials with arithmetic performed
modulo f—is a finite field with ¢” elements.

We present a new algorithm for constructing an irreducible polynomial of specified degree n over
the finite field F';. Our algorithm is probabilistic, and is asymptotically faster than previously known
probabilistic algorithms for this problem. It uses an expected number of O"(n%+nlog q) operations
in F, (additions, subtractions, multiplications, divisions, and zero-tests), where the “soft-O” O~
indicates an implicit factor of (log n)o(l). More precisely, our algorithm uses an expected number
of

O((n*logn +nlogq) - L(n))

operations in F,, where for brevity we use the notation L(n) = logn loglog n.

1.2 Discussion of earlier work

One method for constructing an irreducible polynomial of degree n over F, is trial and error: choose
monic polynomials of degree n at random until an irreducible one is found. This is a reasonable

*Appeared in Journal of Symbolic Computation 17, pp. 371-391, 1994; extended abstract in Proc. 4th Annual
Symposium on Discrete Algorithms (SODA), pp. 484-492, 1993.

strategy, since the probability that a randomly chosen monic polynomial of degree n is irreducible
is approximately 1/n. Indeed, just this strategy is recommended in Galois’ (1830) paper originating
the theory of finite fields.

To turn this idea into an algorithm, one needs to specify an irreducibility test. One such test is
due to Butler (1954), which can be implemented so as to use O°(n* 4 nlog q) operations in F,.

Here, w is such that two n X n matrices can be multiplied using O(n“) arithmetic operations.
We assume that 2 < w < 3. For the “classical” matrix multiplication algorithm, we can take w = 3;
for the asymptotically fast algorithm of Coppersmith & Winograd (1990), we can take w = 2.376.

Butler’s test leads to a probabilistic algorithm for constructing an irreducible polynomial that
uses an expected number of O"(n“*! + n?log ¢q) operations in F,.

Rabin (1980) suggested using a test for irreducibility that uses O7(n?logq) operations in F,.
This yields a probabilistic algorithm for constructing an irreducible polynomial that uses an ex-
pected number of O"(n?log ¢) operations in F,.

Later, Ben-Or (1981) suggested using a different test; while this test has a worst-case running
time of O"(n?logq) operations, it uses on average only O"(nlogq) operations for randomly chosen
input polynomials. This yields a probabilistic algorithm for constructing an irreducible polynomial
that uses an expected number of O7(n?log q) operations.

Recently, a new algorithm for testing irreducibility was presented in von zur Gathen & Shoup
(1992). That algorithm uses O™(n(“T1/2 4 nlog q) operations in F,, yielding a probabilistic algo-
rithm to construct an irreducible polynomial that uses ON(n(‘*“L?’)/2 + n?log q) operations. Thus,
this new test does not yield a faster method of constructing an irreducible polynomial.

Prior to the results of this paper, Ben-Or’s algorithm was asymptotically the fastest. The
contrast between the running time of our new algorithm and Ben-Or’s algorithm is most striking
when ¢ is an n-bit number. In this situation, Ben-Or’s algorithm uses O(n®L(n)logn) operations,
whereas ours uses O(n*L(n)logn)—an order of magnitude improvement.

Our algorithm is not based on the trial and error strategy; nevertheless, its output is still a ran-
dom monic irreducible polynomial of degree n, uniformly distributed among all such polynomials.

Another feature of our algorithm is its efficient use of randomness. In some situations (e.g., as in
Alon et al. 1990), it is desirable to limit the amount of randomness used to construct an irreducible
polynomial. The only randomness used by our algorithm is an expected number of O(n) randomly
chosen elements of F;, which is optimal to within a constant factor. All of the above algorithms
based on trial and error use an expected number of O(n?) random elements of F,.

If randomized algorithms are not allowed, then there is no known polynomial-time algorithm
for this problem, unless the Extended Riemann Hypothesis is true (Adleman & Lenstra 1986,
Evdokimov 1989). There are, however, deterministic polynomial-time algorithms for this problem
when ¢, or even the characteristic of F,, is small (Chistov 1984, Semaev 1988, Shoup 1990). In
particular, in Shoup (1990), a deterministic polynomial-time reduction from this problem to the
problem of factoring polynomials in F,[X] is given, which leads to a deterministic algorithm for
constructing irreducible polynomials that runs in time ,/p-(n log q)o(l), where p is the characteristic
of Fy.

1.3 Overview

Our algorithm follows in broad outline the deterministic construction in Shoup (1990). A straight-
forward probabilistic implementation of that algorithm is much slower than either Rabin’s or Ben-

Or’s. The main technical problems encountered are the computations of traces and minimal poly-
nomials in very large field extensions over F,. To deal with these problems, we exploit the special
structure of these field extensions; we also make use of some of techniques developed in von zur
Gathen & Shoup (1992).

The rest of this paper is organized as follows.

In section 2, we briefly discuss some notation and basic facts we will need later.

Sections 3 and 4 contain some new algorithms that will be needed later, but that also may be
of independent interest.

In section 3, we present some algorithms for computing minimal polynomials in field exten-
sions and related problems. For example, we present an algorithm that will compute the minimal
polynomial over F, of an element in Fy» using O(n(“’+1)/2) operations in F,.

In section 4, we present an algorithm for factoring a cyclotomic polynomial over F,. If &, is
the nth cyclotomic polynomial, where n is prime, then our algorithm finds an irreducible factor of
®,, in F,[X] using O"(nlogq) operations in F,. The algorithm is a variant, adapted to this special
case, of one presented in von zur Gathen & Shoup (1992) that factors a general polynomial using
O™ (n* 4 nlog q) operations in F,.

In section 5, we prove our main result (Theorem 10).

In section 6, we describe two new algorithms for testing if a given polynomial is irreducible.
These algorithms are faster than the algorithm in von zur Gathen & Shoup (1992), but only by
a factor of (logn)®(). One of the new algorithms is deterministic and the other is probabilistic,
erring with probability at most 1/¢.

2 Preliminaries

In this section, we introduce some notation and terminology, and recall some facts that will be
needed later.

Let K be afield. Two polynomials of degree at most n in K[X] can be multiplied using O(nL(n))
multiplications and additions in K (see Cantor & Kaltofen 1991). Division with remainder involving
polynomials of degree at most n can also be done with O(nL(n)) operations in K and GCD’s can
be computed with O(nL(n)logn) operations (see Aho et al. 1974).

We will need to perform arithmetic in certain types of extension rings.

