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Abstract. Let K⊂L be a finite Galois extension of fields, of degree n. Let G be the Galois group, and let (σα)σ∈G
be a normal basis for L over K. An argument due to Mullin, Onyszchuk, Vanstone and Wilson (Discrete Appl.

Math. 22 (1988/89), 149–161) shows that the matrix that describes the map x7→αx on this basis has at least

2n−1 non-zero entries. If it contains exactly 2n−1 non-zero entries, then the normal basis is said to be optimal.

In the present paper we determine all optimal normal bases. In the case that K is finite our result confirms a

conjecture that was made by Mullin et al. on the basis of a computer search.
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while this work was being done; he was supported by NSF under Grant No. DMS 90-02939.

Let K ⊂ L be a finite Galois extension of fields, n the degree of the extension, and G the

Galois group. A basis of L over K is called a normal basis if it is of the form (σα)σ∈G, with

α ∈ L. Let (σα)σ∈G be a normal basis for L over K, and let d(τ, σ) ∈ K, for σ, τ ∈ G, be

such that

(1) α · σα =
∑
τ∈G

d(τ, σ)τα

for each σ ∈ G. Summing this over σ we find that∑
σ

d(1, σ) = Trα,

∑
σ

d(τ, σ) = 0 for τ ∈ G, τ 6= 1,

where Trα =
∑
σ σα ∈ K denotes the trace of α. Since α is a unit, the matrix

(
d(τ, σ)

)
is

invertible, so for each τ there is at least one non-zero d(τ, σ). If τ 6= 1, then by the above

relations there are at least two non-zero d(τ, σ)’s. Thus we find that

#{(σ, τ) ∈ G×G : d(τ, σ) 6= 0} ≥ 2n− 1.
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The normal basis (σα)σ∈G is called optimal if we have equality here.

The argument just given and the notion of an optimal normal basis are due to Mullin,

Onyszchuk, Vanstone and Wilson [2]. They give several examples of optimal normal bases,

and they formulate a conjecture that describes all finite extensions of the field of two

elements that admit an optimal normal basis. In [1] this conjecture is extended to all finite

fields. In the present paper we confirm the conjecture, and we show that the constructions

given in [2] exhaust all optimal normal bases, even for Galois extensions of general fields.

Our result is as follows. If F is a field, we denote by F ∗ the multiplicative group of

non-zero elements of F , and by charF the characteristic of F .

Theorem. Let K ⊂ L be a finite Galois extension of fields, with Galois group G, and let

α ∈ L. Then (σα)σ∈G is an optimal normal basis for L over K if and only if there is a

prime number p, a primitive pth root of unity ζ in some algebraic extension of L, and an

element c ∈ K∗ such that one of (i), (ii) is true:

(i) the irreducible polynomial of ζ over K has degree p− 1, and we have L = K(ζ) and

α = cζ;

(ii) charK = 2, the irreducible polynomial of ζ + ζ−1 over K has degree (p − 1)/2, and

we have L = K(ζ + ζ−1) and α = c(ζ + ζ−1).

In case (i), the degree of L over K is p− 1, and G is isomorphic to F∗p, where Fp denotes

the field of p elements. In case (ii), the prime number p is odd (because charK = 2), the

degree of L over K is (p − 1)/2, and G is isomorphic to F∗p/{±1}. In particular, we see

from the theorem that the Galois group is cyclic if there is an optimal normal basis.

In case (i) the irreducible polynomial of ζ over K is clearly equal to
∑p−1
i=0 X

i. We

remark that, when K is a field and p is a prime number, we can give a necessary and

sufficient condition for the polynomial
∑p−1
i=0 X

i to be irreducible over K. Namely, it is

irreducible over the prime field K0 of K if and only if either charK = 0, or charK 6= 0

and charK is a primitive root modulo p, or charK = p = 2; and it is irreducible over K

if and only if it is irreducible over K0 and K0(ζ) ∩K = K0, where ζ denotes a zero of the

polynomial in an extension field of K.

