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Some New Algorithms for High-Precision
Computation of Euler’s Constant

By Richard P. Brent* and Edwin M. McMillan

Abstract. We describe several new algorithms for the high-precision computation of
Euler’s constant v = 0.577 . ... Using one of the algorithms, which is based on an
identity involving Bessel functions, v has been computed to 30,100 decimal places.
By computing their regular continued fractions we show that, if v or exp(y) is of the
form P/Q for integers P and Q, then 1Q1 > 1015000,

1. Introduction. Euler’s constant vy is defined by

1) v = lim (H,, —In(m)),

Mmoo
where H,, = Zf_ | 1/k

Recently ¢(3) was proved irrational [17] with the aid of a rapidly converg-
ing continued fraction, and conceivably a similar method might be used to prove
the irrationality of y. Thus, there is some interest in finding rapidly converging ex-
pressions for y. We give several such expressions below.

Early computations of vy used the Euler-Maclaurin expansion to accelerate con-
vergence of (1): see Brent [7] and Glaisher [12]. Sweeney [16] suggested a method
which avoids the need for computation of the Bernoulli numbers which appear in the
Euler-Maclaurin expansion, and Brent [7], [8] used Sweeney’s method to compute
v to 20,700 decimal places. In Section 3 we describe an algorithm which is about
twice as fast as Sweeney’s. The algorithm depends on some identities, given in Section
2, involving modified Bessel functions. To demonstrate the effectiveness of the algo-
rithm we have used it to compute y to 30,100 decimal places; see Section 5. Some
other algorithms for the high-precision computation of vy are briefly described and
compared in Section 4.

2. Some Bessel Function Identities. The modified Bessel functions /,(z) and
K (z) are defined by

o (2/2)v+2k

1@ = ,?z:o KT + & + 1)

and K, (z) = — 3L,(2)/ovl,—¢-
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It is easy to verify, by carrying out the differentiation indicated above, that

So(z) - Ko(z)

@) v +In(z/2) = _—}O(Z—)—",
where
& ()t
Sol@) = ,?;:0 ()

For real positive z, K,(z) and J,(z) have the asymptotic expansions

3 N 1 1/2 ., 0 - k

@ Ko@) (22) T C1a

and

(G Io(z)~(27rz)_l/’ez i a,(2),
k=0

where

1232 - - - 2k -1 [(2k)!])2
k\(8z2)* ((k)*(322)F

ak(z) =
A proof is given in Watson [19, Section 7.23].

For real z > 1, the first terms in the asymptotic expansions (3) and (4) give
upper and lower bounds on K (z) and /,(z), respectively:

m\1/2
0<Ky2) < (Z) e? and Iy(z) > (2mz) %e.

Thus, taking z = 2n > 2 in (2), we have

(5) 0 < U@)/V(n) — v = Ky(2n)/1(2n) < me~ 4",
where
o nk 2

(6) U(n) = Sy(2n) — I,2n)n(n) = 3 <7€T> (H, — In(n))

k=0 \ k!
and

o [nk\2
@) V(n) =1,(2n) = 3 <F> .

k=0 \Kk!

In the following section we describe an algorithm (B1) for computing v using (5)
to (7). It is interesting to note that the relations (2) to (4) were essentially given by
Riemann [14] in 1855, but the possibility of using them to compute Euler’s constant
appears to have been overlooked.

3. The Algorithm B1. Suppose we wish to evaluate v to d decimal places. If
we choose

(8) n=lc + %In(10)]
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for some suitable constant ¢ then, from (5),

ly — Um)/ V(n)| < me*=4¢107¢.

Thus, we need only evaluate U(n) and V(n) sufficiently accurately, and then perform
one high-precision division, to evaluate y to the required accuracy.

Let
nk\2 k
A =( ) @o-mew), U, =3 4,
! =0
nk\2 k
Bk = ; R Vk = Z B]-.
j=0
Then
) Ay =-In(n), By=1, U,=4,, V,=1,
and for k=1, 2, ..., we have
B, = B,_\n?/k*, A, = A, n*[k + Bk,
(10)

U =Upy Y4y Vi =Vie + By
For Algorithm BI, n is chosen according to (8), and working precision equiv-
alent to slightly more than d (floating) decimal places is used. In(n) is computed, e.g.
by the O(d?) method of [9], and A, By, U, and V, are initialized as in (9). The
iteration (10) is terminated when, to the working precision, U, = U,_; and V, =
Vi—1- The storage required is O(d) as B, can overwrite B, _,, etc.
For j > 0, let o; be the real positive root of

11 oy — 7
(11) o; lnaj o =]
Thus, oy = e >~ 2.78, a; =~ 3.59, @, >~ 4.32, ay =~ 4.97, etc.