Let f be a monic polynomial in K[X] of degree n, and consider the residue class ring R =
K[X]/(f). If 8 is the image of X in R, then we have R = K[f]. Elements in R can be represented
as polynomials of degree less than n. With this representation, additions and subtractions in R
can be performed with O(n) operations in K, and multiplications with O(nL(n)) operations in K.
If R is a field, divisions can be performed with O(nL(n)logn) operations in K. For a polynomial
h € K[X], (h mod f) denotes its image in R, while (h rem f) denotes the remainder of & on division
by f.

In this situation, we say that K[0] is the residue class ring defined by f.

Now consider the cost of performing arithmetic on polynomials in a single variable Y with
coefficients in K[f]. Two polynomials in K[][Y] of degree at most m can be multiplied using
O(nmL(nm)) operations in K. Moreover, division with remainder involving two such polynomi-
als can be carried out using O(nmL(nm)) operations in K, and GCD’s can be computed using
O(nmL(nm)log(nm)) operations in K.

With these observations, we can calculate the cost of performing arithmetic in a tower of ring
extensions. Let g be a monic polynomial of degree m over K[f]. Consider the residue class ring
S = K[0][A] defined by g. Additions and subtractions in S can be performed with O(N) operations
in K, where N = nm, and multiplications with O(N L(N)) operations in K. If S is field, then
divisions can be performed with O(N L(N)log N) operations in K.

Finally, a comment on algorithms and their running times. Typically, we shall present an
algorithm that works over an abstract field K or an arbitrary finite field F,, and state running
times in terms of arithmetic operations in the field. Our algorithms also perform Boolean operations,
e.g., integer arithmetic, but in all cases the number of bit operations required is dominated by the
number of arithmetic operations. We also assume that an algorithm that works over an arbitrary
finite field F;, where ¢ is a prime power p’, is given the integers p and £ as implicit inputs.

3 Algorithms for computing minimal polynomials and related
problems

In this section, we present algorithms for computing minimal polynomials and other related prob-
lems. These algorithms will be used as subroutines in subsequent sections.

Let K be a field and K[f] be a residue class field over K. We will use the following fact
concerning the evaluation of a polynomial over K at a point in K[6].

Fact 1 Let K be a field. There is an algorithm with the following properties. It takes as input a
residue class ring K[6] defined by a polynomial of degree n over K, an element o € K], and a
polynomial g € K[X], where degg < m. The algorithm computes g(a) € K[0] using

O(m*"*(n/m"? + 1) + m'?nL(n))
operations in K. In particular, if m = O(n), the algorithm uses O(n(‘”‘"l)/z) operations in K.

Proof. This is essentially Algorithm 2.1 in Brent & Kung (1978). That algorithm computes
g(h) rem X" for polynomials g and h in K[X] of degree at most n, but it is easily adapted to meet
the specifications above. O

REMARK. We will freely make use of a slightly more general version of Fact 1 in which the residue
class ring K[f] is replaced by a tower of rings K[#][A], and n is replaced by [K[#][A] : K]. The
proof of this stronger version is straightforward, and we omit it.

THE TRANSPOSITION PRINCIPLE. We need to use a fact that says, roughly, the complexity of
computing the matrix-vector product A - v is the same as that of computing »” - A, where »7 is the
transpose of v. This so-called transposition principle can be stated precisely in terms of arithmetic
circuits. For our applications, we can restrict ourselves to arithmetic circuits with only addition
and multiplication nodes.

Fact 2 Let K be a field. Suppose that there exists an arithmetic circuit whose inputs are the
indeterminates X1,...,Xs and Y1,...,Y,,. Suppose that the outputs (which are elements of the

polynomial ring K[X1,...,Xs,Y1,...,Yn]) are the entries of the matriz-vector product
Yi
Y

where A is an n X m matriz whose entries are elements of K[Xy,..., Xg].

Then this circuit can be transformed into a circuit with inputs X1,..., X, and Z1,...,7Z,, and
whose outputs are the entries of

(Z1,-++, Zn)A.

The size of the transformed circuit is bounded by a constant times the size of the original circuit.
Moreover, there exists an algorithm that will perform the transformation whose running time is also
bounded by a constant times the size of the original circuit.

Proof. This was proved in Canny et al. (1989) by applying the result of Baur & Strassen (1983).
O

In our applications, we want to apply the transposition principle to algorithms—mnot circuits.
In all of the applications in this paper, it is a straightforward matter to run the algorithm that
computes A - v to generate a circuit, and then transform the circuit, and finally evaluate the
transformed circuit at the desired inputs.

LINEARLY GENERATED SEQUENCES. Our algorithm for computing minimal polynomials in field
extensions is based on the theory of linearly generated sequences. Let V be a vector space over
a field K, and let {a;};>0 be an infinite sequence of elements in V. This sequence is said to be
linearly generated over K if there exist cg, ..., ¢, € K, with ¢, # 0, such that

Vi>0:coa;+ - -crtiy, =0.

The polynomial ¢g +¢1 X + -+ -+ ¢, X" € K[X] is called a generating polynomial for the sequence.
The set of generating polynomials, plus the zero polynomial, form an ideal in K[X], and the monic
polynomial that generates it is called the minimal polynomial of the sequence.

Fact 3 Let K be a field, and let {a;};>o be an infinite sequence of elements in K, linearly generated
over K, with minimal polynomial g € K[X]. Then there is an algorithm that takes as input a
positive integer m, and the elements aq, . .., a2,_1, and computes g, assuming that m > degg. The
algorithm can be executed using O(mL(m)logm) operations in K.

Proof. The minimal polynomial can be calculated from the quotient sequence of the Euclidean
scheme for (f,g), where f = agX?*"~ ' + .. -+ ag,_1 € K[X] and ¢ = X?™ € K[X] (Dorn-
stetter 1987). By using a fast GCD algorithm, all of the computations can be performed using
O(mL(m)logm) operations in K. O

We now present our algorithm for computing minimal polynomials in a field extension K[6)].

Theorem 4 Let K be a field. There exists an algorithm that takes as input a residue class field
K|[f] defined by an irreducible polynomial over K of degree n, and an element o € KI[f]. The
algorithm computes the minimal polynomial g € K[X] of a over K using O(n(‘*’+1)/2) operations
in K. Moreover, if a bound m on the degree of g is given to the algorithm, then it uses only
O(m“=D2n 4 m!2nL(n)) operations in K.