The formula for the irreducible polynomial of ζ + ζ−1 over K in case (ii) is a little
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more complicated. Let a ≺ b, for non-negative integers a and b, mean that each digit of

a in the binary system is less than or equal to the corresponding digit of b; so we have

a ≺ b if and only if one can subtract a from b in binary without “borrowing”. Further,

write n = (p − 1)/2. With this notation, the irreducible polynomial of ζ + ζ−1 over K in

case (ii) equals
∑
iX

i, where i ranges over those non-negative integers for which we have

2i ≺ n + i. To prove this, one first observes that, for any primitive pth root of unity ζ in

any field, one has the polynomial identity

n∏
j=1

(X − ζj − ζ−j) =

[(n−1)/2]∑
j=0

(−1)j
(
n− 1− j

j

)
Xn−(2j+1) +

[n/2]∑
j=0

(−1)j
(
n− j

j

)
Xn−2j .

Next one uses Lucas’s theorem, which asserts that a ≺ b if and only if the binomial

coefficient
(
b
a

)
is odd. This leads to the formula stated above. Again, we can for any field

K of characteristic 2 and for any odd prime number p = 2n + 1 give a necessary and

sufficient condition for the polynomial to be irreducible over K. Namely, the polynomial is

irreducible over the prime field F2 of K if and only if the group F
∗
p/{±1} is generated by

the image of (2 mod p); and it is irreducible over K if and only if it is irreducible over F2

and F2(γ)∩K = F2, where γ denotes a zero of the polynomial in an extension field of K.

We turn to the proof of the theorem. First we prove the “if” part. Let p be a prime

number and ζ a primitive pth root of unity such that (i) or (ii) holds for some c ∈ K∗.

Clearly, α gives rise to an optimal normal basis for L over K if and only if cα does. Hence

without loss of generality we may assume that c = 1.

Let it now first be supposed that we are in case (i). Since ζ has degree p− 1 over K,

all primitive pth roots of unity ζi, 1 ≤ i ≤ p−1, must be conjugate to ζ. Also, the elements

ζi, 0 ≤ i ≤ p − 2, form a basis for L over K. Multiplying this basis by ζ, we see that the

elements ζi, 1 ≤ i ≤ p − 1, form a basis for L over K as well, so this is a normal basis.

Multiplication by ζ on this basis is given by

ζ · ζi = ζi+1 (i 6= p− 1),

ζ · ζp−1 = 1 =
p−1∑
i=1

−ζi.

It follows that the normal basis is optimal.
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Next suppose that we are in case (ii), so that charK = 2 and α = ζ + ζ−1. If γ is

conjugate to α over K, then a zero η of X2 − γX + 1 is conjugate to one of the zeroes ζ,

ζ−1 of X2−αX+1 and is therefore a primitive pth root of unity. Then we have η = ζi for

some integer i that is not divisible by p, so γ = η+ η−1 = ζi + ζ−i for some integer i with

1 ≤ i ≤ (p − 1)/2. Since α has degree (p − 1)/2, it follows that its conjugates over K are

precisely the elements αi = ζ
i + ζ−i for 1 ≤ i ≤ (p− 1)/2. Note that for 0 < j < (p− 1)/2

we have αj = (ζ+ ζ−1)j =
∑[(j−1)/2]
i=0

(
j
i

)
αj−2i, and that α

0 = 1 =
∑p−1
i=1 ζ

i =
∑(p−1)/2
i=1 αi.

This shows that the K-vector space spanned by αj , 0 ≤ j < (p − 1)/2, which is L,

is contained in the K-vector space spanned by αi, 1 ≤ i ≤ (p − 1)/2. By dimension

considerations it follows that the elements αi, 1 ≤ i ≤ (p − 1)/2, form a normal basis for

L over K. Multiplication by α on this basis is given by

α · αi = αi−1 + αi+1 (1 < i < (p− 1)/2),

α · α1 = α
2 = α2,

α · α(p−1)/2 = α(p−3)/2 + α(p−1)/2.

It follows that the normal basis is optimal. This completes the proof of the “if” part of the

theorem.