Using Stirling’s approximation, we see that the number of iterations of (10)
required is

(12) K = ayn + O(in(n)) = %a, In(10)d + O(In(d)) = 2.07d.

In analyzing the time required by Algorithm B1 and other algorithms described
in Section 4, we make the following simplifying assumptions.

(2) Only the time required for the inner loop(s) is considered. (The computa-
tion of In(n) is common to all the algorithms considered, so the time required for this
is neglected. The final division of Uy by V, takes time 0(d?) if done as in [9], but
the constant factor is relatively small, and o(d?) methods exist [5].)

(b) Multiplication or division of a multiple-precision number (e.g. 4,_,) by a
small integer (e.g. n* or k) takes time d units. In the analysis (though not in the
implementation of the algorithm) the possibility of reducing the working precision
(e.g. for A, and B, when k =~ K) is neglected. Considering this possibility complicates
the analysis but is unlikely to alter the ranking of the algorithms discussed below.
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(c) Addition of two multiple-precision numbers takes time d units. (The con-
stant is assumed to be the same as for (b). Again, this is unlikely to change the rank-
ing of the algorithms.)

Using these assumptions, each iteration of (10) requires time 8d (for 3 multiple-
precision additions, 2 multiplications and 3 divisions by small integers). Thus, from
(12), the time required by method B1 is about 2a, In(10)d? = 16.5d°.

It is important to note that we avoid keeping H, or (H, — In(n)) as a multiple-
precision number and multiplying by B, in the inner loop. This would lead to a
method with time Q(d®) if the classical multiplication algorithm were used as in [9].
The idea of using the Bessel function identities to compute vy was suggested by the
second author, and the O(d?) implementation was discovered by the first author.

If terms in the sum (15) are grouped as in [5] and the Schénhage-Strassen fast
multiplication algorithm [15] is used, it is possible to compute vy with error bounded
by 107¢ in time O{d[In(d)] 3In[In(d)] }, asymptotically faster than any of the £(d?)
algorithms considered here. However, such “fast” algorithms are very difficult to
implement and are slower than Algorithm B1 unless d is very large. Thus, we do not
consider them further.

4. Related Algorithms. In this section we briefly describe and compare several
closely related algorithms for the computation of 7.
4.1. Algorithm B2. From (2) we have

So(2n) — Ky(2n)
I,(2n)

v + In(n) =
and from (3)

4n
(13) Ko(2n) = %(n/n)%2e 2" 3 (= 1)Fa,(2n) + O(e *"/n).

k=0
Thus, we can find y with error O(n™ "¢ 3") if K ,(2n) is approximated using (13). If
€™ is computed using the Taylor series, and the time required to compute (n/n)” is

neglected, the time required by this method (B2) is about
[(8a; + 3, + 6)In(10)/8]d* ~ 16.3d%,
not appreciably less than for the simpler method BI.

4.2. Algorithm B3. To avoid the computation of (n/n)”e 2" in (13), we may
use the asymptotic series [1, Eq. (9.7.5)]

1 X [(2K)]3
(14) 1,(2n)K,(2n) ~ — _—
oo () ~ 20 ,;0 (kD*(16n)%*
with k' < 2n. Empirical evidence suggests that the relative error in (14) with
k' = 2nis O(n "¢ %"), but we have not been able to prove this. Assuming this er-
ror bound, the time required with k' = 2n is about

(az + 3/8)In(10)d> =~ 12.342.
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This is less than the estimate 16.5d% for Algorithm B1, but we preferred to use Bl
because of its simplicity and the difficulty in rigorously bounding the error in (14).
4.3. Exponential Integral Methods. Several algorithms are based on the identity

v + In(n) = Q(n) — R(n),

where

n 1- —X oo k -1 k—1
(1) o = < xe >dx=;§:“1—n(—k!k)—_
and

R =]~ fc:-dx = 0(e"/n).

Beyer and Waterman [3], [4] took n = In(10)d, worked to precision equivalent to
2d decimal places to compensate for cancellation in the sum for Q(n), and neglected
R(n). The time required for this method is about 6a, In(10)d? = 49.642, or three
times that for method B1.

Following the suggestion of Sweeney [16], Brent [7], [8] took n =~ %In(10)d,
summed the series for Q(n) using the equivalent of 3d/2 decimal places, and approxi-
mated R(n) by its asymptotic expansion

e n=2 k!

(16) R(1) = — Z o

+ 0(e™2"/n).

Assuming the power series is used to compute €”, the time required for this method
is about

%(3(12 + a, + 1)In(10)d? ~ 28.842,

about twice as much as for method B1. Actual running times confirm this ratio.
Using the identity

o nk
e"0(n) = 3. Hy o

k=0 :
we can evaluate Q(n) by computing EHknk/k! and T n*/k! by recurrences similar to
(10). Because all the terms in the two sums are positive, there is no need to increase
the working precision to much more than the equivalent of d decimal places. If n
= 1n(10)d, and R(n) is neglected, the time required is about Tay In(10)d? = 43.842,
slightly less than for Beyer and Waterman’s method. If the asymptotic series (16) is
used for R(n), the time required is about

%(l4a; + 3)In(10)d* >~ 30.7d%,
slightly greater than for Sweeney’s method.