Proof. First, note that the minimal polynomial ¢ € K[X] of a is the same as the minimal
polynomial of the K-linearly generated sequence {a'};>o. Moreover, if P : K[f] — K is a K-linear
map, then the sequence {P(ai)}izo is also linearly gel_lerated. Its minimal polynomial divides g,
and since g is irreducible, it will equal g so long as this new sequence is not the zero sequence.

Let m be the bound on degyg if it is given; otherwise, set m = n. The algorithm to compute g
runs as follows.

1. Let P : K[#] — K be the K-linear map defined by
P(1) =1, P(8) == P(") =0,
Compute the sequence P(1), P(a),..., P(a*™71).

2. Apply the algorithm of Fact 3 to the sequence in step 1 to obtain g, the minimal polynomial
of a.

This algorithm is correct, since the sequence {P(ai)}izo is certainly not the zero sequence, and
so the minimal polynomial of this sequence is g.

To execute step 1 of the algorithm, note that we can rephrase this step as that of computing
the matrix-vector product

(1,0,...,0)A,

where A is the n x 2m matrix whose jth column consists of the coordinates of a’~' on the power
basis 1,6,...,0""1. By the transposition principle (Fact 2), we can compute this just as fast as
an algorithm for computing a matrix-vector product Av, where v is a column vector of dimension
2m. But this problem is just that of computing h(a), where h € K[X]is the polynomial of degree
at most 2m — 1 whose coefficients are the entries of v. It follows that we can execute step 1 with
O(m“=1/2n 4+ m!/?nL(n)) operations in K.

By Fact 3, step 2 can be executed using O(mL(m)logm) operations in K.

This proves the theorem. O

REMARKS. The idea of using linearly generated sequences over K to compute minimum polynomials
for elements in K'[f] already appears in Rifa & Borrell (1991) and Thiong Ly (1989). Our technical
contribution is the improved asymptotic running time that results from applying Brent & Kung’s
algorithm together with the transposition principle.

We will freely make use of a slightly more general version of Theorem 4 in which the residue
class field K[6] is replaced by a tower of fields K[f][A], and n is replaced by [K[#][A] : K]. The
proof of this stronger version is straightforward, and we omit it.

We also note that the condition that the ring extension is actually a field can be dropped by
using a randomized algorithm whose expected running time is slower than the running time stated
in Theorem 4 by a factor of O(1 + logn/log|K]|).

We will also need to perform the inverse operation of the algorithm in Fact 1.

Theorem 5 Let K be a field. There is an algorithm that takes as input a residue class field K[6]
defined by an irreducible polynomial over K of degree n, and elements a, 3 € K[0]. It computes the
polynomial g € K[X] of least degree such that g(a) = [if such an polynomial exists; otherwise, it
reports failure. The algorithm can be executed using O(n(“’+1)/2) operations in K.

Proof. The algorithm runs as follows.

1. Compute the minimal polynomial of a over K, and let m be its degree.

2. Let P: K[f] — K be the K-linear map defined by
P(1)y=1, P(@)=---=P(#" ') =0.
Compute the sequence P(1), P(a),..., P(a*™71).
3. Compute the sequence P(3), P(Ba),..., P(Ba™1).

4. Solve the system of equations

P(1) -+ P(a™) 90 P(B)

P(a;”_l) P(az‘m_Z) g7r::—1 P(ﬁOLm_l)

(@33

. Set g = Y"1 g X7, and compute g(a). If g(a) = 3, then g is the desired polynomial;
otherwise, there is no such polynomial.

First, we argue for the correctness of this algorithm.

Suppose that 5 ¢ K(a). Then the algorithm will certainly report failure in step 5. So assume
that § € K(a). Then m = [K(a) : K], where m is as computed in step 1, and there exists a unique
polynomial g = S-71 ¢, X? € K[X] such that g(a) = 3. We therefore have

m—1
Y gt =pal (0<j<m—1).
=0

Applying P to these equations, we get the system of equations in step 4. This is a nonsingular
system, since the sequence {P(o/)}izo is linearly generated over K with minimal polynomial of
degree m. Therefore, in step 4, we obtain the coefficients of the unique polynomial ¢ € K[X] of
degree less than m such that ¢g(a) = 3.

Second, we argue for the running time bound.

Step 1 can be executed using O(n(“’+1)/2) operations in K using the algorithm of Theorem 4.

The sequence in step 2 can also be computed using O(n(‘*’+1)/2) operations in K just as in step
1 in the algorithm in the proof of Theorem 4 (in fact, we have already obtained this sequence as a
by-product of executing the algorithm in Theorem 4 in step 1 of this algorithm).

For step 3, notice that by the transposition principle, we can compute this sequence as fast as we
can solve an instance of the following problem: given elements a and 8 in K[f], and a polynomial

h € K[X] of degree less than m, compute h(a) - 8. The latter problem can clearly be solved using
O(n(«+1)/2) operations in K, and so we can also execute step 3 using O(n(“t1)/2) operations in K.
Step 4 can be executed using the Toeplitz system solver of Brent et al. (1980) using
O(mL(m)logm) operations in K.
Step 5 can be executed with the algorithm of Fact 1 using O(n(“+1)/2) operations in K. O

REMARK. Theorem 5 holds if the residue class field K] is replaced by a tower of fields K[6][A]
and n is replaced by [K[A][A] : K]. We will not need this more general version of Theorem 5.

We also need an algorithm to compute norms in field extensions.

Fact 6 Let K be a field. Then there exists an algorithm that takes as input a residue class field K[6]
given by an irreducible polynomial over K of degree n, and an element o € K[0]. The algorithm
computes the norm Nig/x(a) € K using O(nlL(n)logn) operations in K.

Proof. Let f € K[X] be the monic irreducible polynomial of degree n defining the extension K[f).
Let g € K[X] be the polynomial of degree less than n such that a = g(#). Suppose that f factors
as f=(X —01)---(X —#6,) in the algebraic closure of K. Then we have

Nrpyr(a) = g(61)---9(6n)
Res(f,9),

where Res(f,¢) is the resultant of f and g.

As observed in §5 of von zur Gathen (1991), this resultant can be calculated from the quotient
sequence of the Fuclidean scheme for (f, g). By using a fast GCD algorithm all of the computations
can be performed within the stated time bounds. O

REMARK. We will freely make use of a slightly more general version of Fact 6 in which the residue
class field K[#] is replaced by a tower of fields K[#][A], n is replaced by [K[6][A]: K], and the norm
Nikto/x is replaced by Ngiga1/x[g)- The proof of this stronger version is straightforward, and we
omit it.