We begin the proof of the “only if” part with a few general remarks about normal

bases. Let K ⊂ L be a finite Galois extension of fields, with Galois group G, and let α ∈ L

be such that (σα)σ∈G is a normal basis for L over K. Let d(τ, σ) ∈ K, for σ, τ ∈ G, be

such that (1) holds for each σ ∈ G. Applying σ−1 to (1) we find that

(2) d(τ, σ) = d(σ−1τ, σ−1) for all σ, τ ∈ G.

We now express multiplication by α in the dual basis. Let β be the unique element of L

satisfying Tr(β · α) = 1 and Tr(β · σα) = 0 for all σ ∈ G, σ 6= 1, where Tr:L→ K denotes

the trace map. Then for σ, τ ∈ G we have Tr(σβ · τα) = 1 or 0 according as σ = τ or

σ 6= τ . It follows that (σβ)σ∈G is also a normal basis for L over K; it is called the dual

basis of (σα)σ∈G. We claim that multiplication by α is expressed in this basis by

(3) α · τβ =
∑
σ∈G

d(τ, σ)σβ for all τ ∈ G.
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To prove this, it suffices to observe that the coefficient of α · τβ at σβ is given by

Tr((α · τβ) · σα) = Tr((α · σα) · τβ) = Tr
(∑
ρ∈G

d(ρ, σ)ρα · τβ
)
= d(τ, σ).

Let it now be assumed that (σα)σ∈G is an optimal normal basis for L over K. As we

saw at the beginning of this paper this means the following. First of all, for each τ ∈ G,

τ 6= 1, there are exactly two elements σ ∈ G for which d(τ, σ) is non-zero, and these two

non-zero elements add up to zero. Secondly, there is exactly one element σ ∈ G for which

d(1, σ) is non-zero, and denoting this element by µ we have d(1, µ) = Trα. By (3), we can

express the first property by saying that

(4) for each τ ∈ G, τ 6= 1, the element α · τβ equals an element of K∗ times the

difference of two distinct conjugates of β.

Likewise, the second property is equivalent to α · β = (Trα)µβ, where µ ∈ G. Replacing α

by cα for c = −1/Trα we may, without loss of generality, assume that Trα = −1. Then

we have

(5) α · β = −µβ.

Also, from (Trα)(Trβ) =
∑
σ,τ σα ·τβ =

∑
ρTr(α ·ρβ) = 1 we see that we have Trβ = −1.

If µ = 1 then from (5) we see that α = −1, so that L = K. Then we are in case (i) of

the theorem, with p = 2, if charK 6= 2, and we are in case (ii) of the theorem, with p = 3,

if charK = 2. Let it henceforth be assumed that µ 6= 1.

We first deal with the case that µ2 = 1. From (5) we see that α = −µβ/β, so

µα = −µ2β/µβ = −β/µβ = 1/α. Therefore we have

α · µα = 1 = −Trα =
∑
σ∈G

−σα.

This shows that d(σ, µ) = −1 for all σ ∈ G. By (3) and (4) this implies that for each σ 6= 1

there is a unique σ∗ 6= µ such that

α · σβ = σ∗β − µβ.
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If σ 6= τ then α ·σβ 6= α ·τβ, so σ∗ 6= τ∗. Therefore σ 7→ σ∗ is a bijective map from G−{1}

to G− {µ}. Hence each σ∗ 6= µ occurs exactly once, and again using (3) we see that

α · σ∗α = σα for σ∗ 6= µ,

α · µα = 1.

It follows that the set {1}∪{σα:σ ∈ G} is closed under multiplication by α. Since it is also

closed under the action of G, we conclude that it is a multiplicative group of order n+ 1.

This implies that αn+1 = 1, and we also have α 6= 1. Hence α is a zero of Xn+ . . .+X+1.

Since α has degree n over K, the polynomial Xn + . . . + X + 1 is irreducible over K.

Therefore n+ 1 is a prime number. This shows that we are in case (i) of the theorem.

For the rest of the proof we assume that µ2 6= 1. By (5) we have d(1, σ) = −1 or 0

according as σ = µ or σ 6= µ. Hence from (2) we find that

(6) d(σ, σ) =

{
−1 if σ = µ−1,
0 if σ 6= µ−1.