Instead of using the asymptotic expansion (16) for R(n), we could use Euler’s
continued fraction [18, p. 350]

E'RM)=1n+1/1+1/n+21+2n+3/1+3n+---
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and the forward or backward recurrence relations. This has the advantage that R(n)
can be evaluated as accurately as desired, whereas with the asymptotic expansion (16)
the error is 2(¢72"/n). The choice of the optimal n and the optimal number of terms
in the continued fraction (evaluated by the backward recurrence relations) gives a
method competitive with Algorithm B1, but much more complicated.

4.4. A Generalization. For fixed p > 0, it follows from (1) that

an  Tieo OHRY @, ~ In)
y = lim = .
s oo Do F/KP

With p = 1 we obtain essentially one of the exponential integral methods mentioned
above, with error O(e™"/n). With p = 2 we obtain method B1, with error O(e™%").

We shall sketch how the error in (17) may be estimated for integer p => 2. Let
¥(2) be a function of the real variable z, and L the operator defined by Ly = z(dy/dz).
Then

V@)= 5 @Ry
k=0
and

Up@) = X (Hy - In@) - )X /KIY
k=0

are independent solutions of
(18) (L - pz)P)y = 0.
{To verify this for y = U, let

oo ka+v

Voul?) = ,:go (KPTIT(K + v +1)

Then it is easy to check that

19 [+ @~ L —vP~ = 2PV, (2) =0,

and the result follows by differentiating (19) with respect to v, setting v = 0, and ob-
serving that Up(z) = —an,V(z)/avl‘,:o.} Now

V(@) ~ b (2n2) 7P 2exp(p2)

is the dominant solution of (18) as z — + oo, By analyzing the asymptotic behavior
of the subdominant solutions we obtain

1U,@)1V,@)! = Olexp(-c(p))) a5z =+,
where c(p) = p(1 — cos(2n/p)). Thus, the error in (17) for integer p = 2 is
O(exp(—c(p)n)) as n — . Since ¢(2) = 4, ¢(3) = 4.5, and c(p) < 4 for p = 4, only

the case p = 3 is worth considering as a computational alternative to method Bl (i.e.
the case p = 2).



HIGH-PRECISION COMPUTATION OF EULER’S CONSTANT 311

5. Computational Results. vy was computed to more than 30,100 decimal places
using method Bl and a multiple-precision arithmetic package [9] on a Univac 1100/42.
Three independent computations were performed, with n = 17,332 (using base 10,000
and 7,527 digits), n = 17,357 (base 65,535 and 6,260 digits), and n = 17,387 (base 65,536
and 6,271 digits). All three agreed to 30,100 decimal places, and the last two agreed to
30,141 decimal places. The computer time required for each computation was about
20 hours, much the same as for the 20,700 decimal place computation [7] using
Sweeney’s method on the same machine.

We also computed G = exp(y) to more than 30,100 decimal places using the ex-
ponential routine in Brent’s package [9] (with base 65,536 and 6,260 digits), and veri-
fied it by computing In(G) by the Gauss-Salamin algorithm [6] (with base 10,000 and
7,550 digits). The rounded 30,100D values of y and G are given in [10].

The first 29,200 partial quotients in the regular continued fractions for y and G
were computed and verified as in [7], [8]. Statistics on the distributions of the first
29,000 partial quotients are given in Table 1, with notation as in [7, Table 2]. A chi-
squared test did not show any significant difference (at the 5% level) between the ac-
tual distributions and the distribution predicted by the Gauss-Kusmin theorem [13].
A table of the first 29,000 partial quotients for y and G is given in [11].

TABLE 1
Distribution of first 29,000 partial quotients for v and G

n number of number of expected
(M) =n q{G)=n number
1 12112 11992 12036.1
2 4809 4875 4927.8
3 2791 2760 2700.2
4 1727 1757 17079
5 1181 1168 1178.6
6 867 848 862.7
7 642 716 658.9
8 497 520 519.7
9 420 417 420.5
10 346 335 347.2
11-20 1624 1729 1694.1
21-50 1148 1103 11339
51-100 411 390 400.2
101-1000 378 349 370.4

>1000 47 41 41.8

From the continued fractions for y and G we can improve the Theorem of [7,
Section 7], where the lower bound on Q| was 1019:000,

THEOREM 1. If vy or G = P/Q for integers P and Q, then 1Q| > 10!5:000,
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