4 Factoring cyclotomic polynomials

Let ¢ = p%, with p prime, and let be a prime different from p. In this section, we consider the
problem of factoring the rth cyclotomic polynomial &, = X"~! 4+ ...+ X + 1 € F,[X]. It makes
use of the following general fact.

Fact 7 Let R be a ring of characteristic p. For t a power of p and k > 1, define the map Ty, :
R— R by

Tip(a)=a+a' 4.+ o™
Then for any o € R, T p(a) can be computed using O(log k) additions in R and O(log k) powering
operations in R of the form B +— 3", where 3 € R and 1 < j < k.

Proof. This fact was observed in von zur Gathen & Shoup (1992). It follows from the identity

Ty jrr(a) = Trj(e) + Ter(@)”,

utilizing a “repeated doubling” algorithm. O

The algorithm also makes use of the following simple observation.

Fact 8 Let g = Y.'25a; X' € F,[X] and k > 1. Then qu rem (X" — 1) can be computed by just
permuting the coefficients of g. Namely, if we set b; = ¢®i rem r for 0 < i < r, then

r—1
g7 rem (X"=1)= ZaiXb".
=0

Theorem 9 Let ¢ = p’, with p prime, and let v be a prime different from p. Then there is a
probabilistic algorithm that finds an irreducible factor of ®, € F,[X] using an expected number of
O(rL(r)logr + rL(r)logq) operations in ¥, and an expected number of O(r) random elements of

F,.

Proof. The algorithm proceeds as follows.

1.

2.

3.

Compute m as the multiplicative order of ¢ modulo r. Set f = ®,.
If deg f = m, then output f and stop; otherwise, do steps 3-5.

Generate a random polynomial g; € F,[X] of degree less than 2m.

. Compute gy = 7! g;]z rem f.

If ¢ is odd, then do the following:

(a) Compute g3 = ggq_l)ﬂ rem f.

(b) Compute oy = ged(gs, f), ha = ged(gs — 1, f), and hs = ged(gs + 1, f).

(c) Replace f by the nonconstant polynomial of least degree among hy, hy and hs, and go
back to step 2.

Otherwise, do the following:

(a) Compute g3 = Ef;é g%i.
(b) Compute hy = ged(gs, f) and hy = ged(gs + 1, f).

(c) Replace f by the nonconstant polynomial of least degree between hy and hg, and go
back to step 2.

First of all, note that m | r — 1 and the irreducible factors of ®, are pair-wise nonassociate, each
having degree m. Thus we are in the special case of factoring a polynomial whose irreducible factors
have the same degree. There are several algorithms in the literature for this problem (Ben-Or 1981,
Cantor & Zassenhaus 1981, von zur Gathen & Shoup 1992) and the algorithm presented above is

a variant of these. One can easily prove that at each iteration of the main loop (steps 2-5), the
polynomial f is replaced by a factor of lower degree with probability at least 1/2. We do not give
a proof of this here, but instead refer the reader to one of the papers mentioned above.

Note that whenever the degree of f is reduced, it is reduced by at least a factor of 2. It follows
that the expected number of iterations of the main loop is O(logr).

To attain the running time bounds stated in the theorem, we implement step 4 using the trace
map algorithm of Fact 7 with R = F,[X]/(X" —1),t =¢, k = m, and a = (¢ mod X" — 1) to
compute

m—1 .
jo= " gf rem (X"~ 1) € F,[x].
1=0

To perform the powering operations 3 — (3% (with 3 € R and 1 < j < m) required by the trace
map algorithm, we use Fact 8. In this way, we can compute §; using O(rlogr) operations in F,.
We then obtain g, by one division with remainder that costs O(rL(r)) operations in F,. Since step
4 is executed an expected number of O(logr) times, the expected number of total operations used
to execute step 4 during the course of the algorithm is O(rL(r)logr).

Suppose that ¢ is odd, and that s = deg f. Then step 5(a) can be executed using O(sL(s)logq)
operations in F, with a repeated squaring algorithm, and step 5(b) can be executed using
O(sL(s)logs) operations in F, with a fast GCD algorithm. Thus step 5 can be executed using
O(sL(s)(logs + logq)) operations in F,. Since whenever the degree of f is reduced, it is reduced
by a factor of at least 2, it follows that the expected number of total operations used to execute
step 5 during the course of the algorithm is O(rL(r)(logr + log q)).

As can easily be checked, the same bound for the cost of step 5 holds when ¢ is even.

This proves the running time bound. The bound on the expected number of random elements
in F, is easy to check. O

5 Constructing irreducible polynomials

In this section, we present our main result:

Theorem 10 There is a probabilistic algorithm that, given n, constructs an irreducible polynomial
of degree n over F, using an expected number of O(n?L(n)logn + nL(n)logq) operations in F,.
The output polynomial is uniformly distributed over all monic irreducible polynomials of degree
n. The only randomness used by the algorithm is an expected number of O(n) randomly chosen
elements in F,.

Throughout this section, we assume that ¢ = p’, where p is prime.
To prove this theorem, we first treat the situation where n is a prime power, say n = r¢, where
r is prime. We then consider 3 cases: (1) r #Zp and r #2; (2) r #pand r = 2; (3) r = p.

Case 1: r # p and r # 2

Theorem 11 There is a probabilistic algorithm that, given a prime power n = r¢ with r # p
and r # 2, constructs an irreducible polynomial of degree n over F, using an expected number of
O(n*L(n)logn + rL(r)logq) operations in F,. The only randomness used by the algorithm is an
expected number of O(n) randomly chosen elements in F,.

10

Fact 12 Let K be a field. Let d > 2 be an integer, and let o € K, a # 0. Suppose that for
all primes t dividing d, we have a ¢ K', and if 4 | d, then —1 € K?%. Then the polynomial
X% —a € K[X] is irreducible.

Proof. This is a direct consequence of Theorem 9.1 on p. 331 of Lang (1984). O
The following is a high-level description of the algorithm in Theorem 11.
Algorithm 13 1. Find an irreducible factor i of the rth cyclotomic polynomial ®, € F,[X].

Let m = degh, and let F,[f] be the residue class field defined by A.

Remark. Note that m is the multiplicative order of ¢ modulo v, and so m | r — 1.

2. Find an rth power nonresidue £ € F,[6].
Remark. By Fact 12 the polynomial X" — £ € F,[0][X] is irreducible.
Let £ = F,[6][A] be the residue class field defined by X" — £.