Therefore α · µ−1β has a term −µ−1β, and from µ−1 6= 1 and (4) we see that there exists

λ ∈ G such that

(7) α · µ−1β = λβ − µ−1β, λ 6= µ−1.

We shall prove that we have

(8) charK = 2,

(9) α · µβ = λµβ + β,

(10) λµ = µλ.

Before we give the proof of these properties we show how they lead to a proof of the

theorem.

Applying µ to (7) and comparing the result to (9) we find by (8) and (10) that

µα · β = α · µβ, which is the same as

(11) α/β = µ(α/β).
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Multiplying (11) and (5) we find by (8) that α2 = µα. By induction on k one deduces

from this that µkα = α2
k

for every non-negative integer k. If we take for k the order of µ,

then we find that α2
k

= α, which by the theory of finite fields means that α is algebraic

of degree dividing k over the prime field F2 of K. Therefore we have k = orderµ ≤ #G =

[L : K] = [K(α) : K] ≤ k. We must have equality everywhere, so µ generates G. By (11),

this implies that α/β ∈ K, and since Trα = Trβ = −1 we have in fact α = β. Thus from

(1) and (3) we see that

(12) d(σ, τ) = d(τ, σ) for all σ, τ ∈ G.

Let now ζ be a zero of X2−αX +1 in some algebraic extension of L, so that ζ+ ζ−1 = α.

Since α is algebraic over F2, the same is true for ζ, so the multiplicative order of ζ is finite

and odd; let it be 2m + 1. For each integer i, write γi = ζ
i + ζ−i, so that γ0 = 0 and

γ1 = α. We have γi = γj if and only if the zeroes ζ
i, ζ−i of X2 − γiX + 1 coincide with

the zeroes ζj , ζ−j of X2 − γjX + 1, if and only if i ≡ ±j mod 2m + 1. Hence there are

exactly m different non-zero elements among the γi, namely γ1, γ2, . . . , γm. Each of the

n conjugates of α is of the form µjα = α2
j

= ζ2
j

+ ζ−2
j

= γ2j for some integer j, and

therefore occurs among the γi. This implies that n ≤ m. We show that n = m by proving

that, conversely, every non-zero γi is a conjugate of α. This is done by induction on i. We

have γ1 = α and γ2 = µα, so it suffices to take 3 ≤ i ≤ m. We have

α · γi−2 = (ζ + ζ
−1) · (ζi−2 + ζ2−i) = γi−1 + γi−3,

where by the induction hypothesis each of γi−2, γi−1 is conjugate to α, and γi−3 is either

conjugate to α or equal to zero. Thus when α · γi−2 is expressed in the normal basis

(σα)σ∈G, then γi−1 occurs with a coefficient 1. By (12), this implies that when α · γi−1

is expressed in the same basis, γi−2 likewise occurs with a coefficient 1. Hence from (4)

(with β = α) and γi−1 6= α we see that α · γi−1 is equal to the sum of γi−2 and some other

conjugate of α. But since we have α · γi−1 = γi−2 + γi, that other conjugate of α must

be γi. This completes the inductive proof that all non-zero γi are conjugate to α and that

n = m.

From the fact that each non-zero γi equals a conjugate µ
jα of α it follows that for each

integer i that is not divisible by 2m+1 there is an integer j such that i ≡ ±2j mod 2m+1.
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In particular, every integer i that is not divisible by 2m+ 1 is relatively prime to 2m+ 1,

so 2m+ 1 is a prime number. Thus with p = 2m+ 1 we see that all assertions of (ii) have

been proved.

It remains to prove (8), (9), and (10). The hypotheses are that α gives rise to an

optimal normal basis with Trα = −1, that β gives rise to the corresponding dual basis,

that µ and λ satisfy (5) and (7), and that µ2 6= 1. The main technique of the proof is to

use the obvious identity ρα · (σα · τβ) = σα · (ρα · τβ) for several choices of ρ, σ, τ ∈ G.

From (5) we see that

µα · (α · β) = µα · (−µβ) = −µ(α · β) = µ2β,

and from (7) we obtain

α · (µα · β) = α · µ(α · µ−1β) = α · µ(λβ − µ−1β) = α · µλβ − α · β = α · µλβ + µβ.