3. Let H be the (unique) field with £ > H D F, and [H : F;] = n.
Compute the trace I' = Tg/p(A).

4. Compute the minimal polynomial of I over F,.

Remark. In the proof of Theorem 2.1 in Shoup (1990), it is shown that I' has degree n over
F,; therefore, its minimal polynomial is an irreducible polynomial of degree n in F,[X].
O

The following inclusion diagram illustrates the construction.
B =TF,[6][A]

n m

F,[6] H
\, /

The correctness of Algorithm 13 follows from the remarks contained therein. To prove
Theorem 11, it will suffice to show that each step of Algorithm 13 can be executed within the
stated resource bounds.

First of all, note that using the algorithm of Theorem 9, we can execute step 1 of Algorithm 13
using an expected number of O(rL(r)logr + rL(r)logq) operations in F, and an expected number
of O(r) random elements in F,.

To execute steps 2 and 3 efficiently, we need the following.

Lemma 14 There is an algorithm that takes as input the residue class field F [0] defined in step 1
of Algorithm 13, positive integers k and t, and elements a, 3 € F,[0]. It is assumed that 3 = ale/tl

The algorithm computes al9"/1) using O((rL(r) + mL(m)logt) - log k) operations in F,.

11

Proof. TYor u > 1, define integers A, and B, by

¢ =At+ By, 0< B, <t.
We are given 3 = o' and we want to compute a?*.
Claim. For any positive integers « and v, we have

Au—}—v = Avqu + Aqu + LBuBU/tJ .
To see why this holds, note that

"t = ¢"(Avt+ By)
Ayt + ¢ B,
¢ Ayt + (At + By) By
= (¢"Ay + AuBy, + |BuB,/t])t + (BB, rem t).

From the claim, we see that given a”* and av, we can compute a“+* by the formula
u
B
atute = (aA”)q . (aA“) "L alBuB/t]

Using Fact 8 and a fast exponentiation algorithm, we can compute a4+’ from a?* and a“* with
O(rL(r) +mL(m)logt) operations in F,.

Therefore, starting with = a1, and using a “repeated doubling” algorithm, we can compute
o’k with O((rL(r) + mL(m)logt) - log k) operations in F,. O

Lemma 15 Step 2 of Algorithm 13 can be executed probabilistically using an expected number of
O((rL(r)4+mL(m)logr)-logm + mL(m)logq) operations in F, and an expected number of O(m)
random elements in F,.

Proof. To find an rth power nonresidue in F,[f], we simply choose o € F,[f] at random, and test
if it is a nonresidue by calculating g = a(¢"=1/m = qla™/7] If g # 1, a is a nonresidue; otherwise,
we choose another a at random and repeat.

To compute 3, we first compute al?/7] using a repeated squaring algorithm, which takes
O(mL(m)logq) operations in F,, and then apply the algorithm of Lemma 14, which takes
O((rL(r)+ mL(m)logr) - log m) operations in F,.

The expected number of iterations until we find a suitable ais O(1). O

Lemma 16 Step 3 of Algorithm 13 can be executed deterministically using
O(nrL(r)logm + mL(m)logq)
operations in F,.

Proof. We want to compute

m—1)
I'=Tgmu(A)= Y A" € E.
=0

12

We can utilize the trace map algorithm of Fact 7 to compute I' at a cost of O(logm) additions
in £ and O(log m) powering operations of the form ¥ — W% where ¥ € F and 1 < j < nm.

We claim that once we precompute £19/7) at a cost of O(mL(m)logq) operations in F,, we can
then perform any one of the above powering operations using O(nrL(r)) operations in F,. The
lemma will then follow immediately.

To prove the claim, first recall that any ¥ € F is represented as

n—1
¥ = Z ai\’,
=0

where each «a; is in F,[f]. Then, if ¢’ = An + B, where 0 < B < n, observe that

n—1
W= Y () (A7)
=0
n—1
= Y (a)” (€A

=0
The last equation uses the identity A™ = £. Thus, we can compute the coordinates of ¥%’ on the
basis 1,A,...,A""' by applying the algorithm of Lemma 14 to get £4, and Fact 8 to get (a;)?
for each 7. Note that replacing A* by AP? for each i just permutes the coordinates. From this, it
follows that we can compute W' at a cost of O(nrL(r)) operations in F,, the dominant cost being
that of computing (;)? for each 7. O

REMARK. We observe that Lemma 15 can be generalized as follows (although no use of this
generalization is made in this paper). Given an arbitrary residue class field F,[f] of degree m
over F;, and a divisor 7 of ¢™ — 1, we can find an rth power nonresidue probabilistically using
ON(m(‘*""l)/2 + m(log g +logr)) operations in F,. This is done using the polynomial representation
of the Frobenius map (as described in von zur Gathen & Shoup (1992)) in conjunction with the
technique of Lemma 15.

We now come to step 4 of Algorithm 13. First of all, we remark that we cannot just use
the algorithm of Theorem 4, since in the worst case m = n — 1, and then that algorithm takes
O(n(‘”‘"S)/z) operations in F,. Instead, we use a “homomorphic imaging” technique: we obtain
the values of the minimal polynomial of I' at roughly n/m points in F,[#], and then apply the
Chinese Remainder Theorem to recover its coefficients. Evaluating the minimal polynomial at a
point in F,[#] turns out to be the same as computing a norm from F down to F,[#], which can be
accomplished using O7(n) operations in F,[f], i.e., O"(nm) operations in F,. Repeating this n/m
times (once for each point) takes O7(n?) operations in F,.

Before describing the details of this step, we state the following estimate.

Fact 17 Let k > 1. The number of elements a € Fx such that Fy(a) # F x is at most %qk/z. The
number of irreducible polynomials over F, of degree k is at least ¢* /(2k).

Proof. As is well-known, the number of elements in F i of degree k over F, is

> (),

d|k

13

Both statements follow from simple calculations. O

Lemma 18 Step 4 of Algorithm 13 can be implemented probabilistically with an expected number
of O(n*L(n)logn) operations in ¥, and an expected number of O(n) random elements in F,.

Proof. The algorithm runs as follows. Set t = [(n+1)/m]. Test if 8tm > 2"/2.If so, then calculate
the minimal polynomial of I using the algorithm of Theorem 4. Since in this case m = O(logn),
this takes O(n(“t1)/21logn) operations in F,.

So now assume that 8t2m < 2™/2. We then carry out the following steps.

1.

2.

Choose elements ag,...,0; € F [f] at random.
For 1 < <t, compute g; € F;[X] as the minimal polynomial of a; over F,.