Therefore we have

(13) α · µλβ = µ2β − µβ.

From µ 6= µ−1 and (6) we see that d(µ, µ) = 0, so (13) implies that

(14) λ 6= 1.

By (2) and (7) we have d(λ−1µ−1, λ−1) = d(µ−1, λ) = 1. Also, λ−1µ−1 6= 1 by (7), so from

(4) we obtain

(15) α · λ−1µ−1β = λ−1β − κβ for some κ ∈ G, κ 6= λ−1.

We have λ−1µ−1 6= µ−1 by (14), so (6) gives

(16) κ 6= λ−1µ−1.

From (7) and (15) we obtain

λα · (α · µ−1β) = λα · (λβ − µ−1β) = λ(α · β − α · λ−1µ−1β) = −λµβ − β + λκβ,
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and (15) gives

α · (λα · µ−1β) = α · λ(α · λ−1µ−1β) = α · (β − λκβ) = −µβ − α · λκβ.

Therefore we have

(17) α · λκβ = −µβ + λµβ + β − λκβ.

By (16) we have λκ 6= µ−1, so by (6) the term −λκβ does not appear in α · λκβ. It must

therefore be canceled by one of the other terms of (17). We have λκ 6= 1 by (15), so it

is not canceled by β. Therefore it is canceled either by λµβ or by −µβ. We shall derive

a contradiction from the hypothesis that it is canceled by λµβ; this will prove that it is

canceled by −µβ.

Suppose therefore that λκβ = λµβ. Then we have κ = µ, so (17) gives

(18) α · λµβ = β − µβ.

By (2) and (18) we have d(µ−1λµ, µ−1) = d(λµ, µ) = −1, and since by (14) we have

µ−1λµ 6= 1 it follows that

(19) α · µ−1λµβ = νβ − µ−1β, for some ν ∈ G, ν 6= µ−1.

Now we have on the one hand

α · (µα · λµβ) = α · µ(α · µ−1λµβ) = α · µ(νβ − µ−1β) = α · µνβ + µβ,

by (19), and on the other hand

µα · (α · λµβ) = µα · (β − µβ) = µ(α · µ−1β − α · β) = µλβ − β + µ2β,

by (18) and (7). This leads to

α · µνβ = µλβ − β + µ2β − µβ.

Since 1, µ, µ2 are pairwise distinct, the term µλβ must be canceled by one of the other

three terms. Therefore µλ ∈ {1, µ, µ2}, so λ belongs to the subgroup generated by µ, and

therefore λµ = µλ. But then (13) and (18) give µ2 = 1, contradicting our hypothesis.
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We conclude that the term −λκβ in (17) is canceled by −µβ, that is, −µβ−λκβ = 0.

This implies that µ = λκ and 2µβ = 0. This proves (8), and (17) gives (9). From (15) we

obtain

(20) α · λ−1µ−1β = λ−1β + λ−1µβ.

Combining this with (2) we find that d(µ−2, µ−1λ) = d(λ−1µ−1, λ−1µ) = 1, and since

µ−2 6= 1 this gives

α · µ−2β = µ−1λβ + νβ for some ν ∈ G.

This implies that

λα · (µα · µ−1β) = λα · µ(α · µ−2β) = λα · µ(µ−1λβ + νβ) = λµβ + λα · µνβ,

whereas (20) and (7) lead to

µα · (λα · µ−1β) = µα · λ(α · λ−1µ−1β) = µα · λ(λ−1β + λ−1µβ)

= µ(α · µ−1β + α · β) = µ(λβ + µ−1β + µβ) = µλβ + β + µ2β.

Therefore we have

λα · µνβ = λµβ + µλβ + β + µ2β.

This is conjugate to α · λ−1µνβ, so two terms on the right must cancel. From 1 6∈

{λµ, µλ, µ2} it follows that β does not cancel any of the other terms. Hence two of λµβ,

µλβ, µ2β must cancel, so that we have λµ = µλ, or µλ = µ2, or µ2 = λµ. In each of the

three cases λ and µ commute. This proves (10), which completes the proof of the theorem.
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