Compute G = [['_, ¢;, and ged(G, G’), where G’ is the formal derivative of Gi. If this GCD
is not 1, or if deg G < tm, go back to step 1; otherwise, proceed to the next step (and note
that the g;’s are relatively prime in pairs).

For 1 < i <t compute the norm §; = NE/Fq[e](ai = 1.

. For 1 <@ < t, compute the unique polynomial h; € F,[X] of degree less than m such that

hi(oq) = ﬁl

. Compute the unique polynomial f € F,[X] of degree less than ¢m that satisfies the system

of congruences
f=hi(modg) (1<i<t).

Then f is the minimal polynomial of I' over F,.

We first argue that if the above algorithm terminates, then its output is correct. Let F' € F [X]
be the minimal polynomial of I'. Then we have the well-known formula

n—1
F=T1[(X-17).
7=0
It follows that for any a € F,[4],

n—1

Fla) = (a —T7)
7=0
n—1

= (a —T7") (since ged(m,n) = 1)

j=0
n—1
mj mj .
= (" =197 (since a € F,[0])
j=0
n—1
= J[(a-1)""
7=0

Thus, at step 4, §; = F(a;). It then follows that at step 5, h; = I (mod ¢;). Since mt > n+ 1,
F is the unique solution to the system of congruences in step 6. We conclude that F' = f.

To analyze the running time, first consider the loop at steps 1-3. We claim that at each iteration
of the loop, the probability that it terminates is at least 1/2. To prove this claim, note that if the
loop does not terminate, then at least one of the a;’s lies in a proper subfield of F,[6], or some pair
satisfy the same minimal polynomial. Using the estimates from Fact 17, the probability that any

of these events occurs is at most
3t 2t2m 4t°m

2qm/2 + g om/2 "

But since we are assuming that 82m < 2™/2, it follows that the probability that any of these events
occurs is less than 1/2.
Therefore, the expected number of times the loop at steps 1-3 is executed is no more than 2.
Now consider the cost of executing each step.

1. This step requires only the construction of O(n) random elements in F,.

2. Using the algorithm of Theorem 4, each individual g; can be computed using O(m(‘”‘H)/Q)
operations in F,. Repeating this t = O(n/m) times takes O(nm(“~1)/2) operations in F,.

3. Using a divide and conquer algorithm, the product polynomial G in this step can be com-
puted with O(nL(n)logn) operations in F,. Using a fast GCD algorithm, we can compute
ged(G, G') in the same time bound.

4. Using the algorithm of Fact 6, each individual norm can be computed using O(mnL(n)logn)
operations in F,. Repeating this t = O(n/m) times takes O(n?L(n)logn) operations in F,.

5. Using the algorithm of Theorem 5, each individual A; can be computed using O(m(“’+1)/2)
operations in F,. Repeating this t = O(n/m) times takes O(nm(“~1)/2) operations in F,.

6. This step can be executed using a fast Chinese remainder algorithm with O(nL(n)logn)
operations in F,.

This proves the running time bound. The bound on the number of random elements in F, used
is clear. O

This completes the proof of Theorem 11.
Cases 2 and 3 can be handled by straightforward adaptations of the algorithms for the corre-
sponding cases in Shoup (1990). Here are the details.

Case 2: r#p and r =2

Theorem 19 There is a probabilistic algorithm that, given n = 2°, with p # 2, constructs an
irreducible polynomial of degree n over F, using and expected number of O(n + log q) operations in
F,. The only randomness used by the algorithm is an expected number of O(1) random elements
in Fy.

15

Proof. There are two cases.

First, suppose ¢ = 1 (mod 4). Then by Fact 12, the polynomial X" — a is irreducible provided
a € F, is a quadratic nonresidue. Such an a can be find by choosing elements @ at random until
alt=1)/2 £ 1,

Second, suppose ¢ = 3 (mod 4). In this case, —1 is a quadratic nonresidue in F,, and so the
polynomial X2+ 1 € F,[X]is irreducible. If e = 1, we are done. Otherwise, let F,[f] be the residue
class field defined by the polynomial X2 + 1. By Fact 12, the polynomial X™/2 — o € F,[0][X] is
irreducible provided a € F,[f] is not a square. We can find such an a by a randomized search. If
is a root of X2 — o (in some algebraic closure), then § has degree n over F,. Writing a = a + b8,
with a,b € F,, it is easy to see that the minimal polynomial of 3 over F, is

X" —2aX + (a* + b%) € F [X].

O

Case 3: r=p
Theorem 20 There is a probabilistic algorithm that, given n = p®, constructs an irreducible poly-
nomial over F of degree n using an expected number of O(n(‘*"H)/2 + log q) operations in F,. The

only randomness used by the algorithm is an expected number of O(1) random elements in F,.
Proof. The algorithm runs as follows.

1. Choose a € F, at random.
2. Compute the trace b = Tp_;F,(a).

3. If b =0, go back to step 1; otherwise, set f = X? — X —a € F,[X] and proceed to the next
step.
Remark. At this point, the polynomial f € F,[X] is irreducible (this follows from Hilbert’s
Theorem 90 and the Artin-Schreier Theorem on p. 325 of Lang 1984).

4. For j =2,...,¢, do steps 5-6.

5. Let F,[f] be the residue class field defined by the polynomial f. If j = 2, set a = 7! € F,[6];
otherwise, set a = 6?1 — 7 ¢ F,[0].
Remark. At this point, the polynomial X? — X —a € F[0][X] is irreducible (this follows from
Lemma 5 of Adleman & Lenstra 1986).

6. Let F,[0][A] be the residue class field defined by the polynomial X? — X — a € F,[0][X].
Compute the minimal polynomial of A over F,, and replace f with this polynomial.

Remark. At this point, f is an irreducible polynomial over F, of degree .

7. Output f.
Remark. At this point, f is an irreducible polynomial of degree p°.

16

The correctness of the algorithm is easily checked. We omit the details.
For the running time bound, note that the expected number of iterations of the loop at steps 1-3

is O(1). The trace can be calculated using O(log ¢) operations in F, by using a repeated squaring
algorithm in conjunction with the formula Tp_/r (@) = S a'.

Next, note that for 2 < 57 < e, the jth iteration of step 6 can be performed using O(pj(“’+1)/2)
operations in F;, by employing the algorithm of Theorem 4. Summing from 2 to e gives O(n(‘*’+1)/2)

operations in F,. O

Proof of Theorem 10

We now have everything we need to prove Theorem 10.
The algorithm runs as follows.

Algorithm 21 1. Decompose n as n = ny ---ng, where each n; is a prime power, and the n;’s
are relatively prime in pairs.

2. Construct an irreducible polynomial f of degree n;.

3. Fori1=2,...,k, do steps 4-5.

4. Construct an irreducible polynomial g of degree n; over F,.

5. Remark. At this point, f is an irreducible polynomial in F,[X] of degree ny ---n;_y and g is
an irreducible polynomial in F,[X] of degree n;.
Let F,[6] be the residue class ring defined by f.

Remark. Note that g remains irreducible over the extension field F,[0] (see, e.g., Theorem 3.46
in Lidl & Niederreiter 1983).

Let E[6][A] be the residue class field defined by g¢.

Remark. Note that A+ 6 has degree ny - - -n; over F, (this follows from Lemma 7 of Adleman
& Lenstra 1986).

Compute the minimal polynomial of A 4 6 over F,, and replace f with this polynomial.

6. Remark. At this point, f € F[X] is an irreducible polynomial of degree n.

Let F,[6] be the residue class field defined by f. Choose a € E[f] at random, and compute
its minimal polynomial A.

7. If degh < m, go back to step 6; otherwise, output i and stop.
O

The correctness of the algorithm is clear.

The running time bounds are easy to obtain from the following observations. To construct the
irreducible polynomials of prime power degrees, we can use the algorithms of of Theorems 11, 19,
and 20. To construct the minimal polynomials, we can use the algorithm of Theorem 4. Also, note
that by Fact 17, the expected number times the loop at steps 6-7 is executed is O(1).

It is also easy to check the bound on the use of randomness.

This completes the proof of Theorem 10

17

6 Two irreducibility tests

In this section we consider the problem of testing if a given polynomial over F, of degree n is
irreducible. Let r denote the number of distinct primes dividing n. The irreducibility test in von
zur Gathen & Shoup (1992) uses

0“1/ 2rlogn 4+ nL(n)log q)
operations in F,. In this section, we present two new tests. The first is deterministic and uses
O(n“ /2 log rlogn + nlL(n)logq)
operations in F;,. The second is probabilistic, uses
O(n'“ T/ ?logn 4+ nL(n)log q)

operations in F,, makes no errors on irreducible inputs, and errs with probability at most 1/¢ when
the input is reducible.
The first test is based on the following lemma.

Lemma 22 Let G be a group and 0 € G. Let n > 1 with prime factorization

_ €1 €
n=p; ...p .

Then we can compule
U”/pl, ...,U”/pr

using O(log r - log n) multiplications in G.

Proof. First compute 7; = a"/P for 1 < ¢ < r recursively as follows. If » = 1, there is nothing to
do. Otherwise, let

S T
s=|r/2], nlznpfi, ng = H pit.
=1 1=s+1
First, compute 09 = ¢™ and o3 = 0™ using a repeated squaring algorithm. Then, recursively
compute _ ‘
U;“/p" (1<i<s) and O'?ﬁp“ (s+1<i<r).

One sees that the recursion depth is O(logr), and the number of multiplies at each level of the
corresponding recursion tree is O(logn). Thus we can compute 7; for 1 < i < r with O(logr -logn)
multiplies in G.

Finally, for each 7, we compute 6™/ by raising 7; to the power pfi_l. The cost of this step is
O(log n) multiplies. O

Theorem 23 There is a deterministic algorithm that takes as input a polynomial f of degree n
over F, and determines if it is irreducible. The algorithm uses

O(n“tY/21og rlogn + nL(n)logq)

operations in ¥y, where v is the number of distinct primes dividing n.

18

Proof. Let n = pi'---pS" be the prime factorization of n. To test for irreducibility, it suffices to
test if X" = X (mod f), and gcd(an/pi - X,f)y=1for1 <i<r.

The dominant cost of this computation is that of computing X9 mod f, and X" mod f for
1 <% < r. To compute these quantities, we first compute X? mod f by repeated squaring. Then we
apply the above lemma, taking o to be the ¢-th power map on F,[X]/(f), and G to be the group of
F,-automorphisms on F,[X]/(f). Automorphisms are represented by their action on (X mod f).
Therefore, given representations for two automorphisms, we can compute the representation of
their composition using O(n(“*t1)/2) operations in F, with the algorithm in Fact 1. O

Let p be the characteristic of Fy, and let f € F,[X] be a polynomial of degree n. For g € F,[X],
define

n—1)
T(g)=>_g" rem f.
=0

Lemma 24 Notation as above. f is reducible if and only if
(a) T(g) ¢ F, for some g € F [X], or
(b) p|n and X" =x (mod f).

Proof. If f is irreducible, then 7" is just the trace map from Fy» to F,, so condition (a) cannot
hold. Condition (b) also cannot hold; otherwise, all irreducible factors of f have degree dividing
n/p, contradicting the irreducibility of f.

Now suppose [is reducible.

First suppose that f is not squarefree. Then 7T'(X) ¢ F,. To see this, suppose the contrary.
Then we would have an equation

n—1)
Y XT =c+ fh,
1=0

where ¢ € F, and h € F,[X]. The derivative of the left-hand side is 1, whereas the derivative of
the right-hand side is not, as fh is not squarefree. Thus, condition (a) of the theorem must hold.
So now assume that f is squarefree and write f = f;--- fr, where the f;’s are irreducible
polynomials. There are two cases.
Case 1. Suppose that deg(f;)fn for some i. Let d be the degree of this f;. Choose a polynomial
g that generates a normal basis for F,[X]/(f;) over F,. Then T'(g) cannot be a constant modulo f;.
To see this, suppose the contrary. Write n = du + v, 0 < v < d. We then would have an equation

d—1 v—1
ngqt —|—qu = cmod f;,

where ¢ € F,. The first sum on the left-hand side is a constant modulo f;, and the right-hand side
is also a constant. However, since g generates a normal basis, the second sum on the left-hand side
cannot be a constant modulo f;. Thus 7T'(g¢) is not a constant, and condition (a) holds.

Case 2. Suppose that deg(f;) | n for all i. Let d; = deg(f;) for each 7. Then modulo f;, T acts
as

n/di : Tquz‘/FQ'

19

If p | n/d; for all ¢, then condition (b) holds. Otherwise, choose some ¢ such that pfn/d;. Choose
any i’ # i. Then with the Chinese Remainder Theorem, we can choose g € F,[X] such that T'(g)
is 1 modulo f; and is 0 modulo fy. Thus, 7'(g) is not a constant, and condition (a) holds. O

To make this theorem into a probabilistic test, observe that the polynomials ¢ € F,[X] of degree
less than n such that 7'(g) € F, form a vector space. If f is reducible and condition (b) does not
hold, then this vector space is a proper subspace of the space of all polynomials of degree less than
n. Therefore, in this case, a random polynomial g of degree less than n will satisfy T'(g) € F, with
probability at most 1/¢. This suggests the following algorithm.

Algorithm 25 Ifp|n, test if X" = x (mod f). If so, output “reducible” and stop. Otherwise,
choose a random polynomial g € F,[X] of degree less than n, and test if T(g) € F,. If so, output
“trreducible” and otherwise output “reducible.”

Theorem 26 Algorithm 25 can be implemented so as to use
O(n'“t/?logn 4+ nL(n)log q)

operations in F,. If the input f is irreducible, its output is always correct; otherwise, the ouput is
correct with probability at least 1 — 1/q.

Proof. The correctness follows from the above theorem and the remarks following it. The stated
running time can be achieved using Algorithm 5.2 in von zur Gathen & Shoup (1992). O

7 Conclusion

We have presented a probabilistic algorithm that constructs an irreducible polynomial of degree
n over the finite field F, using an expected number of O°(n? + nlogq) operations in F,. Our
algorithm is asymptotically faster than previously known methods, which use an expected number
of O°(n*log q) operations.

As an open problem, we ask if one can do this faster, e.g., with an expected number of O™(n" +
nlog q) for some Kk < 2.

As another open problem, we ask if we can construct an irreducible polynomial of degree n over
Fy deterministically in time O(n?). The algorithm in Shoup (1990) runs in time O7(n*). Using
the techniques in this paper, it is possible to reduce this to O"(n®); however, at the present time it
is not clear how to do better.

We have also presented two new tests for irreducibility.

The problem of computing g(h) mod f, for polynomials f, g, and h, is clearly an important
problem, as demonstrated by the many applications in this paper and in von zur gathen & Shoup
(1992). It would be advantageous to find an algorithm for this problem that is faster than the
O(n(“t1)/2) algorithm we have used here.

References

L. M. Adleman and H. W. Lenstra Jr. Finding irreducible polynomials over finite fields. In 18th
Annual ACM Symposium on Theory of Computing, pp. 350-355, 1986.

20

A. V. Aho, J. E. Hopcroft, and J. D. Ullman. The Design and Analysis of Computer Algorithms.
Addison-Wesley, 1974.

N. Alon, O. Goldreich, J. Hastad, and R. Peralta. Simple constructions of almost k-wise inde-
pendent random variables. In 31st Annual Symposium on Foundations of Computer Science, pp.
544-553, 1990.

W. Baur and V. Strassen. The complexity of computing partial derivatives. Theoretical Computer
Science 22, pp. 317-330, 1983.

M. Ben-Or. Probabilistic algorithms in finite fields. In 22nd Annual Symposium on Foundations
of Computer Science, pp. 394-398, 1981.

R. P. Brent and H. T. Kung. Fast algorithms for manipulating formal power series. J. Assoc.
Comput. Mach. 25, pp. 581-595, 1978.

R. P. Brent, F. G. Gustavson, and D. Y. Y. Yun. Fast solution of Toeplitz systems of equations
and computation of Padé approximants. J. Algorithms 1, pp. 259-295, 1980.

M. C. R. Butler. On the reducibility of polynomials over a finite field. Quart. J. Math., Ozxford
Ser. (2) 5, pp. 102-107, 1954.

J. F. Canny, E. Kaltofen, and L. Yagati. Solving systems of non-linear polynomial equations
faster. In Proc. ACM-SIGSAM Int. Symp. on Symbolic and Algebraic Computation, pp. 121-128,
1989.

D. G. Cantor and E. Kaltofen. On fast multiplication of polynomials over arbitrary rings. Acta
Inform. 28, pp. 693-701, 1991.

D. G. Cantor and H. Zassenhaus. A new algorithm for factoring polynomials over finite fields.
Math. Comp. 36(154), pp. 587-592, 1981.

A. L. Chistov. Polynomial time construction of a finite field. In Abstracts of Lectures at 7th
All-Union Conference in Mathematical Logic, Novosibirsk, p. 196, 1984. In Russian.

D. Coppersmith and S. Winograd. Matrix multiplication via arithmetic progressions. J. Symbolic
Comp. 9(3), pp. 23-52, 1990.

J. L. Dornstetter. On the equivalence between Berlekamp’s and Fuclid’s algorithms. IFFFE Trans.
Inf. Theory IT-33, pp. 428-431, 1987.

S. A. Evdokimov. Factoring a solvable polynomial over a finite field and Generalized Riemann
Hypothesis. Zapiski Nauchn. Semin. Leningr. Otdel. Matem. Inst. Acad. Sci. USSR 176, pp.
104-117, 1989. In Russian.

E. Galois. Sur la théorie des nombres. In Ecrits et Mémoires Mathématiques d’Evariste Galois,
ed. R. Bourgne and J.-P. Arza, pp. 112-128. Gauthier-Villars, 1830.

J. von zur Gathen. Tests for permutation polynomials. SIAM J. Comput. 20, pp. 591-602,
1991.

21

J. von zur Gathen and V. Shoup. Computing Frobenius maps and factoring polynomials. Com-
putational Complexity 2, pp. 187-224, 1992.

S. Lang. Algebra. Addison-Wesley, second edition, 1984.
R. Lidl and H. Niederreiter. Finite Fields. Addison-Wesley, 1983.

E. H. Moore. A doubly-infinite system of simple groups. Bull. New York Math. Soc. 3, pp.
73-78, 1893.

M. O. Rabin. Probabilistic algorithms in finite fields. SIAM J. Comput. 9(2), pp. 273-280,
1980.

J. Rifa and J. Borrell. Improving the time complexity of the computation of irreducible and
primitive polynomials in finite fields. In Proc. AAFCC-9, Lecture Notes in Computer Science
539, vol. 12, pp. 352-359, 1991.

I. A. Semaev. Construction of irreducible polynomials over finite fields with linearly independent
roots. Mat. Sbornik 135, pp. 520-532, 1988. In Russian; English translation in Math. USSR~
Sbornik, 63(2):507-519, 1989.

V. Shoup. New algorithms for finding irreducible polynomials over finite fields. Math. Comp.
54(189), pp. 435-447, 1990.

A. Thiong Ly. Note for computing the minimum polynomial of elements in large finite fields. In
Coding Theory and Applications, Lecture Notes in Computer Science 388, pp. 185-192, 19809.

22

